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ABSTRACT 

Pollutant Loads and Distributions Following a Major Flooding Event in Galveston 

Bay, Texas 

 

 

Laura Elizabeth Leonard 

Department of Marine Biology 

Texas A&M University 

 

 

Research Advisor: Dr. Karl Kaiser 

Department of Marine Sciences 

Texas A&M University 

 

 

 The inundation associated with flooding events often transfers otherwise abnormal 

levels of contaminants into the ecosystem. The Houston/Galveston region poses a unique 

threat due to the high concentration of petrochemical facilities and Superfund sites in the area. 

High levels of contaminants can disrupt and pollute ecosystem cycling resulting in severe 

ecological impacts. The resultant flooding of the extreme precipitation from Hurricane 

Harvey has created a unique opportunity to analyze the release of polycyclic aromatic 

hydrocarbons, as well as other persistent organic pollutants, from flooded soil in the Houston-

area watersheds. Given the petrochemical makeup of the area, trace metals, polycyclic aromatic 

hydrocarbons, and polychlorinated biphenyls were chosen as the contaminants of concern. 

Samples were collected from eight locations with varying proximities to four primary Superfund 

sites and petrochemical plant sites east of Houston, Texas. A Direct Mercury Analyzer was used 

to determine total mercury concentrations among the sites. Extractions were performed with a 

Dionex Accelerated Solvent Extractor and the resultant analytes were analyzed for polycyclic 

aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) with a Varian GC/MS 

system. The highest mercury concentration was located downstream of the San Jacinto River 
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Waste Pits at 25 ppb, which is well below the USEPA guidelines for mercury levels. Total PAH 

and PCB concentrations ranged from 9.1–371.6 ppb. The predominant PAHs were fluoranthene, 

pyrene, chrysene, and benzo[a]pyrene. Ratios of fluoranthene/pyrene were consistently greater 

than 1, indication a pyrogenic origin of PAHs mostly from coke and coal combustion at a 

relatively high temperature. 
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NOMENCLATURE 

 

COC  Contaminant of concern 

DCM  Dichloromethane 

DMA  Direct mercury analyzer 

EPA  Environmental Protection Agency 

GCMS  Gas chromatograph mass spectrometer 

Hg  Mercury 

Na-tech Natural hazard triggering technological disasters 

PAH  Polycyclic aromatic hydrocarbon 

PCB  Polychlorinated biphenyl 

PEC  Probably effect concentration 

POP  Persistent organic pollutant 

SJRWP San Jacinto River Waste Pits 

SRM  Standard reference material 

T-Hg  Total mercury 

TCEQ  Texas Commission on Environmental Quality 

TEC  Threshold effect concentration 
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CHAPTER I 

INTRODUCTION 

 

Hurricane Harvey generated over 40” of precipitation in the Houston/Galveston region 

with areas experiencing up to eleven days of inundation. Though Hurricane Harvey has yet to be 

fully quantified, it is projected to have caused not only economical, but ecological damages 

comparable to those of Hurricane Katrina. Various ecological hazards from Katrina include: 

increased and potentially detrimental levels of mercury, arsenic, lead, and chromium, over 6.5 

million kg of hazardous anhydrous ammonia released in the air, and various fuel leakages from 

petrochemical facilities (Harmon and Wyatt, 2008; Picou, 2009; Presley et al., 2006). The low 

lying locations of Houston’s Superfund sites coupled with the presence of persistent organic 

pollutants (POPs) create a catastrophic potential with the capacity to be severely exacerbated by 

extreme climatic events.  

Harris and Galveston counties alone house 29 Superfund sites and 30-50% of the nation’s 

petrochemical and industrial facilities (TCEQ, 2018; EPA, 1980). Additionally, the area is 

largely a densely populated coastal flood plain, making the region a model for natural hazard 

triggering technological disaster (na-tech) events (FEMA, 2017). With increasing frequency and 

severity of natural hazards such as hurricanes, the redistribution and release of legacy 

contaminants through sediment disruption in the Houston-Galveston region poses a unique 

threat. The most recent of these natural disasters in the area, Hurricane Harvey, produced the 

largest rainfall documented in the U.S. generating record breaking flooding along Buffalo Bayou 

and the San Jacinto River (NOAA, 2017)(Figures 1 and 2).  
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Figure 1. San Jacinto River and Buffalo Bayou before Hurricane Harvey (Copernicus, 2017). 

 

 

Figure 2. The resultant flooding from Hurricane Harvey along San Jacinto River and Buffalo 

Bayou as of August 30th, 2017 (Copernicus, 2017). 
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The remobilization of legacy contaminants through sediment disruption extends their 

presence in the environment and therefore increases the concentration of POPs active in 

ecosystem cycling (TCEQ, 2017). The Superfund sites proximal to the locations sampled 

historically contain large concentrations of various POPs (EPA, 2017) (Figure 3). 

 

 

Figure 3. Map east of Houston with the relevant Superfund site locations in black. 

 

Located in a residential area, French Limited is a 55-acre site that borders neighborhoods 

and a public marina near the San Jacinto River. Due to a lack of regulation, exact quantities of 

contaminant loads for the Superfund sites are unknown. However, it is estimated as much as 70 
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million gallons of industrial waste from petrochemical facilities containing heavy metals, 

polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) were dumped 

at the French Limited site from 1966 to 1971 (EPA, 2018). The site was active between 1950 and 

1973, making the total gallonage likely even higher.  With the marina and San Jacinto River as 

the west border, just north of French Limited and south of Jackson Bayou lies the 185 acre Sikes 

Superfund site. Sikes was an illegal “open dump” from 1961 to 1967, meaning it allowed bulk 

waters to be discarded directly into the soil. Approximately 2,000 55-gallon drums were dumped 

on the site along with an indeterminable amount of bulk loads containing heavy metals, PCBs, 

chloroform, and various other contaminants (EPA, 2017). Located at the end of a residential 

peninsula in the San Jacinto River, the Highlands Acid Pit was used as a discharge area for oil 

refineries with large concentrations of heavy metals found in 1981, which have since then been 

mitigated (TCEQ, 2018). The San Jacinto River Waste Pits (SJRWP), located in and along the 

river itself, have been cited as dioxin point sources. In a recent study, models and dye tracing 

were used to identify SJRWP as the origin of much of the dioxin concentration found in the 

Galveston Bay system (Rifai, 2016). In addition to dioxins, SJRWP has been linked to PCB, 

PAH, and heavy metal concentrations in riverine and estuarine sediments, leading to seafood 

advisories up and downstream of the site. A recent remediation review confirmed the dispersal of 

these contaminants through flooding events (Garland, 2015). 

With the abundance of Superfund sites and petrochemical facilities present in the 

Houston/Galveston area, the primary focus for the analyses will be on POPs including heavy 

metals, PCBs, and PAHs. POPs are persistent in the environment and bio-accumulate, making 

even low concentrations detrimental to ecosystem health. Mercury concentrations set a baseline 

for general estuary health and serves as an indicator of the presence of more toxic mercury 
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species, such as methyl mercury, and will therefore be the contaminant of concern (COC) for 

heavy metal analysis. For Texas, the general background concentration of mercury is 

approximately 40 parts per billion (ppb) and is not considered harmful until the concentration 

approaches 486 ppb. PAHs and PCBs are hydrophobic, carcinogenic, and mutagenic, making 

them a particularly nefarious environmental concern (Ingersol et al., 2000). Furthermore, these 

compounds bioaccumulate and concentrations as low as 0.5 ppb are above the USEPA guidance 

levels for residential areas. The Houston Ship Channel has historically housed the highest 

concentrations of PCBs, even as related to areas of comparable industrial quality, and thus the 

region contains major pollutant potential (Howell et al., 2008).  

With the magnitude of precipitation and long-term inundation due to Harvey coupled 

with the industrial make-up of the Houston/Galveston region, there is a potential increased risk 

of the remobilization and release of legacy contaminants into the ecosystem. The determination 

of concentrations and distributions of POP loads released during Harvey will provide a detailed 

analysis of impact from floodwaters and create a high-resolution data set of the contaminants 

ultimate fates.  
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CHAPTER II 

SAMPLING AND METHODS 

 

Data collection 

 Sampling locations were based on proximity to Superfund sites, major flooding areas, 

and legal accessibility. Two field runs were performed east of Houston along major waterways 

for soil sample collection in October 2017. A total of 28 bagged soil samples from various 

locations were collected (Figure 4) and stored at 4ºC until processing. 

 

 

Figure 4. Map of sample locations with their respective station numbers. 
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Mercury concentrations 

 Prior to total mercury (T-Hg) analysis, the samples were dried at 50ºC for five days, 

ground, and homogenized. A Milestone DMA 80 automatic Hg analyzer was used in accordance 

to EPA Method 7473 (EPA, 1998). A standard reference material (SRM), marine sediment SRM 

MESS-3, with a known T-Hg concentration was used to create a five-point calibration curve. A 

0-100 mg range was used and verified by the SRM results for the certified range. Approximately 

20 mg of each sample were loaded in sample boats and introduced to the analyzer, drying for 300 

seconds at 200ºC with thermal decomposition for 180 seconds at 650ºC. 

  

PAH and PCB concentrations 

 Extractions were performed using a Dionex Accelerated Solvent Extractor (ASE 200). 

Approximately 15 g of each ground sample were loaded into 22 mL extraction cells with 5 g of 

purified sand. The cells were placed in the autosampler tray and a 1:1 

dichloromethane(DCM):acetone solvent was used to perform the extractions. The operational 

parameters were as follows: a 5 min preheat to 100ºC with a 5 min heat time at 1500 psi, 

followed by a 5 min static period. Pressurized argon gas was used to purge for 60 seconds and 

the resulting analytes were evaporated to dryness. 

The dried samples were redissolved in 1:1 DCM:acetone solvent and analyzed with a 

Varian 4000 GCMS system with an ion mass detector. The internal standards used for PAHs and 

PCBs were d12-perylene and PCB 65, respectively. In splitless mode, separation was performed 

with an Agilent DB-5 capillary column and helium as the carrier gas with a 1ml min-1 flow rate. 

The temperature program was set to delay for 3 min, increase to 40ºC and hold for 1 min, 

increase to 180ºC at a rate of 20ºC min-1, and increase to 300ºC at 5ºC min-1 and hold for 10 min. 
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Using the retention times, quantitative ions, and qualitative ions in, the samples were analyzed 

for the concentrations of the respective PAHs and PCBs (Table 1). 

 

Table 1. Retention times, quantitative ions, and qualitative ions used to determine the presence 

and concentrations of PAHs and PCBs. 

Compound Retention time (mi) Quant. Ion Qual. Ion 

Napthalene 6.68 128 102 

Acenaphthylene 8.66 152 76 

Acenaphthene 8.92 153 76 

PCB 1 8.97 188 152 

Fluorene 9.78 166 139 

PCB 18 11.78 186 256 

Phenanthrene 11.91 178 152 

Anthracene 12.05 178 152 

PCB 65* 14.04 297 225 

Fluoranthene 15.68 202 101 

PCB 101 16.36 326 254 

Pyrene 16.47 202 101 

PCB 138 19.88 360 290 

Benzo[a]anthracene 21.46 228 114 

Chrysene 21.59 228 113 

PCB 180 22.08 394 324 

Benzo[b]fluoranthene 25.91 252 126 

Benzo[k]fluoranthene 26.04 252 126 

d12-Perylene* 27.04 264 260 

Benzo[a]pyrene 27.12 252 126 

Indeno[1,2,3-cd]pyrene 31.15 276 207 

Diben[a,h]anthracene 31.3 278 207 

Benzo[g,h,i]perylene 31.96 276 207 

*Internal standards used for GCMS analysis. 
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CHAPTER III 

RESULTS 

 

T-Hg analysis  

 Overall low concentrations of T-Hg were found at every location ranging from 2.248-

25.305 µg/kg (Table 2). The majority of locations contained samples below 5 µg/kg, with a few 

exceptions that were inconsistent with any latitudinal or proximity patterns. 

 

Table 2. T-Hg concentrations across all locations. 

Station Latitude Longitude T-Hg [µg/kg] 

#1 29.797224 -95.073479 16.724 

#2 29.764952 -95.078576 11.201 

#3 29.758264 -95.046417 8.559 

#4 29.877555 -95.081334 2.692 

#5 29.877555 -95.081334 15.951 

#6 29.878060 -95.089310 3.483 

#7 29.796545 -95.073306 22.971 

#8 29.817785 -95.078800 2.354 

#9 29.817785 -95.078800 2.302 

#10 29.817785 -95.078800 2.478 

#11 29.817785 -95.078800 2.722 

#12 29.817130 -95.078566 25.305 

#13 29.818042 -95.078824 4.885 

#14 29.818193 -95.078868 2.248 

 

 

The T-Hg distribution was heterogeneous across the sampled regions and no trends were 

apparent. Though samples were taken with varying distance in respect to the Superfund sites, no 
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correlation was observed (Figure 5). This lack of correlation is especially apparent in samples 8-

14, with T-Hg levels varying the full range of concentrations found within almost equal 

proximity to the Highlands Acid Pit.  

 

 

Figure 5. Sampling sites with gradient mercury concentrations. 

 

PAH and PCB analysis 

PAHs fluoranthene, pyrene, chrysene, and benzo[a]pyrene were found at nearly every 

sampled location. Outside of these primary PAHs, the concentration for each station was 
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irregular. The most consistent distribution was found between stations 1, 4, 6, and 7 which only 

contained the primary PAHs (Figure 6). 

 

 

Figure 6. Relative abundance of PAHs across stations 1, 4, 6, and 7.  

 

The ferry station contained six PAHs that were not present at any other location. Though found 

at every tested location, overall PAH concentrations were consistently low (Table 4). With only 

two exceptions, sum concentrations at each site were below 100 µg/kg.  The location with the 

highest total PAH concentration was station 2, the shore by the Lynchburg Ferry landing (Table 

4).  No clear relationship was apparent between PAH concentration and proximity to a 

Superfund site source, nor between the concentration and the source being up or downstream 

from the station. No latitudinal correlation was evident as demonstrated by stations 2 and 3 

exhibiting both extremes of the concentration range (Figure 7). 
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*bd: below detection
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Figure 7. Map of sampled region with gradient PAH concentrations in [µg/kg], or ppb. 

 

Only one PCB concentration was detected at one station (Table 5). The concentration was 

relatively low at 24.6 µg/kg. Subsequently, no latitudinal or proximity trends were ascertained 

(Figure 8). 

 

Table 5. PCB concentration from the sampled region. 

Station PCB 1 

[µg/kg] 

PCB 18 

[µg/kg] 

PCB 101 

[µg/kg] 

PCB 138 

[µg/kg] 

PCB 180 

[µg/kg] 

ƩPCB 

[µg/kg] 

#3 bd bd 24.6 bd bd 24.6 
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Figure 8. Map of sampled region with PCB concentration. 

 

T-Hg correlation with PAHs 

 A weak correlation was observed between T-Hg and PAH concentrations. With increased 

T-Hg concentration a moderate trend was evident of PAH concentration also increasing (Figure 

9).  
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Figure 9. Correlation between T-Hg and PAH concentration. 

 

 

PAH ratios 

 One significant PAH ratio was found. Concentrations of fluoranthene were consistently 

higher than pyrene concentrations and the ratio of fluoranthene to pyrene was therefore 

consistently greater than one (Table 6).  

 

Table 6. Ratio of fluoranthene to pyrene concentrations. 

Station Fluoranthene µg/kg Pyrene µg/kg F:P ratio 

1 19.5 9.1 2.1 

2 91.4 64 1.4 

3 12.9 6.5 2.0 

4 11.7 6.5 1.8 

6 10.4 5.2 2.0 

7 12.9 7.8 1.7 

8 9.1 bd NA 

9 9.1 bd NA 

11 9.1 5.2 1.8 

12 18.3 9.1 2.0 

13 10.5 5.2 2.0 

14 bd bd NA 
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CHAPTER IV 

DISCUSSION 

 

Hurricane Harvey devastated many regions in the Gulf Coast. The large number of 

refineries, chemical plants, and flood-prone legacy waste sites within the Houston watershed 

shaped a distinctive vulnerability to na-tech events in the Houston-Galveston region. The San 

Jacinto River and surrounding water bodies make up a tidally dominated system in a heavily 

populated area abundant in industrial facilities, granting the region catastrophic economic and 

ecological potential. A comparable event, Hurricane Katrina, produced PAH-saturated 

floodwaters that inundated Louisiana, and resulted in a redistribution of sediment-associated 

legacy contaminants from Superfund sites (Picou, 2009). Similarly, Hurricane Ike caused an 

influx in PCB concentrations seen in sediment samples (Howell and Rifai, 2015). Therefore, 

when Hurricane Harvey’s floodwaters inundated areas around Superfund sites, it was expected to 

see a redistribution of legacy contaminants into the ecosystem, as evidenced through various 

cases. Though reinforced in 2014, damage to the armored cap on the SJRWP was confirmed by 

the EPA after Hurricane Harvey (Brody et al., 2014; EPA, 2017). The resultant exposure of 

underlying contaminants to the surrounding area produced dioxin levels up to 70 µg/kg, several 

magnitudes above the EPA recommended concentration of 0.03 µg/kg (EPA, 2017). Hurricane 

Harvey also appeared to have redistributed liquid mercury onto a property near the SJRWP 

Superfund site, suggesting the presence of heavy metals in dangerous concentrations and the 

potential for significant toxicity (Healy and Kaplan, 2017). 
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Concentrations and distributions of T-Hg 

Mercuric chloride (HgCl2) is an inorganic form of mercury that is pervasive in ecosystem 

cycling and frequently acts as a source of methylation, resulting in alkyl species (Bloom et al., 

1999).  Alkyl mercury species are highly mobile through environmental processes, which 

inevitably leads to bioaccumulation of the more toxic speciation (Han et al., 2003). T-Hg levels 

serve as a baseline for the possible presence of toxic mercury species and act as useful indicators 

for ecosystem health. The threshold effect concentration (TEC) is the level to which a 

contaminant can be present without any expected significant effect on an ecosystem.  T-Hg 

concentrations were low overall (Table 2) and all below the TEC of 180 µg/kg (MacDonald et 

al., 2000). The highest level of T-Hg was a mere 25.305 µg/kg with even lower concentrations 

around 5 µg/kg as the norm (Table 2). These concentrations were consistent with median 

background levels and were even below what recent studies have found in waters from 

Galveston Bay at Trinity River (Connor et al., 1975; Matsumoto et al., 2010). The distribution of 

T-Hg was heterogeneous, and no latitudinal or potential source proximity correlations were 

observed (Figure 5). An indiscriminate dispersal has been shown to be consistent with natural 

distributions, indicating the concentrations found were representative of background levels of T-

Hg. 

 

Concentrations and distributions of PAHs and PCBS 

PAHs and PCBs are hydrophobic contaminants with an affinity for binding to organic 

matter. This characteristic creates pollutants that are persistent in the environment and leads to 

the bioaccumulation of carcinogenic, mutagenic toxins. Relatively minimal concentrations of 

PAHs and PCBs are considered environmentally detrimental due to their adverse properties. The 
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concentrations of individual PAHs were consistently low with levels below the TEC and well 

below the probable effect concentration (PEC)(Table 4). The sum of concentrations was 1091.6 

µg/kg. Though still relatively low, no guideline has been set for combined PAH concentration, 

likely due to the limited knowledge of interactions between the various PAHs and environment 

(MacDonald et al., 2000). The four most common PAHs found were congruous with PAHs 

commonly affiliated with combustion: fluoranthene, pyrene, chrysene, and benzo[a]pyrene 

(Yunker et al., 2002). The most consistent distribution was seen between sampling locations 1, 4, 

6, and 7 likely because only the most common PAHs were present at these sites (Figure 6). 

Location 2 had six PAHs that were not present at any other sampling site (Table 4), however, 

these PAHs were still consistent with a combustion affiliation (MacDonald et al., 2000). The 

proximity of location 2 to a ferry landing and the subsequent presence of an increased source of 

combustion due to idling vehicles indicates the source of PAHs was unlikely from legacy 

contaminants. With no observed proximity or latitudinal patterns with respect to the Superfund 

sites, no source or legacy redistribution conclusions were made. However, PAH ratios are 

valuable tools in source characterization (Stogiannidis and Laane, 2015).  The ratio of 

fluoranthene to pyrene was consistently greater than one, indicating coke and/or coal combustion 

as the likely source (Stogiannidis and Laane, 2015)(Table 6). Only a concentration of PCB 101 

(24.6 µg/kg) was found and no patterns could be ascertained (Table 5). The concentration of the 

PCB was below the TEC of 59.8 µg/kg.  

Considering the high number of petrochemical facilities in the Houston-Galveston region, 

the persistently low concentrations were not expected. Historically, Houston waters have 

contained an unusually high level of PCBs and would therefore be expected to distribute them 

during flooding events (Howell et al., 2008; Garland, 2015). With similar natural disasters 
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leading to the release and remobilization of legacy contaminants, a more complete analysis is 

needed as suggested by this survey’s inconsistencies with previous findings. A weak correlation 

was observed between T-Hg and PAH concentration (Figure 9). This could be indicative of 

various relationships such as disposal history, hydrological patterns, or shared physical 

characteristics between the sampling locations and is a useful direction for future 

experimentation. With the abundance of potential contaminant sources in the area, low POP 

concentrations were unexpected, but could possibly be due to the floodwaters themselves. Flood 

mobilization could have led to an influx of organic carbon, fueling bacterial metabolism and 

resulting in efficient biodegradation of PAHs. The low concentrations could very well imply 

successful mitigation techniques, however, it is more likely the contaminant levels were the 

result of sampling from fresh soil locations rather than marine. The projected increase in severity 

and frequency of natural disasters necessitates a deeper understanding of contaminant 

remobilization for this na-tech disaster prone region. The unexpected results highlight the 

demand for a more thorough analysis and expose compelling potential pathways to investigate. 
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