
ROOTS OF SPARSE POLYNOMIALS OVER A FINITE FIELD

An Undergraduate Research Scholars Thesis

by

ALEXANDER KELLEY

Submitted to the Undergraduate Research Scholars program
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Research Advisor: Dr. J. Maurice Rojas

May 2016

Major: Computer Science
Applied Mathematics



TABLE OF CONTENTS
Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II STATEMENT OF RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

III PROOFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12



ABSTRACT

Roots of Sparse Polynomials over a Finite Field

Alexander Kelley
Department of Computer Science

Department of Mathematics
Texas A&M University

Research Advisor: Dr. J. Maurice Rojas
Department of Mathematics

For a t-nomial f (x) = ∑
t
i=1 cixai ∈ Fq[x], we show that the number of distinct, nonzero roots of

f is bounded above by 2(q− 1)1−εCε , where ε = 1/(t− 1) and C is the size of the largest coset

in F∗q on which f vanishes completely. Additionally, we describe a number-theoretic parameter

depending only on q and the exponents ai which provides a general and easily-computable upper

bound for C. We thus obtain a strict improvement over an earlier bound of Canetti et al. which is

related to the uniformity of the Diffie-Hellman distribution.
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CHAPTER I

INTRODUCTION

Over the real numbers, the classical Descartes’ Rule implies that the number of distinct, real roots

of a t-nomial f (x) = c1xa1 + · · ·+ctxat ∈R[x] is less than 2t, regardless of its degree. It is a natural

algebraic problem to look for analogous sparsity-dependent bounds over other fields that are not

algebraically closed. In [3], Canetti et al. derive the following analogue of Descartes’ Rule for

polynomials in Fq[x].

Theorem I.1. ( [3], Lemma 7) For f (x) = c1xa1 + c2xa2 + · · ·+ ctxat ∈ Fq[x] (with ci nonzero), if

R( f ) denotes the number of distinct, nonzero roots of f in Fq, then

R( f )≤ 2(q−1)1−1/(t−1)D1/(t−1)+O
(
(q−1)1−2/(t−1)D2/(t−1)

)
,

where

D( f ) = min
i

max
j 6=i
{gcd(ai−a j,q−1)}.

For ϑ ∈ F∗p, the associated Diffie-Hellman distribution is defined by the random variable

(ϑ x,ϑ y,ϑ xy) where x and y are uniformly random over {1, . . . , p−1}. The Diffie-Hellman cryp-

tosystem relies on the assumption that an attacker cannot easily determine ϑ xy given the values

of ϑ , ϑ x, and ϑ y. In [3], Canetti et al. showed that Diffie-Hellman distributions are very nearly

uniform (which is an important property for the security of the cryptosystem), and the bound in

Theorem I.1 was the central tool which powered their arguments.

Since then, the bound has been a useful tool for studying various number-theoretic problems;

in [1] it was used to study the solutions of certain exponential congruences, and in [4] it was used

to study the correlation of linear recurring sequences over F2. The main result of this paper is is a

new bound (Theorem II.3 of Section 2 below) improving Theorem I.1 by removing the asymptotic

term and replacing D by a smaller, intrinsic parameter.
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CHAPTER II

STATEMENT OF RESULTS

More recently in [2], Bi, Cheng, and Rojas studied the computational complexity of deciding

whether a t-nomial f has a root in F∗q. Along the way, they derive the following characterization

of the roots of a sparse polynomial in Fq[x].

Theorem II.1. ( [2], Theorem 1.1) For f (x) = c1xa1 + c2xa2 + · · ·+ ctxat ∈ Fq[x], define δ ( f ) =

gcd(a1,a2, . . . ,at ,q−1). The set of nonzero roots of f in Fq is the union of no more than

2
(

q−1
δ

)1−1/(t−1)

cosets of two subgroups H1 ⊆ H2 of F∗q, where

|H1|= δ ,

|H2| ≥ δ
1−1/(t−1)(q−1)1/(t−1).

This result does not immediately yield any bound on the number of roots R( f ) since there is no

upper bound given for the size of the H2-cosets. However, if for some reason we were assured that

the set of roots was a union of only H1-cosets, we could conclude

R( f )≤ δ ·2
(

q−1
δ

)1−1/(t−1)

= 2(q−1)1−1/(t−1)
δ

1/(t−1),

which is an improvement on Theorem I.1 since it can be easily checked that δ ( f )≤ D( f ) always.

Theorem II.2. For f (x) = c1xa1 + · · ·+ ctxat ∈ Fq[x], define

S( f ) := {k | (q−1) : for all i, there is a j 6= i with ai ≡ a j mod k}.

If f vanishes completely on a coset of size k, then k ∈ S( f ).
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Proof. For some generator g of F∗q, let α〈g
q−1

k 〉 denote a coset of the unique subgroup of order k in

F∗q, and let β = αk. The members of this coset are exactly the roots of the binomial xk−β . So, f

vanishes completely on this coset if and only if (xk−β ) | f , or equivalently if f ≡ 0 mod (xk−β ).

To see when this happens, we view f in the ring Fq[x]/〈xk−β 〉. In this ring, we have the relation

xk ≡ β , so if each ai has remainder ri mod k, then

f ≡ c1β
ba1/kcxr1 + · · ·+ ctβ

bat/kcxrt mod (xk−β ).

Now f might be identically zero (in this ring) since the ri’s are not necessarily distinct. However,

there is one obvious barrier to this: if just one ri is unique, then f in particular contains the nonzero

monomial (ciβ
bai/kc)xri . f ≡ 0 requires that each remainder ri has at least one “partner” r j = ri so

that monomials can cancel. Therefore (xk−β ) | f implies that, for each i ∈ {1,2, . . . , t}, there is

some j 6= i with ai ≡ a j mod k.

Thus S( f ) lists the sizes of cosets on which f might possibly vanish completely. For example, if

a1 = 0 and the other exponents ai>1 are all prime to q−1 then S( f ) = {1}, and so it is structurally

impossible for f to vanish completely on any nontrivial coset, regardless of choice of coefficients

ci ∈ F∗q. On the other hand whenever k ∈ S( f ), there is some choice of ci ∈ F∗q so that f does indeed

vanish completely on a given coset of size k.

When max(S) < δ 1−1/(t−1)(q− 1)1/(t−1), Theorem II.2 can be combined with Theorem II.1 to

get a bound on R( f ) by ruling out the possibility of H2-cosets. If max(S) is any larger, Theo-

rem II.1 is no longer helpful; the most we can conclude is that R( f ) ≤ |H2|2
(

q−1
δ

)1−1/(t−1)
≤

max(S) · 2
(

q−1
δ

)1−1/(t−1)
, which is worse than trivial (R ≤ q− 1). However, S( f ) turns out also

to be independently useful for deriving sparsity-dependent bounds.
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Theorem II.3. Let f (x) = c1xa1 + · · ·+ ctxat ∈ Fq[x] (with ci nonzero), and let δ ( f ) be defined as

above, and let C denote the size of the largest coset in F∗q on which f vanishes completely. If R( f )

denotes the number of distinct, nonzero roots of f in F∗q, then we have

R( f )≤ 2(q−1)1−1/(t−1)C1/(t−1),

and furthermore if C < δ 1−1/(t−1)(q−1)1/(t−1), then

R( f )≤ 2(q−1)1−1/(t−1)
δ

1/(t−1).

This result is a strict improvement on Theorem I.1, since D( f ) is in particular an upper bound for

S( f ) and therefore also for C( f ). In fact, we can get another easily computable upper bound for

S( f ) that is in general tighter than D( f ).

Proposition II.4. For f (x) = c1xa1 + · · ·+ ctxat ∈ Fq[x] define the parameters

δ ( f ) = gcd(a1,a2, . . . ,at ,q−1)

D( f ) = min
i

max
j 6=i
{gcd(ai−a j,q−1)}

Q( f ) = gcd
i

lcm
j 6=i

(gcd(ai−a j,q−1))

K( f ) = min
i

max
j 6=i
{gcd(ai−a j,Q)}

These parameters relate to S( f ) as follows.

• δ ∈ S.

• For all k ∈ S, k |Q.

• D, Q, and K are all upper bounds for S, and K ≤min(D,Q).
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CHAPTER III

PROOFS

The general strategy employed here (and in both [2] and [3]) for obtaining sparsity-dependent

bounds on R( f ) can be loosely sketched as follows. Consider integers e prime to q−1, which have

the property that the map x 7→ xe is a bijection on F∗q. This means that x 7→ xe simply permutes

the nonzero roots of a polynomial, so R( f (x)) = R( f (xe)). Furthermore, f (xe) is equivalent (as a

mapping on F∗q) to any g(x) = c1xb1 + · · ·+ ctxbt with bi ≡ eai mod (q−1). Thus the basic idea is

to find some e so that the remainders of eai mod (q−1) are all small, yielding a g of small degree,

and so R( f ) = R(g)≤ deg(g).

The following lemma, a fact about the geometry of numbers, will be our main tool for achieving

the desired degree reduction.

Lemma III.1. Fix the natural numbers a1,a2, . . . ,at ,N. If n≤ N/gcd(a1,a2, . . . ,at ,N), there is an

e ∈ {1,2, . . . ,n−1} and a v ∈ NZt so that

0 < max
1≤i≤t

|eai + vi| ≤ N/n1/t .

Proof. Consider the vectors li = i(a1, . . . ,at) = (ia1, . . . , iat) ∈ (R/NZ)t for i ∈ {1,2, . . .n}. Let

‖ · ‖∞ denote the standard infinity norm on Rt . We wish to view these vectors geometrically as

points in Rt , but they are only defined up to equivalence in (R/NZ)t , so define

‖l‖N = min
v∈NZt

‖l + v‖∞,

which gives the smallest norm of any representative of the equivalence class l +NZt viewed as

a point in Rt (equivalently, ‖l‖N gives the distance from l to the nearest lattice point in NZt).

Suppose that

d = min
i 6= j
‖l j− li‖N .
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Since the vectors are all at least d apart, the sets

Bi = {x ∈ (R/NZ)t : ‖x− li‖N < d/2}

are disjoint, so each li sits in its own personal box of volume dt . We may choose to represent these

n disjoint sets uniquely in the fundamental domain [0,N)t , which has volume Nt . Therefore we

have a total volume of n ·dt sitting in a volume of Nt ; we conclude that d ≤ N/n1/t .

Note that the modular definition of distance is crucial here; consider instead n points in [0,N]t that

are d-separated only in the standard l∞ metric. A volume-packing argument becomes much more

complicated in this case because the box around a point near the boundary may lie partly outside

[0,N]t (it doesn’t “wrap around”), and so some points do not absorb a full dt worth of volume from

[0,N]t .

To finish, we find i, j (with 1 ≤ i < j ≤ n) so that ‖l j − li‖N = d and set le = l( j−i) =

( j− i)(a1, . . . ,at) = l j− li. We have

‖le‖N = min
v∈NZt

‖(ea1, . . . ,eat)+ v‖∞ ≤ N/n1/t ,

and e satisfies 1 ≤ e ≤ n− 1. The subgroup of (Z/NZ)t generated by (a1, . . . ,an) has order

N/gcd(a1, . . . ,at ,N) ≥ n. Since 0 < e < n, e(a1, . . . ,an) 6≡ (0, . . . ,0) ∈ (Z/NZ)t , which verifies

that ‖le‖N > 0.

Lemma III.1 and its proof are extremely similar in spirit to the argument used by Canetti et al.

in [3]. They also viewed the n vectors as points in [0,N)t , but to find a pair of nearby points they

partitioned the hypercube into < n equally-sized sub-cubes and appealed to the pigeonhole prin-

ciple. Here we were able to avoid this discretization of space which lead to the small asymptotic

term appearing in Theorem I.1, which turns out to be unnecessary.

Proof of Theorem II.3. The second claim is immediate from Theorem II.1, since there can be no

H2-cosets of roots. We now prove the first claim.
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Let f (x) = c1xa1 +c2xa2 + · · ·+ctxat ∈Fq[x] with ci nonzero, and let C denote the size of the largest

coset in F∗q on which f vanishes completely. For our purposes, we may assume that a1 = 0, since

otherwise we can write

f (x) = xa1 f̃ (x)

f̃ (x) = c1 + c2xa2−a1 + · · ·+ ctxat−a1,

showing that f has a root at zero, but its nonzero roots are just the roots of f̃ , so R( f ) = R( f̃ ) and

C( f ) =C( f̃ ). Therefore we continue assuming that a1 = 0.

Consider δ ( f ) = gcd(a2, . . . ,at ,q−1). The nonzero roots of f (x) = c1 + c2xa2 + · · ·+ ctxat are in

one-to-one correspondence with the solutions of the system

c1 + c2ya2/δ + · · ·+ ctyat/δ = 0 y ∈ 〈gδ 〉

xδ = y x ∈ F∗q

If f has no roots in F∗q then our bound is of course true, so suppose this system has at least one

solution (y0,x0). Then in fact the system has at least δ solutions and f vanishes on the coset

{x : xδ = y0}. This allows us to conclude that C≥ δ , and so
(

q−1
C

)
≤ (q−1)/gcd(a2, . . . ,at ,q−1).

Therefore we can apply Lemma III.1 to find an e ∈ {1,2, . . . , q−1
C − 1} and a v ∈ (q− 1)Zt−1 so

that

0 < ‖(ea2, . . . ,eat)+ v‖∞ ≤ (q−1)/
(

q−1
C

)1/(t−1)

.

Suppose k = gcd(e,q−1) = 1. Then the mapping x 7→ xe is a bijection on F∗q that simply permutes

the roots of f , thus R( f (x)) = R( f (xe)). We are interested in f (xe) only as a function on F∗q (rather

than as a formal object in Fq[x]), and since F∗q is a group of order (q− 1), this function is not

changed by shifting its exponents by vi ∈ (q−1)Z. Thus we may represent the function f (xe) as

the (possibly Laurent) polynomial

f (xe) = c1 + c2xea2+v2 + · · ·+ ctxeat+vt ,
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which satisfies

0 < M = max
1≤i≤t
|eai + vi| ≤ (q−1)1−1/(t−1)C1/(t−1).

Again we are only interested in nonzero roots; note that R( f (xe)) = R(xM f (xe)). Since xM f (xe)

is an honest polynomial in Fq[x] with non-negative exponents, we have R( f ) = R(xM f (xe)) ≤

deg(xM f (xe))≤ 2M and we are done.

However, we might have k = gcd(e,q− 1) > 1. In this case x 7→ xe is not a bijection - it takes

F∗q = 〈g〉 to a smaller subgroup 〈ge〉 = 〈gk〉 of size
(

q−1
k

)
. However, we can still cover F∗q by k

cosets of this subgroup. We have

R( f (xe)) =
k−1

∑
i=0

1
k

R( f (gixe)),

since F∗q =
⋃k−1

i=0 gi〈ge〉, and xe = y has k solutions for each y ∈ 〈ge〉. Now we repeat our earlier

tricks and arrive at

R( f )≤
k−1

∑
i=0

1
k

deg(xM f (gixe))≤ 2M,

except that we must be careful that no f (gixe) is identically zero, preventing us from using degree to

bound root number. If f (gixe) is identically zero then f vanishes completely on the coset gi〈ge〉=

gi〈gk〉 of size
(

q−1
k

)
. However, since k = gcd(e,q−1)≤ e <

(
q−1

C

)
, we have

q−1
k

>
q−1(
q−1

C

) =C,

so this is impossible by the definition of C; the cosets are too large for f to vanish on completely.
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Proof of Proposition II.4. For f (x) = c1xa1 + · · ·+ ctxat ∈ Fq[x], we have the following equivalent

definitions for S:

S( f ) = {k | (q−1) : ∀i,∃ j 6= i such that ai ≡ a j mod k}

= {k | (q−1) : ∀i,∃ j 6= i such that k | (ai−a j)}

= {k ∈ N : ∀i,∃ j 6= i such that k | gcd(ai−a j, q−1)}

=
t⋂

i=1

⋃
j 6=i

{k ∈ N : k | gcd(ai−a j, q−1)}.

Clearly by the second definition we have δ ( f ) = gcd(a1,a2, . . . ,at ,q− 1) ∈ S. From the fourth

definition we can get an upper bound for S by passing to the superset

t⋂
i=1

⋃
j 6=i

{k ∈ N : k ≤ gcd(ai−a j, q−1)} ⊇ S,

which has maximal element

D = min
i

max
j 6=i
{gcd(ai−a j,q−1)}.

Alternatively, by considering a different lattice structure on the integers, we can pass to the superset

t⋂
i=1

{k ∈ N : k | gcd(L j,q−1))}= {k ∈ N : k |Q} ⊇ S,

where

Li = lcm(ai−a1, . . . ,ai−ai−1,ai−ai+1, . . . ,ai−at),

Q = gcd(L1, . . . ,Lt ,q−1) = gcd
i

lcm
j 6=i

(gcd(ai−a j,q−1)).
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Since we now know that, in the end, any member of S must be a divisor of Q, we can redefine S

(equivalently) using a smaller ambient space:

S( f ) = {k |Q : ∀i,∃ j 6= i such that k | (ai−a j)}

=
t⋂

i=1

⋃
j 6=i

{k ∈ N : k | gcd(ai−a j, Q)}

⊆
t⋂

i=1

⋃
j 6=i

{k ∈ N : k ≤ gcd(ai−a j, Q)}.

Considering the maximal element of this last superset of S gives the final upper bound

K = min
i

max
j 6=i
{gcd(ai−a j,Q)},

which is obviously no larger than either D or Q.
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