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ABSTRACT 

There has been an interest in increasing the functionality of snack foods in the 

USA. Beetroot contain a high level of antioxidants. In this study, vacuum impregnation 

(VI) was used to impregnate a beetroot solution into potato slices to increase their health 

benefits while maintaining the same quality attributes of potato chips after frying. 

Potato slices were pre-treated with different concentrations of beetroot solutions 

(3, 5, and 7% w/w), vacuum pressures (300, 450, 600 mmHg), and vacuum and 

restoration times (5, 10, 15 minutes). Potato slices were evaluated in terms of 

impregnated liquid (IL), moisture content (MC), and total phenolic content (TPC). The 

optimum VI condition was 7% solution, 600 mm-Hg vacuum pressure for 10 min 

vacuum time and 60 min for the restoration time. 

Kinetic studies were performed to evaluate the effect of the process on moisture 

content (MC), oil content (OC), and total phenolic content (TPC) of enriched vacuum 

fried potato chips at different temperatures (110, 120, and 140°C).  

The final OC of enriched vacuum fried chips was 9.31±0.35, 11.96±0.78, and 

12.12±0.81 % d.b. for frying temperatures of 110, 120, and 140°C, respectively. The 

higher the oil temperature, the higher the OC of the chips.  

The maximum TPC was 27% higher than the initial TPC of the chips fried at 

140°C. The chips fried at 120°C and 110°C had a maximum TPC of only 20% and 11% 

higher than the initial TPC, respectively. The VI treatment with red beetroot extract 

improved the process by making potato chips with the same or better TPC than the raw 

material. The higher the temperature, the better the TPC in vacuum fried chips. 
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In this study, the VI potato slices fried at different frying methods (vacuum (VF) 

at 140°C, dual-stage (DSF) at 140°C, and traditional frying (TF) at 165°C) were 

evaluated in terms of MC, OC, TPC, bulk and true density, porosity, diameter shrinkage, 

thickness expansion texture, color, and sensory analysis. 

The chips fried under TF had a 19% reduction in TPC after frying, while chips 

fried under VF and DSF had a 38% and 23% increase in TPC after frying, respectively. 

The VF and DSF methods contributed to the release of bound phenolic acids in the 

potato. The TPC released from the potato during VF and DSF might have been more 

stable due to the lower temperature, pressure, and frying times compared to the TF.  

Color a* (redness) was lower for potato chips fried under TF than the VI potato 

slices and chips fried under the other frying methods. The chips fried under TF lost the 

red pigment of the impregnated red beetroot solution, while the chips fried under VF and 

DSF maintained their red color. The color b* (yellowness) of chips fried under the DFS 

and TF were significantly higher (p < 0.05) than chips fried under VF. The texture of the 

chips was not significantly different (p > 0.05) among the different frying methods.  

All potato chips fried under different frying methods were acceptable by the 

consumer panelists. However, potato chips fried under VF and DSF were more 

acceptable than the potato chips fried under TF. 

In conclusion, VF at 140°C for 120 sec after enriched the potato slices with 

phenolic content by using VI is an alternative technology to produce healthy functional 

snacks with desired quality attributes. 
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CHAPTER I 

INTRODUCTION 

Clinical and epidemiological studies have shown that oxidative stress causes a 

number of health issues such as cardiovascular diseases, cancer and neurological decline 

(Wootton-Beard and Ryan, 2011). Consumption of fruits and vegetables rich in 

antioxidant compounds may help to protect the body from oxidative stress 

(Ravichandran et al., 2012; Shahidi, 2004). Therefore, consumers and food industries 

have been interested in functional foods.  

The United States Department of Agriculture defines functional food as foods or 

food ingredients designed to reduce the risk of chronic disease by providing additional 

physiological benefits beyond basic nutritional functions. It can be consumed as part of a 

regular diet, and it is similar in appearance to conservative food. 

In recent years, red beetroot has attracted great attention as a health promoting 

functional food (Clifford et al., 2015). Beetroot extract contains a high level of 

antioxidant capacity in addition to many other health promoting compounds such as 

potassium, calcium, magnesium, sodium, folic acid, B6, iron, zinc, phosphorus, niacin, 

biotin, and soluble fiber (Raupp et al., 2011; Wootton-Beard and Ryan, 2011).   

Although beetroot products are a rich source of phenols and nitrate, most of these 

products are not meeting consumer demand for taste and texture. In this study, potato 

chips impregnated with beet root extract will offer to consumers the natural bioactive 

compounds of beetroot with similar taste and texture of most popular potato chip 
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products. It is expected that this product will help to increase the consumption of phenol 

rich products particularly among children and young adults (Thakur and Gupta, 2006; 

Wootton-Beard and Ryan, 2011). 

Potato chips are the most popular fried snacks in the US (Kita et al., 2015). In 

2016, potato chips represented 25% of total sales of snacks in the US Market (Statista, 

2017). Recently, many food industries have been looking for new techniques to make 

snacks healthier and richer with functional and antioxidant properties.  

The vacuum impregnation technique has been used to enhance porous foods with 

liquid functional ingredients (Fito et al., 2001; Lin et al., 2006; Xie and Zhao, 2003). 

This is a useful technique to introduce antioxidant properties of beetroot extract directly 

into the porous structure of the potato slice matrix (Laurindo et al., 2007). This method 

changes the physical and chemical properties of the raw product.  It is used to improve 

the product's nutritional value and the structure of some foods (Fito et al., 2001).  

The vacuum impregnation treatment is a method of exchanging the internal gas 

and part or all of the native solution in the open pores of the food (vacuum step) with an 

external solution (impregnation step) (Sevimli and Moreira, 2013). This technique 

implies a fast introduction of an external liquid into a porous food material (Carciofi et 

al., 2012; Krasaekoopt and Suthanwong, 2008). 

Vacuum frying is a technology for producing high quality snacks by preserving 

the original attributes of the texture, flavor, and taste (Da Silva and Moreira, 2008; 

Garayo and Moreira, 2002; Mariscal and Bouchon, 2008). It is a process of frying foods 

below atmospheric pressure and at lower oil temperature (Moreira et al., 2009; Teruel et 
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al., 2014; Warning et al., 2012). This technology offers several advantages over 

atmospheric frying (traditional frying) such as preservation of natural color and flavors 

due to the low temperature and the absence of oxygen during the process (Teruel et al., 

2014), enhanced organoleptic quality (Yagua and Moreira, 2011), lowering acrylamide 

formation (Granda et al., 2004), reducing oil content, and reducing adverse effects on oil 

quality (Garayo and Moreira, 2002). Furthermore, vacuum frying also preserves the 

nutritional components of the product (Da Silva and Moreira, 2008; Dueik et al., 2012; 

Teruel et al., 2014). 

Potato chips impregnated with red beetroot extract will offer an opportunity for 

functional snack to be consumed by the general public and may participate positively to 

increase the consumption of phenol rich produces (Wootton-Beard and Ryan, 2011).  

The aim of this research was to determine the feasibility of using a vacuum 

impregnation technology to enhance the functionality of the potato slices while 

preserving the original attributes of the potato chips by using vacuum frying technology. 

The specific objectives of this study were: 

1. To enrich potato slices with phenolic compounds of red beetroot solution by using 

vacuum impregnation technology. 

2. To evaluate the effect of vacuum impregnated potato slices with different 

concentration of beetroot solutions on their impregnated phenolic compounds. 

3. To identify the best vacuum impregnation pressure-restoration time combination to 

maintain the impregnated phenolic compound. 
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4. To perform kinetic studies of impregnated potato chips vacuum fried at different oil 

temperatures. 

5. To compare the quality of impregnated potato chips fried under vacuum, dual stage, 

and traditional frying methods.  

6. To characterize the final product quality attributes of impregnated potato chips fried 

at different frying methods such as moisture content, oil content, color, texture, bulk 

density, porosity, expansion, shrinkage, and impregnated phenolic compound 

retention.  
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CHAPTER II 

LITERATURE REVIEW 

2.1. Red beetroot 

Red beetroot (Beta vulgaris rubra) is a rich source of carbohydrates (main sugar) 

and red pigment betalains. Betalains are used as additives in the food applications 

because of their natural colorant characteristics, high solubility in water, and absence of 

toxicity. Additionally, red beetroot contain health-promoting components such as 

phenolic (phenolic acids, phenolic acid esters, and flavonoids), nitrate, folic acid, 

potassium, magnesium, iron, zinc, calcium, phosphorus, sodium, niacin, biotin, B6 and 

soluble fiber (Raupp et al., 2011; Thakur and Gupta, 2006) (Figure 2.1). 

 

 

 

Figure 2.1. Overview of potentially bioactive compounds in beetroot (Adapted from 

Clifford et al., 2015) 
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Betalains are composed of two subclasses: red-violet pigments, which called 

betacyanins and yellow-orange pigments which named betaxanthins (Delgado-Vargas et 

al., 2000; Herbach et al., 2004). Betalains are mainly used for coloring food products 

(Cai et al., 2001). Some of the Betalains have antimicrobial and antiviral effects and it 

can prevent the cell growth of human tumor cells (Reddy et al., 2005; Strack et al., 

2003).  

The health benefits of well-documented diet rich in fruit and vegetable led to a 

growing interest in functional foods and their application in health and disease. In recent 

years, root beet has drawn great attention as a health promoting functional food. It is 

grown in many countries around the world, it consumes as a part of the normal diet, 

however, it mainly used in the food industry as a food coloring agent named E-162. 

Beetroot is a rich source of number of phenolic compounds such as 4-hydroxy 

benzoic acid, cinnamic acid, vanillic, chlorogenic, trans ferulic acid, epicatechin, rutin 

and caffeic acid (Clifford et al., 2015; Georgiev et al., 2010; Ravichandran et al., 2012; 

Wootton-Beard and Ryan, 2011). The phenolic compositions of red beetroot have been 

studied in detail by (Kujala et al., 2002; Kujala, 2000). Shehata et al. (2014) found that 

the total phenolic content in red beetroot range from (236.21 to 333.50 mg GAE / 100g 

FW). Also, in another study found the total phenolic content of beetroots is (257.0 mg 

GAE/100g) (Ereifej et al., 2015).   

Additionally, red beetroot is a naturally rich source of nitrate. Nitrate ions in 

beetroot range from several hundred to several thousand mg/kg of fresh weight, 

depending on the agricultural and environmental, storage, and processing conditions 



 

7 
 

 

(Walkowiak-Tomczak, 2012). Dietary nitrate has a beneficial effect on human health, 

including effect on the functioning of the brain in elderly people, reduction of blood 

pressure, and physical fitness enhancement (Bondonno et al., 2015; Walkowiak-

Tomczak, 2012). 

Based on clinical studies, increased nitrate levels have positive effects on muscle 

efficiency, fatigue resistance, and improvements in time-trial endurance tests of hobby 

athletes (Bailey et al., 2009; Cermak et al., 2012). Therefore, several beetroot products 

available on the market target mainly sportspersons, especially those in endurance 

sports. Beetroot juices and powders are advertised as performance-enhancing nutrition 

supplements. Moreover, nitrate has been recommended as a nutritional agent for the 

prevention and treatment of hypertension and cardiovascular diseases (Bailey et al., 

2009; Kapil et al., 2015; Webb et al., 2008). 

Red beet contains phenolic compounds that decrease oxidative damage of lipids 

and enhance antioxidant status in humans. Many studies have been reported that 

phenolic acids as antibacterial, antiviral, anti-carcinogenic, and anti-inflammatory 

(Duthie et al., 2000). Phenolic acids are known to be helpful in controlling inflammation, 

and improving the immune system and blood circulation, which produce significant anti-

aging benefits. Phenolic acids can also be easily affected by oxidation and degradation, 

exposure to light, oxygen, heat, and food processing conditions (Han and Koh, 2011; 

Ravichandran et al., 2012). 
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2.2 Potatoes  

Potatoes (Solanum tuberosum) are the fourth most important food crop in the 

world and the most important vegetable crop in the United States. The fifth largest 

producer of potatoes in the world is the United States (FAO, 2008). Almost 60 percent of 

the potato sales are to potato chips, French fries, dehydrated potatoes, and other potato 

products (NASS, 2013). In 2010, 81 plants processed potato chips only in the U.S 

(NASS, 2011). 

Potatoes composition can be affected by several factors like growth location, 

maturity at harvest, and storage history. Potatoes are composed of two major 

components; water with an average of 77.5% and starch with an average of 19.4%. The 

major components of starch are amylopectin (79-85%) and amylose (15-21%) (Yagua 

Olivares, 2010). The average values of the major components of potatoes are shown in 

Table 2.1.  

 

 

 

Table 2.1. Chemical composition of potato tubers (Adapted from Smith, 1977) 

Component Average Value [kg/kg 

potato] 

Range [kg/kg potato] 

Water  0.775 0.632-0.869 

Total solids 0.225 0.131-0.368 

Carbohydrate  0.194 0.133-0.305 

Fiber  0.006 0.0017-0.0348 

Protein  0.020 0.007-0.046 

Fat  0.001 0.0002-0.0096 

Ash  0.010 0.0044-0.019 
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Potato is a source of several bioactive compounds such as vitamins, minerals, 

amino acids, phenolic compounds, starch, and dietary fiber. Phenolic compounds in 

potato plant act as a protective response from fungi, viruses, bacteria, and insects. Many 

studies showed that potato compounds provide a health-improving effect in humans. 

However, the potato processing in the food industry exhibits it to different processing 

conditions that can change its phenolic content. (Akyol et al., 2016). 

Although potatoes are lower in phenolic content than some of other plants, they 

may promote higher phenolic intake due to the higher consumption rates of potatoes than 

other plants. Potatoes contain a wide variety of phenolic compounds present in the peel 

and flesh; such as phenolic acids, stilbenes, lignans, and flavonoids including flavonols, 

flavanols, and anthocyanins. 

Potatoes include a common phenolic acids such as caffeic acid, cinnamic acid, p-

coumaric acid, ferulic acid, sinapic acid, and chlorogenic acid (Friedman, 1997). The 

dominant phenolic acid in potatoes is chlorogenic acid with 80% of the total (Brown, 

2005). 

In potato, the phenolic compounds are distributed between the peel and the flesh; 

but the peel presents the highest amounts (Akyol et al., 2016). Therefore, to compensate 

for the loss of phenols content during the peeling process to make potato chips, in this 

study, potato slices had been enriched with beetroot solution, which has a high amount 

of phenolic content. 

2.3 Vacuum impregnation 

Recently, the food industry is looking for new techniques to make snacks 
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healthier and rich with functional and antioxidant properties. Vacuum impregnation (VI) 

is a useful technique that has been used to introduce external liquids rapidly in the 

porous structures in a controlled process (Fito et al., 2001; Lin et al., 2006; Xie and 

Zhao, 2003). 

Although vacuum impregnation was introduced for the first time at least 20 years 

ago, it may be still considered as an emerging technique with high possible applications 

(Derossi et al., 2012). Many studies developed fruit and vegetables with functional 

properties by using vacuum impregnation treatment (Fito et al., 2001). 

Some of the advantages of using VI are: fast process (usually in few minutes), 

low energy costs, performed at room temperature, and the external solution may be 

reused many times (Derossi et al., 2012). Therefore, in this study vacuum impregnation 

treatment was used to impregnate beetroot solution into the potato slices to take 

advantage of the total phenolic content of beetroot by maintaining the same quality 

attributes of traditional potato chips after frying. 

During vacuum impregnation steps, three main phenomena happens: the 

evacuation of native liquid and gases from the pores, the introduce of external solution 

inside capillaries, and deformation– relaxation of the solid matrix. VI is a very complex 

treatment, several external and internal factors have been reported that affects the VI 

results. Factors such as the size and shape of samples, tissue structure (pores diameter 

and size distribution), the tortuosity of internal pathways, the presence of gas and/or 

liquid inside capillaries, viscoelastic property of the product (viscosity of the external 
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solution and viscoelastic properties of biological tissues), and solution temperatures 

(Derossi et al., 2012; Sasireka and Ganapathy, 2016). 

A study of the effect of two fruit sizes (3.5×2.5×1.0 and 1.2×1.2×0.8 cm3) of 

cantaloupe and apple and the effect of processing time (impregnation and relaxation 

times; both for 10 and 20 min) found that fruit size and processing time significantly 

affects the mass fraction of fruit occupied by impregnation liquid. The vacuum 

impregnation is affected by the surface area of the fruit and long processing times, which 

allowed for significant liquid impregnation into the fruit (Phianmongkol et al., 2015). 

Also, Gras et al. (2003) studied the utilization of VI to fortify carrot, eggplant and oyster 

mushroom with calcium salts. The authors found that due to the high porosity of 

eggplants and oyster mushroom, they were more suitable to VI than carrots. 

Paes et al. (2008) studied the effect of vacuum impregnation temperature on the 

mechanical properties and osmotic dehydration parameters of apples. They found that by 

using temperatures in the range of 10 to 50 °C, and a sucrose solution of 50 Brix, the 

temperature had a significant effect on the water loss, which was much higher than for 

solids gain in apple samples.  

VI has shown to be very effective in a number of applications in food processing 

such as dehydration (osmotic dehydration, acidification, brining of fish and meat 

products), pre-treatment methods (for drying, freezing, frying, and improving the quality 

of the final product).  VI has been used to provide fresh fortified food (FFF), to enrich 

food with nutritional and/or functional ingredients, and to extend foods shelf life. 
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Furthermore, it used to reduce the freezing damage, oxidative reaction, and browning 

(Derossi et al., 2012).   

Xie and Zhao (2003) evaluated the use of calcium and zinc to fortify fresh-cut 

apples using VI processing. Results show that 15-20% of the daily reference intake 

(DRI) of calcium and above 40% of the DRI of zinc could be obtained from 200 g of 

impregnated apple. According to them, vacuum impregnation has huge potential to 

modify the mineral contents in fresh fruits and vegetables. VI is an effective method to 

produce fruit or vegetable products with health-promoting properties as displayed in 

(Table 2.2).  

 

 

 

Table 2.2. Examples of applications of vacuum impregnation to modify health-

promoting properties of fruit and vegetable products (Adapted from Radziejewska-

Kubzdela et al., 2014) 
Raw 

Material  

Geometry  Composition of Vacuum 

Impregnation Solutions  

Process 

Parameters  

Effect  References  

Apple  Cylinder  

 

Microorganisms Saccharomyces 

cerevisiae added to apple juice,  

Saccharomyces cerevisiae and 

Lactobacillus casei added to 

milk 

p1 5 kPa  

t1 10 min 

 t2 10 min  

Over 106 CFU/g 

Lactobacillus casei 

in air dried at 40 °C   

(Gras et al., 

2003)  

 

Eggplant 

fruits and 

orange peel  

 

Not 

mentioned 

Calcium and iron  p1 5 kPa  

t1 15 min  

t2 15 min  

Fortified samples to 

25% of (RDI)  

(Fito et al., 

2001)  

 

iceberg 

lettuce 

leaves  Not 

mentioned 

Calcium lactogluconate (5.4 g 

Ca/L of water) with sucrose 

aqueous solution of the same aw 

as lettuce leaves 

p1 50 kPa  

t1 10 min 

 t2 10 min  

Increased the total 

content of 

impregnated 

iceberg lettuce 

leaves to 169 mg 

Ca per 250 g 

(Gras et al., 

2011)  
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Table 2.2. Continued  
Raw 

Material  

Geometry  Composition of Vacuum 

Impregnation Solutions  

Process 

Parameters  

Effect  References  

fresh-cut 

pears  

 

Not 

mentioned 

20% diluted wildflower honey  p1 10 kPa  

t1 15 min  

t2 30 min  

Vitamin E content 

increased 80 to 100 

times 

(Lin et al., 

2006)  

 

whole 

potatoes  

whole 10% ascorbic acid solution  

 

p1 9.33 kPa 

 t1 0–60 min 

 t2 3 h  

Ascorbic acid 

content of whole 

potatoes increased 

ten times (150 

mg/100 g fresh 

weight)  

(Hironaka 

et al., 

2011)  

 

endive, 

cauliflower, 

broccoli, 

carrots  
Not 

mentioned 

Aqueous sucrose solutions of the 

same aw as each of the four raw 

materials; Aloe vera aqueous 

solution with an addition of 5 

and 30 g/L of aloe vera powder  

p1 50 kPa  

t1 10 min  

t2 10 min  

Enhance broccoli 

with up to 7 g of 

Aloe vera in 100 g 

(dry matter),  

 4 g in cauliflower 

and endive,  

and 3 g in carrots 

(Sanzana et 

al., 2011)  

 

p1=vacuum pressure in the VI process, t1=time in reduced pressure, t2=time in atmospheric pressure. 

 

 

 

2.4 Deep-fat frying 

Deep-fat frying can be defined as a cooking method by submerging the foods in 

edible oil at above of boiling water temperature (Farkas, 1994). It is one of oldest 

cooking methods and it's still as one of the most common food processing methods, due 

to the unique flavor and texture combination that imparted to the food (Varela, 1988). 

Deep-fat frying can be performed using three different pressure conditions: atmospheric 

pressure (traditional frying), high pressure, and low pressure (vacuum frying) (Moreira 

et al., 1999). 

Traditional frying, deep-fat frying under atmospheric pressure, is performed 
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usually at temperatures between 150 and 190°C. The water at the food surface 

evaporates during frying due to the high temperatures of the frying oil. That led to 

absorbed the oil by the food to replace part of the evaporated water (Mariscal and 

Bouchon, 2008).   

The high-pressure frying is performed when the pressure is increased in the 

frying vessel due to the vapor released from the food products inside a closed vessel 

(Erdogdu and Dejmek, 2010). High-pressure frying method is used especially in the 

fried chicken industries to reduce frying time, to uniform the product color, and maintain 

higher moisture content (Das et al., 2013). 

A disadvantage of high-pressure frying method is that oil degradation is faster 

than the traditional frying method because the vapor released from the food remains 

inside the fryer vessel, thus increasing the buildup of free fatty acids (Garayo and 

Moreira, 2002).   

2.4.1 Vacuum frying 

Vacuum frying has been an alternative technology for producing snacks with 

preserved nutritional compounds and reduced oil content by using lower processing 

pressure and temperature (Da Silva and Moreira, 2008; Dueik et al., 2012; Teruel et al., 

2014). Figure 2.2 shows a flow diagram of the vacuum frying process. Vacuum frying 

process consists of heating the food under reduced pressure with minimum exposure to 

oxygen in a closed system. That allows to reduce the boiling point of frying oil and the 

moisture evaporation point of the food. 
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Figure 2.2. Flow diagram of the vacuum frying process (Adapted from Garayo and 

Moreira, 2002) 

 

 

 

This technology offers more advantages over atmospheric frying such as 

preservation of natural color and flavors (Teruel et al., 2014), enhanced organoleptic 

quality (Yagua and Moreira, 2011), lowering acrylamide formation (Granda et al., 2004) 

and reducing adverse effects on oil quality (Garayo and Moreira, 2002).  

Vacuum frying technology has been applied to process high-quality vegetables 

and fruit-based snacks (Table 2.3) show examples of applications of vacuum frying food 

products from 2011 to 2015. In number of studies this technology showed products with 

high-quality characteristics such as blue and sweet potatoes, green beans, and mangoes 

(Da Silva and Moreira, 2008),  pineapples (Perez-Tinoco et al., 2008), carrot (Fan et al., 

2005), and apples (Shyu and Hwang, 2001). Also, several of the Asian companies are 

already used vacuum frying processes for fruits, vegetables, fish, and shellfish (Moreira 

et al., 2009; Warning et al., 2012). 

  Nunes and Moreira (2009) developed high-quality mango chips using vacuum 

frying. Results showed that mango chips under vacuum frying had more carotenoid 
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retention (up to 65%) than those under atmospheric frying (32%). In another study of the 

effects of vacuum frying in foods, potato chips showed better color and texture 

compared with potato chips under atmospheric pressure. Also, the potatoes under 

vacuum frying were lower on oil content compared with atmospheric ones (Garayo and 

Moreira, 2002). Furthermore, Granda et al. (2004) reported that vacuum frying reduced 

acrylamide formation in potato chips by 94% compared with traditional frying.  

 

 

Table 2.3. Examples of applications of vacuum frying food products from 2011 to 2015 

(Adapted from Diamante et al., 2015) 

Product 
Temp. 

[oC] 

Time 

[min]) 

Pressure 

[kPa] 
Centrifuged  Reference  

Apple 98 4.5 6.48 NO 
(Dueik and 

Bouchon, 2011) 

Apricot 100 72.5 2.3 NO 
(Diamante et al., 

2012b, 2012c) 

Banana 89 90 2.66 
5 minutes at 140 or 

280 rpm  
(Sothornvit, 2011) 

Banana 110 20 8.0 Not mentioned 
(Yamsaengsung et 

al., 2011) 

Carrot 98 5 6.48 NO 
(Dueik and 

Bouchon, 2011) 

Chinese 

Purple Yam 
100 15 90 

5 minutes at 450 

rpm 
(Fang et al., 2011) 

Grass Carp 
100-

110 
15 80 

2 minutes at 300 

rpm  

(Aachary et al., 

2014) 

Gold 

Kiwifruit 
80 50 2.3 NO 

(Diamante et al., 

2011) 

Gold 

Kiwifruit 
72-76 35-65 2.3 NO 

(Diamante et al., 

2012a, 2013) 

Mushrooms 90 12.5 4.25 
10 minutes at 400 

rpm  

(Tarzi et al., 2011) 

  

Potato 98 6.5 6.48 NO 
(Dueik and 

Bouchon, 2011) 

Sweet 

Potato 
90 30 20 

400 rpm, time not 

mentioned 
(Yang et al., 2012) 

Sweet 

Potato 
130 2.33 1.33 Not mentioned (Ravli et al., 2013) 

Wheat-

based 

Snack 

141 4 33.21 NO 
(Sobukola et al., 

2013) 
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2.5 Product quality attributes (PQA) 

2.5.1 Oil content 

One of the most significant product quality parameters for fried foods is oil 

content. Reduce oil absorption while keeping the texture and color of fried foods is one 

of the main goals of fried foods studies and industries.  

The total oil absorbed into fried foods are located in two main locations. The first 

one, called internal oil content, is located at the core of the food product. This oil is 

absorbed during frying period. The second location is at the product’s surface, which 

absorbed into the product during the cooling period.   

Moreira et al. (1997) measured the oil content of the tortilla chips in the core 

(internal oil) and the surface to determine the oil absorption during frying and cooling 

period.  They observed that 20% of the total oil content was in the core (internal oil) 

during frying time and 80% was surface oil absorbed during the cooling period. Moreira 

et al. (2009) measured the oil content in the internal and surface of vacuum frying potato 

chips and found that 14% of the total oil content was absorbed during frying time and 

86% was absorbed during cooling.  They used a de-oiling system (centrifuging system) 

applied directly after frying and before the product its cool down to reduce oil absorption 

of fried foods. 

Moreira et al. (2009); Ravli et al. (2013); Yagua and Moreira (2011) have used a 

de-oiling system after frying and before the pressurization step to produce low-fat snack 

foods. According to Moreira et al. (2009); Yagua and Moreira (2011), applying the de-

oiled system before the pressurization step reduced the surface oil of potato chips up to 
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(87-90%). This indicates that the de-oiling method is important to produce high quality 

and healthiest snacks in vacuum frying system. 

There are number of methods to determine oil content in fried foods; extraction, 

hydraulic press, refractometric, and NIR spectroscopy (Moreira et al., 1999). The most 

used methods to determine oil content is extraction methods. The Soxhlet method is 

considered  a faster method for extracting oil from the foods using light petroleum ether 

(Granda, 2006). 

The Soxhlet extractor works by placing the solid sample inside a thimble. Then 

boiling a solvent (petroleum ether). The solvent vapor moves up to a distillation arm, 

then floods into the chamber that has the thimble. That allows the oil to dissolve in the 

solvent. The thimble ensures that solvent does not transport any solid material to the 

collecting cup. This cycle allows repeating many times, over hours or days. The 

advantage of this system is recycling a small amount of solvent to dissolve a larger 

amount of material (Granda, 2006; Nunes and Moreira, 2009).  

2.5.2 Degree of shrinkage and thickness expansion 

The degree of diameter shrinkage and thickness expansion are used to measure 

the changes in food diameter and thickness during frying. Shrinkage and expansion are 

defined as the ratio between the dimension of the sample before and after drying (Yan et 

al., 2007). It affects the product appearance and the physical properties of food materials 

such as density and porosity (Taiwo et al., 2007). 

Shrinkage of foods materials during frying takes place together with moisture 

diffusion, which can affect the rate of moisture removal. The shrinkage of foods 
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materials is due to the loss of water and air-filled pores (Wang and Brennan, 1995). 

Garayo and Moreira (2002) observed that frying at higher temperatures resulted in a 

greater rate of volume change at the same frying period, but potato chips processed at 

higher oil temperature result in a lower final shrinkage in volume. This behavior is 

because the surface of the potato becomes rigid more rapidly at a higher temperature 

which producing increased resistance to volume change. They found that vacuum fried 

chips have less expansion and several small bubbles than atmospheric fried chips. The 

bubble formation at the surface of the fried chips depends on gas expansion inside the 

pores and the volume shrinkage results from water transfer within the product. 

Moreira et al. (2009) found that as the time and temperature of frying increase, 

the diameter shrinkage increases by 10% at 120°C.  

2.5.3 True density 

True density is the weight of the material per unit of solid (kg/m3), without 

counting the air volume of open and closed pores (Kawas and Moreira, 2001). True 

density is usually measured by a gas pycnometer. It uses gas displacement (usually 

helium) that is capable of penetrating all open pores up to the amount of the molecule of 

the gas used. 

Several studies have shown that during traditional frying there is slightly 

increased in solid density for tortilla chips (Kawas and Moreira, 2001). On another hand, 

Moreira et al. (2009) found that during vacuum frying there is insignificantly decrease in 

the solid density of potato chips. 
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2.5.4 Bulk density 

Bulk density is the mass per unit bulk volume (kg/m3), so it considers both the 

solids and the pore space. Bulk density in foods is difficult to calculate by its own 

geometrical characteristics due to their irregular shapes (Kawas and Moreira, 2001). 

Bulk density of irregularly shaped materials can be determined by volumetric 

displacement of glass beads, and by using water-ethanol mixture displacement 

techniques or a liquid displacement techniques with toluene (Da Silva and Moreira, 

2008; Nunes and Moreira, 2009). 

Kawas and Moreira (2001) determined the bulk density in tortilla chips during 

frying using the liquid displacement technique with toluene. It was found that the chips 

become more porous by the end of frying due to the decrease in bulk density. The bulk 

density decreased from 880 to 580 kg/m3 after 60 s of frying. 

2.5.5 Color 

Food color is the major food attribute that influences customer’s acceptability. It 

is the first attribute to be evaluated by consumers (Fennema, 1996). The color of 

processed food products like potato chips can be affected by several factors, such as non-

enzymatic browning reactions that is mainly caused by thermal treatments (Rodriguez-

Saona and Wrolstad, 1997). The most important ones are the Maillard reaction that is 

caused by a reducing sugars and an amino acids, caramelization, and ascorbic acid 

browning processes (Fennema, 1996; Ibarz et al., 1999).  

Marquez and Anon (1986) foud that reducing sugars and amino acids during 

potato frying participated in the color development. Also, frying temperature and 
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thickness in fried foods can affect the color of the final product (Krokida et al., 2001).  

Using vacuum frying, which uses lower temperatures with minimal exposure to 

oxygen, can decrease this effect. Garayo and Moreira (2002) found that vacuum frying 

potato chips is significantly lighter than potato chips fried under atmospheric pressure. 

To determine color in chips there are several methods. Spectrocolorimeter has 

been the main method to measure potato chips (Segnini et al., 2004). Also, the color of 

potato chips can be determined by the subjective method as the Snack Food Association 

Potato Chip Color Chart the chips are rated on a scale of 1 to 5, which 1 being a light 

golden color, and 5 being very dark color (Sowokinos et al., 1987). Video Image 

Analysis has also been used to measure the color of potato chips (Granda, 2006; Scanlon 

et al., 1994; Segnini and Dejmek, 1999). 

2.5.6 Texture 

One of the most significant quality attributes in chips and in food products in 

general is texture because of its major impact to the overall quality and suitability 

(Granda et al., 2004; Kayacier and Singh, 2003). There are several factors that affect the 

texture of potato chips, such as type of raw material, thickness of the slices, pre-

treatment technique, and frying temperature (Lisinska and Leszczynski, 1989).  

 Texture can be determined by using two methods: instrumental analysis and 

sensory evaluation (Steffe, 1996). Using instrumental analysis to determine texture is 

more accurate, easer to perform, simpler to reproduce, and less time consuming than 

sensory evaluation (McCormick, 1988). 

To determine texture in chips, there are two qualities measured, hardness, and 
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crispiness. Hardness is found on a texture profile curve which defined as the force at 

maximum compression during the first bite. Hardness can be described as soft, firm, 

hard and also it is called fracturability .Crispiness is the force which a sample cracks, 

fractures or crumbles and it is also called brittleness (Kayacier and Singh, 2003; Steffe, 

1996). 

 For texture determination in chips, a number of instrumental set-ups have been 

developed because of their high variations. This high variation can be attributed to the 

air bubbles in chips, which make the surface of the chips un-uniform (Kayacier and 

Singh, 2003). A study distinguished changes in tortilla chips during frying by using a 

Texture Analyzer compression test: using 0.203 cm cylindrical probe and a cylindrical 

base with a hole of 19 mm and 25.5 cm of outside diameter in a bite compression test 

with a probe velocity of 10 mm/s (Moreira et al., 1997). Kawas-Escoto (2000) measured 

and compared fracturability (hardness) of the fried chips to baked tortilla and used a 

similar technique: a 1⁄4 inch ball probe moved at a downward velocity of 0.1 mm/s until 

it broke the sample; on an 18 mm diameter hollow cylindrical base the sample was 

placed. Fracturability, specified as the first peak of the force which fractured the tortilla 

versus distance, had a positive relationship with frying time where it increased until a 

point where the parameter significantly fell as the products became crispier.  

Garayo and Moreira (2002); Granda et al. (2004) used Kawas-Escoto (2000) 

approach for potato chips. Garayo and Moreira (2002) determined the hardness of fried 

potato chips finding the maximum force at compression. Granda et al. (2004) compared 

the texture parameters of vacuum potato chips with traditionally fried potato chips. 
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 Kasahara et al. (2002) studied the texture of pre-treated French fried potatoes 

with soaking solutions (20 % sugar,2% salt for 15 min, and 3% just salt for 50 min). A 

major improved in texture was found for the pre-treated samples. They used multiple 

puncture attachment with the Texture Analyzer to find maximum force (peak) to break 

the product. They found that pre-treating samples with 3% salt, during the frying time at 

180oC, increased the work (hardness) to break the samples.  

 Da Silva and Moreira (2008) studied the texture of sweet and blue potatoes, 

green bean, and mango chips. They used the Texture Analyzer with a steel blade probe 

to measure the force required to break the chips. They found that when compare between 

samples fried under vacuum and atmospheric pressure, there is no significant different 

on the force required to break the products (p < 0.05). 
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CHAPTER III 

MATERIALS AND METHODS 

Vacuum impregnation and frying processes were conducted following the steps 

described in Figure 3.1. 

 

 

 

 
Figure 3.1. Experiment steps for vacuum impregnation and frying of potato slices. 

 

 

 

 

 

 

 

 



 

25 
 

 

3.1 Samples preparation 

3.1.1 Raw potato 

Potatoes were provided by Frito-Lay North America, Inc. (Plano, Texas) and 

CSS farms (Dalhart, TX). Potatoes were stored in a refrigerator at 10°C and 90% relative 

humidity. Before vacuum impregnation and frying experiments, they were left at room 

temperature for approximately 2-3 days to allow reconditioning by lowering the 

reducing sugar content before processing (Yagua Olivares, 2010). 

3.1.2 Specific gravity 

The specific gravity of raw potatoes was measured before processing using the 

weight in air and weight in water method. Specific gravity can be calculated using the 

following equation (Dean and Thornton, 1992): 

 SG=
Weight in air 

(Weight in air - Weight in water)
                                            [3.1]                                            

Each potato was weighed individually by placing it directly on a balance to 

record the potato weight in the air. To measure the potato weight in water, it was placed 

in a basket that was submerged into water. A string connected to the balance use 

attached to the basket. The test was conducted in triplicate at room temperature.  

3.1.3 Potato sample preparation 

Potatoes were peeled and then sliced using a mandolin (Matfer model 2000, 

France) to a thickness of 1.7±0.2 mm (Mitutoyo Thickness Gage, Japan). They were cut 

using a cylindrical metal cutter to a diameter of 5.08 cm. The potato slices were washed 

using distilled water to eliminate the surface starch. Before each experiment, the potato 
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slices were blotted with paper towels. The samples were then placed in a glass jar with a 

lid to avoid any moisture loss before further processing (Yagua Olivares, 2010). 

3.1.4 Raw potato physicochemical properties 

3.1.4.1 Moisture content of raw potatoes  

The moisture content of the raw potatoes was determined by drying 3 g of the 

product in a vacuum oven at 70°C until a constant weight was achieved (AOAC, 2000). 

The test was performed in triplicate. The weight of the samples was recorded before and 

after drying, and the moisture content, wet basis (MC w.b), was calculated as follows 

(Granda, 2006): 

MC (w.b)=
M(w.b)-M(d.b) 

M(w.b)
                                               [3.2] 

The moisture content, dry basis (MC d.b), was defined as:  

MC (d.b)=
(M(w.b)-M(d.b) 

M(d.b)
                                               [3.3] 

3.1.4.2 Extraction of phenolic content of raw potatoes 

Raw potato slices were vacuum dried until a constant weight was achieved. The 

dried potato samples were ground to a fine powder and stored in plastic bags at room 

temperature until use. About 3.0 g of the ground sample were weighted and mixed with 

50 mL of 70 mL/100 mL aqueous acetone (0.1 mL/100 mL acetic acid) using a food 

processor. The acetone extract was filtered on a Büchner funnel under the vacuum. The 

filter solution was placed on the Büchi rotavapor until all the residual acetone 

evaporated. The remaining aqueous extract was stored at 4oC until further analysis (Kita 

et al., 2015). 
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3.1.4.3 Determination of total phenolic content (TFC) 

The total phenolic content of the sample extracts was evaluated using the Folin-

Ciocalteu phenol reagent method (Singleton and Rossi, 1965). For the preparation of the 

calibration curve, a gallic acid solution was prepared in a 100­mL volumetric flask, 

where 0.5 g of dry gallic acid was dissolved in 10 mL of ethanol and then diluted to 

volume with water. Then 0, 0.1, 0.2, 0.3, 0.5, and 1 mL of the gallic acid solution was 

added to 10 mL volumetric flasks, and then diluted to volume with water. These 

solutions had phenol concentrations of 0, 50, 100, 150, 250, and 500 mg/L gallic acid, 

the effective range of the assay. From each calibration solution, 100 μL of the sample 

was pipetted into separate cuvettes, and 1.58 mL of distilled water was added to each. 

About 100 μL of the Folin-Ciocalteu reagent was added and mixed well. After 8 min, 

300 μL of the sodium carbonate solution was added to the mixture and then shake to mix 

all components.  

To make sodium carbonate, 20g of anhydrous sodium carbonate was added in 80 

mL of water and it was brought to a boil. Few crystals of sodium carbonate were added 

after cooling, and after 24 hr, it was filtered and water was added to a volume of 100 

mL. The solutions were left at 23°C for 2 hr. The absorbance of each solution was 

determined at 765 nm against the blank (the "0 mL" gallic acid solution) and then a plot 

of the absorbance vs. concentration values  evaluated to obtain the calibration curve 

(Waterhouse, 2001).  
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3.2 Vacuum impregnation (VI) 

3.2.1 Preparation of Impregnation Solution  

Organic beet juice powder was purchased from the Synergy Company (Moab, 

Utah, United States). This powder is a pure juice highly concentrated with phenolic. 

About 3%, 5%, and 7% w/w solution concentrations were prepared by using beet 

powder mixed with distilled water. This beet solution was then used to impregnate the 

potatoes slides by the VI method. 

3.2.2 Impregnation Procedure 

A vacuum impregnation (VI) system composed of a vacuum pump (Emerson 

Motor Division, St. Louis, MO., USA) and a glass desiccator was used in this study 

(Figure 3.2). Sliced potatoes were immersed in the impregnation solution before vacuum 

was applied. During the vacuum step, different vacuum pressures (300 mm-Hg, 450 

mm-Hg, and, 600 mm-Hg) were applied for different periods of times (5 min, 10 min 

and, 15 min) and then the atmospheric pressure was restored for various periods of times 

(5 min, 10 min, and 15 min) as shown in Table 3.1. Afterward, the excess of liquid in the 

surface of impregnated samples was removed with paper towel (Sevimli and Moreira, 

2013). The impregnated liquid fraction, moisture content, and total phenolic content 

were evaluated and the best time/pressure/concentration combinations were determined. 

The temperature was maintained at ambient conditions (25 ± 2oC). 
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Figure 3.2. Schematic drawing of vacuum impregnation system (VI). 

 

 

 

To improve the impregnation process, the best operating/process conditions were 

selected and a vacuum pressure of 600 mm Hg applied for 10 min, followed by 

atmospheric pressure restoration for 1 hour, while samples remained in the VI solution.  

3.2.3 Physicochemical properties of vacuum impregnated potato slices  

3.2.3.1 Water loss (WL) and solid gain (SG)  

The percentage of WL during the VI process was calculated from the sample 

weight before and after each vacuum impregnated treatment. The calculated WL value 

for the potato slices represented the total external liquid that penetrated into the tissue. 

Water loss (WL) was calculated using the following equation: 

                          WL[%] =
WS𝑜 × MCo-db−WSf × MCf-db

WPo
×100                                   [3.4] 

where WSo is the weight of the solid in the product before impregnation [g], WSf is the 

weight of solids in the sample after impregnation [g], WPo is the weight of the product 

before impregnation. 

Recently, there has been an interest to increase the functionality 

of snack foods. Beetroot extract contains a high level of 

antioxidant which are associated with the reduction of chronic 

disease and cancer risks. In this study, potato chips were 

enriched with phenolic compounds of beetroot extract without 

affecting the organoleptic properties of classic potato chips.

Vacuum impregnation and vacuum frying are technologies to produce 

healthy functional snacks with desired quality attributes. It is expected that 

phenolic rich products will provide a better snack alternative for the 

consumers.

(1) To enhance the performance of low-value food using 

vacuum impregnation technology. (2)To examine the retention 

of the phenolic content of potato chips after being fried under 

vacuum frying.

Introduction Results Materials & Methods

Conclusions

Objectives

Samar Al-Mohaimeed1, Rosana G. Moreira2, Paulo F. Da Silva2

1Nutrition and Food Science Department  and 2Biological & Agricultural Engineering - Texas A&M University

Vacuum impregnation and vacuum frying to produce potato chips with 

phenolic compound of red beetroot

Vacuum fried potato chips retained around 45.34% of total phenols, 

whereas potato chips fried under atmospheric  pressure preserved only 

19.17% of their initial total phenols content. Furthermore, vacuum fried 

potato chips absorbed about 55% less oil than atmospheric fried chips

Figure 2: Potato slices impregnated at 7% solution, 600 mm 

Hg, 10 min impregnation time, and 10 min restoration time.                                                           
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The solid gain (SG) to or from the sample during impregnating was calculated as: 

                           SG[%] =
WSo −WSf 

WPo
×100                                                         [3.5] 

 

 

 

Table 3.1. Experimental design for each set of experiments (VP = vacuum pressure; VT 

= vacuum pressure time applied; RT = restoration time; SC= red beetroot solution 

concentrations). 
Set # Experiment # Factor 1    

SC [w/w] 

Factor 2            

VP [mmHg] 

Factor 3           

VT [min] 

Factor 4           

RT [min] 

1 
 
 
 
 
 
 

 

1 3% 300 5 5 

2 3% 300 10 10 

3 3% 300 15 15 

4 5% 300 5 5 

5 5% 300 10 10 

6 5% 300 15 15 

7 7% 300 5 5 

8 7% 300 10 10 

9 7% 300 15 15 

2 
 
 
 
 
 
 

 

10 3% 450 5 5 

11 3% 450 10 10 

12 3% 450 15 15 

13 5% 450 5 5 

14 5% 450 10 10 

15 5% 450 15 15 

16 7% 450 5 5 

17 7% 450 10 10 

18 7% 450 15 15 

3 
 
 
 
 
 

 

19 3% 600 5 5 

20 3% 600 10 10 

21 3% 600 15 15 

22 5% 600 5 5 

23 5% 600 10 10 
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Table 3.1. Continued 
Set # Experiment # Factor 1    

SC [w/w] 
Factor 2            

VP [mmHg] 
Factor 3           

VT [min] 
Factor 4           

RT [min] 

3 24 5% 600 15 15 

25 7% 600 5 5 

26 7% 600 10 10 

27 7% 600 15 15 

4 28 7% 600 10 60 

 

 

 

3.2.3.2 Moisture content of vacuum impregnated potato sliced 

The moisture content of VI potato slices was determined as described previously 

(section 2.1.4.1). 

3.2.3.3 Total phenolic content of vacuum impregnated potato sliced 

The total phenolic content of the vacuum impregnated potato sliced was 

determined as described previously (section 3.1.4.3 and 3.1.4.3). 

3.3 Frying experiments 

3.3.1 Vacuum frying (VF) 

The frying experiments were performed by using a vacuum fryer available at the 

Food Engineering Laboratory, at the Department of Biological and Agricultural 

Engineering of Texas A&M University, College Station, Texas (Figure 3.3). The fryer 

consists of a cast aluminum vacuum vessel connected with an electrical heating system. 

The vessel contains a basket and a centrifuging system (de-oiling) with a maximum 

rotational speed of 750 rpm (63 g units). Vacuum is achieved in the vessel by connected 

a dual seal vacuum pump (model 1402 Welch Scientific Co., Skokie, IL) with a vacuum 

capacity of 1.33 kPa (Yagua Olivares, 2010). 



 

32 
 

 

The frying process was done by loading four potato slices (about 16 g) into the 

basket, closing the lid, and depressurizing the vessel. When the pressure in the vessel 

reached 1.33 kPa, the basket was submerged into the oil. Different oil temperatures 

(110°C, 120°C, and 140°C) were applied for different periods of time as show at 

(Teble.3.2). Fresh canola oil (Crisco, Ohio, USA) was used in all experiments. Potato 

chips were fried until 2% moisture content (w.b.) was achieved. The basket was then 

raised, and the centrifuging system was applied for 40 s at maximum speed 750 rpm (63 

g units). Next, the vacuum was broken and the potato chips allowed to cool down at 

room temperature before storing the chips in polyethylene bags inside of a desiccator for 

further examination. The test was performed in triplicate (Yagua Olivares, 2010). 
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Figure 3.3. Schematic drawing of the vacuum frying system (Adapted from Da Silva 

and Moreira, 2008) 

 

 

 

 

Table 3.2. Experimental design for vacuum frying study. 
Set # Experiment 

# 

Factor 1 

Temperature [◦C] 

Factor 2 

Time [sec] 
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Figure 3-1. Schematic drawing of the vacuum frying system (Moreira (2008)). 

 

3.3.3. Data collecting mechanism 

 Center and surface temperatures of the sweet potato chips, temperature of the 

headspace of the vessel, and pressure inside vessel were measured. A data collecting 

system (Model OMB DAQ 54 Omega Engineering Inc., Stamford, CT, USA) was used 

to record the changes of temperature and pressure during vacuum frying process. A 

pressure transducer (Model PX209-015G5V, Omega Engineering Inc., Stamford, CT, 

USA) was replaced inside of the vacuum fryer vessel. The data for temperature and 
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Table 3.2. Continued 
Set # Experiment 

# 

Factor 1 

Temperature [◦C] 

Factor 2 

Time [sec] 

1 12 110 360 

13 480 

14 600 

15 720 
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3.3.2 Traditional frying (TF) 

A commercial deep-fat fryer used to fry potato chips (George Foreman Spin 

Fryer – GSF026B, George Foreman's, Columbia, MO). The fryer with a capacity of 2.6 

L of oil, and a centrifuge system. The centrifuge system consists of a basket, which can 

rotate at two different speeds. The basket can rotate (loaded with potatoes and sample 



 

35 
 

 

holder) at 350 ± 1 and 457 ± 1 rpm. The relative centrifugal force (RCF), commonly 

referred to as “g-force” or “times g” values, are 8.1 and 13.8 for 350 and 457 rpm, 

respectively. Four potato slices (about 16 g) were fried at 165°C oil temperature for 300 

s and then centrifuged at a maximum rotational speed of 457 rpm (13.8 g units). The 

tests were performed in triplicate.  

3.3.3 Dual-stage frying (DSF) 

A two-stage frying process (atmospheric and vacuum frying) was performed 

using the vacuum frying equipment. First, four potato slices (about 16 g) were loaded 

into the frying basket. The basket was then submerged into the oil under atmospheric 

pressure (1st-stage at 140°C). Once the potato slices were partially cooked (60 sec), the 

vessel was depressurized until a pressure of 1.33 kPa was reached (2nd-stage). The 

product was fried at 140°C until 2% final moisture content is achieved (120 sec). The 

basket was raised after completed the frying, and the potato slices were centrifuged at 

750 rpm for 40s. Next, the vessel was pressurized, and the fried potato chips were 

allowed to cool down at ambient temperature. All frying experiments were done by 

using a fresh canola oil, and the test was performed in triplicate (Ravli et al., 2013). 

The experimental design for the different frying methods is shown in Table 3.3. 

Product quality attributes (PQA), such as, moisture content, oil content, texture, color, 

bulk density, porosity, shrinkage and expansion, of the raw potato slices and the fried 

chips were measured to compare the effects of the different frying methods on the final 

product quality. 
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Table 3.3. Experimental design for the different frying method experiments. 

Set # Experiment 

# 

Factor 1 

Frying time [s] 

Factor 2 

Temperature 

[oC] 

Factor 3 

Frying Pressure 

[kPa] 

1 1 0 0 0 

2 120 140 1.33 

2 1 0 0 0 

2 300 165 101 

3 1 0 0 0 

2 60/120 140 101/1.33 

 

 

 

3.4 Product quality attributes (PQA) 

3.4.1 Moisture content 

The moisture content of the potato chips was determined as described in section 

3.1.4.1.  

3.4.2 Oil content 

The oil content of the samples was determined by using the Soxtec System HT 

extraction unit (Pertorp, Inc., Silver Spring, MD, USA) with petroleum ether solvent 

(AACC, 1986). About 3 g of ground potato chips was placed on cellulose thimbles 

(model 2800256, Whatman, England). Before measuring the weight of the empty 

aluminum cups, the cups were dried for 15 min in a convection oven at 105ºC and 

cooled down in a desiccator for 25 min.  

The oil extraction process is made up of three steps. First, the thimbles contain 

potato chips samples were submerged into boiling petroleum ether inside the cups for 40 

min. Then, the thimbles were raised up to be rinsing by washing them with recirculating 

petroleum ether while oil was collected in the cups. The final step consists of collecting 
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the oil after evaporated the petroleum ether from cups. To ensure that all the petroleum 

ether was evaporated from the oil, the cups were placed in a convection oven for 15 min 

at 105ºC. Then, the cups were cooled for 20 min in a desiccator. The cups with the oil 

were weighted and the oil content of each sample were determined in dried basis (d.b.) 

using the following equation. 

                                                   OC (d.b)=
W1-W2 

Wi
                                                         [3.8] 

where 𝑊1 (g) and 𝑊2 (g) are the initial and the final cup weight, respectively; and 𝑊𝑖 (g) 

is the dried weight of sample i. 

3.4.3 Color 

The color of the potato chips was determined using a LabScan XE colorimeter 

(Hunter Lab, Inc, VA., USA). Color measurements were taken for eight chips of each 

condition. The colorimeter was calibrated utilizing a standard black plate and white plate 

(Y = 94.00, x = 0.3158, y = 0.3322). Three readings of L* (lightness), a* (red-green), 

b*(yellow-blue) values were measured for each group of samples (Garayo and Moreira, 

2002; Sevimli and Moreira, 2013). 

3.4.4 Texture 

Texture analyses was performed on the fried potato chips obtained from different 

frying methods using the Brookfield CT3 Texture Analyzer (Brookfield, Middleboro, 

MA, United States). The test was performed by placing a single potato chip on a 2-point 

support (TA-DEC pot) base. A spherical stainless steel probe type (TA18) with diameter 

of 12.7 mm was used to break the chip.  
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The speed at which the probe approached the sample was 1.00 mm/s. The force 

applied was 0.04 N, and the probe travelled 2mm after touching and fracturing the potato 

chip. The tests were performed using eight chips per frying method. For good 

experimental practice, all tests were run on the same day the chips were fried. The 

highest peak on the force/time curve was assumed as a hardness value. 

 Kawas-Escoto (2000) used a similar procedure to measure the texture of tortilla 

chips: a probe of 1⁄4-inch ball traveled at speed of 0.1 mm/s until it broke the sample; the 

sample was located on an 18-mm diameter hollow cylindrical base. 

3.4.5 Determination of total phenolic content of potato chips 

The total phenolic content of vacuum fried potato chips was determined as 

described previously in sections 3.1.4.2 and 3.1.4.3. 

3.4.6 True density 

The true volume is the volume of solid matter.  About 1 g of ground fried potato 

chips was measured by using a compressed helium gas multi-pycnometer 

(Quantachrome & Trade, NY, USA).  The solid volume was determined by using 

pycnometer to read the two pressure. The volume of a reference (Vr) and the sample cell 

(Vc), and the solid volume (Vt) was calculated by: 

                                            Vt=Vc-Vr∙ (
P1

P2
-1)                                                              [3.9] 

where P1 is an initial pressure and P2 is a final pressure which was given by the 

pycnometer, respectively. The reference cell and the volumes of the sample are constants 

collected at a previous calibration of the equipment; the values of Vc and Vr used in this 

study are 13.045 and 7.379, respectively. True density, ρt, was calculated using the 
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following equation: 

                                                          ρ
t
=

Ms 

Vt
                                                                [3.10] 

where Ms is the weight of the de-oiled sample (g) and Vt is the solid volume (m3). The 

weight of the without oil samples were calculated from the original weight of the potato 

chips and the oil content data. The test was done in triplicate. 

3.4.7 Bulk density 

Liquid displacement technique with ethanol used to measure the bulk volume 

(Da Silva and Moreira, 2008; Nunes and Moreira, 2009) The volume in the equipment 

was recorded with, and without the sample, the sample weight was determined of five 

potato chips. The bulk density was calculated by dividing the weight of the chips without 

oil by its bulk volume. The weight of a de-oiled chip was calculated from the original 

weight of the chip and the oil content data. Bulk density, ρb, was calculated using the 

following equation: 

                                                            ρ
b
=

Ms 

Vb
                                                              [3.11] 

where Ms and Vb are the weight of the de-oiled sample (g) and bulk volume (m3), 

respectively. The test was performed in triplicate. 

3.4.8 Porosity 

The porosity,  of the potato chips was calculated as: 

                                                          ϕ=1-
ρb 

ρs

                                                               [3.12] 

where ρb is bulk density and ρs is solid (true) density. 
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3.4.9 Diameter shrinkage and thickness expansion 

The diameter and thickness of raw and fried potato slices were included using a 

steel caliper (MG Tool Co., New York, NY, USA). For each frying method, four slices 

and four readings per slice were recorded.  

The degree of shrinkage diameter, D, was calculated by: 

                                                 D=
do-d(t)

do
×100                                                             [3.13] 

where do is the initial diameter of the raw sample (m) and d (t) is the diameter of the 

sample at frying time t (m). 

 The degree of expansion thickness, L, was calculated by: 

                                                L=
lo-l(t)

lo
×100                                                                [3.14] 

where lo is the initial thickness of the raw sample (m) and l (t)is the thickness of the 

sample at frying time t (m). 

3.4.10 Sensory evaluation  

Sensory analysis is a method to evaluate consumer acceptability for new food 

products. Sensory evaluation of phenol-enriched potato chips was done by using 

different frying methods (vacuum at 140°C, dual steps at 140°C, and traditional at 

165°C). The samples were presented on white plates labeled to each participant at once. 

The pleats were coded with 3 random digits to identify the frying methods. A consumer 

test was carried out among 30 participants (students, faculty, and staff at Texas A&M 

University).  

A nine-point hedonic scale was used, with a score of 1 to 9 where 9 the most 

liked and1 was the most disliked attribute. Scores equal or higher than 5 were considered 
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acceptable based on the nine-point hedonic scale used by Carr et al. (1999). 

The quality rating test (QRT) was on a 5- point numerical scale (1= very bad, 5= 

very good). The measured attributes of the QRT were color (dark yellow, dark red), 

texture including hardness (soft, hard), and crispness (not crispy, very crispy), and 

oiliness (oily, not oily), flavor and overall quality (1= very bad, 5= very good) (Troncoso 

et al., 2009).  

3.5 Statistical analysis  

The data was analyzed using SPSS software (version 20.0 for Windows). 

Statistical differences between variables were analyzed for significance by one-way 

ANOVA using Tukey’s multiple range tests. Statistical significance was expressed at the 

P < 0.05 levels. 
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CHAPTER IV  

RESULTS AND DISCUSSION 

4.1 Vacuum Impregnation (VI)  

Preliminary studies were performed to determine the best vacuum impregnation 

(VI) conditions (pressure, vacuum and restoration times, and impregnation solution 

concentration) to enrich potato slices with red beetroot solution, as a pre-treatment 

before frying. The specific gravity of the potatoes used in these experiments was 1.084 + 

0.004. 

4.1.1 Effect of red beetroot impregnation on product quality attributes (PQA) 

4.1.1.1 Impregnated liquid and moisture content of potato slices 

The first VI experiments showed that the potato slices gained weight due to the 

process. The samples absorbed the impregnated liquid as shown in Table 4.1 (water loss 

values have a negative sign, indicating the water was gained). Martinez-Valencia et al. 

(2011) also reported increased water loss in VI cantaloupe pieces with increased 

immersion times. 

As the solution concentration increased, the WL values decreased. The viscosity 

of the solution increased (not shown) with increased solute concentration, what could 

have resulted in less solution transfer into the potato slices. Additionally, the solution 

Brix increased (Table 4.2), due to the amount of sugar in the beetroot solution, thus 

causing some of the water to leach out from the potato slices.  

Solid gain (sugar from the beet solution) values (Table 4.1) were negative for all 
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treatments, indicating that the samples lost solids during the VI process. However, these 

results are inconclusive due to the large variation of the results. The differences in potato 

batches and storage conditions may have affected these results. 

 

 

Table 4.1. Effect of solution concentration and vacuum pressure on the impregnated 

liquid fraction of potato slices. 

SC 

[w/w] 

VP 

[ mmHg] 

VT/RT 

[min] 

WL 

[%] 

SG 

[%] 

 

 

 

 

3% 

 

300 

5 -11.19 + 1.48 -6.04 + 1.83 

10 -11.08 + 1.73 -5.57 + 0.90 

15 -6.39 + 4.71 -1.47 + 3.33 

 

450 

5 -5.71 + 1.68 -0.40 + 1.73 

10 -9.65 + 1.03 -1.43 + 0.08 

15 -5.87 + 2.97 2.41 + 0.95 

 

600 

5 -11.21 + 1.91 -6.45 + 1.26 

10 -11.93 + 1.06 -6.40 + 1.11 

15 -5.09 + 1.42 0.48 + 2.41 

 

 

 

 

5% 

 

300 

5 -10.52 + 0.54 -10.52 + 0.54 

10 -12.78 + 1.21 -12.78 + 1.21 

15 -5.04 + 3.08 -5.04 + 3.08 

 

450 

5 -3.75 + 0.38 -3.75 + 0.38 

10 -3.32 + 1.27 -3.32 + 1.27 

15 -8.70 + 2.05 -8.70 + 2.05 

 

600 

5 -10.53 + 1.22 -10.53 + 1.22 

10 -11.31 + 0.70 -11.31 + 0.70 

15 -2.62 + 3.69 2.91 + 0.42 

 

 

 

 

7% 

 

300 

5 -6.82 + 0.79 -5.37 + 0.49 

10 -4.13 + 1.53 -3.69 + 0.83 

15 0.21 + 1.41 0.48 + 2.34 

 

450 

5 -3.21 + 0.60 -0.92 + 1.02 

10 -1.00 + 0.82 1.76 + 1.74 

15 0.88 + 1.93 3.48 + 2.00 

 

600 

5 -7.87 + 1.36 -5.97 + 0.55 

10 -5.37 + 0.50 -4.76 + 0.78 

15 0.36 + 1.81 -1.66 + 0.53 

SC= solution concentration; VP= vacuum pressure; WL = water loss; SG = solid gain 
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Table 4.2. Degree Brix of raw potato (RP) and red beet solution concentrations (SC). 

Material °Brix [ g sucrose/100 g solution] 

RP 5.1 ± 0.06 

SC 3% 3.0 ± 0.06 

SC 5% 4.9 ± 0.06 

SC 7% 6.8 ± 0.12 

 

 

 

During VI process, the vacuum pressure causes the gases/liquid inside the tissue 

to expand and flow out of the extracellular spaces. When the pressure is restored, the 

residual gas is compressed and the external liquid flows into the product pores (Fito et 

al., 2001).  

The differences in impregnated samples solution content are due to the 

differences in tissue deformation between samples, irreversible tissue deformation, or 

reduced tissue rigidity of potato slices by the deformation-relaxation phenomenon. The 

degree of tissue impregnation is associated to a considerable extent with porosity, the 

size, and shape of the pores as well as mechanical properties. Thus, the tissue 

deformation may have reduced the free space for the solution transfer to the potato (Fito 

et al., 1996; Radziejewska-Kubzdela et al., 2014). 

The change in water content changes after impregnation were calculated by 

measuring the moisture content of potato slices before and after VI (Table 4.3). There is 

a variation of potatoes initial moisture contents between batches, which makes moisture 

content transfer values different. The impregnation liquid content and amount of 
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moisture content transferred were not associated with enriching the potato slices with 

total phenolic component values as will be discussed later. 

 

 

 

Table 4.3. Effect of solution concentration, vacuum pressure and vacuum and 

restoration times on moisture contents of potato slices. 

SC  

[w/w] 

VP  

[mm Hg] 

VT 

[m] 

MCi  

[w.b.] 

MCf 

[w.b] 

3% 300 5 0.73 ± 0.00 0.80 ± 0.03 

3% 300 10 0.72 ± 0.01 0.79 ± 0.02 

3% 300 15 0.79 ± 0.03 0.79 ± 0.06 

3% 450 5 0.79 ± 0.04 0.81 ± 0.03 

3% 450 10 0.79 ± 0.04 0.83 ± 0.02 

3% 450 15 0.79 ± 0.02 0.78 ± 0.02 

3% 600 5 0.73 ± 0.00 0.80 ± 0.03 

3% 600 10 0.72 ± 0.01 0.80 ± 0.02 

3% 600 15 0.79 ± 0.03 0.80 ± 0.02 

5% 300 5 0.73 ± 0.01 0.81 ± 0.02 

5% 300 10 0.71 ± 0.04 0.81 ± 0.03 

5% 300 15 0.79 ± 0.02 0.77 ± 0.03 

5% 450 5 0.79 ± 0.02 0.78 ± 0.02 

5% 450 10 0.79 ± 0.02 0.78 ± 0.01 

5% 450 15 0.77 ± 0.01 0.79 ± 0.01 

5% 600 5 0.73 ± 0.01 0.81 ± 0.03 

5% 600 10 0.71 ± 0.04 0.80 ± 0.02 

5% 600 15 0.79 ± 0.02 0.78 ± 0.02 

7% 300 5 0.72 ± 0.01 0.78 ± 0.02 

7% 300 10 0.74 ± 0.01 0.78 ± 0.05 

7% 300 15 0.77 ± 0.02 0.77 ± 0.02 

7% 450 5 0.78 ± 0.02 0.79 ± 0.02 

7% 450 10 0.78 ± 0.02 0.77 ± 0.02 

7% 450 15 0.79 ± 0.02 0.76 ± 0.03 

7% 600 5 0.72 ± 0.01 0.78 ± 0.02 

7% 600 10 0.74 ± 0.01 0.79 ± 0.02 

7% 600 15 0.77 ± 0.02 0.78 ± 0.02 
Means with different letter are significantly different (p<0.05). SC= solution concentration, VP= vacuum 

pressure, VT= vacuum and restoration time, MCi= initial moisture content, MCf= final moisture content, 

and MC = the percentage of transfer moisture content 
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4.1.1.2 Total phenolic content of potato slices 

Figures 4.1 to 4.3 show that there was no specific trend in total phenolic content 

values versus vacuum impregnation conditions (pressure, vacuum and restoration times, 

and impregnation solution concentration). There was a large variation in TPC (19 – 63 

mgGAE/100 g) in the potatoes used in this investigation. A different variety (see Table 

4.7) showed much higher TPC values (116 – 139 mgGAE/100g DW). These potatoes 

had a much higher quality than the potatoes used at the beginning of this study. The 

specify gravity of these potatoes was 1.072 + 0.004.   Madiwale et al. (2011) reported 

that the total phenolic content of different potato cultivars can range from 26 to 269 mg 

GAE/100g DW. 

Figures 4.1 to 4.3 show that, in general, vacuum impregnated potato slices with 

longer vacuum and restoration time (15 min) were the least enriched with total phenolic 

component than the other treatments. The higher the impregnation solution 

concentration, the lower the impregnation causing the water in the potato to diffuse out 

due to the difference in concentrations between the water in the potato and the solution. 

Plant tissue cells placed in different solution concentrations react differently. A 

higher external concentration solution than the product internal cell membrane 

(hypertonic solution) will cause higher water loss from the product (Sasireka and 

Ganapathy, 2016). Shi et al. (1995) reported that a high-water loss could be obtained 

from low-pressure systems. However, there is only slightly differs in the solid gain 

between the vacuum and atmospheric pressure processes. The microstructural 

characterization of the plant tissues is the main factor influencing the solid gain. The 
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higher the vacuum, the greater the volume of impregnated solution. The property of the 

raw material and the vacuum level are affecting the sample deformation and the amount 

of solutes impregnated into samples (Fito et al., 1996). 

 

 

 

 

Figure 4.1. Effect of solution concentration, and vacuum and restoration time at 300 

mmHg vacuum pressure on total phenolic component of potato slices. 
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Figure 4.2. Effect of solution concentration, and vacuum and restoration time at 450 

mmHg vacuum pressure on total phenolic component of potato slices. 
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Figure 4.3. Effect of solution concentration, and vacuum and restoration time at 600 

mmHg vacuum pressure on total phenolic component of potato slices 

 

 

 

The best vacuum impregnation conditions to enrich the potato slices were with a 

solution of 7% (w/w) at 600 mmHg pressure, and 10 minutes of vacuum pressure and 10 

minutes restoration time (Table 4.4).  

Fito and Pastor (1994) observed that the intercellular space determines the 

occupied volume of the external liquid in the product tissue during VI processing. In the 

case, the intercellular air space of potato is very small (1%) (Hironaka et al., 2011) 

compared with the intercellular space of apple (25%), peach (15%) and, mushroom (37–
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45%) (Alzamora et al., 2005).  

 

 

 

Table 4.4. Effect of solution concentration, vacuum pressure and vacuum and 

restoration times on total phenolic component of potato slices. 

SC  

[w/w] 

VP  

[mm Hg] 

VT or RT 

[m] 

TPCi 

[mgGAE/100g DW] 

TPCf 

[mgGAE/100g DW] 
TPC 

[%] 

3% 300 5 19.00 ± 0.62 19.55 ± 1.68 2.93 

3% 300 10 54.16 ± 2.40 64.15 ± 4.12 18.44 

3% 300 15 63.78 ± 4.29 67.07 ± 10.55 5.15 

3% 450 5 37.92 ± 11.6 61.16 ± 8.67 61.3 

3% 450 10 37.92 ± 11.6 56.71 ± 9.81 49.57 

3% 450 15 21.33 ± 1.30 29.77 ± 4.99 36.55 

3% 600 5 19.00 ± 0.62 33.16 ± 1.04 74.57 

3% 600 10 54.16 ± 2.40 62.66 ± 2.25 15.68 

3% 600 15 66.1 ± 6.87 70.82 ± 13.27 11.04 

5% 300 5 19.00 ± 0.62 25.47 ± 1.87 34.1 

5% 300 10 21.33 ± 1.30 33.05 ± 7.48 54.91 

5% 300 15 50.38 ± 7.65 51.52 ± 8.41 2.26 

5% 450 5 21.60 ± 3.63 26.0 ± 6.15 20.58 

5% 450 10 21.60 ± 3.63 36.1 ± 3.07 66.89 

5% 450 15 23.40 ± 4.40 38.3 ± 4.01 63.64 

5% 600 5 19.00 ± 0.62 29.27 ± 2.53 54.10 

5% 600 10 58.24 ± 4.96 68.78 ± 1.63 18.10 

5% 600 15 50.38 ± 7.65 60.32 ± 12.5 19.73 

7% 300 5 19.00 ± 0.62 19.65 ± 1.18 3.46 

7% 300 10 19.95 ± 1.01 26.48 ± 2.98 32.69 

7% 300 15 36.51 ± 1.50 56.46 ± 8.73 54.65 

7% 450 5 45.16 ± 7.16 61.93 ± 11.2 37.12 

7% 450 10 45.16 ± 7.16 63.40 ± 3.31 40.38 

7% 450 15 38.37 ± 4.49 43.6 ± 5.65 13.62 

7% 600 5 19.00 ± 0.62 31.53 ± 3.24 65.96 

7% 600 10 19.95 ± 1.01 39.47 ± 1.34 97.83 

7% 600 15 36.51 ± 1.50 54.93 ± 5.25 50.43 

Means with different letter are significantly different (p<0.05). SC= solution concentration, VP= vacuum 

pressure, VT= vacuum and restoration time, TPCi= initial total phenolic component, TPCf = final total 

phenolic component, and TPC= the percentage of transfer total phenolic component 
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Hironaka et al. (2011) impregnated a whole potato with ascorbic acid (10% SC) 

for 1 hour at vacuum pressure of 700 mmHg and 3 hours restoration time. The VI 

treatment resulted in a 10 times increase in ascorbic acid content of whole potatoes (150 

mg/100 g).  Authors observed that the impregnation occurred almost at the central pith 

and the areas between the vascular ring and the periderm. 

For the potato variety (better storability characteristics) used in the frying 

experiments, longer restoration time (1 hour) was applied to impregnate the potato slices 

with 7% SC at 600 mm Hg VP for 10 min. A set of 9 experiments, each with three 

replications (Table 4.5). The product lost water during the VI treatment (15.06% + 2.26); 

however, the SG values varied greatly showing little solid change.  

 

 

 

Table 4.5. Water loss (WL) and solid gain (SG) for potato slice impregnated with 7% 

w/w SC and 600 mm Hg for 10 min and 1-hour restoration time. 
 WL [%] SG [%] 

Exp1 16.45 + 0.85 1.35 + 0.26 

Exp2 15.57 + 0.79 0.76 + 0.25 

Exp3 15.30 + 0.71 0.29 + 0.23 

Exp4 13.85 + 0.62 -1.20 + 0.17 

Exp5 18.89 + 0.84 3.24 + 0.24 

Exp6 17.40 + 0.85 2.03 + 0.27 

Exp7 12.72 + 0.84 -3.25 + 0.21 

Exp8 12.45 + 0.97 -2.90 + 0.22 

Exp9 12.94 + 1.03 -2.86 + 0.23 
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4.2 Effect of oil temperature and frying time on product quality attributes (PQA) 

4.2.1 Kinetics of moisture loss during vacuum frying 

Figure 4.4 shows the drying behavior of potato slices fried using a vacuum fryer 

at different oil temperatures (110, 120, and 140°C). These curves show the typical 

dehydration behavior for fried food products in accordance to previous observations 

(Gamble et al., 1987; Garayo, 2001; Shyu and Hwang, 2001). 

According to Van Arsdel et al. (1973) and Garayo and Moreira (2002), three 

distinct periods can be noticed in a typical dehydration curve. The first is an initial 

warm-up period of the food product in which heat is absorbs by the wet material from 

the surrounding media (frying oil). The second period is known as the constant rate 

phase where the water in the product reaches the evaporation temperature of 100oC (1 

atm) and the moisture begins to evaporate from the food’s surface continuously (at 

constant P and T) as long as the surface contains water. In the last phase, the falling-rate 

period, the moisture content of the product is lost by diffusion, as the moisture is lost 

exponentially until the moisture content equilibrium is reached (Table 4.6).   

 

 

 

Table 4.6. Initial and equilibrium moisture content of potato chips fried under vacuum at 

different oil temperatures. 

TOil [°C] FT [s] IMC [%w.b.] EMC [%w.b.] 

110 0 - 720 75.80 ± 0.74a 1.04 ± 0.11c 

120 0 - 600 77.58 ± 1.33a 0.73 ± 0.03b 

140 0 - 480 81.17 ± 0.86b 0.51 ± 0.04a 

The test was performed in triplicate. Means within the column with the same letter are not significantly 

different (p<0.05). Toil= oil temperature, FT= frying time, IMC= initial moisture content, and EMC=the 

equilibrium moisture content  
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In vacuum frying, the first period, warm-up and constant-rate periods are very 

short and may last no more than one to five seconds because the boiling point of water is 

much lower (11.2°C at 1.33 kPa) than at atmospheric pressure (Garayo, 2001). At the 

time the raw material is in contact with the oil, water starts to evaporate. During the first 

60-100 seconds of the process, the drying rate is very fast and afterward slows down as 

the product reaches equilibrium moisture content (Figure 4.4).   

Different oil temperatures influence the moisture loss of potato slices during 

vacuum frying. The chips fried at 120°C and 140°C lost moisture at a faster rate than the 

chips fried at 110°C (Fig. 4.4).  
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Figure 4.4. Moisture loss of potato chips during vacuum frying at different oil 

temperatures. 

 

 

 

4.2.2 Kinetics of oil absorption during vacuum frying of potato chips 

Oil absorption is a complex phenomenon that occurs mainly during the cooling 

stage when the product is removed from the fryer (Sun and Moreira, 1994).  

Figure 4.5 shows the oil absorption curves for vacuum frying of potato slices at 

various oil temperatures. It can be noted that the chips’ oil content increased as frying 

time increased within the first 80 seconds at 140°C and 120 seconds at 120°C frying 
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temperatures and then decreases as frying time increased. This behavior was not 

observed at 110oC frying temperature.  

Garayo and Moreira (2002) explained the oil absorption phenomena in vacuum 

frying can be divided into 3 steps, during vacuum, pressurization, and cooling. As frying 

time increases and the free moisture in the potato reaches a critical level (at the 80 s at 

140oC), the oil absorption during the pressurization process decreases. The air diffuses 

into the pore spaces faster than the oil, hence blocking the oil to flow into the product. 

Therefore, most of the oil is absorbed during cooling. During the initial period of frying, 

the higher the oil temperature, the highest is the oil content of the chips. That due to the 

availability of the free water in the product during the initial period of the frying. 

Therefore, the lowest oil content is achieved when the chips are fried as close as to the 

equilibrium moisture content at the end of frying. 

 Frying potato slices at 140°C resulted in chips with the highest oil content 

compared to the chips fried at 120oC, and 110oC (Table 4.7). It seems that VI does have 

an effect on the surface structure/wettability of the chips increasing the oil absorption 

during the de-oiling process. 
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Table 4.7. Oil content for potato chips fried under vacuum at different oil temperatures. 

Toil [°C] FT [s] OCi [%d.b.] OCe [%d.b.] OCM [%d.b.] 

110 20 - 720 5.87 ± 0.71a,x 9.31  ±a,y0.35 10.90  ±a,y0.92 

120 20 - 600 8.94 ±0.73b,x 11.96 ± 0.78b,y 12.58 ± 1.21a,y 

140 20 - 480 12.99 ± 0.66c,x 12.12 ± 0.81b,x 15.80 ± 0.51b,y 

The test was performed in triplicate. Means within column with the same letter (a, d, c) or within row with 

the same letter (x, y, z ) are not significantly different (p<0.05). Toil= oil temperature, FT= frying time, 

OCi =Initial oil content at 20s of frying time, OCe =Equilibrium oil content (final oil content), and OCM= 

maximum oil content value.   

 

 

 

 

 

 

Figure 4.5. Oil absorption of potato chips during vacuum frying at different oil 

temperatures. 
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4.2.3 Kinetics of TPC during vacuum frying of potato chips 

Table 4.8 shows that the maximum TPC was 27% higher than the initial TPC of 

the vacuum impregnated potato slices fried at 140°C. The vacuum impregnated potato 

slices fried at 120°C and 110°C had the maximum TPC only 20% and 11% higher than 

the initial TPC values, respectively. This indicates that the higher the frying temperature 

the higher TPC released during frying. 

 

 

 

Table 4.8.Total phenolic content of potato chips fried under vacuum at different oil 

temperatures 
Toil 

[°C] 

FT 

[(s] 

TPCRP 

[mg GAE/100g 

DW] 

TPCAVI 
 
[mg GAE/100g 

DW] 

TPCf  

[mg GAE/100g 

DW] 

TPCM  

[mgGAE/100g 

DW] 

110 0-

720 

116.42+14.71a,x 137.87+8.52a,x,y   a,x0.96+117.89 152.70 +a,y2.70 

120 0-

600 

139.41+20.67 a,x 173.52+26.36a,b,x,y 128.02+16.68a,x 207.46+16.81b,y 

140 0-

480 

132.44+3.10 a,x 201.31+12.27b,y 174.91+13.00b,y 255.81+10.00c,z 

The test was performed in triplicate. Means within column with the same letter (a, d, c) or within row with the same letter (x, y, z) are 

not significantly different (p<0.05). Toil = oil temperature, FT= frying time, TPCRP =Initial total phenolic of raw potato slices before 
VI, TPCAVI =Initial total phenolic before frying after VI, TPCf = final total phenolic content after frying and TPCM= maximum total 

phenolic content during frying.  

 

 

 

The TPC changed non-linearly during the frying process for all frying 

temperatures (Figure 4.6). The results show that the final TPC values of the chips after 

frying were lower than the vacuum impregnated potato slices for all frying temperatures. 

Vacuum impregnated potatoes fried at 120oC had 26% reduction in TPC after frying 

compared to the samples fried at 110oC (15%) and 140oC (13%). It was observed that 

the oil became reddish during the frying process due to the transfer of impregnated 

liquid from the samples.  
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Potato chips fried at 110oC had the same TPC of the raw potato slices, while 

those fried at 120oC had 15% less TPC than the raw potatoes, but those values were not 

significantly different (p > 0.05).  Frying vacuum impregnated potato slices at 140oC 

produced potato chips with 33% more TPC than the raw potatoes. In conclusion, the VI 

treatment with red beet extract improved the process by making potato chips with the 

same or higher TPC than the raw material. The higher the temperature, the best TPC in 

VI fried chips. 

Padda and Picha (2008) discussed that heating may disrupt the intracellular 

separation of the phenolic acids and oxidative enzymes (polyphenoloxidases), resulting 

in degradation of the phenolic acids in heated treated sweet potato. DeWanto et al. 

(2002) commented that thermal processing might release more bound phenolic acids 

from the breakdown of cellular constituents in sweet corn.  
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Figure 4.6. TPC of potato chips fried at different temperatures. 

 

 

 

Different heating processes (boiling, frying, roasting) can liberate the phenolic 

compound in biological materials. The results in this study indicated that phenolic 

compounds in potato chips was either released by the cleaving of the esterified and 

glycosylated link or by the production of Maillard reaction are responsible for the 

increase in total phenolic content after heating (Maillard et al., 1996). Lee et al. (2003) 

commented that simple heating cannot cleave covalently bound phenolic compounds and 

showed that far-infrared (FIR) was able to liberate and activate covalently bound 

phenolic compounds in rice hull. 
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High temperature used during heating processes could also destroy the hydroxyl 

groups of phenolics (Barros et al., 2007) or modify phenolics with high antioxidant 

activity into different phenolics with low antioxidant activity (Jacobo-Velzquez and 

Cisneros-Zevallos, 2009), which cause a decrease in their antioxidant activity.  

The phenolic compounds in the potato plant act as a protection response from 

bacteria, fungi, viruses, and insects. The total phenolic content of potatoes is higher than 

other fruits and vegetables like carrots, onions, or tomatoes; it is good sources of 

phenolic compounds (Chun et al., 2005).  

The most abundant phenolic compounds in potatoes are phenolic acids. 

Chlorogenic acid constitutes 90% of the phenolic compounds in potato peels and exists 

in the form of three main isomers, chlorogenic acid, neochlorogenic acid, and 

cryptochlorogenic acid. Also, caffeic acid is quantified at 25–72 mg/100 g in potatoes by 

many studies (Akyol et al., 2016). 

One of the factors responsible for the decline of phenols is the selective leaching 

of phenols from potato tubers. Unlike drying process, boiling process may show less 

destruction of compounds due to the thermal capacity of water. Optimized cooking 

techniques with low cooking temperatures and/or short processing times have been 

shown to improve the availability of different phenolic compounds in potatoes during 

the cooking process (Barba et al., 2008). 

The characteristics of the particular potato cultivar, growing location, stage of 

potatoes tested, matrix compound (fat, protein, sugar), and treatments before cooking 

may have serious effects on the results of different cooking processes (Blessington et al., 
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2010). Additionally, a study showed that young potatoes have greater phenolic content 

than mature potatoes (Navarre et al., 2010) 

4.3 Effect of different frying methods on (PQA) of the potato chips 

4.3.1 Effect of frying method on moisture content of potato chips 

Table 4.9 shows the moisture loss of potato slices fried by different methods and 

oil temperatures. Different frying methods and oil temperatures affected frying time and 

therefore the frying rate. It took 120 sec at 140oC in the VF, 180 sec at 140oC in the 

DSF, and 300 sec at 165oC in the TF to produce potato chips with the same 

characteristics in terms of color and texture. 

When comparing potato slices fried under vacuum and atmospheric frying, the 

drying rate did not depend only on the temperature but also on the frying method. Potato 

slices fried under vacuum at 140°C had dried faster (Figure 4.7) than potato slices fried 

under atmospheric conditions at 165oC. The drying rate was calculated based on 16 g of 

potato slices. 

 

 

 

Table 4.9. Initial moisture content of impregnated potato slices and moisture content 

after frying for potato chips fried under different methods. 

FM Toil [
o
C] FT[s] P [kPa] 

MCi 

[%w.b.] 
MCf [%w.b.] 

VF 140 120 1.33 
77.97 + 

0.01a 1.87 + 0.01a 

DSF 140 60+120 101/1.33 77.97+ 0.01a 1.69 + 0.02a 

TF 165 300 101 77.97+ 0.01a 1.59 + 0.02a 

Test were performed in triplicate. Means with the same letter are not significantly different (p<0.05).  

FM= Frying methods; VF = Vacuum frying, DSF = dual-stage frying, TF= traditional frying. Toil= oil 

temperature, FT= frying time, P= frying pressure, MCi = initial moisture content, MCf = final moisture 

content 



 

62 
 

 

 

Figure 4.7. Drying rate of impregnated potato chips fried under different frying 

methods. 

 

 

 

4.3.2 Effect of frying method on oil content of potato chips 

One of the most important product quality factors for fried foods is oil content, 

and one of the main goals of fried foods studies and industries is to reduce the oil content 

while keeping the texture and color of fried foods.   

Moreira et al. (2009) found that 14% of the total oil content was absorbed during 

frying and 86% was absorbed during cooling for tortilla chips fried at 190oC for 60 s. 

Therefore, the de-oiling system was used in this study to reduce oil absorption of fried 

chips. According to Ravli et al. (2013), the use of the de-oiling system removed up to 
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52% of the surface oil content of sweet potato chips fried under vacuum at different 

temperatures (120, 130, 140oC) for 140s. 

The oil content for the chips fried under vacuum at 140oC (15.10% d.b.) was 

significantly lower (p < 0.05) than the oil content of potato chips fried under DS at 

140oC and atmospheric conditions at 165oC (17.63% d.b.) and (32.32% d.b.), 

respectively (Figure 4.8 and Table 4.10). 

 

 

 

 

Figure 4.8. Oil content for potato chips fried under different frying methods. 
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Table 4.10. Oil content for potato chips fried under different frying methods. 

FM Toil [oC] FT [s] P [kPa] OC [%d.b.] 

VF 140 120 1.33 15.10 ± 0.08a 

DSF 140 60+120 101/1.33 17.63 ± 0.04b 

TF 165 300 101 32.32 ± 0.10c 

Test were performed in triplicate. Means with different letter are significantly different (p<0.05).  

FM= Frying methods; VF= Vacuum frying, DSF=dual stage frying, TF= traditional frying. Toil= oil 

temperature, FT= frying time, P= frying pressure, OC= oil content. 

 

 

 

Baumann and Escher (1995) found out that higher oil temperatures caused a 

rapid progress of a solid crust and consequently surface properties that are good for oil 

absorption of chips fried under atmospheric pressure. Vacuum frying reduced oil content 

by using lower processing pressure and temperature (Da Silva and Moreira, 2008; Dueik 

et al., 2012; Garayo and Moreira, 2002; Teruel et al., 2014). 

The total oil content of the dual-stage fried chips (17.63% d.b.) was significantly 

higher (p < 0.05) than the vacuum fried ones (15.10% d.b.). Potato chips fried under the 

DS method stayed longer in the oil and had more blisters than the vacuum fried chips 

that were formed during the atmospheric frying stage.  

4.3.3 Effect of frying method on TPC of potato chips 

Figure 4.9 shows that the total phenolic content in potato chips varied among 

chips fried under the different methods. The chips fried under atmospheric condition had 

a 19% reduction TPC after frying, while potato chips fried under vacuum and in dual-

stage frying method had a 38% and 23% increase in TPC after frying, respectively 

(Table 4.11).   
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The significant diversity of phenolic compounds present in potatoes explained 

the diversification in phenols stability in fried potato chips. Phenolic acids are primarily 

found in bound form, linked to cell-wall structural components. Many types of food 

processing contributes to the release of these bounded phenolic acids, such as thermal 

processing, pasteurization, fermentation, and freezing (DeWanto et al., 2002; 

Ravichandran et al., 2012). The total phenols released from the potato during VF and 

DSF might have been more stable due the lower temperature, pressure, and frying times 

compared to the TF method.   
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Figure 4.9. Total phenolic content (TPC) of frying potato chips at different methods 

vacuum frying (VF), dual-stage frying (DSF), and traditional frying (TF). Error 

represent standard deviation (± SD). 

 

 

 

 

Table 4.11. Total phenolic content for vacuum impregnated potato slices (control) and 

potato chips fried under different frying methods. 

FM Toil [oC] FT (s) Frying Pressure 

[kPa] 

TPC  

[mgGAE/100g DW] 

Control - - - 160.27 + 5.34b 

VF 140 120 1.33 221.65 + 6.67d 

DSF 140 60+120 101/1.33 196.55 + 5.61c 

TF 165 300 101 130.50 + 7.55a 

Test were performed in triplicate. Means with different letter are significantly different (p<0.05). FM= 

Frying methods; VF= Vacuum frying, DSF= Dual stage frying, TF= Traditional frying. Toil= oil 

temperature, FT= frying time, P= frying pressure, TPC= Total phenolic content. Control is the VI potato 

slices before frying. 
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According to (Raupp et al., 2011), during hot air drying of beetroots, phenols 

degradation did not always result in the same outcomes. The differences between 

treatments, in terms of antioxidant potential, may happen from the phenomena of 

enzymatic action and/or physicochemical action, which are greatly dependent on 

temperature as well as on levels of water, oxygen, and natural compounds such as the 

phenolic constituents. 

According to Nur Arina and Azrina (2015), TPC values were higher in the fried 

Jackfruit, Breadfruit, and Cempedak, compared to the fresh samples. Phenolic content of 

foodstuff can be easily affect by temperature and the polyphenol compounds that exist in 

the oil used for frying (Ruiz-Rodriguez et al., 2007). According to Sultana et al. (2008), 

TPC of the peas, and spinach significantly increased (P < 0.05) with microwave cooking. 

Also, TPC of the carrot increased with the cooking treatments (boiling, frying and 

microwave cooking). The study explained that the cooking treatments were the reason of 

that increase, which may have caused to the extractability and bioavailability of 

antioxidants from the vegetables. TPC may increase after some food processing due to 

softening or disruption of plant cell walls and the destruction of complex phenolics 

(Bernhardt and Schlich, 2005). In another hand, some phenols are more sensitive to 

degradation than other phenols, especially with longer time exposure to high 

temperature. That explain the degradation in phenolic content of potato chips fried under 

atmospheric condition, due to the higher oil temperature (165oC), longer frying time 

(300s), and oxygen exposure. Perla et al. (2012) tested some cooking methods on potato 

such as boiling, baking, and microwaving on phenolic compounds of five different 
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cultivars. They found that the level of phenolic compounds was reduced by the three 

cooking methods, but boiling minimized those losses. The quantity and stability of 

phenolic compounds are dependent on several factors such as agriculture environment, 

harvest and post-harvest manipulations, storage conditions, and processing and cooking 

methods. 

According to Crozier et al. (1997), cooking may have a major influence on the 

phenolic acid degradation. For instance, between 75% and 80% of the initial quercetin 

content is lost in onions and tomatoes after boiling for 15 min, 65% after cooking in 

microwave oven, and 30% after frying. Other study shows that atmospheric frying 

process caused a degradation of total phenolic compounds in potato chips with losses 

below 20% in chips obtained from red flesh potatoes and up to 60% of chips gotten from 

purple fleshed potatoes (Kita et al., 2015). 

4.3.4 Effect of frying method on the bulk and true density, and porosity of potato 

chips 

Table 4.12 shows the bulk density, true density, and porosity of fried potato chips 

at three different frying methods (VF, DSF, and TF).  

The bulk density of DS and atmospheric fried chips were lower than vacuum 

fried chips. This indicates that vacuum fried chips were more compacted than the DS 

and atmosphere fried chips. Also observed by Ravli et al. (2013), the bulk density of the 

DS fried sweet potato chips was lower by 82% compared to the chips fried under 

vacuum. The porosity of the vacuum fried chips was much lower than the dual-stage 

fried chips (Figure 4.10) as was noted by Ravli et a. (2013). 
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Table 4.12. Bulk density (b), true density (t), and porosity () values for potato chips 

fried at different methods. 

FM Toil (oC) Time [s] P [kPa] b [kg/m3] t [kg/m3] 

VF 140 120 1.33 537 + 31a 1408 + 2a 0.62 

DSF 140 60+120 101/1.33 348 + 13b 1400 + 3a 0.75 

TF 165 300 101 462 + 46c 1404 + 2a 0.67 

Tests were performed in triplicate. Means within column with the same letter are not significantly different 

(p<0.05). FM= Frying methods; VF= Vacuum frying, 2SF=Two stage frying, ATM= atmospheric frying. 

b =bulk density, t = true density, and = porosity.  

 

 

 

The surface of the potato chips fried under vacuum frying contained several 

small, uniformly distributed bubbles, while the potato chips fried under atmospheric and 

dual stage pressure had less, but larger bubbles. Under vacuum frying and during the 

evacuation process, water vapor in the chip’s pores expands with little resistance because 

the crust has not yet been formed (Garayo and Moreira, 2002). On the other hand, the 

gelatinized starch and then the crust formation during traditional frying form a barrier for 

the saturated vapor to escape, thus resulting in the formation of large but few bubbles 

during frying (Kawas and Moreira, 2001). 
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Figure 4.10. Bulk density (b) values for potato chips fried at different methods. 

 

 

 

4.3.5 Effect of frying method on changing chips dimensions 

Figure 4.11 and Table 4.13 represent a comparison of the degree of shrinkage in 

diameter for potato chips fried under different frying methods. Potato chips fried under 

vacuum pressure had higher diameter shrinkage (13.07%) than potato chips fried under 

dual stage frying (12.53%) and atmospheric pressure (10.31%). However, the volume 

shrinkage of the three frying methods are not significantly different (p < 0.05). 
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Figure 4.11. Degree of shrinkage in diameter (D) of frying potato chips at different 

methods; vacuum frying (VF), two stage frying (2SF), and atmospheric frying (ATM). 

Error represent standard deviation (± SD). 

 

 

 

 

 

Table 4.13. Shrinking in diameter (D), and expanding in thickness (L) values for potato 

chips fried at different methods. 

FM D [%] L [%] 

VF 13.07 ± 2.16a 19.46 ± 0.60a 

DSF 12.53 ± 0.37a 40.59 ± 4.71b 

ATM  10.31 ± 2.29a 55.10 ± 2.36c 

Means within column with the same letter are not significantly different (p<0.05).  

FM= Frying methods; VF= Vacuum frying, DSF= dual stage frying, TF= traditional frying. D = shrinking 

in diameter, and L = expanding in thickness 
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Garayo and Moreira (2002) studied the degree of shrinkage in volume for potato 

chips fried under vacuum and atmospheric conditions. Potato chips fried under vacuum 

showed a higher degree of volume change than potato chips fried at atmospheric 

conditions. They had explained that this behavior is due to the fact the product becomes 

more rigid rapidly at a higher temperature, when fried under atmospheric frying, than 

when fried under vacuum frying which producing increased resistance to volume 

change.  

Potato chips fried at different frying methods had higher thickness than the initial 

thickness (1.60 mm) of the raw slice. Figure 4.12 and Table 4.13 show that thickness 

expansion of potato chips fried under dual-stage and atmospheric pressure were 

significantly higher (p < 0.05) than potato chips fried under vacuum pressure.  

Garayo and Moreira (2002) studied the thickness expansion between potato chips 

fried using vacuum frying and at atmospheric frying and found that chips fried under 

vacuum have less thickness expansion and several small bubbles then the atmospheric 

ones. Ravli et al. (2013) found that thickness expansion for dual-stage fried chips was 

higher than chips fried under the vacuum. 
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Figure 4.12. Degree of expansion in thickness (L) of frying potato chips at different 

methods; vacuum frying (VF), two stage frying (2SF), and atmospheric frying (ATM). 

Error represent standard deviation (± SD). 

 

 

 

4.3.6 Effect of frying method on the color of potato chips 

Figures 4.13 shows the differences in the color parameters (L*, a*, and b*) for 

the vacuum impregnated potato slices (VI) and potato chips fried at three different frying 

methods. 
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Figure 4.13. Comparison of color of vacuum impregnated potato slices (VI) and frying 

potato chips at different frying methods; vacuum frying (VF), two stage frying (2SF), 

and atmospheric frying (ATM). Error represent standard deviation (± SD). Values are 

given as mean (n= 9). 

 

 

 

The L* value points to lightness with ranges from 0 to 100 (from black to white). 

Table 4.14 shows that the VI potato slices chips were darker (L* values 26.89 ± 0.31) 

than the potato chips fried under different frying methods. The vacuum impregnated 

potato slices showed a significant difference (p < 0.05) value of L* than the potato chips 

fried under different frying methods. The atmospheric frying method improved the color 

of the impregnated potato chips in terms of lightness, due to the number of large pores in 

the potato chips surface. 
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The a* value indicates the redness, the a* value for potato chips fried under 

atmospheric frying was lower than the vacuum impregnated potato slices, and potato 

chips fried under the other frying methods (Table 4.14). The potato chips fried under 

atmospheric pressure lost the red pigment of the impregnated red beetroot solution, 

while chips fried by the vacuum frying and dual-stage methods maintained the red color 

of the red beetroot solution in the potato chips.  

For the b* values of potato chips fried under the dual-stage and traditional frying 

methods were significantly higher (p < 0.05) than chips fried under vacuum frying 

(Table 4.14). The change in color, yellowness, in fried potato chips is due to Maillard 

reaction also known as non- oxidative browning. Maillard reaction is a chemical reaction 

between amino acids and reducing sugars that gives brown color (Garayo and Moreira, 

2002). 

 

 

 

Table 4.14. Color values of vacuum impregnated potato slices and potato chips fried 

under different frying methods. 

Color values L* a* b* 

VI 26.89 ± 0.31a  31.78 ± 1.65x 12.54 ± 2.02a  

VF 34.77 ± 1.92b  23.77 ± 1.16x  11.31 ± 1.31a  

DSF 37.66 ± 1.87b  23.97 ± 2.52x  18.29 ± 1.08b  

TF 38.45 ± 4.10b 20.98 ± 1.51y 29.38 ± 1.95 c 

Means within column with different letter are significantly different (p<0.05). VI= vacuum impregnated 

potato slices; VF= Vacuum frying, 2SF=Two stage frying, ATM= atmospheric frying. L*= color values 

(black to white) points to lightness, a*= color value (green-red chromaticity), b*= color value (blue-yellow 

chromaticity) 
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4.3.7 Effect of frying method on texture of potato chips  

The effect of frying method on the potato chips texture is shown in Figure 4.14. 

Table 4.15 shows the texture results of potato chips fried under different frying methods. 

The maximum force to break the chips was found when using the traditional frying 

method. However, this value was not significantly different (p > 0.05) from those fried 

under vacuum frying and dual-stage methods.  

 

 

 

 

Figure 4.14. The effect of frying method on the potato chips texture; vacuum frying 

(VF), two stage frying (2SF), and atmospheric frying (ATM). Error bars represent 

standard deviation (± SD). Values are given as mean. 
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Table 4.15. Texture of potato chips fried under different frying methods. 

FM Toil [
o
C] FT [s] P [kPa] F [N] 

VF 140 120 1.33 2.49 ± 0.33a 

DSF 140 60+120 101/1.33 3.01 ± 0.27a 

TF 165 300 101.33 3.92 ± 0.73a 

Means with different letter are significantly different (p < 0.05). FM= Frying methods; VF= Vacuum 

frying, DSF= dual stage frying, TF= traditional frying. Toil= oil temperature, FT= frying time, P= frying 

pressure, F = force. 

 

 

 

 Granda (2006) found that there were no significant textural differences (P>0.05) 

among potato chips fried under vacuum or traditional methods. Also, Da Silva and 

Moreira (2008) measured the texture of blue and sweet potato, green bean and mango 

chips. They found no significant different on the force required to break the samples 

(P>0.05) when frying under vacuum and atmospheric pressure.  

The variation in texture data is due to numerous reasons, including the shape of 

the samples (some samples were a little not uniform), unnoticed cracks, and the degree 

of puffiness. The surface of the potato chips fried under vacuum frying method had 

several small bubbles, which make the surface of the chips uniform. In the other hand, 

the potato chips fried under traditional and dual-stage frying methods were not uniform 

as also observed by Garayo and Moreira (2002).   

4.3.8 Effect of frying method on sensory quality of potato chips  

Figure 4.15 shows the scores of sensory evaluations of that potato chips fried 

under the different frying methods. Scores equal or higher than 5 were considered 

acceptable, based on the nine-point hedonic scale (Carr et al., 1999) The potato chips 
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fried under the three different frying methods obtained scores above 5 (acceptable) in 

every category offered to the panelists in terms of appearance, color, odor, texture, 

flavor, and overall quality. The potato chips fried under atmospheric pressure obtained 

the lowest scores for the flavor category, because those chips tasted as overcooked by 

the panelists. 

Potato chips fried under vacuum and dual-stage frying methods were 

significantly more acceptable (p > 0.05), in terms of flavor and overall quality than the 

potato chips fried under atmospheric pressure (Table 4.16). The texture scores among 

the different frying methods show no significant different (p > 0.05). 

In summary, all potato chips fried under different frying methods were 

acceptable by the consumer panelists. However, potato chips fries under vacuum and 

dual-stage frying were more acceptable than the potato chips fried under atmospheric 

pressure. 
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Figure 4.15. Sensory evaluation for potato chips fried under different frying methods; 

vacuum frying (VF), two stage frying (2SF), and atmospheric frying (ATM). Error 

represent standard deviation (± SD). Values are given as mean (n= 30). 

 

 

 

 

Table 4.16. Sensory evaluation for potato chips fried under different frying methods. 

FM Appearance Color Odor Texture Flavor 
Overall 

quality 

VF 8.30 ± 1.49b 8.50 ± 0.50b 7.50 ± 

1.63a,b 

7.70 ± 

1.95a 

7.10 ± 

1.64b 

8.03 ± 

0.95b 

DSF 
7.80 ± 

1.17a,b  

8.00 ± 

0.77a,b 8.00 ± 1.10b 8.20 ± 

1.17a 

7.20 ± 

1.94b 

7.80 ± 

0.75b 

TF 7.50 ± 0.81a 7.80 ± 1.25a 6.90 ± 2.02a 8.40 ± 

0.92a 

5.00 ± 

2.28a 

6.60 ± 

1.36a 

Means within a column with different letter are significantly different (p < 0.05).  FM= Frying methods; 

VF= Vacuum frying, DSF=dual-stage frying, TF= traditional frying.  
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Figure 4.16 shows the images of different potato samples, raw and fried at 

different frying methods. Figure 4.16a displays the deep red color of the vacuum 

impregnated potato slices. Figures 4.16b and 4.16c show that vacuum frying and dual-

stage methods maintained the red color of the red beetroot solution in the potato chips. 

However, for potato chips fried under atmospheric frying (Figure 4.16d), they have an 

orange like color caused by oxidation during the frying process.  

The surface of the potato chips fried under vacuum frying pressure (Figure 

4.16b) shows less expansion and several small bubbles. The potato chips fried under 

atmospheric pressure (Figure 4.16d) and under dual-stage pressure (Figure 4.16c) have 

less, but larger bubbles. The bubble formation at the surface of the fried chips depends 

on gas expansion inside the pores and the volume shrinkage results from water transfer 

within the product. 

These results agree with the sensory evaluation results, which show that potato 

chips fried under vacuum and dual-stage frying methods were significantly more 

acceptable (p < 0.05), in terms of overall quality than the potato chips fried under 

atmospheric pressure. 
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Figure 4.16. Color differences among raw potato slices and potato chips. (a) Vacuum 

impregnated potato slices (VI); (b) vacuum fried potato chips (VF), (c) dual-stage fried 

potato chips (DSF), and (d) traditional fried potato chips (TF). 
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CHAPTER V 

CONCLUSIONS 

This study focused on evaluating the feasibility of using vacuum impregnation 

technique to enrich potato chips with a phenolic component of red beetroot as a 

pretreatment to frying processes. 

The vacuum impregnation variables such as impregnation solution concentration, 

vacuum and restoration times, and pressure were evaluated to find the best pre-treatment 

to obtain high-quality fried potato chips.  

The effect of vacuum frying temperature and time on potato chips were evaluated 

based on product characteristics such as moisture loss, oil absorption, and total phenolic 

content to find the best vacuum frying temperature and time to obtain high-quality of 

potato chips. 

Three different vacuum frying methods, vacuum, dual-stage, and traditional 

frying, were used to evaluate potato chips quality attributes and sensory analysis.  

These parameters were important to determine the best quality of potato chips. A 

de-oiling system was used to remove the oil at the surface of the chips before cooling. 

The main results obtained in the study were:  

 Solution absorption during VI decreased as the solution concentration increased. 

 The solution Brix increased as the solution concentration increased, thus causing 

some of the water to leach out from the potato slices.  
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 The best pre-treatment to enrich the potato slices with phenolic content of red 

beetroot solution were 7% of impregnation solution concentration at 600 mmHg 

pressure and 10 minutes of vacuum pressure and 10 minutes atmospheric 

restoration. 

o The best restoration time was 60 min. The product lost, in average, 

15.06% + 2.26 of its water during the VI treatment, however, the SG 

values varied greatly showing little solid gains or solid losses  

 The oil temperatures influence the moisture content of potato slices during 

vacuum frying differently.  

o The chips fried at 120 and 140°C lost moisture faster than the chips fried 

at 110°C. 

 The chips’ oil content increased as frying time increased within the first 80 

seconds for 140°C and 120°C temperatures 

o Frying at 140°C made the chips to absorbed more oil with maximum 

value of 16% d.b. 

 The TPC of the potato chips fried under vacuum increased as frying time 

increased until reached the maximum TPC by half way during frying. 

o Frying vacuum impregnated potato slices at 140oC produced potato chips 

with 33% more TPC than the raw potatoes. 

o Potato chips fried at 140°C were showing more increase in TPC than 

chips fried at 120°C and 110°C.  
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o The TPC in chips process with longer exposure to heat, decrease for all 

different frying temperatures. 

 Different frying methods and oil temperatures affected the frying rate; it took 120 

sec at 140oC during VF, 180 sec at 140oC during DSF, and 300 sec at 165oC 

during TF to produce potato chips with the same characteristics in terms of color 

and texture. 

 Frying methods affected (p < 0.05) the oil content in fried potato chips.  

o The oil content for the chips fried under vacuum at 140oC (15.10% d.b.) 

was significantly lower (p < 0.05) than the oil content of potato chips 

fried under DS at 140oC and atmospheric conditions at 165oC (17.63% 

d.b.) and (32.32% d.b.), respectively. 

 The TPC of chips fried under traditional method was the lower in comparison 

with other methods (130.50 + 7.55 mg GAE/100g DM).   

o Potato chips fried under vacuum presser show higher total phenolic 

content (221.65 ± 6.67 mg GAE/100g) than the vacuum impregnated 

potato slices (160.27 ± 5.33 mg GAE/100g DM). 

o The potato chips fried under dual stage frying method shows lower total 

phenolic content (196.55 ± 5.61 mg GAE/100g DM) compared with the 

chips fried under vacuum pressure, however it shows higher total 

phenolic content than the vacuum impregnated potato slices. 

 The bulk density of dual stage and traditional fried chips were lower than the 

vacuum fried chips. 
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o The dual stage and traditional fried samples were more porous than 

vacuum fried samples, which resulted in a lighter color.  

o The porosity in potato slices increased as the bulk density decreased. 

 Potato chips fried under vacuum pressure had higher diameter shrinkage 

(13.07%) than potato chips fried under dual stage frying (12.53%) and 

atmospheric pressure (10.31%). 

 Potato chips fried at different methods had higher thickness than the initial 

thickness (1.60 mm) of the raw slice.  

o That thickness expansion of potato chips fried under dual stage and 

traditional pressure were significantly higher (p < 0.05) than potato chips 

fried under vacuum pressure.  

 Color a* (redness) significantly decreased (p < 0.05) and the color b* 

(yellowness) significantly increased (p < 0.05) in potato chips fried at traditional 

method comparing with the control and other frying methods. 

 Texture (the maximum force to break the chips) was 3.92 ± 0.73 N for chips fried 

under traditional frying method.  

o There was no significantly different (p > 0.05) in texture between the 

different frying methods.  

 Potato chips fried under the three different frying methods obtained scores above 

5 (acceptable) in every category offered to the panelists.  
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o Potato chips fried under vacuum and dual-stage frying methods were 

significantly more acceptable (p < 0.05), in terms of flavor and overall 

quality, than the potato chips fried under traditional method. 

o The texture scores among the different frying methods show no 

significant differences (p > 0.05).  

 Overall, the best technique of enriched potato chips is when using 7% 

concentration of beetroot solution at 600 mmHg vacuum pressure for 10 min, and 

60 min restoration time as a pre-treatment  

The best fryer technique was frying VI potato slices at 1.33 kPa for 120 sec at 

140°C to improve total phenolic content, color, flavor, and, and reduce the oil content in 

the final product. 
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CHAPTER VI 

RECOMMENDATIONS FOR FURTHER STUDY 

Recommendations for future research on enriched frying of vegetable-based 

chips include: 

 

 Study the possibility of reuse the beetroot solution many times to impregnate the 

potato chips to lower preparation costs.  

 Study the raw material characteristics such as porosity, size, and shape to 

improve vacuum impregnation technique. 

 Provide a broader study in vacuum impregnation area, considering the factors 

affecting the tissue material such as the differences in porosity and rigidity. 

 Evaluate the effect of potato variety on pre-treatment (vacuum impregnation) and 

frying parameters and the product quality attributes. 

 Study the effect of vacuum impregnation and vacuum frying in other vegetables 

and fruits. 

 Determine the phenolic content of enriched potato chips by using HPLC analysis 

method. 

 Study the bioavailability of phenolic compounds and antioxidant effects of 

enriched potato chips. 

 Determine the nitrate content of enriched potato chips. 

 Study the effect of the total phenol content present in the oil used for frying.  
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 Provide more research studies in dual-stage frying method 
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Vidal, D., 2001. Vacuum impregnation and osmotic dehydration in matrix 

engineering Application in functional fresh food development. Journal of Food 

Engineering 49, 175-183. 

Fito, P., Pastor, R., 1994. Non-diffusional mechanisms occurring during vacuum osmotic 

dehydration. Journal of Food Engineering 21, 513–519. 

Friedman, M., 1997. Chemistry, biochemistry, and dietary role of potato polyphenols.A 

Review. Journal of Agriculture and Food Chemistry 45, 1523e1540. 



 

94 
 

 

Gamble, M.H., Rice, P., Selman, J.D., 1987. Relationship between oil uptake and 

moisture loss during frying of potato slices from the U.K. tubers. International 

Journal of Food Science and Technology 22, 233-241. 

Garayo, J., 2001. Production of low-fat potato chips using vacuum frying. Texas A & M 

University, College Station, TX. 

Garayo, J., Moreira, R., 2002. Vacuum frying of potato chip. Journal of Food 

Engineering 55, 181–191. 

Georgiev, V.G., Weber, J., Kneschke, E.M., Denev, P.N., Bley, T., Pavlov, A.I., 2010. 

Antioxidant activity and phenolic content of betalain extracts from intact plants 

and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. 

Plant Foods Hum Nutr 65, 105-111. 

Granda, C., Moreira, R.G., Tichy, S.E., 2004. Reduction of Acrylamide Formation in 

Potato Chips by Low-temperature Vacuum Frying. Journal of food science 69. 

Granda, C.E., 2006. Kinetics of acrylamide formation in potato chips, Biological and 

Agricultural Engineering. Texas A&M University, College Station, Tex. 

Gras, M.L., Vidal, D., Betoret, N., Chiralt, A., Fito, P., 2003. Calcium fortification of 

vegetables by vacuum impregnation. Intercations with cellular matrix. Journal of 

Food Engineering 56, 279-284. 
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APPENDIX B 

 

Effect of frying time and oil temperature on the moisture content, oil content, and total 

phenolic content of impregnated potato chips fried under vacuum at 110 °C 

 

Toil [
o
C] FT[s] MC% [%w.b.] OC [%d.b.] 

TPC  

[mgGAE/100g DW] 

110 720 1.04 + 0.12 9.31 + 0.34 117.89 + 7.96 

 600 1.10 + 0.07 10.08 + 0.55 136.78 + 11.01 

 480 1.30 + 0.20 10.90 + 0.92 144.06 + 11.94 

 360 1.72 + 0.15 8.65 + 0.63 146.27 + 7.46 

 300 2.12 + 0.10 8.39 + 0.11 152.73 + 2.70 

 240 2.72 + 0.20 8.59 + 0.40 130.77 + 3.42 

 180 9.01 + 2.73 8.24 + 0.46 135.41 + 3.25 

 140 23.62 + 2.38 7.24 + 0.65 133.82 + 2.62 

 120 27.47 + 7.90 6.82 + 0.91 115.81 + 6.31 

 100 35.46 + 9.90 7.50 + 0.34 124.58 + 9.83 

 80 45.45 + 8.96 7.68 + 1.33 136.08 + 4.04 

 60 50.19 + 6.51 6.93 + 1.09 132.77 + 6.91 

 40 59.51 + 3.87 7.68 + 0.14 130.03 + 3.76 

 20 64.91 + 2.85 5.87 + 0.71 105.24 + 0.18 

 0 75.80 + 0.74 - 137.88 + 8.52 
Toil= oil temperature, FT= frying time, MC = moisture content, OC= oil content, TPC= Total phenolic 

content. 
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Effect of frying time and oil temperature on the moisture content, oil content, and total 

phenolic content of impregnated potato chips fried under vacuum at 120 °C 

 

 

Toil [
o
C] FT[s] MC% [%w.b.] OC [%d.b.] 

TPC  

[mgGAE/100g DW] 

120 600 0.73 + 0.03 11.96 + 0.78 128.03 + 16.68 

 480 0.71 + 0.14 12.72 + 0.84 171.52 + 16.76 

 360 1.01 + 0.18 12.68 + 1.05 196.75 + 17.93 

 300 1.10 + 0.13 10.40 + 1.15 158.02 + 11.32 

 240 1.20 + 0.14 11.50 + 1.29 192.78 + 22.20 

 180 1.88 + 0.30 11.63 + 1.09 207.47 + 16.81 

 120 5.08 + 1.22 12.58 + 1.21 161.18 + 14.43 

 80 19.76 + 4.43 12.22 + 0.93 172.63 + 15.53 

 60 28.72 + 6.78 11.88 + 0.67 142.72 + 13.01 

 40 53.52 + 0.65 9.63 + 0.65 137.09 + 17.46 

 20 58.03 + 3.21 8.94 + 0.63 114.53 + 20.18 

 0 77.58 + 1.33 - 173.52 + 26.36 
Toil= oil temperature, FT= frying time, MC = moisture content, OC= oil content, TPC= Total phenolic 

content. 
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Effect of frying time and oil temperature on the moisture content, oil content, and total 

phenolic content of impregnated potato chips fried under vacuum at 140 °C 

 

 
Toil= oil temperature, FT= frying time, MC = moisture content, OC= oil content, TPC= Total phenolic 

content. 

 

 

 

 

 

 

 

 

 

 

Toil [
o
C] FT[s] MC% [%w.b.] OC [%d.b.] 

TPC  

[mgGAE/100g DW] 

140 480 0.51 + 0.04 12.12 + 0.81 174.91 + 13.01 

 360 0.66 + 0.06 14.41 + 0.56 208.30 + 8.65 

 300 0.84 + 0.09 13.42 + 0.40 187.05 + 15.69 

 240 0.90 + 0.05 12.16 + 0.50 188.35 + 8.76 

 180 1.12 + 0.06 12.21 + 0.42 231.89 + 12.57 

 120 1.37 + 0.05 13.61 + 1.15 255.81 + 10.00 

 80 6.82 + 0.35 15.80 + 0.51 183.25 + 13.55 

 60 17.77 + 4.75 15.33 + 1.28 180.52 + 15.43 

 40 47.21 + 3.14 13.14 + 1.51 179.02 + 9.44 

 20 53.47 + 1.21 12.99 + 0.67 179.01 + 9.76 

 0 81.18 + 0.86 - 201.31 + 12.27 


