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ABSTRACT 

The Influence of Crashes on Network-wide Flow-Density Relation 

 

Connie Beth Xavier 

Department of Civil Engineering 

Texas A&M University 

 

Research Advisor: Dr. Alireza Talebpour 

Department of Civil Engineering 

 

This research compares flow-density relationships of a major urban freeway network in Chicago, 

Illinois during peak hours with and without reported crashes for the years 2007 – 2010. 

Currently, there is a long delay in getting information about a crash to drivers approaching a 

crash site. This leads to congestion as approaching vehicles are unaware of the crash ahead. The 

correlation between the time or location of a crash on a network and the shape and distribution of 

the resulting flow-density diagram can be used to understand the areas within the transportation 

network that will be eventually affected by specific crashes. Once these relationships are defined, 

then ITS technologies including CV with V2V and V2I communications can be used to send 

messages to drivers headed in the direction of the crash and alert Emergency Medical Services 

sooner. This will allow drivers to redirect their routes to avoid the crash site and overall, reduce 

congestion. Major differences were found in the flow-density diagrams between peak hours with 

and without reported crashes on the network. This research suggests relationships between the 

spatial distribution of crashes and the resulting flow-density diagrams. Future work involves 

obtaining more data to define a more distinct relationship and simulating the same network with 

CV at different market penetration rates on similar days to study the effects on the resulting 

flow-density diagrams. 
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CHAPTER I  

INTRODUCTION 

 

Intelligent Transportation Systems (ITS) provide a highly connected mobile network by setting 

up communications between various modes of the transportation system. Increasing 

communication through Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) 

technologies enables road users to become better aware of their roadway surroundings so that 

they can make more intelligent driving and navigation decisions. This results in a more efficient 

and better managed use of the transportation network. One way to provide awareness is to send 

out information about crashes. Geroliminis and Daganzo noted the importance of using 

forecasting models “to decrease congestion in large cities and improve urban mobility” by 

providing valuable information like the existence of a crash on a transportation network (1). A 

forecasting model can be developed by determining a network-wide relation between flow and 

density on major arterials in congested cities.  

 

In addition, Connected Vehicles technology, as one of the latest technologies in surface 

transportation, provides the opportunity to create a connected network of vehicles and 

infrastructure. In this network, individual vehicles can communicate with each other through 

V2V communications. Moreover, individual vehicles are connected to infrastructure and the 

Traffic Management Center (TMC) through V2I communications. The real-time information 

provided by this technology can improve drivers’ operational, tactical, and strategic decisions; 

thus it can improve operations once a crash has been identified on a freeway. In fact, Connected 

Vehicles technology is expected to have a significant effect on the characteristics of a network-
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wide flow-density relation. Less significant hysteresis loops, better recovery, and less grid-lock 

is expected since Connected Vehicles technology can improve capacity and increase traffic flow 

stability (2). Connected vehicles (CV) with V2V and V2I capability will be notified quicker in 

the scenario of a crash on a freeway, and therefore promises a quicker improvement in traffic 

flow operations. By combining the observed patterns and relationships of flow-density diagrams 

with CV technologies, a predictive and informative method for crashes can be created which 

offers the potential for improvements in mobility and safety. This requires an understanding of 

the effects of crashes at different locations on network flow-density diagrams. 

 

Several studies have suggested that there is a well-defined relationship between flow and density 

(occupancy in some studies) at the network level (3-8). The pioneer studies that investigated this 

relationship are the studies by Smeed (9), Thomson (10), Wardrop (11), and Godfrey (12). Later, 

Herman and Prigogine (13) introduced the two-fluid model to characterize the relationship 

between average velocity and fraction of moving vehicles. This finding followed by several other 

studies including Chang and Herman (14), Mahmassani et al. (5), and Williams et al. (6) to 

investigate the network-level traffic flow characteristics. Recently, Daganzo (15) revisited the 

network-wide traffic flow relationship and introduced a theory to characterize the flow-density 

relationship at the network level. He called this relationship “Macroscopic Fundamental 

Diagram” which is also known as a Network-wide Fundamental Diagram (NFD). This study 

created a momentum in investigating network-wide traffic flow relationships and resulted in 

several other studies. Geroliminis and Daganzo (4), Ji et al. (16), Mazloumian et al. (17), Saberi 

and Mahmassani (18), Saberi and Mahmassani (7), Gayah et al. (19) and several other studies 

shed light on the properties of the network-wide relationship between flow and density.  
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Most of the above studies focused on characterizing the observed patterns in network-wide 

traffic flow relationship based on the current states of transportation systems and were completed 

over major urban networks. Saberi and Mahmassani (6) collected data from over 100 loop 

detector stations in Portland, Oregon over a 3-day period to develop a flow-density diagram that 

observed hysteresis patterns from differences in the distribution of congestion. A correlation 

between the NFD of a subnetwork to the NFD of the entire freeway network was found (6). Most 

importantly, quick changes in the distribution of the NFD can provide evidence on the formation 

of congestion due to high traffic volumes or crashes (6). Saberi and Mahmassani (17) gathered 

loop detector data from freeway networks in Chicago, Illinois, Portland, Oregon and Irvine, 

California and compared the NFD of each city. Differences in congestion distribution caused 

inconsistent hysteresis patterns across time and between networks (17). From the NFDs, two 

types of hysteresis patterns and capacity drop phenomena observed during the loading and 

reloading periods of the network were characterized (17). The NFDs of the freeway networks 

across different days show that the observations are reproducible (17). Geroliminis and Daganzo 

(4) created a NFD for Yokohama, Japan by collecting data through fixed detectors and floating 

vehicle probe sensors (GPS equipped taxis). The chaotic pattern observed in flow-density 

relation from individual patterns disappeared once data from all the detectors were grouped 

together, suggesting the existence of a NFD for the entire network (3). Geroliminis and Daganzo 

(1) simulated traffic on a major arterial in Louisiana and a downtown San Francisco network, 

and the plotted data showed a curvilinear relationship between total distance traveled and 

number of vehicles and a linear relationship between outflow and total distance traveled.  
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Crash data was collected from major highways that make up a large network in Chicago, Illinois 

for the years 2007-2010. The peak hours were chosen as the analysis period since the hysteresis 

loop is more likely to form during this period. A NFD was plotted for the day with reported 

crashes in the peak hour and also for a similar day without any reported crashes on the network. 

The crashes were also plotted on the network to determine whether a relationship existed 

between the spatial distribution of crashes and its NFD. The two constructed NFDs will help 

determine if a forecasting model for crashes can be developed by comparing the NFDs.   
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CHAPTER II  

DATA CHARACTERISTICS 

 

Occupancy loop detector information on major highways in Illinois was gathered by submitting a 

request on the Travel Midwest website (20). This information included the times, volumes, and 

effective lengths of the detectors. Figure 1 provides an overview of coverage of the occupancy 

loop detectors used for this study (21).  

 

  
Figure 1: Snapshot of loop detector coverage: Chicago area (21) 

 

The study network centered on Chicago, Illinois, and its size was limited so that a peak hour 

without a crash on the network could be identified. In the study network, the loop detectors 

covered the following major highways in Illinois within Cook County:  I-290, I-294, I-355, I-55, 

I-57, I-80, I-90, I-94, US 41 and IL 53. Figure 2 shows the final network area.   
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Figure 2: Network study area in Chicago, Illinois 

 

Crash data was collected for the state of Illinois for the years 2007-2010 by submitting a request 

to the Illinois Department of Transportation (22). In 2007, the state recorded over 107.40 billion 

vehicle miles traveled (VMT), 422,778 crashes and 1,248 total deaths (22). In 2008, Illinois 

observed over 105.64 billion VMT, 408,258 crashes and 1,043 total deaths (22). In 2009, the 

state recorded over 105.73 billion VMT, 292,106 crashes and 911 total deaths (22). In 2010, the 

state documented over 105.74 billion VMT, 289,260 crashes and 927 deaths (22).  

 

The data was filtered to include crashes that occurred on the major highways of the network on 

an average weekday (Tuesday - Thursday) with clear weather. Average weekdays have more 

consistent and predictable traffic patterns. Crashes were separated between those that occurred 

during the AM peak hour (7 a.m. to 9 a.m.) and the PM peak hour (4 p.m. to 6 p.m.).  

 

The coordinates of each crash were provided in the State Plane Coordinate System. EarthPoint 

was used to convert the coordinates of each crash into latitude and longitude coordinates by 
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specifying the zone 1202: Illinois West (23). EarthPoint was also used to plot the crashes on 

Google Earth (23). The crashes that occurred on major state highways within the study area of 

the network were kept for further analysis.  

 

A code developed in C++ was run in Visual Studio and was used to calculate the needed average 

flow, speed, occupancy, and length quantities from the loop detectors outputs in the network to 

plot a NFD for a particular day. Visual Studio code aggregated the data over the network in five 

minute intervals. The following equations were used to calculate the NFD quantities from the 

Visual Studio outputs of total flow (F), occupancy (O), speed (S), and length (L) for each five 

minute interval. This approach was adopted from Saberi and Mahmassani (17).  

 

Normalized F [veh/hr] = (F/L)*12  

Normalized O [%] = O/L 

 

NFD plots of normalized flow (veh/hr) vs. normalized occupancy (%) in five minute intervals 

were plotted in Excel over the peak hours on days with and without reported crashes. The day 

without reported crashes also occurred on a clear average weekday (Tues – Thurs) and was 

within at least one week of the day with the reported crash so that the traffic patterns would be 

similar to make a better comparison.  
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CHAPTER III  

DATA ANALYSIS 

 

This chapter provides the filtered crash results for the AM and PM peak hour with and without 

crashes for each year and a comparison of the resulting NFDs.  The results for the 2008 PM peak 

hour and 2009 AM peak hour are not shown since an hour without any crashes on the network 

could not be identified or the loop detector outputs were invalid.  

 

Results 

The filtered results use the same headings. The ‘location’ refers to the highway where the crash 

occurred. The ‘hour’ is based on a 24-hour scale and describes the hour in which the crash 

occurred. The ‘injury type’ describes the severity of the collision and uses the following injury 

severity scale: K = fatal, A = incapacitating injury, B = non-incapacitating injury, C = possible 

injury, PD = property damage only. The ‘day without crash’ had no reported crashes on the loop 

detector network during the corresponding AM or PM peak hour. Both peak hours with and 

without crashes occurred on a clear day in the network. As an example, Table 1 shows the 

filtered crash results for an AM peak hour in 2007. More crashes occurred on I-294 than on any 

other highway. All crashes involved only 2 vehicles and were caused by a rear end collision.   
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Table 1: 2007 AM Peak Hour Results 

Day with 

crashes 
Location Hour Day 

Number 

of 

Vehicles 

Injuries 
Collision 

Type 

Injury 

Type 

Day 

without 

crash 

12/13 

I 057 07 Thu 2 0 Rear End PD 

12/20 

I 094 07 Thu 2 0 Rear End PD 

I 294 07 Thu 2 1 Rear End C-Injury 

US 41 07 Thu 2 0 Rear End PD 

I 055 08 Thu 2 0 Rear End PD 

I 090 08 Thu 2 0 Rear End PD 

I 290 08 Thu 2 0 Rear End PD 

I 294 08 Thu 2 1 Rear End C-Injury 

I 294 08 Thu 2 0 Rear End PD 

 

 

The crashes were plotted on the network to see whether there was a relationship between the 

spatial distribution of the crashes and its NFD. Crashes were color-coded according to crash 

severity. Table 2 shows the color scale used in the plots.  

 

Table 2: Injury Severity Color Scale 

Color Injury Severity 

 
Fatal 

 
Incapacitating Injury 

 
Non-Incapacitating Injury 

 
Possible Injury 

 
Property Damage Only 

 

Figure 3 shows plots of the NFDs over the AM peak hour in 2007 on the days with and without 

reported crashes during the peak hour and the location of crashes on the network. The white line 

outlines the extent of the network. The crashes resemble a circle near the boundary of the 

network. These crashes block traffic from flowing smoothly inside the network. During the peak 

hours, demand usually exceeds capacity. Instead of operating as an over-saturated network, the 
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placement of crashes on the network causes the network to perform similarly to a saturated 

network since not as much of the demand traffic has access to the network. This can be observed 

by the smooth curve of the NFD for the hour with crashes on the network versus the rugged 

pattern of the NFD for the hour without crashes on the network. The peak hour without a crash 

also reports higher flow rates, indicating that traffic can flow faster when there are no crashes 

blocking the flow of traffic into the network.  

 

 

 

(a) 12/20/07 without crash 

 
(b) 12/13/07 with crashes (c) 12/13/07 with crashes 

Figure 3: NFD and Location of Crashes for 2007 AM Peak Hour 

 

 

Table 2 shows the filtered crash results for the PM peak hour in 2007. More crashes occurred on 

I-290 than any other highway. A few crashes involved 3 vehicles. A majority of the crashes were 

caused by a rear end collision and occurred during the 5 p.m. – 6 p.m. hour.   
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Table 2: 2007 PM Peak Hour Results 

Day with 

crashes 
Location Hour Day 

Number 

of 

Vehicles 

Injuries 
Collision 

Type 

Injury 

Type 

Day 

without 

crash 

12/19 

I 290 16 Wed 2 0 

Sideswipe 

Same 

Direction 

PD 

12/11 

I 090 17 Wed 3 1 Rear End B-Injury 

I 294 17 Wed 2 0 Rear End PD 

I 094 17 Wed 2 0 

Sideswipe 

Same 

Direction 

PD 

I 290 17 Wed 2 0 Rear End PD 

I 055 17 Wed 3 0 Rear End PD 

I 290 17 Wed 2 0 Rear End PD 

 

 

Figure 4 shows plots of the NFDs over the PM peak hour in 2007 on the days with and without 

reported crashes during the peak hour and the location of crashes on the network. The crashes 

concentrate along a line in the middle of the network. Since traffic is only blocked along the 

middle part of the network, traffic can move smoother and faster on the rest of the network 

which is indicated by the higher flow rates for the peak hour with a crash. The NFD for the peak 

hour without a crash has a much smoother hysteresis loop compared to the day with the crash. 

This indicates that although the concentration of crashes along the middle of a network may lead 

to higher average flow rates, the traffic patterns can be less predictable.  
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(a) 12/11/07 without crash 

 
(b) 12/19/07 with crashes (c) 12/19/07 with crashes 

Figure 4: NFD and Location of Crashes for 2007 PM Peak Hour 

 

Table 3 shows the filtered crash results for the AM peak hour in 2008. More crashes occurred on 

I-90 and I-94.  A few crashes involved 3 vehicles. The highest number of vehicles involved in a 

crash was 5. A majority of the crashes were caused by a rear end collision. 
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Table 3: 2008 AM Peak Hour Results 

Day with 

crashes 
Location Hour Day 

Number 

of 

Vehicles 

Injuries 
Collision 

Type 

Injury 

Type 

Day 

without 

crash 

11/18 

I 090 07 Tue 2 0 Rear End PD 

11/11 

I 055 07 Tue 3 0 Rear End PD 

I 094 07 Tue 2 0 

Sideswipe 

Opposite 

Direction 

PD 

I 094 07 Tue 2 0 Rear End PD 

I 294 07 Tue 2 0 

Sideswipe 

Same 

Direction 

PD 

I 090 07 Tue 3 0 Rear End PD 

I 294 08 Tue 3 0 Rear End PD 

I 090 08 Tue 2 0 

Sideswipe 

Same 

Direction 

PD 

I 094 08 Tue 2 0 Rear End PD 

US 41 08 Tue 5 0 Rear End PD 

 

 

Figure 5 shows plots of the NFDs over the AM peak hour in 2008 on the days with and without 

reported crashes during the peak hour and the location of crashes on the network. Most crashes 

are concentrated in one location on the upper part of the network. This causes a breakdown in the 

system since congestion is highly concentrated in one area. The NFDs show that when many 

crashes are blocking traffic flow in one part of the system, the system appears to act similarly to 

a saturated network. This can be observed by the difference in formation of the hysteresis loops. 

The NFD shows a smooth curve for the peak hour with crashes and a less-defined curve for the 

peak hour without crashes. The flow rates are also lower for the peak hour with crashes.   
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(a) 11/11/08 without crash 

 
(b) 11/18/08 with crashes (c) 11/18/08 with crashes 

Figure 5: NFD and Location of Crashes for 2008 AM Peak Hour 

 

Table 4 shows the filtered crash results for the PM peak hour in 2009. More crashes occurred on 

I-94. Only one crash involved 3 vehicles. A majority of the crashes were caused by a rear end 

collision, and most occurred during the 4 p.m. – 5 p.m. hour.   

 

Table 4: 2009 PM Peak Hour Results 

Day with 

crashes 
Location Hour Day 

Number 

of 

Vehicles 

Injuries 
Collision 

Type 

Injury 

Type 

Day 

without 

crash 

6/4 

I 294 16 Thu 2 0 Rear End PD 

6/2 

I 094 16 Thu 2 0 Rear End PD 

I 290 16 Thu 2 0 

Sideswipe 

Same 

Direction 

PD 

I 094 16 Thu 2 0 

Sideswipe 

Same 

Direction 

PD 

I 094 17 Thu 2 0 Rear End PD 

I 290 17 Thu 3 1 Rear End B-Injury 
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Figure 6 shows plots of the NFDs over the PM peak hour in 2009 on the days with and without 

reported crashes during the peak hour and the location of crashes on the network. The crashes in 

this peak hour are mostly concentrated on the outer boundaries of the network in a half-circle. 

These crashes block traffic flow to the upper part of the network. This is indicated by the drop in 

traffic flow rates for the hour with crashes versus the hour without any crashes on the network. 

The declining flow rate for the first half of the NFD for the hour with crashes may be attributed 

to majority of the crashes occurring during the first hour of the peak hour.  

 

 

 

(a) 6/2/09 without crash 

 
(b) 6/4/09 with crashes (c) 6/4/09 with crashes 

Figure 6: NFD and Location of Crashes for 2009 PM Peak Hour 

 

Table 5 shows the filtered crash results for the AM peak hour in 2010. Most crashes occurred on 

I-94. One crash involved 7 vehicles. A majority of the crashes were caused by a rear end 

collision, and most occurred during the 7 a.m. – 8 a.m. hour.   
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Table 5: 2010 AM Peak Hour Results 

Day with 

crashes 
Location Hour Day 

Number 

of 

Vehicles 

Injuries 
Collision 

Type 

Injury 

Type 

Day 

without 

crash 

8/11 

I 094 07 Wed 2 0 

Sideswipe 

same 

direction 

PD 

8/18 

I 294 07 Wed 2 0 Rear end PD 

I 094 07 Wed 2 0 Rear end PD 

I 094 07 Wed 3 0 Rear end PD 

I 290 07 Wed 2 2 Rear end C-Injury 

I 055 08 Wed 7 0 Rear end PD 

I 094 08 Wed 2 0 Rear end PD 

 

 

Figure 7 shows plots of the NFDs over the AM peak hour in 2010 on the days with and without 

reported crashes during the peak hour and the location of crashes on the network. The flow rates 

are much higher than previous analyses because the loop detector units changed from veh/hr/ln 

to veh/hr. Flow rates are lower for the peak hour with crashes than for the peak hour without 

crashes. The crashes are located near the border of the network. These crashes prevent the center 

from overflowing but limits traffic from flowing smoothly throughout the rest of the network.  
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(a) 8/18/10 without crash 

 
(b) 8/11/10 with crashes (c) 8/11/10 with crashes 

Figure 7: NFD and Location of Crashes for 2010 AM Peak Hour 

 

Table 6 shows the filtered crash results for the PM peak hour in 2010. Most crashes occurred on 

I-94. All crashes involved two vehicles. A majority of the crashes were caused by sideswipes.  

 

Table 6: 2010 PM Peak Hour Results 

Day with 

crashes 
Location Hour Day 

Number 

of 

Vehicles 

Injuries 
Collision 

Type 

Injury 

Type 

Day 

without 

crash 

1/19 

I 094 16 Tue 2 0 

Sideswipe 

same 

direction 

PD 

1/12 

I 094 16 Tue 2 0 

Sideswipe 

same 

direction 

PD 

US 41 17 Tue 2 0 Rear end PD 

 

Figure 8 shows plots of the NFDs over the PM peak hour in 2010 on the days with and without 

reported crashes during the peak hour and the location of crashes on the network. The majority 
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of the crashes occur along I-94, the major highway in the area. Crashes on this interstate block 

traffic which appears to have a major effect on operations in the area. The resulting NFD for the 

peak hour with crashes shows a reverse hysteresis loop going counter-clockwise instead of 

clockwise. When there are no more crashes on the network, operations improve and the 

network’s NFD operates in the expected clockwise direction. The hysteresis loop is also more 

pronounced for the peak hour without crashes.  

 

 

 

(a) 1/12/10 without crash 

 
(b) 1/19/10 with crashes (c) 1/19/10 with crashes 

Figure 8: NFD and Location of Crashes for 2010 PM Peak Hour 

 

Data Limitations 

Although crash information on the network was available, information on construction, lane 

closures, maintenance, utility work, and special events was not available. All of these can impact 

4500

4600

4700

4800

4900

11 12 13 14

Fl
o

w
 (

ve
h

/h
r/

ln
) 

Occupancy (%) 

4400

4500

4600

4700

4800

4900

5000

11.5 12 12.5 13 13.5 14 14.5

Fl
o

w
 (

ve
h

/h
r/

ln
) 

Occupancy (%) 



21 
 

traffic patterns significantly and affect the NFD. This research also relied heavily on the crashes 

reported in the database, but there could have been other accidents that were never reported. This 

research was also limited to the reliability of police reports for crash information including crash 

severity. Loop detector data can be unreliable and often resulted in invalid data points. All of 

these factors impact the results. 

  



22 
 

CHAPTER IV  

CONLUSIONS AND FUTURE WORK 

 

This chapter provides an overview of the conclusions of the data collected in previous chapters 

and recommendations for future work.  

 

Conclusions 

The NFDs plotted in the previous chapter show there is a clear difference between NFDs of peak 

hours with and without crashes and that different relationships exist between the spatial 

distribution of crashes and the resulting NFD. The major findings are presented below.  

 Peak hours without crashes had more pronounced hysteresis loops 

 Crashes located along the outer boundary of the network restrict traffic flow into the 

network causing the NFD to perform similar to a saturated network 

 Crashes concentrated along the middle of the network can cause higher average flow 

rates for the rest of the network  

 Several crashes concentrated in one area may cause the network to act as a saturated 

network 

 Many crashes on the major interstate in a network can significantly impact traffic 

patterns resulting in a reverse hysteresis loop 

 

Future Work 

Future work would involve obtaining data for other large urban networks and looking at data for 

more years to make more comparisons between the NFDs of peak hours with and without 
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crashes. This will increase the chances of finding peak hours without any crashes on the network 

which was a limiting factor to the results of this research. To observe the potential benefits of 

this research, the same network should be simulated with CV at different market penetration 

rates on similar days to study the effects on the resulting flow-density diagrams. The network can 

be simulated with CV at different market penetration rates to observe the impact of CV 

technologies on the formation of the NFD on the same days with and without a reported crash. 

By comparing the NFDs from various scenarios, the effects of a crash on the flow-density 

relationship and the effect of CV technologies in similar scenarios on the NFD can be studied. 

Future studies would help form a more conclusive statement about the effect of crashes on NFDs 

of large urban networks so that a forecasting model can be created.  
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