
COMPUTATIONAL TOOL FOR APPLICATIONS OF SPARSE CANONICAL

CORRELATION ANALYSIS ON BIOLOGICAL DATA

A Thesis

by

RATANOND KOONCHANOK

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Ulisses Braga-Neto
Co-Chair of Committee, Ivan Ivanov
Committee Members, Robert Chapkin

Erchin Serpedin
Head of Department, Miroslav Begovic

December 2017

Major Subject: Electrical Engineering

Copyright 2017 Ratanond Koonchanok

ABSTRACT

Sparse canonical correlation analysis (sparse CCA) is a method for identifying

sparse linear combinations of the two sets of variables that are highly correlated with

each other, given that those two sets of measurements are available on the same set of

observations. Recently, sparse CCA has become a popular method for analyzing

genomic data, where the number of features is large compared to that of observations.

Analyzing a set of data using sparse CCA requires multiple steps, including data

cleaning, normalizing, and using the right programming packages.

To make sparse CCA accessible for all researchers regardless of their statistical

background, a user-friendly computational tool should be created to assist them in

walking through the analysis. After the tool is successfully implemented, a few sets of

data will be used as case studies for testing efficiency of the sparse CCA computational

tool. Eventually, the tool will be added to the computational website hosted by the

Center for Translational Environmental Health Research, which currently hosts services

for sequencing classification and differential expression analysis.

ii

ACKNOWLEDGEMENTS

 I would like to thank my committee chair and co-chair, Dr. Braga-Neto and Dr.

Ivanov, for giving me a great opportunity to work on a meaningful project as well as for

providing many informative advice throughout the course of this research. I also would

like to thank my two committee members, Dr. Chapkin and Dr. Serpedin. They not only

joined the thesis defense, but also offered valuable suggestions.

Thanks also go to my friends and colleagues and the department faculty and staff

for making my time at Texas A&M University a great experience. Finally, thanks to my

parents for their encouragement, patience, and love.

iii

CONTRIBUTORS AND FUNDING SOURCES

This work was supervised by a thesis committee consisting of Dr. Ulisses Braga-

Neto of the Department of Electrical and Computer Engineering (co-advisor), Dr. Ivan

Ivanov of the Department of Veterinary Physiology and Pharmacology (co-advisor), Dr.

Robert Chapkin of the Department of Nutrition and Food Science and Dr. Erchin

Serpedin of the Department of Electrical and Computer Engineering.

All work for the thesis was completed independently by the student.

This work was made possible in part by the National Institutes of Health under

Grant Number R35CA197707 and P30ES023512.

iv

TABLE OF CONTENTS

Page

ABSTRACT... ii

ACKNOWLEDGEMENTS... iii

CONTRIBUTORS AND FUNDING SOURCES... iv

TABLE OF CONTENTS... v

LIST OF FIGURES... vii

LIST OF TABLES... ix

1. INTRODUCTION... 1

2. BACKGROUND... 3

2.1 Canonical correlation analysis (CCA)…………………………………….. . 3
2.1.1 CCA……………………………….. 3
2.1.2 Sparse CCA……………………………………................................... 3
2.1.3 Important terms……………………………………............................. 4

2.2 Comparison with other types of analysis…………………………………... 5
2.2.1 Principal component analysis (PCA)………………………………... . 5
2.2.2 Pearson’s correlation coefficient……………………………………... 6

2.3 Probability distribution models for generating synthetic biological data...... 7
2.3.1 Multivariate Gaussian distribution…………………………………… 7
2.3.2 Poisson distribution…………………………………………………... 8

2.4 Current state of the computational website……………………………….... 10

3. RESEARCH DESCRIPTION………………………………………………….. 13

3.1 Problem definition…………………………………………………………. 13
3.2 Research goals……………………………………………………………… 14

4. PROJECT APPROACH... 16

 4.1 Framework design.. 16

v

4.2 Sparse CCA implementation.. 18
4.2.1 ‘CCA.permute’ function……………………………………………… 18
4.2.2 ‘CCA’ function……………………………………………………….. 20

4.3 Performance evaluation... 21
4.3.1 Applying sparse CCA to synthetic data……………………………… 22

4.3.1.1 Methods for generating synthetic data…………………………. 22
4.3.1.2 Linear relationship implementation……………………………. 24

4.3.2 Applying sparse CCA to real data... 24

5. RESULTS... 26

5.1 Tool framework…………………………………………………………….. 26
5.2 Synthetic data... 27

5.2.1 Small number of features…………………………………………….. 27
5.2.2 Large number of features…………………………………………….. 41

5.3 Real data... 48
5.3.1 SeedLevel2 vs. Immunology…………………………………………. 48
5.3.2 First component scores vs. second component scores……………….. 50
5.3.3 Sparse PCA…………………………………………………………… 51

6. DISCUSSION.. 53

6.1 Synthetic data... 53
6.1.1 Small number of features…………………………………………….. 53
6.1.2 Large number of features…………………………………………….. 55

6.2 Real data... 56
6.2.1 SeedLevel2 vs. Immunology…………………………………………. 56
6.2.2 First component scores vs. second component scores……………….. 57
6.2.3 Sparse PCA…………………………………………………………… 58

7. CONCLUSIONS.. 59

REFERENCES.. 62

APPENDIX A.. 64

APPENDIX B.. 66

APPENDIX C.. 70

APPENDIX D.. 74

vi

LIST OF FIGURES

FIGURE Page

1 The interface when users navigate the website... 12

2 The form for users to upload necessary input... 12

3 The diagram depicting the overall working structure of the tool................ 17

4 The flow diagram for generating the synthetic data................................... 23

5 The canonical correlation of the Multivariate Gaussian data after the
linear implementation using 2 OTUs.. 42

 6 The canonical correlation of the RNAseq data after the linear
implementation, using 2 OTUs... 43

7 The canonical correlation of the Multivariate Gaussian data after the
linear implementation using 3 OTUs.. 44

 8 The canonical correlation of the RNAseq data after the linear
implementation, using 3 OTUs... 44

9 The canonical correlation of the Multivariate Gaussian data after the
linear implementation using 4 OTUs.. 45

 10 The canonical correlation of the RNAseq data after the linear
implementation, using 4 OTUs... 46

11 The canonical correlation of the Multivariate Gaussian data after the
linear implementation using 5 OTUs.. 47

 12 The canonical correlation of the RNAseq data after the linear
implementation, using 5 OTUs... 47

 13 The first component score between Immunology and SeedLevel2............ 49

 14 The second component score between Immunology and SeedLevel2....... 49

vii

15 The first component score vs. the second component scores of
SeedLevel2.. 50

16 The first component score vs. the second component scores of
Immunology.. 51

 17 The first vs. second PCA scores of SeedLevel2... 52

 18 The first vs. second PCA scores of Immunology... 52

viii

LIST OF TABLES

TABLE Page

1 A comparison between PCA and CCA ... 6

2 Canonical cross-loadings between the canonical variate for the
multivariate Gaussian data and each of the OTUs, with OTU1 and Gene1
being used in the linear implementation... 29

3 Canonical cross-loadings between the canonical variate for the
microbial data and each of the genes in the multivariate Gaussian data,
with OTU1 andGene1 being used in the linear implementation…............. 30

4 Canonical cross-loadings between the canonical variate for the
RNAseq data and each of the OTUs, with OTU1 and Gene1 being used
in the linear implementation... 31

5 Canonical cross-loadings between the canonical variate for the
microbial data and each of the genes in the RNAseq data, with OTU1
and Gene1 being used in the linear implementation................................... 32

6 Canonical cross-loadings between the canonical variate for the
multivariate Gaussian data and each of the OTUs, with OTU1, Gene1,
and Gene2 being used in the linear implementation................................... 33

7 Canonical cross-loadings between the canonical variate for the
microbial data and each of the genes in the multivariate Gaussian data,
with OTU1, Gene1, and Gene2 being used in the linear implementation…. 34

8 Canonical cross-loadings between the canonical variate for the
RNAseq data and each of the OTUs, with OTU1, Gene1, and Gene2
being used in the linear implementation... 35

9 Canonical cross-loadings between the canonical variate for the
microbial data and each of the genes in the RNAseq data, with OTU1,
Gene1, and Gene2 being used in the linear implementation...................... 36

ix

10 Canonical cross-loadings between the canonical variate for the
multivariate Gaussian data and each of the OTUs, with OTU1, Gene1,
Gene2, and Gene3 being used in the linear implementation...................... 37

11 Canonical cross-loadings between the canonical variate for the
microbial data and each of the genes in the multivariate Gaussian data,
with OTU1, Gene1, Gene2, and Gene3 being used in the linear
implementation... 38

12 Canonical cross-loadings between the canonical variate for the
RNAseq data and each of the OTUs, with OTU1, Gene1, Gene2, and
Gene3 being used in the linear implementation.. 39

13 Canonical cross-loadings between the canonical variate for the
microbial data and each of the genes in the RNAseq data, with OTU1,
Gene1, Gene2, and Gene3 being used in the linear implementation.......... 40

x

1. INTRODUCTION

Canonical correlation analysis (CCA) is a statistical method for exploring the

relationships between two multivariate sets of variables that are measured on the same

samples. The canonical correlation coefficient measures the strength of association

between two canonical variates. CCA has a wide range of application in many research

areas including genomics and bioinformatics. Researchers at the Chapkin Lab from

Texas A&M University are among those that utilize sparse CCA. One of the papers from

this lab, “A metagenomic study of diet-dependent interaction between gut microbiota

and host in infants reveals differences in immune response” by Schwartz et al. (2012)

[1], describes how CCA can be used to reveal the correlation structure between a

microarray host gene expression and microbial sequencing data.

In order to apply CCA to genomic data where the number of features generally

exceeds the number of observations, a penalized version of CCA called sparse CCA

must be utilized instead. To complete the whole process of sparse CCA, multiple data-

preprocessing tasks are required. Experts in statistical analysis are able to perform those

necessary tasks step-by-step to achieve the final results, but those with limited statistical

experience such as biologists might find them too complicated. Thus, it is significant to

provide an end-to-end computational tool that assists all types of researchers in using

sparse CCA.

1

The Center for Translational Environmental Health Research (CTEHR) is a

research center whose goal is to improve human environment health by integrating

advances in biomedical and engineering research across translational boundaries. They

address the problem of difficulty that a lot of researchers without a rigorous statistics

background are facing by launching the Analysis and Predictive Integrative Modeling of

Omics Data (APIMOD) computational website . Currently, its beta version is able to

provide services for sequencing classification and differential expression.

The core of this project is the implementation of the sparse CCA data processing

pipeline that can eventually be added to the APIMOD computational website. The tool

should be able to accept two sets of biological data as input and handle the necessary

steps from the beginning until the end. Its internal structure will be implemented in a

way that any further code modification or addition can be made without much

complication.

The report will demonstrate the theoretical idea and purpose behind the

implementation. Both synthetic and real-world datasets will be used as case studies to

validate the application of the sparse CCA computational tool.

2

2. BACKGROUND

2.1 Canonical correlation analysis (CCA)

2.1.1 CCA

Due to Hotelling(1936) [2], Canonical correlation analysis (CCA) is a classical

method for determining the relationship between two sets of variables. Given two data

sets X1 and X2 of dimensions n × p1 and n × p2 on the same set of n observations, CCA

seeks linear combinations of the variables in X1 and the variables in X2 that are

maximally correlated with each other. That is, w1 R∈ p1 and w2 R∈ p2 maximize the CCA

criterion, given by

maximizew1,w2w1
T X1

TX2w2 subject to w1
T X1

TX1w1 = w2
T X2

T X2w2 = 1

where it is assumed that the columns of X1 and X2 have been standardized to have mean

zero and standard deviation one. In this paper, they refer to w1 and w2 as the canonical

vectors (or weights), and they refer to X1w1 and X2w2 as the canonical variables.

 2.1.2 Sparse CCA

Methods for penalized CCA was proposed by Witten et al. (2009) [3]. The

criterion for sparse CCA has the following form,

maximizew1,w2w1
T X1

TX2w2 subject to ||w1||2 ≤ 1, ||w2||2 ≤ 1, P1(w1) ≤ c1 , P2(w2) ≤ c2

3

for general penalty functions P1 and P2 . They are interested in two specific forms of

these penalty functions:

• P1 is an L1 (or lasso) penalty; that is, P1 (w1) = ||w1||1 . This penalty

will result in w1 sparse for c1 chosen appropriately. It is assumed that 1≤c1≤√ p1

• P1 is a fused lasso penalty of the form P1 (w1) = ∑j |w1j | + ∑j |w1j − w1(j-1) |. This

penalty will result in w1 sparse and smooth, and is intended for cases in which the

features in X1 have a natural ordering along which smoothness is expected.

The two forms mentioned above only include the the penalty function P1, but the penalty

function P2 also follows the same forms.

2.1.3 Important terms

To fully understand the results of CCA and sparse CCA, the understanding of the

following terms is required.

1. Canonical variates

They are the linear combinations that represent the weighted sum of two or more

variables and can be defined for either dependent or independent variables. Canonical

variates can also be referred to as linear composites, linear compounds, and linear

combinations.

4

2. Canonical correlation

 It is the measure of the strength of the overall relationships between the linear

composites (canonical variates) for the independent and dependent variables. In effect, it

represents the bivariate correlation between the two canonical variates.

3. Canonical loadings

They are the measure of the simple linear correlation between the original

variables and their respective canonical variates. These can be interpreted like factor

loadings, and are also known as canonical structure correlations.

4. Canonical cross-loadings

They are the correlations between the variate of one set of variables and each

variable of the other set. They can be interpreted in similar way to that of the canonical

loadings.

2.2 Comparison with other types of analysis

2.2.1 Principal component analysis (PCA)

According to Hervé Abdi and Lynne J. Williams [4], PCA is a multivariate

technique that analyzes a data table in which observations are described by several inter-

correlated quantitative dependent variables. Its goal is to extract a set of uncorrelated

features from the table, to represent it as a set of new orthogonal variables called

5

principal components, and to display the pattern of similarity of the observations. Table

1 compares the input and output of PCA and CCA

PCA CCA

Input X = (x1, x2,…, xN) X = (x1, x2,…, xN)

Z = (z1, z2,…, zN)

Output Xout = WT X

where WT is a projection matrix

Xout = wT
x
 X

Zout = wT
y
 Z

where wT
x and wT

Z
 are canonical

loadings
Table 1 A comparison between PCA and CCA

2.2.2 Pearson’s correlation coefficient

Pearson's correlation coefficient (r-value) is a measure of the strength of the

association between the two continuous variables. The r-value for continuous data ranges

from -1 to +1. When r = -1, a perfect negative linear correlation is indicated. When r = 1,

a perfect positive linear correlation is indicated. When r = 0, there is no relationship

between the variables.

6

The formula for Pearson's correlation coefficient is:

 ρX , Z=
cov (X ,Z)

σXσZ

Where X and Z are data vectors.

‘cov’ is the covariance.

‘σX’ and ‘σZ’ are the standard deviations of X and Z respectively.

 The interpretation of an r-value is comparable to the interpretation of a canonical

correlation in that they both measure how strong two sets of data are correlated. The

main difference is that the analysis of Pearson's correlation coefficient can take into

account only one feature at a time for each set of data.

2.3 Probability distribution models for generating synthetic biological data

2.3.1 Multivariate Gaussian distribution

Multivariate Gaussian Distribution (or Multivariate Normal Distribution) is a

generalization of the one-dimensional normal distribution to higher dimensions.

 For a random-valued random variable x = [X1, X2, …., Xn]T

 If μ is a n-dimensional mean vector and ∑ is the respective n×n covariance matrix

p(x ;μ , Σ)=
1

(2 π)
n/2|Σ|

1/2
exp(−

1
2
(x−μ)

T
Σ

−1
(x−μ))

7

This can be written as

The gene-expression levels are modeled as a multivariate Gaussian distribution that

statistically captures the real mRNA levels within the cells.

Σ has the following block structure:

Σ ρ is a square matrix, with 1 on the diagonal and ρ off the diagonal. All features in the

same block are correlated to one another with the correlation coefficient ρ (which ranges

from -1 to 1), while features of different blocks are uncorrelated.

2.3.2 Poisson distribution

The National Institute for Biological Standards and Control [5] defines Next

Generation Sequencing (NGS) as technologies that offer high-throughput, rapid and

8

accurate methods of determining the precise order of nucleotides within DNA/RNA

molecules.

The specific application of NGS for RNA sequencing is called RNA-Seq, which

is a high-throughput measurement of gene-expression levels of thousands of genes

simultaneously as represented by discrete expression values for regions of interest on the

genome (e.g. genes).

According to Ghaffari et al. (2013) [6], two popular models for statistical

representation of the discrete NGS data are the negative binomial and Poisson. The

negative binomial model is more general because it can mitigate over-dispersion issues

associated with the Poisson model; however, with the relatively small number of

samples available in most current NGS experiments, it is difficult to accurately estimate

the dispersion parameter of the negative binomial model. Therefore, in this study, the

RNA-seq model is a combination of a multivariate Gaussian (representing the genes'

concentrations) followed by a Poisson process. This method overcomes the dispersion

problems associated to the case where data is simply drawn from a Poisson distribution.

 The expected number of reads (mean of the Poisson distribution) are calculated

from the generalized linear model.

E[Xi,j | si] = si exp(λi,j + θi,j)

where si is referred to as ‘sequencing depth’

9

Xi,j is the read count for gene j for sample point i

λi,j is the jth gene-expression level in lane i

θi,j represents technical effects that might be associated with an experiment. we

assume that it follows a Gaussian distribution with zero mean and a variance set by the

coefficient of variation (COV). That is,

2.4 Current state of the computational website

The testing version of the APIMOD computational website is able to host two

types of biological data analysis service, a sequencing classification and a differential

gene expression. For the sequencing classification, users would submit RNAseq datasets

and the tool would determine a pair of genes that differentiate the two sample

populations in the dataset. For the differential gene expression, the analysis is done for

RNAseq data where the quantitative-biology-core computational pipeline is used to

determine differential expression genes. Specifically, mapped reads are normalized and

then the result together with the experiment key file are fed to a statistical package called

EdgeR to determine differentially expressed genes.

To use the computation site, the users start by navigating on the website and

selecting the analysis service of their choice. Figure 1 is the screen-shot of the interface

10

for users to choose between the two choices of analysis. Then they fill in a form

describing their information, including name, e-mail, project name, and project

descriptions. An example of the form is shown in Figure 2. Depending on the type of

service chosen, different types of files are needed to be uploaded. A read file is required

for the sequencing classification, and a key file and a count file are required for the

differential expression. After filling out those required fields and submitting the service

request, a confirmation email is sent to the users. The confirmation email would include

a link that redirect the users to a status page, where their service detail as well as the

current status are displayed. Once the status is ‘complete’, users are able to view the

analysis results on the website as well as download them.

The internal structure of the website is constructed using Python (with Flask

framework) and SQLite database. When a service request is submitted, a random

identification number is generated and sent to the user, while the user’s information is

stored in the computer that hosts the computational website. An SQLite database is used

to keep track of the jobs submitted from the users. There are two groups in the database.

One is for the analyses that are already completed and the other one is for the analyses

waiting to be processed. Once each incomplete task is processed, it is transferred to the

completed group.

11

Figure 1 The interface when users navigate the website. Users can click either on
 ‘Sequencing Classification’ or ‘Differential Expression’ to proceed to the next
 step.

Figure 2 The form for users to upload necessary input

12

3. RESEARCH DESCRIPTION

3.1 Problem definition

In recent years, an increasing amount of data has become more available in

various fields, causing an upward trend in using statistical analysis to solve complicated

problems. Researchers in the biology-related fields are among those that can utilize the

great quantity of data. Research related to complex system requires a collection of

various data types and the subsequent integrative analysis. Despite the meaningful

insights statistical tools are able to provide, biologists often lack the adequate

background in statistical computation and hesitate to use them.

The Chapkin Lab from the Nutrition department at Texas A&M University is one

of the groups that use statistical tools in their research, which eventually leads to the

motivation to host the APIMOD computational website. Other than the sequencing

classification and differential expression, which are currently available for them, sparse

CCA will also need to be added to the website.

Sparse CCA has been growing in popularity as a method for analyzing genomic

data, where the number of features is far greater than the number of observations. To

complete the whole process of canonical correlation analysis, multiple data-

preprocessing steps are required and some parameters have to be determined. People

with expertise in statistical analysis might be able to perform those necessary steps until

13

the final results are achieved, but researchers with limited experience such as biologists,

these steps might be too complicated. This is why it is highly significant to have an end-

to-end computational tool that serves as a helper and makes sparse CCA approachable

for all types of researchers.

3.2 Research goals

There are four main goals for the implementation of this sparse CCA

computational tool.

1. Tool’s validation

The tool must be able to detect the linear relationship manually implemented in the

synthetic data and to replicate results for real data

2. User-friendly implementation

The tool should be implemented in a very user-friendly way. Users should be guided to

use the tool to achieve their research objectives without any need to consult an expert.

3. Code modularity

Sufficient code modularity should allow any adjustments or incoming data analysis

methods to be implemented without complication.

14

4. Well-written documentation

Tool specification that allow for its seamless integration with the current APIMOD site

must be provided.

15

4. PROJECT APPROACH

The sparse CCA computational tool is implemented in R and Python. To

accomplish the research goal, the process as a whole is divided into several steps.

4.1 Framework design

The web-interface portion is implemented using a combination of both Python

(Flask) and SQLite, a software library that implements a self-contained, server-less SQL

database engine. Initially, users have to submit two files to the system as inputs, each as

a CSV or TXT file containing a data table. The two tables must have the same number of

samples (rows) but can have different number of features (columns). After submission,

the inputs are saved into a specific folder set up in back-end system. Those inputs are

then called when the computational code is executed. After the whole process is

complete, the results are stored in another folder.

Ideally, the web-based tool will be able to accept many jobs and keep a record of

the order of their submission to the system. A database will be set up for that purpose.

Once each job is submitted by a user, the database will record its status as ‘incomplete’.

Then the R code will process the incomplete job, and once the computational process is

done, the database status will be changed to ‘complete’.

Each input’s expected format is a table with the same numbers of samples (rows). The

preprocessing step will confirm that the format is acceptable before proceeding to the

16

next step. Also, due to the computational requirement of the sparse CCA, any columns of

data with standard deviation equal to zero must be removed.

After preprocessing, the two input tables are now in the form of numerical

matrices and ready to be analyzed. Those matrices will be used as input parameters for

the sparse CCA functions from the R package ‘PMA’.The generated results are a score

table and four graphs showing the component scores of the two inputs. The R package

‘ggplot2’[7] is used for generating the plots. Figure 3 is the diagram showing the tool’s

workflow.

Figure 3 The diagram depicting the overall working structure of the tool

17

4.2 Implementing a sparse CCA method

‘PMA’ is an R package that performs penalized multivariate analysis. It offers a

wide range of tools including the sparse CCA. The two functions related to the analysis

that will be used are ‘CCA’ and ‘CCA.permute’. Below are the detailed descriptions

referenced from the official manual of the package ‘PMA’ [8] on how these two

functions can be used.

4.2.1 ‘CCA.permute’ function

‘CCA.permute’ automatically selects tuning parameters for sparse CCA using the

penalized matrix decomposition, as described in Witten et al. (2009) [9]. For each data

set X and Z, two types are possible: (1) type ‘standard’, which does not assume any

ordering of the columns of the data set, and (2) type ‘ordered’, which assumes that

columns of the data set are ordered and thus that corresponding canonical vector should

be both sparse and smooth (e.g. CGH data). For X and Z, the samples are on the rows

and the features are on the columns. The tuning parameters are selected using a

permutation scheme. For each candidate tuning parameter value, the following is

performed:

1. The samples in X are randomly permuted nperms times, to obtain matrices X*1,X*2,.

…

18

2. Sparse CCA is run on each permuted data set (X*i , Z) to obtain factors (u*i , v*i),

which are the canonical coefficients for each pair of (X*i , Z).

3. Sparse CCA is run on the original data (X, Z) to obtain factors u and v, which are the

resulting canonical coefficients of X and Z respectively..

4. Compute c*i = cor(X*i u*i , Z v*i) and c = cor(Xu , Zv).

Note: cor(x,y) refers to the correlation of x and y.

5. Use Fisher’s transformation to convert these correlations into random variables that

are approximately normally distributed. Let Fisher(c) denote the Fisher transformation of

c.

6. Compute a z-statistic for Fisher(c), using

Fisher (c)−mean(Fisher(c *))

sd (Fisher (c *))

The larger the z-statistic, the ‘better’ the corresponding tuning parameter value.

As a result, the x penalty and z penalty which result in the highest z-statistic are chosen

to be used as part of the input arguments of the ‘CCA’ function.

Usage:

CCA.permute(x,z,typex=c("standard", "ordered"),typez=c("standard","ordered"),

penaltyxs=NULL, penaltyzs=NULL, niter=3,v=NULL,trace=TRUE,nperms=25,

19

standardize=TRUE, chromx=NULL, chromz=NULL,upos=FALSE, uneg=FALSE,

vpos=FALSE, vneg=FALSE,outcome=NULL, y=NULL, cens=NULL)

4.2.2 ‘CCA’ function

The function ‘CCA’ performs sparse canonical correlation analysis using the

penalized matrix decomposition. The main parameters to be taken in are the data

matrices and their matrix penalty details.

Given matrices X and Z, which represent two sets of features on the same set of

samples, the function finds sparse u and v such that uTXTZv is large. For X and Z, the

samples are on the rows and the features are on the columns. X and Z must have same

number of rows, but may (and usually will) have different numbers of columns. The

columns of X and/or Z can be unordered or ordered. If unordered, then a lasso penalty

will be used to obtain the corresponding canonical vector. If ordered, then a fused lasso

penalty will be used; this will result in smoothness.

Usage:

CCA(x, z, typex=c("standard", "ordered"),typez=c("standard","ordered"),

penaltyx=NULL, penaltyz=NULL, K=1, niter=15, v=NULL, trace=TRUE,

standardize=TRUE, xnames=NULL, znames=NULL, chromx=NULL, chromz=NULL,

upos=FALSE, uneg=FALSE, vpos=FALSE, vneg=FALSE, outcome=NULL, y=NULL,

cens=NULL)

20

4.3 Performance evaluation

To test efficiency of the tool, multiple data sets are used in various scenarios. We

first tested the sparse CCA tool on synthetic data sets generated according to the

algorithms and their implementations in Ghaffari et al. (2013) [6], Yousefi et al. (2011)

[10], and Bahadorinejad, A. (2017) [11]. Once being successful with the synthetic

datasets, real datasets are next considered.

For synthetic datasets, there are three types of data being generated, which are

the multivariate Gaussian Data, the RNAseq data, and the microbial sequencing data.

The multivariate Gaussian data model is based on the multivariate Gaussian distribution.

The model has a blocked covariance structure that conforms to various observations

made in microarrray expression-based studies [10]. For the RNAseq data, the model

used is a combination between the general model based on multivariate Gaussian

distribution followed by a transformation based on Poisson distribution model. A series

of distribution models can be constructed by changing model parameters to generate

different synthetic data samples. For the microbial sequencing data, a python script is

used to simulate Operational Taxonomic Units (OTU) frequency vectors that take into

account phylogenetic relatedness of OTUs.

We also tested the sparse CCA tool on a real data set generated during the NIH-

funded project “Gut Mibrobiota And Colonic Gene Expression: A Lingan Trial In

Humans”, co-conducted by the Nutrition Department at Texas A&M University.

21

4.3.1 Applying sparse CCA to synthetic data

There are three sets of data being randomly generated: microbial sequencing,

multivariate Gaussian, and RNA sequencing. The RNA sequencing data is generated by

processing the multivariate Gaussian data through a Poisson process.

First, two canonical correlations are computed, one is between the microbial

sequencing and the multivariate Gaussian data and the other one is between the

microbial sequencing and RNA sequencing data. Then, we implement a linear

relationship between each pair of data. After the linear relationships are constructed, the

two canonical correlations are computed again on the same variables, then the two sets

of values are compared.

4.3.1.1 Methods for generating synthetic data

There are three types of synthetic data generated: Microbial OTUs, Multivariate

Gaussian, and RNA sequencing (RNAseq).

The code for generating microbial sequencing data is written in Python by

Arghavan Bahadorinejad [11]. It basically simulates OTU frequency vectors that take

into account phylogenetic relatedness of OTUs.

For generating multivariate Gaussian data, the code was written in C++ by

Jianping Hua, as described in Yousefi et al. (2011) [10]. The simulation design uses a

general model based on multivariate Gaussian distributions with a blocked covariance

structure that conforms to various observations made in microarray expression-based

22

studies. A battery of distribution models can be constructed by changing model

parameters to generate different synthetic data samples. The Gaussian distribution model

simulates RNA concentrations in real samples.

RNAseq data is generated by the code that was an extension of the one that

generates the multivariate Gaussian data, as described in Ghaffari et al. (2013) [6]. After

the multivariate Gaussian data is generated, it is pushed through a Poisson process. The

Poisson transformation simulates using the sequencing machine in the real experiment.

Figure 4 is the flow diagram for generating both the Multivariate Gaussian and RNAseq

data.

Figure 4 The flow diagram for generating the synthetic data

23

4.3.1.2 Linear relationship implementation

Since sparse CCA is an analysis that detects linear relationships between two sets

of data and the synthetic data are randomly generated, it is necessary that relationships

are manually implemented so that the sparse CCA can be tested. The built-in R function

‘lm’ is used to fit the randomly generated data. The fitted data will be in the form

∑ yk = ∑ aixi + intercept

where ‘k’ and ‘i’ are the indexes related to OTUs and genes used to be included in the

linear implementation respectively. Different ranges of ‘k’ and ‘i’ are used so that the

results in different scenarios can be compared against one another. Only genes from

multivariate Gaussian are used in the implementation in order to observe how the

Poisson process affects the linear relationships.

4.3.2 Applying sparse CCA to real data

To further validate the sparse CCA tool, we attempt to replicate the unpublished

study “An application of sCCA for integrative analysis of diet-dependent interaction

between gut microbiota and host in neonates” [12]. Additional results not included in the

original study are also supplied in order to strengthen the validation. The study applies

sparse CCA on a pair of host microarray data set and microbial data set, which was

aligned using Rapid Annotation using Subsystems Technology (MG-RASTv2) against

the SEED subsystem database.

24

The input for the tool’s validation is already in the acceptable form of two tables,

resulting from the preprocessing step that was done separately. Quantile normalization

was used for RNAseq data while an R package ‘metagenomeSeq’ [13] was used for the

microbial sequencing data. It is possible to add these normalization methods to the tool

in the future using steps similar to the explanation made in APPENDIX C.

25

5. RESULTS

5.1 Tool framework

The sparse CCA computational tool is implemented using the structure similar to

that of the sequencing classification and differential expression analysis, so that they can

be easily integrated on the website. Specifically, the same tools and folders organization

are utilized when building the sparse CCA application. An important feature introduced

in the implementation is the modularity of the tool, which allow ease of addition of any

new tools in the future. The code component comprised of two major parts. The first part

is the one that handles all relations between a user’s input, database, and the analysis

portion. The other part is the data analysis part.

For the first part, the code initially checks if there is any file in the database. If

there is no file, then the process stops. If a file exists, the database is connected using an

R package “RSQLite” [14]. Then the database checks for a job with an ‘incomplete’

status, which will eventually be processed. If none of the jobs has the status of

‘incomplete’, the process also ends.

The second part of the code component handles the computational portion.

Particularly, it is the part where the sparse CCA is implemented. The code is placed

within the error handling function called tryCatch, which is inside the first part. This

way of implementation allows the modularity feature to be possible. That is the code

26

inside the tryCatch function can be replaced with other types of computational methods

in order to add more functionality to the tool.

5.2 Synthetic data

After the sparse CCA is implemented, it is then applied to multiple datasets.

Many scenarios for each dataset are considered.

5.2.1 Small number of features

The key property to be considered is the canonical cross loadings, which is the

correlation of each variable with the opposite canonical variate.

The data consists of 2 OTUs and 3 genes. We use U1 as the canonical variate for

the microbial data, V1 as the canonical variate for the multivariate Gaussian data, and

W1 as the canonical variate for the RNAseq data. Table 2 through Table 13 show the

canonical cross loadings for each variable in each dataset both before and after the linear

relationship is implemented.

In the linear implementation, microbial data is used as a dependent variable while

the multivariate Gaussian or RNA sequencing data is used as independent variables.

There are three cases in this numerical experiment. Each case has the form of y1 ~ ∑ xk

where ‘k’ ranges from 1 to 3. The notation ‘~’ indicates a linear relationship. For

27

example, y ~ x1+x2 is equivalent to the form y = m1x1+m2x2+ c where m1 and m2 are

slopes and c is a constant.

28

Case 1: OTU1 ~ Gene1

Table 2 Canonical cross-loadings between the canonical variate for the multivariate
 Gaussian data and each of the OTUs, with OTU1 and Gene1 being used in the
 linear implementation

29

V1 vs. OTUs
 OTU 1 OTU 2

Dataset 1 Before -0.3907183 -0.1186813
After -1 -0.2260459

Dataset 2 Before -0.1391491 0.0585454
After -1 0.06826512

Dataset 3 Before -0.4217921 0.0407734
After -1 0.1365645

Dataset 4 Before -0.195657 -0.302892
After -1 -0.302892

Dataset 5 Before -0.4110796 -0.3802128
After -1 -0.1696654

Dataset 6 Before 0.0009457134 0.36187219
After -1 -0.1616121

Dataset 7 Before -0.0350365 -0.3819603
After -1 0.0793762

Dataset 8 Before -0.2686624 -0.0550798
After -1 -0.2188731

Dataset 9 Before -0.074364 0.369191
After -1 -0.0083163

Dataset 10 Before -0.32068989 -0.06316337
After -1 -0.1439532

Dataset 11 Before -0.42211989 -0.0194381
After -1 0.0958877

Table 3 Canonical cross-loadings between the canonical variate for the microbial data
 and each of the genes in the multivariate Gaussian data, with OTU1 and Gene1
 being used in the linear implementation

30

U1 vs. Genes
Gene 1 Gene 2 Gene 3

Dataset 1 Before 0.01870357 0.35116653 0.14620568
After 1 0.2294226 -0.2968851

Dataset 2 Before 0.06022922 -0.12502358 -0.03120631
After 1 0.1613756 -0.1149653

Dataset 3 Before -0.3498769 -0.2936249 0.1429806
After -1 -0.0481509 0.0795961

Dataset 4 Before -0.3028919 -0.0242343 -0.2212093
After -1 -0.1386472 -0.1513016

Dataset 5 Before 0.3590944 -0.2340555 -0.362238
After 1 -0.208301 -0.1264478

Dataset 6 Before 0.1616121 -0.3113451 0.1293518
After -1 -0.30304246 0.04346897

Dataset 7 Before -0.0793762 -0.3666335 0.1342536
After 1 0.3011729 0.0042999

Dataset 8 Before -0.0912606 0.1299878 0.2418749
After -1 -0.3104978 -0.1376715

Dataset 9 Before 0.008316298 0.312365 -0.20366
After -1 -0.0589381 0.0059786

Dataset 10 Before -0.1364311 -0.2840887 0.1965004
After -1 -0.1550587 0.1237826

Dataset 11 Before -0.040835 0.4221199 -0.0133788
After -1 0.2846204 0.3264974

Table 4 Canonical cross-loadings between the canonical variate for the RNAseq data and
 each of the OTUs, with OTU1 and Gene1 being used in the linear
 implementation

31

W1 vs. OTUs
OTU 1 OTU 2

Dataset 1 Before -0.2755202 0.1602694
After -0.561442 -0.178859

Dataset 2 Before -0.2580476 0.041712
After -0.32686587 -0.04228278

Dataset 3 Before -0.3736285 -0.2301289
After -0.6839862 0.2431373

Dataset 4 Before -0.152795 -0.468153
After -0.647861 -0.0837184

Dataset 5 Before -0.2783777 -0.1021217
After -0.3591292 0.271894

Dataset 6 Before -0.13348706 -0.02069273
After -0.69750546 -0.05144567

Dataset 7 Before -0.3150119 -0.2352629
After -0.6618332 0.133462

Dataset 8 Before -0.1401131 0.2371155
After -0.6821678 -0.1963306

Dataset 9 Before -0.2194645 -0.2871148
After -0.5676777 0.060138

Dataset 10 Before -0.1860355 0.1104051
After -0.28440878 -0.09500744

Dataset 11 Before -0.3346095 -0.0444541
After -0.4056705 -0.1017371

Table 5 Canonical cross-loadings between the canonical variate for the microbial data
 and each of the genes in the RNAseq data, with OTU1 and Gene1 being used in
 the linear implementation

32

U1 vs. Genes
Gene 1 Gene 2 Gene 3

Dataset 1 Before -0.22579 0.2202608 0.11878
After 0.56144203 0.12086873 -0.08553118

Dataset 2 Before 0.01129986 -0.13498591 0.25804763
After 0.2696895 -0.250798 0.1232999

Dataset 3 Before -0.1414355 -0.1797505 0.2830388
After -0.683986 0.0137319 0.1107876

Dataset 4 Before -0.1315147 0.4681526 0.0846587
After -0.6150942 -0.1289938 0.0955491

Dataset 5 Before -0.2103968 -0.1799772 -0.24017
After 0.3477704 -0.1767702 -0.1149791

Dataset 6 Before 0.03006138 0.10799401 0.11165529
After -0.69750546 -0.22322208 -0.02736362

Dataset 7 Before -0.0195874 -0.1594113 0.2648633
After 0.6628332 0.00229019 0.0071701

Dataset 8 Before 0.1963306 0.2091746 -0.0955025
After -0.6821678 -0.226299 0.00122507

Dataset 9 Before 0.1141338 -0.2871148 -0.1946725
After -0.503361 -0.0709896 -0.231004

Dataset 10 Before -0.1475136 -0.0626963 0.1860355
After -0.243881766 -0.009474329 0.224025031

Dataset 11 Before 0.274431 0.2645438 0.2794695
After -0.2513729 0.3635195 0.211355

Case 2: OTU1 ~ Gene1 + Gene2

Table 6 Canonical cross-loadings between the canonical variate for the multivariate
 Gaussian data and each of the OTUs, with OTU1, Gene1, and Gene2 being used
 in the linear implementation

33

V1 vs. OTUs
 OTU 1 OTU 2

Dataset 1 Before -0.3907183 -0.1186813
After -0.9935857 -0.2103694

Dataset 2 Before -0.1391491 0.0585454
After -0.97641949 0.04373211

Dataset 3 Before -0.4217921 0.0407734
After -0.8327455 -0.2304964

Dataset 4 Before -0.195657 -0.302892
After -0.9391243 -0.087974

Dataset 5 Before -0.4110796 -0.3802128
After -0.9993169 -0.1745127

Dataset 6 Before 0.000945713 0.36187219
After -0.959892 -0.2243991

Dataset 7 Before -0.0350365 -0.3819603
After -0.9995626 0.3666335

Dataset 8 Before -0.2686624 -0.0550798
After -0.82040111 0.0685745

Dataset 9 Before -0.074364 0.369191
After -0.986999 0.2802154

Dataset 10 Before -0.32068989 -0.06316337
After -0.99707494 -0.05591419

Dataset 11 Before -0.42211989 -0.0194381
After -0.9682923 -0.0194381

Table 7 Canonical cross-loadings between the canonical variate for the microbial data
 and each of the genes in the multivariate Gaussian data, with OTU1, Gene1, and
 Gene2 being used in the linear implementation

34

U1 vs. Genes
Gene 1 Gene 2 Gene 3

Dataset 1 Before 0.01870357 0.35116653 0.14620568
After 0.1178854 0.9935857 -0.2103694

Dataset 2 Before 0.06022922 -0.12502358 -0.03120631
After 0.05548205 -0.97641949 0.18670218

Dataset 3 Before -0.3498769 -0.2936249 0.1429806
After -0.7217637 -0.7260903 -0.028467

Dataset 4 Before -0.3028919 -0.0242343 -0.2212093
After -0.6472933 -0.8446246 -0.1210972

Dataset 5 Before 0.3590944 -0.2340555 -0.362238
After 0.9882616 -0.3552762 -0.1189485

Dataset 6 Before 0.1616121 -0.3113451 0.1293518
After -0.89625939 0.15210658 0.00403712

Dataset 7 Before -0.0793762 -0.3666335 0.1342536
After 0.3292405 0.9995626 0.1159866

Dataset 8 Before -0.0912606 0.1299878 0.2418749
After -0.5681438 0.6058479 -0.1373393

Dataset 9 Before 0.008316298 0.312365 -0.20366
After -0.1663004 0.9745595 0.1615355

Dataset 10 Before -0.1364311 -0.2840887 0.1965004
After -0.320008 -0.9855761 0.1159428

Dataset 11 Before -0.040835 0.4221199 -0.0133788
After -0.0361081 0.9682923 0.0746215

Table 8 Canonical cross-loadings between the canonical variate for the RNAseq data and
 each of the OTUs, with OTU1, Gene1 and Gene2 being used in the linear
 implementation

35

W1 vs. OTUs
OTU 1 OTU 2

Dataset 1 Before -0.2755202 0.1602694
After -0.65946354 -0.03749887

Dataset 2 Before -0.2580476 0.041712
After -0.4881717 0.2433998

Dataset 3 Before -0.3736285 -0.2301289
After -0.6839862 0.2431373

Dataset 4 Before -0.152795 -0.468153
After -0.4781066 -0.0340261

Dataset 5 Before -0.2783777 -0.1021217
After -0.3674784 0.2625524

Dataset 6 Before -0.13348706 -0.02069273
After -0.63450827 -0.05144567

Dataset 7 Before -0.3150119 -0.2352629
After -0.5576955 0.1228815

Dataset 8 Before -0.1401131 0.2371155
After -0.4225213 -0.2096492

Dataset 9 Before -0.2194645 -0.2871148
After -0.452435 0.233542

Dataset 10 Before -0.1860355 0.1104051
After -0.2708888 0.1158262

Dataset 11 Before -0.3346095 -0.0444541
After -0.4958251 -0.027695

Table 9 Canonical cross-loadings between the canonical variate for the microbial data
 and each of the genes in the RNAseq data, with OTU1, Gene1 and Gene2 being
 used in the linear implementation

36

U1 vs. Genes
Gene 1 Gene 2 Gene 3

Dataset 1 Before -0.22579 0.2202608 0.11878
After -0.05933418 0.65946354 -0.12170565

Dataset 2 Before 0.01129986 -0.13498591 0.25804763
After -0.00458042 -0.48817166 0.06294449

Dataset 3 Before -0.1414355 -0.1797505 0.2830388
After -0.6839861 0.0137319 0.1107876

Dataset 4 Before -0.1315147 0.4681526 0.0846587
After -0.4087011 -0.3111239 0.0080849

Dataset 5 Before -0.2103968 -0.1799772 -0.24017
After 0.32836222 -0.25266345 -0.07886958

Dataset 6 Before 0.03006138 0.10799401 0.11165529
After -0.63450827 0.006577268 -0.055726411

Dataset 7 Before -0.0195874 -0.1594113 0.2648633
After 0.3406209 0.5073102 0.3048115

Dataset 8 Before 0.1963306 0.2091746 -0.0955025
After -0.375256 0.194175 0.3010886

Dataset 9 Before 0.1141338 -0.2871148 -0.1946725
After -0.3266413 0.3441688 0.40991

Dataset 10 Before -0.1475136 -0.0626963 0.1860355
After -0.1378012 -0.1999964 0.233296

Dataset 11 Before 0.274431 0.2645438 0.2794695
After -0.168379 0.4073901 0.4161749

Case 3: OTU1 ~ Gene1 + Gene2 + Gene3

Table 10 Canonical cross-loadings between the canonical variate for the multivariate
 Gaussian data and each of the OTUs, with OTU1, Gene1, Gene2, and Gene3
 being used in the linear implementation

37

V1 vs. OTUs
 OTU 1 OTU 2

Dataset 1 Before -0.3907183 -0.1186813
After -0.9145 -0.1186813

Dataset 2 Before -0.1391491 0.0585454
After -0.95860375 0.05627703

Dataset 3 Before -0.4217921 0.0407734
After -0.8138075 0.0407735

Dataset 4 Before -0.195657 -0.302892
After -0.9387378 -0.087974

Dataset 5 Before -0.4110796 -0.3802128
After -0.9261903 -0.2693177

Dataset 6 Before 0.000945713 0.36187219
After -0.77511871 0.09652387

Dataset 7 Before -0.0350365 -0.3819603
After -0.8708296 0.3188008

Dataset 8 Before -0.2686624 -0.0550798
After -0.6899724 -0.2006818

Dataset 9 Before -0.074364 0.369191
After -0.979797 0.240481

Dataset 10 Before -0.32068989 -0.06316337
After -0.95469881 -0.06316337

Dataset 11 Before -0.42211989 -0.0194381
After -0.9625267 -0.0318368

Table 11 Canonical cross-loadings between the canonical variate for the microbial data
 and each of the genes in the multivariate Gaussian data, with OTU1, Gene1,
 Gene2, and Gene3 being used in the linear implementation

38

U1 vs. Genes
Gene 1 Gene 2 Gene 3

Dataset 1 Before 0.01870357 0.35116653 0.14620568
After 0.0294174 0.8181304 0.3616538

Dataset 2 Before 0.06022922 -0.12502358 -0.03120631
After 0.01572789 -0.88187657 0.60357339

Dataset 3 Before -0.3498769 -0.2936249 0.1429806
After -0.6575814 -0.615524 0.4498756

Dataset 4 Before -0.3028919 -0.0242343 -0.2212093
After -0.6473556 -0.8442025 -0.0972547

Dataset 5 Before 0.3590944 -0.2340555 -0.362238
After 0.7781259 -0.3269968 -0.6914781

Dataset 6 Before 0.1616121 -0.3113451 0.1293518
After -0.6650068 0.1141568 0.6699263

Dataset 7 Before -0.0793762 -0.3666335 0.1342536
After 0.3398491 0.7469429 0.7325247

Dataset 8 Before -0.0912606 0.1299878 0.2418749
After -0.551744 0.5320788 0.2509534

Dataset 9 Before 0.0083163 0.312365 -0.20366
After -0.142493 0.9383129 0.4348558

Dataset 10 Before -0.1364311 -0.2840887 0.1965004
After -0.2900495 -0.834644 0.6207757

Dataset 11 Before -0.040835 0.4221199 -0.0133788
After -0.021954 0.953491 -0.0742191

Table 12 Canonical cross-loadings between the canonical variate for the RNAseq data
 and each of the OTUs, with OTU1, Gene1,Gene2, and Gene3 being used in the
 linear implementation

39

W1 vs. OTUs
OTU 1 OTU 2

Dataset 1 Before -0.2755202 0.1602694
After -0.53361876 0.001315121

Dataset 2 Before -0.2580476 0.041712
After -0.4736886 0.2433998

Dataset 3 Before -0.3736285 -0.2301289
After -0.5196779 0.2040253

Dataset 4 Before -0.152795 -0.468153
After -0.4740843 -0.0340261

Dataset 5 Before -0.2783777 -0.1021217
After -0.37496202 -0.03444462

Dataset 6 Before -0.13348706 -0.02069273
After -0.52145469 -0.04873572

Dataset 7 Before -0.3150119 -0.2352629
After -0.5172044 0.153402

Dataset 8 Before -0.1401131 0.2371155
After -0.5053266 -0.097944

Dataset 9 Before -0.2194645 -0.2871148
After -0.5037548 0.2257296

Dataset 10 Before -0.1860355 0.1104051
After -0.5052626 0.1104051

Dataset 11 Before -0.3346095 -0.0444541
After -0.4759663 -0.1445503

Table 13 Canonical cross-loadings between the canonical variate for the microbial data
 and each of the genes in the RNAseq data, with OTU1, Gene1, Gene2, and
 Gene3 being used in the linear implementation

40

U1 vs. Genes
Gene 1 Gene 2 Gene 3

Dataset 1 Before -0.22579 0.2202608 0.11878
After -0.24565406 0.49620364 0.06590824

Dataset 2 Before 0.01129986 -0.13498591 0.25804763
After 0.06893597 -0.47368864 0.27986026

Dataset 3 Before -0.1414355 -0.1797505 0.2830388
After -0.4653387 -0.1154333 0.4155736

Dataset 4 Before -0.1315147 0.4681526 0.0846587
After 0.4037761 -0.3156223 0.0202176

Dataset 5 Before -0.2103968 -0.1799772 -0.24017
After 0.1566423 -0.2504334 -0.3273299

Dataset 6 Before 0.03006138 0.10799401 0.11165529
After -0.45793806 -0.08802108 0.28627804

Dataset 7 Before -0.0195874 -0.1594113 0.2648633
After 0.2949942 0.4179895 0.4339231

Dataset 8 Before 0.1963306 0.2091746 -0.0955025
After -0.2600955 0.2516163 0.4542582

Dataset 9 Before 0.1141338 -0.2871148 -0.1946725
After -0.3073681 0.3183115 0.4647377

Dataset 10 Before -0.1475136 -0.0626963 0.1860355
After -0.07878463 -0.064644 0.50526263

Dataset 11 Before 0.274431 0.2645438 0.2794695
After -0.1379086 0.4176939 0.3195154

5.2.2 Large number of features

For cases where the number of features greatly exceeds the number of samples

(with ratio of approximately 10:1 in this experiment), only the canonical correlations are

considered instead of the cross-loadings as in the case of small features. The graphs

(Figure 5 to Figure 12) show the canonical correlations for each case, where the number

of genes ranges from 1 to 10.

41

2 OTUs, 1-10 genes

The plots show the canonical correlations after the linear relationship

implementation for both the multivariate Gaussian and RNAseq data. The y-axis

represents the canonical correlations while the x-axis represents the number of genes

used in the implementation. The canonical correlations before the linear relationship

implementation are 0.6966727 and 0.7593742 for multivariate Gaussian and RNA

sequencing respectively.

Figure 5 The canonical correlation of the Multivariate Gaussian data after the linear
 implementation using 2 OTUs

42

Figure 6 The canonical correlation of the RNAseq data after the linear implementation,
 using 2 OTUs

3 OTUs, 1-10 genes

The plots show the canonical correlations after the linear relationship

implementation for both the multivariate Gaussian and RNAseq data. The y-axis

represents the canonical correlations while the x-axis represents the number of genes

used in the implementation. The canonical correlations before the linear relationship

implementation are 0.6966727 and 0.7593742 for multivariate Gaussian and RNA

sequencing respectively.

43

Figure 7 The canonical correlation of the Multivariate Gaussian data after the linear
 implementation using 3 OTUs

Figure 8 The canonical correlation of the RNAseq data after the linear implementation,
 using 3 OTUs

44

4 OTUs, 1-10 genes

The plots show the canonical correlations after the linear relationship

implementation for both the multivariate Gaussian and RNAseq data. The y-axis

represents the canonical correlations while the x-axis represents the number of genes

used in the implementation. The canonical correlations before the linear relationship

implementation are 0.6966727 and 0.7593742 for multivariate Gaussian and RNA

sequencing respectively.

Figure 9 The canonical correlation of the Multivariate Gaussian data after the linear
 implementation using 4 OTUs

45

Figure 10 The canonical correlation of the RNAseq data after the linear implementation,
 using 4 OTUs

5 OTUs, 1-10 genes

The plots show the canonical correlations after the linear relationship

implementation for both the multivariate Gaussian and RNAseq data. The y-axis

represents the canonical correlations while the x-axis represents the number of genes

used in the implementation. The canonical correlations before the linear relationship

implementation are 0.6966727 and 0.7593742 for multivariate Gaussian and RNA

sequencing respectively.

46

Figure 11 The canonical correlation of the Multivariate Gaussian data after the linear
 implementation using 5 OTUs

Figure 12 The canonical correlation of the RNAseq data after the linear implementation,
 using 5 OTUs

47

5.3 Real data

The real data consists of a host microarray data set and a microbial data set. The

objective of this unpublished study we try to replicate is to apply the sparse CCA on this

pair of data sets. In that study, both of the input data were not in the right format (as

described in APPENDIX A) for the sparse CCA tool, and thus required some manual

preprocessing steps before applying sparse CCA. In our replication, however, we start

with two data files that are already in the correct format so that they are suitable for the

tool. For the following plots, ‘Immunology’ refers to the microarray data set and

‘SeedLevel2’ refers to the microbial dataset. The elliptic shapes in each plot group the

similar samples together.

5.3.1 SeedLevel2 vs. Immunology

Both Figure 13 and Figure 14 display the component scores of ‘SeedLevel2’

versus the component scores of ‘Immunology’. Figure 13 represents the first component

scores while Figure 14 represents the second component scores. The canonical

correlation for the first component scores is 0.964 and the canonical correlation for the

second component scores is 0.938.

48

Figure 13 The first component score between Immunology and SeedLevel2

Figure 14 The second component score between Immunology and SeedLevel2

49

5.3.2 First component scores vs. second component scores

Figure 15 shows the first component scores versus the second component scores

of ‘SeedLevel2’. In order to display more than two dimensions, the first component

scores of ‘Immunology’ is also shown using the color spectrum. Different feeding types

for each sample is also represented by the circular and triangular shapes. Similarly,

Figure 16 shows the first component scores versus the second component scores of

‘Immunology’. The first component scores of ‘SeedLevel2’ is also shown via the color

spectrum.

Figure 15 The first component scores vs. the second component scores of SeedLevel2

50

Figure 16 The first component scores vs. the second component scores of Immunology

5.3.3 Sparse PCA

To illustrate that sparse CCA can separate two feeding types better than sparse

PCA, the sparse PCA plots are provided as a comparison. Figure 17 represents the PCA

scores for ‘SeedLevel2’ while Figure 18 represents the PCA scores for ‘Immunology’.

The x-axis represents the first principle component scores while the y-axis represents the

second principle component scores. The plots are generated from the Sparse PCA code

that are manually implemented using the R package ‘PMA’, which is the same package

used in the sparse CCA tool’s back-end.

51

Figure 17 The first vs. second PCA scores of SeedLevel2

Figure 18 The first vs. second PCA scores of Immunology

52

6. DISCUSSION

6.1 Synthetic data

6.1.1 Small numbers of features

In this particular part of our validation studies, the data consists of 2 OTUs and 3

genes as features. We consider three separate cases. To solidify the results, each case is

repeated with 12 different datasets. The reason for using small numbers of features is

that it would be easier to detect the implemented linear relationship. Given that the

numbers of features are small, the canonical cross loadings for each feature can easily be

tracked. Each case of the numerical experiments results in four tables that display

canonical cross-loadings (two for multivariate Gaussian data and two for RNA

sequencing data).

The linear relationship is introduced between the variables from the multivariate

Gaussian and the OTUs because the multivariate Gaussian models gene RNA

concentrations before the library preparation and the subsequent sequencing of those

libraries. The first case to consider is when one OTU and one gene are used to construct

the linear relationship. Table 1 shows the canonical cross-loadings between each of the

OTUs and the canonical variate of the multivariate Gaussian data. Similarly, Table 2

shows the canonical cross-loadings between each of the genes and the canonical variate

of the microbial data. After the relationship is introduced, the canonical cross-loadings

53

for the features used in the implementation increase as expected. Table 3 shows the

canonical cross-loadings between each of the OTUs and the canonical variate of RNA

sequencing data. Table 4 shows the canonical cross-loadings between each of the genes

and the canonical variate of the microbial data. Unlike the multivariate Gaussian, the

canonical cross-loadings do not display stable results, meaning that the cross-loadings do

not always increase. Although most of the numbers do increase, the level of increments

are lower than that of the multivariate Gaussian data.

For the second and third cases, where two and three genes are used in the linear

relationship implementation respectively, the correlation can also be detected by the

sparse CCA tool. For the multivariate Gaussian data, the absolute values of canonical

cross loadings increase greatly. With the RNAseq data, however, the linear relationship

can still be traced but it is not as obvious as the multivariate Gaussian cases. These

results agree with the first case mentioned earlier. Nonetheless, there is a subtle

difference when using more than one features in the linear relationship implementation.

The canonical cross-loadings for all features do not always increase altogether since the

weight of each feature on the linear relationship is not the same.

The results from all three cases indicate that the transformation of the

multivariate Gaussian by the Poisson negatively affects the ability of the sparse CCA to

detect the linear relationships introduced between the multivariate Gaussian and the

OTUs. This suggests that one should use caution when interpreting the sparse CCA

results where only sequencing data is used.

54

6.1.2 Large numbers of features

The numerical experiment for large numbers of features are performed in five

scenarios. 789 OTUs are used for microbial data and 300 genes are used for both

multivariate Gaussian data and RNA-sequencing data. Similar to the small cases, the

linear relationship is introduced between the variables from the multivariate Gaussian

and the OTUs. Between two to five OTUs are selected to have a linear relationship with

one to ten genes. The chosen OTUs are those that have the minimum number of zero

count among the samples. The genes, on the other hand, can be randomly selected.

Each pair of plots display the canonical correlations after implementing the

relationship. The five cases presented are based on the number of OTUs in the linear

relationship implementation. There are two plots in each case, one for multivariate

Gaussian and one for RNAseq. The vertical axis is the canonical correlation for each

number of genes used in the implementation. Since the number of features is large, we

consider a canonical correlation instead of the canonical cross-loading for each feature

used in the previous section.

For 2 OTUs, the original values of the canonical correlation are 0.6966727 and

0.7593742 for multivariate Gaussian data and RNA-sequencing data respectively. In

fact, these numbers are the same when different numbers of OTUs are used, since they

are the numbers before introducing the linear relationship. Figure 5 shows that after the

implementation of linear relationship, the canonical correlations between the microbial

55

data and multivariate Gaussian data significantly increase. For the RNAseq data, the

difference is that after the linear relationship is implemented, the canonical correlations

between the microbial data and RNAseq data do not increase as much as those for the

multivariate Gaussian data, and some do not increase at all, as shown in Figure 6.

Following the same trend of thought as in Ghaffari et al. (2013) [6], we speculated that

the Poisson process, which is part of the RNAseq generating process, has contributed to

the distortion of the linear relationship implemented at the level of the multivariate

Gaussian and OTUs level. For the case where three, four , and five OTUs are used, the

plots are comparable with those from two OTUs and thus solidify the results obtained in

the cases of small number of features.

Similar to the conclusion for the small case, the sparse CCA results should be

interpreted with caution in the case where only sequencing data is used because the

results indicate that the transformation of the multivariate Gaussian by the Poisson

negatively affects the ability of the sparse CCA to detect the linear relationships

introduced between the multivariate Gaussian and the OTUs.

6.2 Real data

6.2.1 SeedLevel2 vs. Immunology

Figure 13 and 14 were not included in the original results of the study but are

included here in order to aid the sparse CCA interpretation. They are the scatter plots of

56

the first and second canonical variate pair between the two datasets respectively. The

canonical correlations between the datasets are also displayed at the top of each graph.

The values of canonical correlation reflect how strong the two sets of features are

correlated. Higher number indicates stronger correlation which results in a less scattered

and more linear positioning of the samples on the graph. Thus, one way of interpretation

is to see how much the graph fits to a linear line. The more it fits, the more correlation

there is. For ‘SeedLevel2’ and ‘Immunology’, the canonical variate plots for both the

first and second variate pairs have an obvious linear fit, indicating that the sparse CCA

performs as expected since it could find the linear combinations of the original variables

such that those linear combinations are strongly correlated.

6.2.2 First component scores vs. second component scores

Figure 15 and 16 are the plots of the first versus the second canonical variate.

Figure 15 is for ‘SeedLevel2’ while Figure 16 is for ‘Immunology’. The tool is able to

replicate the results made in the paper. For these two plots, the horizontal axis

corresponds to the first canonical variate and the vertical axis corresponds to the second

canonical variate. In order to add a third dimension to the graph and see the relationship

with another variable a color bar on the right is attached. When plotting the result this

way, the samples could be separated into groups, based on their canonical variates. This

suggest the potential use of the sparse CCA as not only a tool to detect correlations

57

between two sets of variables but also the ability to detect different phenotypes/classes

presented by the samples.

6.2.3 Sparse PCA

The sparse PCA plots are used as a comparison in order to show the advantage of

using sparse CCA. Spare PCA method was applied on both the host genes expression

levels and gut microbiota data. For Figure 17, the x axis and y axis represent the first and

second PCA components of the normalized second level of SEED subsystem

respectively. Similarly, for Figure 18, the x axis and y axis represent the first and second

components of immunology related genes. It is noticeable that the sparse PCA method

cannot separate the two groups of samples as well as the sparse CCA.

58

7. CONCLUSIONS

The sparse CCA tool is built based on the motivation that researchers without

expertise in computational fields need to use statistical methods to solve their research

related to integrative data analysis. A tool that is easy to use would allow them to

perform analyses without having to consult a statistical expert. The R package ‘PMA’ is

the primary choice in the implementation because of its capability and efficiency in the

sparse CCA computation. Moreover, this package also provides functions for computing

a sparse PCA, so the future improvement of the tool will be relatively straightforward if

such expansion is necessary.

The four significant objectives to be achieved are the tool’s validation, user-

friendly implementation, code modularity, and a well-written documentation. For

validation purposes, the sparse CCA tool is applied on synthetic datasets with manual

implementation of linear relationship and is also applied on the real data to replicate the

result from the unpublished study “An application of sCCA for integrative analysis of

diet-dependent interaction between gut microbiota and host in neonates”. For synthetic

data, both small and large numbers of features are used in order to confirm the validation

results from synthetic data. For real data, supplementary plots that are not in the original

study are also included to solidify the validation. The tool’s interface can guide users to

complete their analyses, starting from the inputs preparation to the input submission. To

59

test the applicability of the tool, especially its user-interface portion, the tool was tried

out by two of the lab members from the Chapkin lab. More details can be found in

APPENDIX D. Internally, each part of the framework is designed to be modular so that

additional tools can be implemented without complication. The documentation on the

tool’s usage and specific methods on working with the framework are provided in

APPENDIX A and APPENDIX C respectively.

The validation with synthetic data sets confirms the efficiency of the tool when

being applied with multivariate Gaussian data. The validation experiments also show

that one must be careful when applying the sparse CCA with RNAseq data because,

unlike the multivariate Gaussian, the correlation cannot be easily detected due to the

effect of the Poisson process transformation during the data generation. For the real data

set, the tool is able to successfully replicate the results provided in the study, and thus

prove its applicability to the real world problems.

The next step for the tool is to integrate it with the APIMOD website. The

necessary steps are covered in the guideline provided in APPENDIX B. There are also a

number of possible future extensions of the tool’s capability. One is to take advantage of

the framework’s modularity feature and introduce more options to the tool such as

normalization methods or another type of analysis such as the PCA. Another one is to

validate more data types for sparse CCA. Although the tool currently is able to accept

any type of data as inputs, as long as they have the same number of samples, there is no

guarantee that the correlation will always be detected. Because multiple factors must be

60

taken into account such as the process during the generation of data, it is crucial to

validate more data types, e.g. ChIP-sequencing data.

61

REFERENCES

[1] Schwartz, S., Friedberg, I., Ivanov, I. V., Davidson, L. A., Goldsby, J. S., Dahl, D.
B., . . . Chapkin, R. (2012). A metagenomic study of diet-dependent interaction
between gut microbiota and host in infants reveals differences in immune
response. Genome Biology,13(4).

[2] Hotelling, H. (1936). Relations Between Two Sets of Variates. Biometrika, 28(3/4),
321.

[3] Witten, D. M., & Tibshirani, R. J. (2009). Extensions of Sparse Canonical
Correlation Analysis with Applications to Genomic Data. Statistical Applications in
Genetics and Molecular Biology, 8(1), 1-27.

[4] Abdi, H. and Williams, L. J. (2010), Principal component analysis. WIREs Comp
Stat, 2: 433–459.

[5] NIBSC - Bioinformatics and NGS. (n.d.). Retrieved October 01, 2017, from
http://www.nibsc.org/science_and_research/analytical_sciences/bioinformatics.aspx

[6] Ghaffari, N., Yousefi, M. R., Johnson, C. D., Ivanov, I., & Dougherty, E. R.
(2013). Modeling the next generation sequencing sample processing pipeline for the
purposes of classification. BMC Bioinformatics, 14(1), 307.

[7] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York, 2009.

[8] Daniela Witten, Rob Tibshirani, Sam Gross and Balasubramanian Narasimhan
(2013). PMA: Penalized Multivariate Analysis. R package version 1.0.9.
https://CRAN.R-project.org/package=PMA

62

[9] Witten, D. M., Tibshirani, R., & Hastie, T. (2009). A penalized matrix
decomposition, with applications to sparse principal components and canonical
correlation analysis. Biostatistics,10(3), 515-534.

[10] Yousefi, M. R., Hua, J., & Dougherty, E. R. (2011). Multiple-rule bias in the
comparison of classification rules. Bioinformatics, 27(12), 1675-1683.

[11] Bahadorinejad, A. (2017). Fault Detection and Diagnosis in Gene Regulatory
Network and Optimal Bayesian Classification of Metagenomic Data (Doctoral
Thesis) . Texas A&M University

[12] He, K., Huang J. H., Qian, X., Braga-Neto, U., Bahadorinejad, A., Donovan, S.
M., Davidson, L. A., Ivanov, I., Chapkin, R. S. (2017). An application of sCCA
for integrative analysis of diet-dependent interaction between gut microbiota and
host in neonates. Manuscript submitted for publication.

[13] JN Paulson, H Talukder, M Pop, HC Bravo. metagenomeSeq: Statistical analysis for
sparse high-throughput sequencing. Bioconductor package: 1.16.0.
http://cbcb.umd.edu/software/metagenomeSeq

[14] Kirill Müller, Hadley Wickham, David A. James and Seth Falcon (2017).
RSQLite: 'SQLite' Interface for R. R package version 1.1-2. https://CRAN.R-
project.org/package=RSQLite

63

APPENDIX A

TOOL’S DESCRIPTION

Once the users navigate to the sparse CCA page, they will be guided by the

instructions to perform their analysis. Some tutorial resources on canonical correlation

analysis are provided for those who are interested. An example of the input data format

is also given, including the explanation on arranging rows and columns.

Figure A-1 The instruction for using the tool

64

On the submission form, they are asked to submit the name, email, project

name, and project description. This information is then stored in the database. Then they

submit the required input files, each being either a txt or csv file.

Figure A-2 The form for users to submit input files

65

APPENDIX B

INTEGRATION WITH THE APIMOD WEBSITE

Multiple steps are required in order to integrate the sparse CCA tool with the

APIMOD website. An example below will serve as a guideline to complete the

integration process.

Example

There are two main steps required to integrate the tool to the APIMOD website.

1.) Add and adjust respective portions of the website’s back-end code,

including the respective HTML templates, to enable the website to offer sparse CCA

service. Those parts handle the interactions between the user interface and the system’s

back-end. The following functions must be adjusted or added to the current code.

The functions ‘import_cca’ and ‘uploadcca’ work together to allow users to

submit input files to the system. Specifically, ‘import_cca’ store the users’ information

into the sqlite database while ‘uploadcca’ accepts the input files and stores them into the

respective folders. The template ‘job_success.html’ and ‘uploadcca.html’ are the

required templates for these two functions.

66

Figure B-1 Basic structure of the functions ‘uploadcca’ and ‘import_cca’

The function ‘ccajobs’ allows the users to check their sparse CCA job status

through email. A template ‘ccajobs.html’ must be created to work with this function.

Figure B-2 The basic structure of the function ‘ccajobs’

67

The function ‘resultscca’ displays analysis results to the users. A template

‘resultscca.html’ must be created to work with this function.

Figure B-3 The basic structure of the function ‘resultscca’

The function ‘notify’ handles users’ job notifications for all types of analysis.

The necessary step to be added is to have the ‘if’ statement that ensures the specific

elements for only the sparse CCA are handled correctly.

Figure B-4 The basic structure of the function ‘notify’

68

2.) Create a service file in order to run the sparse CCA code in the background

of the computer that hosts the website.

Figure B-5 The screen-shot of the service file for sparse CCA

69

APPENDIX C

MODULARITY FEATURE

Once users submit the requests through the user-interface, the relevant

information is then stored in the system database waiting to be processed. Thus, a

dedicated portion of the framework that connects the database to the analysis code is a

necessity. Figure C-1 depicts a brief workflow in the back end, showing that the analysis

code must interact with the database in order keep track of the submitted requests. In the

current implementation of the APIMOD, each analysis option (sequencing classification

or differential expression) has its own way of interacting with the database. However,

the downside of this approach is that every time a new tool is added, the code that allow

the interactions must always be rewritten. The better approach is to have just one

reusable framework to handle the connection.

70

Figure C-1 Back-end workflow

As indicated in the diagram above, ‘framework.R’ is an R code that manages

the connection between the database and the code that performs sparse CCA.

‘framework.R’ will also be able to accept additional analysis code as well (such as sparse

PCA), with a strict requirement being that code used to do the analysis must be in R.

Example

To go through the detailed example, let’s assume that a sparse principal

component analysis (sparse PCA) is to be implemented and its analysis code ‘sPCA.R’ is

already available.

71

First , the sparse CCA code in framework.R must be replaced with a directory

linking with another analysis code. Given that sPCA.R is at the directory

/home/Desktop/, the directory /home/Desktop/sPCA.R must be placed inside the source

function, which redirects the code to that directory.

Figure C-2 The ‘source’ function inside tryCatch

The output has to also be specified inside the analysis code. Suppose that we

want to write a plot to a pdf file and place it into the directory /home/Desktop/pcaresults,

the code below has to be placed inside sPCA.R.

Figure C-3 The output destinations

72

Finally, the names of the associated folders and database in framework.R also

have to be changed to correspond with sPCA.R. That is, the database must refer to the

users’ information who submit requests for sparse PCA and the folders must be those

that handle the inputs and outputs of sparse PCA.

73

APPENDIX D

LAB MEMBERS’ RESPONSES

The tool was tested by two members from the Chapkin Lab. A few issues were

discovered following their experiment. First, despite having the user-friendly interface

and a lot of instructions provided, using sparse CCA without consulting someone with

expertise is not quite pragmatic for researchers with less quantitative background. There

are a few potential solutions to this issue. One option is to provide tutorial videos that

explain the utility and the meaning on the sparse CCA from a biological perspective.

Another choice is to design a help menu that is updated according to the problems

encountered by the users.

Second, the tool currently accepts inputs where rows represent samples and

columns represent features. However, many researchers use Microsoft Excel as their

primary data manipulator instead of R. The problem is that while the number of rows

Microsoft Excel can handle is around a million, the maximum number of columns it can

handle is no more than 20,000. In practical use, it would be common for researchers to

have data with more than 30,000 features. Thus it is likely that they would prefer to have

rows as features and columns as samples in stead of the other way around, so that there

is no trouble opening the file in Microsoft Excel. Because of this, the format of the

inputs should be altered to correspond to their need, that is to have columns representing

74

features and rows representing samples. Additionally, regarding the input format, it is

strongly suggested by the testers that a screen-shot showing the proper format in

Microsoft Excel should be displayed as well.

75

