Developing an Information Literacy-Intensive Forensic Science Course
Laura Sare,* Sarah Bankston,* and Jeffery K. Tomberlin,** Texas A&M University

INTRODUCTION
Senior-level Forensic Science writing class needed to develop research skills.

METHODS and MATERIALS
1 credit-hour information literacy (IL) class developed collaboratively with director of forensic and investigative science program.
Curriculum and assignments developed by science and government information librarians.
- Dissected scientific article
- Dissected case law
- To cite or not to cite
- Differences between databases
- Critical appraisal of article and related case

RESULTS
The majority of students (75%) showed improvement in information literacy (IL) skills by the end of the course. Students initially scoring lower than the cohort average on a pre-test appeared to gain the greatest benefit. Results suggest this type of instruction could serve as a baseline for undergraduate science programs seeking to improve how students utilize scientific and legal information. The graphs below show growth following a semester-long information literacy course focused on forensics-related information.

CONCLUSIONS
The main goal of information literacy instruction programs is to foster lifelong learning. As sciences continue to evolve rapidly, those involved in the field will need skills for lifelong learning to become and stay relevant. Educators in scientific disciplines can leverage the proficiencies of the academic library community to do this.

Rubric for Student Progress

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Registering</th>
<th>Developing</th>
<th>Profiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Understand sections of a scholarly article/lecture and use them to select resources</td>
<td>Bachelor's level organization of the sections of a scholarly article/lecture is not evident.</td>
<td>Bachelor's level organization of the sections of a scholarly article/lecture is evident.</td>
<td>Bachelor's level organization of the sections of a scholarly article/lecture is evident.</td>
</tr>
<tr>
<td>2. Provide accurate attribution</td>
<td>Cannot correctly cite the information source in the body of the text and generate the reference in the body of the text.</td>
<td>Cannot cite the information source in the body of the text, but instead generates the reference in the body of the text.</td>
<td>Cannot cite the information source in the body of the text, but instead generates the reference in the body of the text.</td>
</tr>
<tr>
<td>3. Understand where database is</td>
<td>Does not report using a specific database.</td>
<td>Does not demonstrate the ability to search the database.</td>
<td>Does not generate the reference in the body of the text.</td>
</tr>
<tr>
<td>4. Choosing an appropriate resource/database to search</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>5. Are they properly describing the source they chose?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6. Did they use a search and retrieval strategy to find the results?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

REFERENCES

Acknowledgments
Funding for this project was provided by the National Institute of Justice, Office of Justice Programs, the United States Department of Justice through 2016-R2-CX-0054. Additional funds for SB, LS, & JKT were provided by the National Institute of Justice, Office of Justice Programs, the United States Department of Justice through 2016-R2-CX-0054. Points of view in this document are those of the authors and do not necessarily represent the official position or policies of the United States Department of Justice.