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ABSTRACT 

Virtual Memory Streaming in MapReduce Applications  

  

Yuan Yao 

Department of Computer Science and Engineering 

Texas A&M University 

 

Research Advisor: Dr. Dmitri Loguinov 

Department of Computer Science and Engineering 

Texas A&M University 

 

 

 In the age of fast growing technology, massive storage, and cluster computing, efficient 

big-data processing algorithms are in high demand. MapReduce is one of the programming 

models that enables massive-scale cluster technology around the world. Despite significant 

public efforts, the open-source implementation of MapReduce – Apache Hadoop – is 

cumbersome, complex, and inefficient. The purpose of this research is to improve the 

performance of Hadoop, specifically its sorting component, by developing a single-pass, stream-

based multithreaded bucket sort. Our new set of algorithms has the potential to influence the 

future of data-centric computing.  
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NOMENCLATURE  

 

AWE  Address Windowing Extensions 

API  Application Programming Interface 

MSDN  Microsoft Developer Network 

OS  Operating System 

PG  Physical Pages 

PFE  Page Fault Exception 

RAM  Random Access Memory 

VMS  Virtual Memory Space  
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CHAPTER I 

INTRODUCTION 

 

Background 

The twenty-first century has been the golden age of computer technology. With the 

increasing usage of personal devices and the Internet, the knowledge base of the society is 

rapidly shifting from the traditional paper and books to hard drives, where large-scale server 

platforms, i.e. the cloud, are expected to provide all storage-related computation in the future. 

According to a report cited by Forbes, global spending on Infrastructure-as-a-Service (IaaS) was 

projected to grow 32.8% from 2014 to 2015 [1]. With the vast growth of cloud services, the need 

for fast scalable cluster computing is greater than ever. MapReduce is one of the most important 

frameworks for data analysis. It is a distributed and parallel programming model designed to 

quickly process large data sets [2]. One of its best-known open-source implementations is 

Apache Hadoop [3]. Despite its popularity, Hadoop suffers from performance bottlenecking in 

its sorting algorithms. Our goal is to improve the speed of this core function and provide novel 

research results that can benefit millions of servers by saving them significant amounts of 

computation time and hardware energy. 

Although much effort has been made to enhance MapReduce applications, such as 

optimization of schedulers, improvement of robustness of failsafe systems, etc., most stayed 

high-level on current MapReduce frameworks. Little has been seen to enhance one of the most 

fundamental infrastructures, larger-than-memory file handling. In this paper, we start by 

introducing popular existing methodologies frequently used for streaming applications, and 

analyze their drawbacks to show why our proposed method prevails.  
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Related Work 

Bucket Sort 

 Bucket Sort is known to be one of the fastest sorting algorithms that rivals Quick Sort in 

cases. Nevertheless, its great performance in speed comes at a cost of memory usage. One major 

drawback of Bucket Sort is that it’s a out-of-place algorithm. With 𝑛 being the size of an 

arbitrary input, an out-of-place algorithm uses double amount of memory as its output co-exists 

with the input data: 2𝑛 + 𝑐, where 𝑐 standards for additional constant memory usage not 

proportional to 𝑛. Whereas an in-place algorithm uses 𝑛 + 𝑐 amount of memory. In large-scale 

MapReduce applications, memory is especially restricted as input sizes are generally enormous, 

which prevents out-of-place algorithms like classic Bucket Sort to be efficiently applied.  

 Given the disadvantages of Bucket Sort, our motivation is clear – introduce data 

streaming methods to reduce memory usage of Bucket Sort. The following two sections will list 

and discuss examples of currently used streaming solutions. 

Shadow Buffer 

 When a program reads files of large volume that exceeds the total RAM supported in the 

system, a tool/technique called the Shadow Buffer is used to help segmented process of the files. 

In most cases, an algorithm processing files requires the continuity of the file to be maintained to 

ensure correctness of result. Shadow Buffers are very helpful under such circumstances. Given a 

large file segmented into 𝑛 chunks to be each read into memory. In turn, there are 𝑛 − 1 shadow 

buffers each allocated with 𝑟 memory. Therefore, the memory overhead of such algorithm is: 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =  𝑟 × (𝑛 − 1). 
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The implementation of Shadow Buffers is very complex and problem-specific. A Shadow 

Buffer developed for one algorithm may or may not be able to work on another algorithm. This 

is one of the worst drawbacks, not reusable. 

Memory-Mapped File 

 Similar to Shadow Buffer, Memory-Mapped File (MMF) is a tool used to help process 

files of large volumes. Primarily, MMF maps virtual memory to an on-disk file directly, byte by 

byte. Its design helps programmers to treat files on disk as a piece of memory directly accessible. 

While portions of the file are processed, MMF prefetches the next portions so that they’ll be 

ready whenever needed. MMF releases programmers from the burden of worrying about disk 

I/O. 

Simplicity does not always pay off. Unlike the versatility of Shadow Buffer, when 

dealing with files larger than memory, MMF lacks memory recycling as it can hardly obtain 

information of if a processed portion will be needed in the future. Additionally, many 

implementations of MMF cannot provide optimal speed for the user. 
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CHAPTER II 

METHODS 

 

Dynamic Virtual Memory Allocation 

Memory is a precious resource in computer programs, even with rapid improvement on 

memory capacity. What is often called memory generally refers to the physical memory of a 

device, representing the actual capacity of the device. For security reasons, physical memory 

addresses of a system are normally inaccessible from user-level programs, hiding sensitive 

information such as passwords, info of another program, system state, etc. In return, user-level 

programs are given “fake” address spaces called the virtual address space. The operating system 

then translates each virtual address internally to match actual physical memory. Each program 

has the same set of virtual memory space. Additionally, operating systems divide virtual memory 

into segments called pages so that mapping of virtual memory to physical memory is more 

manageable. This mapping of pages is referred to as committing memory; whereas un-mapping 

is called de-committing memory.  

 Dynamic virtual memory allocation utilizes the feature that virtual memory can create an 

illusion of “infinite” memory – virtual address can grow up to 24 TB (Windows Server 2016 64-

bit). Most modern operating systems such as Windows and various Linux distributions support 

this feature automatically and implicitly. For example, when a program allocates a large set of 

virtual memory, a typical OS such as Windows does not immediately commit physical memory. 

The commitment of memory only happens when the memory is mapped Although physical 

memory is the ultimate limitation, by deallocating used virtual memory, physical memory can be 

freed and recycled. Such is the core concept behind dynamic virtual memory allocation.  
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Page Fault Exception Handling 

 Page fault exception (PFE) is a common exception supported by most operating systems. 

Virtual Data Streaming 

 Despite the excellent performance and relative ease of programming compared to 

Shadow Buffer, the implementation of dynamic virtual memory allocation is still far too verbose 

and requires numerous micro management to allocated memory region. In fact, the user has to 

maintain the allocation process of the buffer for proper usage. To eliminate this inconveniency, 

we take advantage of the page fault exceptions introduced in the previous section. 

AWE-based Data Streaming 

 Address Windowing Extensions (AWE) is a set of API’s developed by Microsoft on 

Windows operating systems. AWE is originally used to extend the memory capabilities of a 32-

bit software application by allowing the program to access physical memory greater than 4GB 

[4]. AWE introduces a process called “physical mapping”. In this process, two separate blocks of 

memory are allocated, a block of continuous virtual memory space (VMS) and a block of 

physical pages (PG). VMS is the memory address that’ll accessible in both reading and writing 

by the user. In the contrary, PG is an inaccessible memory block used by the kernel to store 

information regarding the actual content user stored in VMS. Each byte of PG represents a page 

𝑝 bytes in memory, which is typically 4096 KB. Therefore, to use 𝑛 bytes of memory, 
𝑛/1024

4096
  

bytes of PG have to be allocated. In order to access virtual address, PG blocks must be mapped 

to the designated location within VMS. VMS will not occupy any memory unless mapped to PG.  

Although the original intention of AWE was to help 32-bit applications access more 

memory, we took advantage of the features and applied to our 64-bit application. Due to the 

memory consumption of BucketSort, applying AWE to our program creates an illusion to the 
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user – our BucketSort algorithm that memory space is continuous while avoiding the complex 

implementation of Shadow Buffers.  

We developed two primary models for the data streaming, producer-consumer (PC) based 

model and single-buffer based. Both of them apply the Vectored Exception Handling (VEH) 

API’s introduced by MSDN [5] as well as a customizable page fault trigger, meaning that instead 

of triggering a page fault on VMS in every 𝑝 bytes of memory, the program can be configured to 

trigger a page fault in every 𝑖 × 𝑝 bytes, where 𝑖 is a positive integer. We call this newly defined 

page a block.  This means that the amount of time in throwing and handling page fault exceptions 

can be greatly reduced by a factor of 𝑖.  

Producer-Consumer Dual-buffer Stream Model 

 The producer-consumer model utilizes two separate VMS to maximize the reading and 

writing efficiency of the data stream. One VMS has read-only access and the other one has write-

only access. Such implementation is a great demonstration of the advantages brought by using 

AWE. With PG carrying the actual content of the buffer, it is irrelevant which VMS is operated 

on, so long as it is mapped with a PG block. Through the application of Vectored Exception 

Handling (VEH), an exception handling routine that functionalize exception handling code [5], 

the algorithm model was able to encapsulate the mapping action, creating an appearance that 

VMS is continuous. The producer-consumer model is enforced by the use of semaphores such 

that there are always a fixed number of PG blocks mapped to the VMS.   

Producer-Consumer Single Buffer Stream Model 

 Similar to the producer-consumer model, this approach also uses page fault exceptions as 

triggers to handle the mapping and un-mapping process. However, the difference is the 

complexity and buffer count. As the name of this model states, the algorithm only uses one VMS 
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buffer. This method greatly reduces the complexity of mapping and un-mapping procedure. At 

the initialization stage, user defines the peak memory usage 𝑚 B. In turn, 
𝑚

𝑝
 number of physical 

pages allocated, all of which are then pushed and stored in a queue. Upon each read page fault 

exception, the least recently used PG block is unmapped from VMS and pushed back into the 

queue for next use, and vice versa for write page fault.  

ADS-improved Bucket Sort 

 Based on previously developed methods and models, we introduce our first adaptive 

application-usage of the stream models.  
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CHAPTER III 

EXPERIMENTS AND RESULTS 

 

Test Environment 

 We conduct our experiments on three setups of computers with different specifications. 

As shown in Table 1 below: 

Table 1: Specifications of Test Machines 

  c1 c2 c3 

i7 CPU 3930K 4930K 7820X 

Platform Sandy Bridge-E Ivy Bridge-E Skylake-X 

Cores 6 6 8 

Turbo clock 3.8 GHz 3.9GHz 4.7 GHz 

RAM 32 GB 32 GB 32 GB 

RAM type DDR3-2400 DDR3-2400 DDR4-3200 

Test disk 24-disk RAID 24-disk RAID M.2 SSD 

Primary OS Server 2008 R2 Server 2008 R2 Server 2016 

 

File I/O 

 In this experiment, we compare file read and write speeds of Virtual Data Stream Model, 

Producer-Consumer Dual-buffer Stream Model, Producer-Consumer Single Buffer Stream 

Model, Memory Mapped Files, and C++’s ifstream. 

Producer-Consumer 

Memory Usage 

 Given virtual memory of 𝜆 bytes, the block size of each mapping to be 𝑏 bytes, the 

maximum number of blocks to be 𝑛, and a page size of 𝑝 bytes. Our results have proven that the 

amount of virtual memory allocated does not greatly affect the run-time memory usage.  Both 
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producer-consumer stream and single buffer stream exhibits similar theoretical peak RAM usage 

is: 

𝑝𝑒𝑎𝑘 𝑚𝑒𝑚𝑜𝑟𝑦 = 𝑛𝑏 +
𝑛𝑏

𝑝
⋅ 𝑠𝑖𝑧𝑒𝑜𝑓(𝑈𝐿𝑂𝑁𝐺_𝑃𝑇𝑅)   (1) 

In formula (1), the trailing ULONG_PTR indicates the number of bytes used in a 64-bit 

application to represent one memory address, which is 8 bytes.  

Performance 

 The performance of our models were measured on a single desktop with the 

specifications of 6-core 2.80 GHz AMD Phantom II X6 1055T processor with 16 GB of RAM. 

Stream model results are compared with the non-stream based, regularly allocated heap memory. 

The experiment was designed to set up a fixed number of page faults monitoring the defects of 

physical page mapping/unmapping API’s.  

Table 2: Stream Performance Benchmark Results 

 

Note that MapUserPhysicalPages is the mapping/unmapping API used. The results from Table 2 

proves our Stream model to have very good performance, as little as 7.06% execution time spent. 

This number may be further deducted when performing more complex memory manipulation 

algorithms.   

Model 

Preset 

page 

fault 

count 

memset 

(ms) 

read 

by + 8 

(ms) 

combined 

(ms) 

Total 

Executin 

time (ms) 

MapUserPh

ysicalPages 

% 

MapUserP

hysicalPag

es time 

(ms) 

Single 

buffer 

stream 

(ms) 1088 318 253 564 845 7.06% 59.657 

Regular 

buffer 1088 307 232 539 787 0.00% 0 
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CHAPTER IV 

CONCLUSION 

 

 Based on our experimental results, AWE-based Data Streaming and Bucket Sort show 

great results in both performance and usability. Different models of ADS have much faster read 

and write performance than all pre-existing I/O solutions that we’ve tested, while maintaining a 

programmer-friendly interface – memory allocated by ADS is almost the same as a normal 

region of memory allocated by normal means. It is our hope that Operating System makers in the 

future would consider ADS as a feature built into the OS. In that case, the simplicity of 

programming and performance could be further improved. 

With the success in virtual memory streaming, our ADS Improved Bucket Sort benefits 

with the opportunity to reduce memory usage of a Bucket Sort while preserving the performance 

of a classic Bucket Sort algorithm. However, MapReduce is generally run clusters of computers. 

In other words, sorting algorithm for MapReduce are generally multi-threaded to support large 

scale sorting. Therefore, despite the success in ADS Improved Bucket Sort, our future work will 

focus on parallelizing Bucket Sort. 

  



14 

REFERENCES 

 

[1]   L. Columbus, “Roundup of Cloud Computing Forecasts And Market Estimates Q3 Update”, 

http://www.forbes.com/sites/louiscolumbus/2015/09/27/roundup-of-cloud-computing-

forecasts-and-market-estimates-q3-update-2015/#7a3a80246c7a, 2015. 

 

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”, 

USENIX OSDI, October 2004. 

 

[3] The Apache Software Foundation, “Hadoop”, http://hadoop.apache.org/. 

 

[4] Microsoft Corporation, “Address Windowing Extensions”, https://msdn.microsoft.com/en-

us/library/windows/desktop/aa366528(v=vs.85).aspx. 

 

[5] Microsoft Corporation, “Vectored Exception Handling”, https://msdn.microsoft.com/en-

us/library/windows/desktop/ms681420(v=vs.85).aspx 

 


