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ABSTRACT

Reliable Memory Storage by Natural Redundancy

Jacob Mink
Department of Computer Science

Texas A&M University

Research Advisor: Dr. Anxiao Jiang
Department of Computer Science and Engineering

Texas A&M University

Non-volatile memories are becoming the dominant type of storage devices in modern

computers because of their fast speed, physical robustness and high data density. How-

ever, there still exist many challenges, such as the data reliability issues due to noise. An

important example is the memristor, which uses programmable resistance to store data.

Memristor memories use the crossbar architecture and suffer from the sneak-path prob-

lem: when a memristor cell of high resistance is read, it can be mistakenly read as a

low-resistance cell due to low-resistance sneak-paths in the crossbar that are parallel to the

cell.

In this work, we study new ways to correct errors using the inherent redundancy

in stored data (called Natural Redundancy), and combine them with conventional error-

correcting codes. In particular, we define a Huffman encoding for the English language

based on a repository of books. In addition, we study data stored using convolutional

codes and use natural redundancy to verify if decoded codewords are valid or invalid.

We present statistics over the Viterbi Algorithm and its ability to decode convolutional
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codewords, then discuss Yen’s Algorithm, an augmentation of the Viterbi Algorithm. Fi-

nally, we present an efficient algorithm to search for a list of the most likely codewords,

and choose a codeword that meets the criteria of both natural redundancy and the ECC

as the decoding solution. We find that this algorithm is no more powerful than Yen’s

Algorithm in terms of decoding noisy convolutional codewords, but does present some

interesting ideas for further exploration across multiple fields of study.
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1. INTRODUCTION

The need to store information has been of great importance to mankind since the dawn

of civilization. With the development of spatially constant memory such as cave drawings,

to the advent of paper information and books, to the creation of the first computers, we see

the necessity and effect that memory has on our world. As our computers grow in power

and our computational needs grow in complexity, our memory storage must become faster

and more robust.

Current memory technology relies on flash memory to function; it is faster than hard

drives and is non-volatile, but it does not have the speed and endurance needed by the

fast-evolving big data era [1]. Futuristic memory technologies may rely on chemical or

electrical properties of materials that change based on certain applications. For example,

phase-change memory, described in the Proceedings of the IEEE shows us that the chem-

ical properties of a material can be exploited to represent binary digits. [2, 3] IBM has

also published on their racetrack memory, which can be conceptualized as tiny electrical

elevators to move information from place to place. [4]

Another important technology, and the focus of this thesis, is the memristor. Similar

in function to a basic transistor, a memristor holds a value by way of resistance. Mohanty

describes the necessary elements to a memristor in IEEE Potentials, namely that the mem-

ristor changes its resistance depending on the time of voltage application and the strength

of voltage application. [5, 6] By specific voltage applications, a memristor can be made to

hold a binary 1 or 0, and an array of memristors can be used to hold large scale memory.

The main advantage of memristors is that power is only required to read or set a bit in

memory, but not to maintain the memory over time. The memrisot has the potential to be

faster and denser than flash memory. However, there is a physical problem in its structure,
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known as the Sneak-Path Problem.

In the following, we first give an overview of the memristor technology and error-

correcting codes (ECCs) that are commonly used in storage systems, including nonvolatile

memories. We then introduce the challenges that still face memristor crossbar memories,

and in particular, the sneak-path problem. We then introduce an idea for improving the

error correction performance of error correction codes, which is to combine the resid-

ual redundancy (called Natural Redundancy) in data (which can be either uncompressed

or compressed imperfectly) with the redundancy added by ECCs (called Artificial Redun-

dancy) for better decoding. We then summarize the main topics we explore in this research

work.

1.1 Overview of Memristor Technology

The memristor was first introduced in 1971 by Leon O. Chua as one of the basic ele-

ments of circuits, including resistors, inductors, and capacitors. The behavior of a memris-

tor is similar to a resistor with the ability to hold a state. The technology has been realized

in the lab using M-R, M-L, and M-C mutators. [7] The physical properties of memristors

present an opportunity to improve the performance of current data storage technology.

Possibly the most important property of memristors to data storage is that the resis-

tance of a memristor changes based on voltage applied and length of time of application.

Because of this, the resistance can be read easily by a very small voltage application and

then used as data storage in and of itself. Therefore, we can create a memristor crossbar

array, a simple connection of grid-arranged wires using memristors. In the design of a

memristor crossbar array, since memristors hold non-discrete values in their resistance, a

threshold must be specified to distinguish between a 0 and a 1. By convention, a 0 is a

high-resistance memristor while a 1 is a low-resistance memristor.

8



1.2 Error Correcting Codes (ECCs) for Storage Systems

An inherent problem in storage systems is the detection of and recovery from read

errors in data. A single cell or more in a memory array may become corrupt, which can

result in fatal errors as scale increases. Error correcting codes are a method by which

errors can be mitigated. While there are many types of ECCs, we focus on convolutional

codes as our primary method of error detection and correction.

A convolutional code can be expressed as a redundancy based on received bits. In

general, a convolutional code produces r > 1 bits based on a subset of the message to

send; the rate of a convolution code is the number 1/r. If x is the message to send, the r

redundant bits pi[n] are generated by functions of the form

pi[n] = (
k−1∑
j=0

gi[j]x[n− j]) mod 2 (1.1)

where 1 ≤ i < r and n ranges across the length of the message to send. The term gi is

a generator polynomial for the bit pi, having k coefficients specifying what subset of the

message to consider. Note that we assume there is padding by k− 1 0s in the beginning of

x to ensure validity of every bit pi. [8]

An alternate expression for a convolutional code is by a finite state automaton. In

essence, it is a discrete Markov model expanded over time. [9] As an example, see Figure

1.1, the convolutional code we used.

1.3 Challenges for Memristor Crossbar Memories

Although memristors do not fail when there is a lack of power, they do have an inherent

physical problem that makes their usage difficult. The sneak-path problem is a hardware

based issue in memristor crossbar memories used for memory storage. At the most basic,

when attempting to read a given cell (i, j) that happens to contain a 0, if there are is set of
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Figure 1.1: A finite state automaton representing a 1/2 convolutional code

1s in parallel with cell (i, j), then the cell could be mistaken for a logical 1. The reason for

this error is that since the 1s are at a lower resistance than the 0s, a path of least resistance

can be created with less resistance than the 0 cell. [10, 11]

Mathematically, the sneak-path problem can be expressed as such: Given a binary

array A of size m× n, we say that there is a sneak path of length 2k + 1 affecting the cell

at position (i, j) if ai,j = 0 and there exist 2k positive integers 1 ≤ r1, ..., rk ≤ m and

1 ≤ c1, ..., ck ≤ n for some k ≥ 1 such that the following 2k + 1 cells satisfy [10]

ai,c1 = ar1,c1 = ar1,c2 = ... = ark−1,ck = ark,ck = ark,j = 1 (1.2)

Several hardware solutions have been proposed for the sneak-path problem in an attempt

to discuss the problem at its direct source. [11, 12, 13, 14]

10



1.4 Using Natural Redundancy for Error Correction

Natural redundancy is very helpful in the field of error correction. A redundant mes-

sage is much more likely to be decoded than a message that is not redundant, so we can

create redundant representations for characters in such a way that they can be decoded

[15, 16, 17, 18]. To do this to an entire message is to encode it. In the case of a convo-

lutional code, it is encoded mathematically and the result is longer by a factor r than the

original string.

Once the encoded message has been created from the original message, errors can be

introduced to it. Whether these errors come from the encoded message being sent across

a channel or are due to some other random element, the codeword must be decoded to

return a string with as little difference from the original message as possible. The Viterbi

Algorithm is one way in which the encoded message can be decoded. It is a variation of

Dijkstra’s Algorithm on a stage-graph structure. The stage-graph is developed from the

finite state automaton for the convolutional code as shown in Figure 1.2. In fact, Figure

1.2 can be extended to include more stages and handle longer messages. [19]

First, we remember that the Hamming distance between two binary words is, most

simply, the number of bits different between the two. [20] The Viterbi Algorithm works

by assigning an edge weight, w(e) to every edge by the Hamming distance between the

received encoded bits and what the edge transition is expected to produce. Next, each state

i, j is assigned an initial node weight of a very large value, w(i, j). The node at stage 0,

state 0 is given a node weight of 0, since every message is encoded starting in that state.

For each state j in every stage i, we compute the number w(e)+w(i, j) for the edges leave

state i, j. Each node j in stage i + 1 then stores the edge yielding the minimum number

as its parent edge and let its node weight w(i + 1, j) = w(e) + w(i, j). The algorithm

completes once every node has been visited, except for those in the last stage (they need
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Figure 1.2: A stage graph developed from the finite state automaton in Figure 1.1

not be computed since they do not have any further connections). Note that often, extra 0s

are appended to the end of the message before encoding to ensure that the shortest path in

this graph starts at 0, 0 and ends at n − 1, 0, where n is the number of stages. The edges

are then traced back to yield the codeword of minimum Hamming distance based on the

sent message. [19, 21]

1.5 Summary of Research Topics

Many areas were covered over the course of this research. In particular, memristor

physical issues, the analysis of texts for character frequencies and the generation of Huff-

man Codes for the characters, error correcting codes and their decoding algorithms, and

shortest path and k-shortest path algorithms were studied to prepare and develop the re-
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search.

The physical limitations of memristors, in particular the sneak-path problem, served

as motivation for the research. To represent the sneak-path problem, we used Huffman

Codes for a very large selection of texts to simulate bits stored in memory. The research

into error correcting codes went towards choosing an optimal method by which to encode

and decode. Finally, k-shortest path algorithms are the method by which we improve the

performance of our decoding method.
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2. ANALYSIS OF THE SNEAK PATH PROBLEM IN

MEMRISTORS

It is important to know exactly how problematic the sneak-path problem is for memris-

tor crossbar arrays to evaluate the usefulness of this research. We simulated the behavior

of memristor storage and the sneak-path problem by the following method:

1. Create a matrix of size 4× 4 and populate it with uniformly random 0s and 1s.

2. Set the values at (0, 0), (N/4− 1, N/4− 1), and (N/2− 1, N/2− 1) to 0 where N

is the matrix size.

3. For a matrix of size N ×N , create

(a) N2 nodes R(i, j) for 1 ≤ i ≤ N and 1 ≤ j ≤ N that represent the crossing

points at the N row nodes, adjacent to its left and right neighbors (with no

wrapping).

(b) N2 nodes C(i, j) for 1 ≤ i ≤ N and 1 ≤ j ≤ N that represent the crossing

points at the N column nodes, adjacent above and below (with no wrapping).

(c) edges between the node R(i, j) and C(i, j) if the value at cell ai,j in the matrix

is 1.

4. Breadth-First Search starting at R(i, j) for (i, j) = {(0, 0), (N/4−1, N/4−1), (N/2−

1, N/2− 1)} and attempt to find the node C(i, j). If this node is found, return True.

Otherwise, return False.

5. Repeat steps 1 through 4 several times and collect data.

6. Repeat steps 1 through 5 using sizes 8×8, 16×16, 32×32, 64×64, and 128×128.
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The data in Figure 2.1 was collected from simulations using 6 sizes of memory: 4× 4,

8 × 8, 16 × 16, 32 × 32, 64 × 64, and 128 × 128. Each size was polled 1000 times at

3 positions, (0, 0), (N
4
− 1, N

4
− 1), and (N

2
− 1, N

2
− 1), where the matrices are size

N × N , on different, uniformly random matrices (except for the cells in question, which

were held at 0). The data below reflects three separate curves over the size of the memory

corresponding to the three different positions.

Figure 2.1: The probability of a sneak-path error occurring in various sizes of memristor
arrays

The data in Figure 2.1 tells us that as the size of the memristor array increases, the

probability of finding a sneak-path error increases to 100% relatively quickly. Physically,

however, the path might have too large a resistance to actually be a sneak-path. The data

in Figure 2.2 shows the probability of finding a sneak-path error at the locations (0, 0),

15



(N
4
− 1, N

4
− 1), and (N

2
− 1, N

2
− 1) on the memristor array, where N ×N is the size of

the array. These sizes were, again, 4× 4, 8× 8, 16× 16, 32× 32, 64× 64, and 128× 128.

Figure 2.2: The probability of a sneak-path error occuring with a maximum path length,
k, in various sizes of memristor arrays

We can see by the data in Figure 2.2 that for wires with high resistance per wire seg-

ment (low k), the probability of finding a so-called k-sneak-path levels out at around 40%,

but as the resistance per wire segment decreases, we see similar results to the original data.
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Obviously, the Sneak-Path Problem is very common in a memristor array, and can oc-

cur in various locations around the array. In this thesis, we introduce a method of encoding

and decoding words in memory in polynomial time by which any memory-read errors can

be corrected to produce valid words.
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3. DESIGN OF HUFFMAN CODES FOR THE ENGLISH

LANGUAGE

Huffman coding is an optimal compression method, and is useful for converting texts

into binary strings. Using a specific optimal Huffman code for a set of texts allows us to

represent and analyze data in a more simple way than language processing would allow.

One of the most important aspects of the Huffman code is that all the codewords are prefix-

free. To explain, a set containing two words 000 and 0001 would not be prefix-free since

”000” ⊂ ”0001”. This property is helpful in decoding, since it allows for O(n) processing

the bit-string.

3.1 Research Huffman Code

In our research, we used the Gutenberg corpus from Python’s NLTK library to source

our texts. [22] Our code was designed in the following way:

1. Across all texts in the Gutenberg corpus, collect the frequencies of every character.

2. Additionally, store the valid words from every text for later use.

3. From the list of frequencies, construct a binary tree with the property that letters

only appear at leaf nodes and the maximum frequency letters are closer to the root.

4. Run DFS on the tree to compute the strings that represent each letter (left child is a

’0’, right child is a ’1’)

The Huffman code in Table 3.1 was designed by this previous procedure.

3.2 Basic Decoding from Huffman Compression

The main problem after encoding a text by the Huffman code is how to decode the

results. Due to the prefix-free nature of the Huffman code, we can simply read bits until

18



Table 3.1: An optimal Huffman code for the English language based on the texts provided
by the Gutenberg corpus

character bit-string character bit-string character bit-string
s 0000 \n 00010 k 0001100
O 000110100 F 0001101010 Y 00011010110
z 00011010111 S 000110110 J 0001101110
! 0001101111 x 0001110000 4 0001110001
2 000111001 C 0001110100 G 0001110101
? 0001110110 _ 0001110111000 V 0001110111001
* 000111011101000 / 000111011101001000 @ 000111011101001001000
> 000111011101001001001 æ 0001110111010010010100 = 00011101110100100101010
î 00011101110100100101011 è 0001110111010010010110 < 0001110111010010010111
→ 0001110111010010011000 + 00011101110100100110010 ∼ 00011101110100100110011
é 0001110111010010011010 % 0001110111010010011011 $ 00011101110100100111
& 00011101110100101 X 0001110111010011 Q 00011101110101
U 0001110111011 0 00011101111 . 0001111
e 001 n 0100 h 0101
o 0110 g 011100 v 0111010
I 01110110 ’ 011101110 E 0111011110
R 0111011111 y 011110 c 011111
a 1000 l 10010 w 100110
, 100111 d 10100 : 10101000

\n{space} 10101001 9 10101010000 8 10101010001
3 1010101001 7 10101010100 6 10101010101
W 1010101011 T 101010110 D 1010101110
P 10101011110 q 10101011111 f 101011
t 1011 m 110000 1 110001000
; 110001001 - 110001010 B 1100010110
N 11000101110 5 11000101111 H 1100011000
j 11000110010 ( 1100011001100 ) 1100011001101
} 110001100111000 ‘ 1100011001110010 [ 11000110011100110
] 11000110011100111 Z 11000110011101 K 1100011001111
L 1100011010 M 1100011011 " 110001110
A 110001111 r 11001 u 110100
b 1101010 p 1101011
i 11011 {space} 111

we find a letter. As an example, suppose we encoded the letters "abc". This would be

represented as "10001101010011111". Then we can see that, taking the first three bits,

"100" is not a letter, but adding another bit gives us the Huffman codeword for the letter

"a". Similarly, if we take the next set of letters "110101", we do not have a letter. But if we

add the next bit to this, it gives us the Huffman codeword for "b". Finally, our remaining

string will decode to the letter c. This procedure is formalized by the following rules:

1. Given a Huffman encoded bit-string S, take a bit b from the front of S.

19



2. Continue taking bits from the front of S until it is a Huffman codeword.

3. If a potential codeword is longer than the longest codeword, then the encoding is not

valid.

4. Otherwise, all of the string S will be consumed and the result will be a decoded set

of letters.

20



4. NEW DECODING ALGORITHMS FOR CONVOLUTIONAL

CODES

4.1 The Viterbi Algorithm

The Viterbi Algorithm is the most basic method of decoding a convolutional code. The

main idea behind the algorithm is that we minimize the Hamming distance, or number of

single-bit errors, between the input string and all of the potential Huffman codewords.

Operating on the lattice structure in Figure 1.2, the Viterbi Algorithm computes the

shortest path from the node at stage 0, state 0 to the node at the last stage, state 0. The edges

are weighted using the Hamming distance between n-bit pairs and the production bits from

each edge, where n = 1/r, inverse of the rate of our convolutional code. Therefore, given

an input string S of size k we can express the algorithm by the following:

1. For every edge i in every stage j of the lattice, take n bits, X ⊆ S from S starting

at index nj and assign a weight w(eij) to be the Hamming distance between X and

the production on eij

2. Set every node x to have a value v(x) of∞ except for the node at stage 0, state 0,

which we give a value of 0

3. For every node x, compute the node y connecting to it such that v(y) + w(ey→x) is

minimized and store that node as the survivor of x

4. Once the the minimum node for the node in the last stage, state 0 is found, trace the

minimum nodes back to the start to yield our decoded string of minimum Hamming

distance

We examine the performance of the Viterbi Algorithm for computing the original string

21



Huffman codeword string we encoded by our convolutional code by comparing the per-

centage of single-bit errors between the two. The data is shown in Figure 4.1. To acquire

this data, we followed the procedure:

1. Generate the Huffman code from the Gutenberg corpus texts

2. Select a text, encode it by the Huffman code

3. Select a random portion of the text

4. Encode the random portion of the text by the convolutional code to yield the convo-

lution string

5. Introduce symmetric bit error to the convolution string at a probability p

6. Run the convolution string through the Viterbi Algorithm

7. Compare the resulting string to the original selection of the text bit-wise and com-

pute the probability of seeing a bit error across the whole string; store this number

8. Repeat steps 3 - 7 many times

9. Repeat steps 2 - 8 many times using different probabilities of error p

4.2 k-Shortest Path Algorithm

Assuming the Viterbi Algorithm fails to find a shortest path containing valid words

(i.e. both the bit-strings decode to valid letters, and the letters form valid words), the next

step would be to check the next shortest paths.

Possibly the most prominent algorithm for computing so-called k-shortest paths in a

graph is Yen’s Algorithm. Using path k − 1 to find path k, it works by creating a set of

every possible single-edge deviation from path k − 1 and using the minimum weight path

22



Figure 4.1: The average bit error between initial Huffman codeword string and the result-
ing Viterbi decoded string

from the set as path k. [23, 24, 25] For our purposes, this is extremely useful; since there

are only ever two edges from any node, we have predictable complexity of the algorithm.

Given a lattice set up in the same way as previously, we can compute k-shortest paths

by the following algorithm:

1. Run the Viterbi Algorithm once to compute the 1st shortest path p1

2. Using p1, run Yen’s Algorithm for k paths to find the k-shortest path

The data in Figure 4.2 shows the performance of Yen’s Algorithm vs. the Viterbi

Algorithm. The procedure to collect this data was as follows:

1. Generate the Huffman code from the Gutenberg corpus texts

2. Select a text, encode it by the Huffman code

3. Select a random portion of the text

23



4. Encode the random portion of the text by the convolutional code to yield the convo-

lution string

5. Introduce symmetric bit error to the convolution string at a probability p

6. Run the convolution string through the Viterbi Algorithm to yield the 1st shortest

path

7. If all of the words in the 1st shortest path are valid, skip to the comparison step using

the shortest path for both the Viterbi Algorithm and Yen’s Algorithm.

8. Otherwise, we use Yen’s Algorithm on the shortest path until one of two things

occurs

(a) a completely valid path is found

(b) a cap on the number of paths to check is reached; in this case, we use the path

with the maximum number of valid words

9. Compare the resulting strings to the original selection of the text bit-wise and com-

pute the probability of seeing a bit error across each string; store these numbers

10. Repeat steps 3 - 7 many times

11. Repeat steps 2 - 8 many times using different probabilities of error p
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Figure 4.2: The performance of the k-Shortest Path Algorithm vs. the Viterbi Algorithm

The data in Figure 4.3 shows how many paths were required to find a completely valid

path before reaching a cap number of paths. The data was collected as follows:

1. Generate the Huffman code from the Gutenberg corpus texts

2. Select a text, encode it by the Huffman code

3. Select a random portion of the text

4. Encode the random portion of the text by the convolutional code to yield the convo-

lution string

5. Introduce symmetric bit error to the convolution string at a probability p

6. Run the convolution string through the Viterbi Algorithm to yield the 1st shortest

path
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7. If all of the words in the 1st shortest path are valid, our pathway was found in 1 step;

store this value

8. Otherwise, we use Yen’s Algorithm on the shortest path until one of two things

occurs:

(a) a completely valid path is found; store the number of paths checked

(b) a cap on the number of paths to check, k is reached; store the number k

9. Repeat steps 3 - 7 many times

10. Repeat steps 2 - 8 many times using different probabilities of error p

Figure 4.3: The performance of the k-Shortest Path Algorithm in terms of number of

pathways checked
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4.2.1 Validity

What does it mean to say that a path is "valid"? The definition of validity for our

purposes is two-fold.

1. All the sets of bits represent valid letters by our Huffman code

2. All the collections of letters represent valid words by our dictionary

Therefore, in our decoding process, we can first decode from the shortest path to a string

of characters. If any of the sets of bits was not valid, then the path is not valid. If it was

valid, we can tokenize this string on spaces to yield what should be our words. If any one

of these words, except for the first and last words, is not in our dictionary, then our path is

not valid.
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5. DECODING ALGORITHM AND PERFORMANCE FOR

ASYMMETRIC ERRORS

One of the first things to notice about Yen’s Algorithm is that while it is often very

successful in finding valid codewords, it can take up to 2n pathways to find the valid

codeword, where n is the number of bits provided initially. Next, we can observe that

as Yen’s Algorithm computes pathways, it can come extremely close to an entirely valid

pathway but end up creating more error than solving it. For example, suppose we initially

encoded the phrase "the dog jumps over the moon," and after some computation with

Yen’s Algorithm, arrive at a pathway that reads "the dog jumps ovtr the moon." Obviously,

the word "ovtr" should be the word "over." Our next pathway could yield another string

"the drg jumda ovtr them moon," which has much more bit error than before. This is

problematic in our attempt to derive an efficient decoding algorithm, since it makes little

sense to move past pathways that we know are extremely close to correct.

5.1 Validating a Path in a Graph G

We first consider what makes a pathway valid, and how close to correct a valid section

must be.

Suppose p is a path found in a stage-graph G represented as a list of nodes and words

is a list of words that we know to be valid. Also, define two numbers k1 to be the single-

word minimum length and k2 to be the multi-word length. For example, if k1 = 3, then the

word "bath" satisfies it; if k2 = 4, then the sentence "this is a short sentence" satisfies it.

If this is the first path found (i.e. shortest path), we validate this pathway by the following

procedure:

1. Convert the edges for each node p[i] and p[i + 1] in the pathway into the bits they
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represent

2. Use the usual method of decoding a Huffman codeword to convert the bits into

words

3. If we do not find a valid Huffman codeword, return a completely invalid pathway.

Otherwise, let tokens be the tokenization of the string returned by our Huffman

decoding algorithm

4. Let valids be an empty list of valid regions and let i = 0 be an index into tokens

5. While i < len(tokens) do

(a) If tokens[i] and the next k2 − 1 words are valid, add them to valids as a valid

region and increment i by k2

(b) If tokens[i] is valid and len(tokens[i]) > k1, add it to valids as a valid region

and increment i by 1

(c) Otherwise, add tokens[i] as an invalid region and increment i by 1

6. Return the list of valid regions

We can also decide if a pathway is valid in a very simple manner. We consider the case

in which the first and last words in the path are inherently invalid, i.e. the pathway begins

and ends in the middle of a word. Let p be a pathway.

1. Tokenize p into a list tokens

2. Let b = true be a boolean

3. For each t in tokens do:

(a) If t is the first token and the path contains the first node of the graph, skip
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(b) If t is the last token and the path contains the last node of the graph, skip

(c) Otherwise b& = t is valid

4. Return b

This procedure ensures we can validate sub-paths as well as full pathways through the

graph structure.

5.2 k-Shortest Sub-Path Algorithm

Our algorithm exploits an important property of decoding with a Huffman code and a

convolutional code: we can be sure of certain words that are valid in the Huffman code

via decoding by the convolutional code. Our intuition here is that when we check any

path for valid words, we can store the sections of the path we know to be valid and avoid

computing over these sub-paths again.

We leverage the structure of the Yen’s Algorithm to compute sub-path shortest paths.

Let G be a graph and let k be a threshold number of paths we wish to check.

1. Find the shortest path p0 in the G by the Viterbi Algorithm

2. Let valids be the result of the validation procedure on p0

3. Let totalPath be an empty list

4. For each region r in valids do:

(a) If r is valid, simply add the region to totalPath

(b) If r is invalid, run Yen’s Algorithm on the region until a valid pathway is found

or the threshold k is reached, then add the result to totalPath

5. Finally, return the resulting path
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Let M be the number of stages in the graph, N be the number of states per stage, and

k be the threshold number of paths we wish to check. The time complexity of the Viterbi

Algorithm is O(MN). The time complexity of Yen’s Algorithm is O(kM2N) Finally, we

see that the k-Shortest Sub-Path Algorithm runs in O(kM2N) time since in the worst case

it simply runs Yen’s Algorithm on the entire graph.

5.3 Results

Using the usual procedure for collecting data, we compared the average single-bit

error of the Viterbi Algorithm, Yen’s Algorithm, and the k-Shortest Sub-Path Algorithm.

The only structural change for the experiment was adding the k-Shortest Sub-Path to the

procedure. The results of this experiment are in Figures 5.1 and 5.2.

Figure 5.1: The average single-bit error across our three algorithms with RBER from 0%

to 5%
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Figure 5.2: The average single-bit error across our three algorithms with RBER from 5%

to 10%

From these results, we see that with our current k-Shortest Sub-Path Algorithm, the

performance is not much better than Yen’s Algorithm, and can often be worse. On lower

percentages, we see that Yen’s Algorithm outperforms the k-Shortest Sub-Path Algorithm

consistently, but at higher percentages, the k-Shortest Sub-Path Algorithm runs as accu-

rately as Yen’s Algorithm.
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6. CONCLUSIONS AND FUTURE DIRECTIONS

In developing our algorithm, our main consideration was computing less of a pathway

than Yen’s Algorithm, and we hoped to perform better from this method. Our approach is

on the naive side of this concept, however. In particular, we use Yen’s Algorithm on sub-

paths of the first shortest path until they either find a valid sub-path or reach a threshold

value. A potential source of error in this step is loss of path-context in these sub-paths.

Another issue that is easy to identify is that our language processing is rudimentary.

The algorithm would greatly benefit from some form of natural language processing, es-

pecially for tokenizing and classifying individual words as parts of the path or not. The

validation procedure would be more robust, and the verification of a string as valid would

be much more accurate with the addition of NLP techniques. [26]

With regards to the first issue, we can see that our current usage of Yen’s Algorithm in

the k-Shortest Sub-Path Algorithm may not be the best approach. One idea for improving

this is to modify Yen’s Algorithm to be a "next shortest path" algorithm instead of com-

puting all k shortest paths. In this way, we could implement a depth-first style subgraph

validation procedure, in which once a sub-path has valid sub-paths, we can ignore our new

valid pieces.

We can see from 1.2 that the base structure for the Viterbi Algorithm resembles the

structure of a neural network. This begs the question: how can we apply deep learning

principles to the subgraph search we implemented? In the future, the accuracy of the

solutions returned by Yen’s Algorithm could be refined with deep learning concepts such

as node pruning. Even further, the conceptualization of data storage as we have proceeded

could be abstracted further to a purely deep neural network approach. A network could be

trained to behave as a "more accurate" Viterbi Algorithm, which is one of the overarching
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goals of this research.

Finally, we should once more address the base issue here: the memristor crossbar ar-

ray. Our abstraction from the physical concept to a simple send/receive problem across

a channel has proven useful and yielded some interesting results. The Viterbi Algorithm,

while useful in theory, would not be practical for use in a memristor array, since it is not

accurate enough. Yen’s Algorithm, on the other hand, presents a much more promising

approach in terms of accuracy. Then next thing to consider with Yen’s Algorithm is speed;

the Viterbi Algorithm is quite slow. Yen’s Algorithm depends entirely on the base shortest-

path algorithm for its running time, so using a faster, more state-of-the-art algorithm would

increase the speed. The k-Shortest Sub-Path Algorithm, while a good idea in our theoret-

ical application, does not produce the results necessary to pass Yen’s Algorithm applied

to our particular problem. Therefore, more development and thought is needed into the

structure of the stage graph and the abilities of the Viterbi Algorithm (or other shortest

path algorithm).

In summary, we present several algorithms with the potential to solve the original sneak

path error: the Viterbi, Yen, and k-Shortest Sub-Path Algorithms. While they all are inter-

esting from a theoretical standpoint in terms of error correction, it is Yen’s Algorithm that

seems to have the best results. In fact, we see that Yen’s Algorithm yields less than 1.5%

error when tested on representations of data stored in memory. To improve Yen’s Algo-

rithm, more advanced techniques may be required, including natural language processing

and deep learning.
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