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ABSTRACT

Between appointments, healthcare providers have limited interaction with their

patients, but patients have similar patterns of care. Medications have common side

effects; injuries have an expected healing time; and so on. By modeling patient

interventions with outcomes, healthcare systems can equip providers with better

feedback. In this work, we present a pipeline for analyzing medical records according

to an ontology directed at allowing closed-loop feedback between medical encounters.

Working with medical data from multiple domains, we use a combination of data

processing, machine learning, and clinical expertise to extract knowledge from patient

records. While our current focus is on technique, the ultimate goal of this research is

to inform development of a system using these models to provide knowledge-driven

clinical decision-making.
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1. INTRODUCTION

1.1 Overview

Hand-written medical patient records have been almost completely replaced by

digital storage. Electronic medical record systems (EMRs) offer many advantages

over paper files in terms of size, speed, management, and aggregated reports [1].

When available, large medical digital data sets have provided a wealth of machine

learning data for researchers to use in recent years, and great advancements have been

made in areas like gene sequencing and computer-aided diagnosis (CAD) systems [2,

3]. These tools can certainly help doctors provide better care, but the application of

advanced modeling and data science algorithms remains largely unexplored regarding

the practice of medicine in outpatients. In such cases, a patient is discharged with

instructions and suggestions for follow-up visits, but left on their own to report

outcomes [4, 5]. As a result, outcomes of care are rarely communicated [6], and even

if they are, they may be narrowly focused and limited in scope [7, 8]. Generally,

results are reconstructed during subsequent encounters, which can leave health care

delivery under-informed. Capturing outcomes of care systematically could provide

better information and save time during follow-up visits, where studies have shown

that nearly 50% of the time physicians spend in the office is spent on electronic

record keeping and paperwork [9, 10].

Patient records are comprised of structured and unstructured text components,

a growing volume of knowledge reflected in the diversity of patient care. However,

utility is limited by the constraints of rigid standards for claims reimbursement, in-

consistent documenting practices, and federal law. In the United States, the Health

Insurance Portability and Accountability Act (HIPAA) limits the ability of health
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care providers to spread protected health information (PHI), and the cost of viola-

tions can be very high, including hundreds of thousands of dollars and prison time

[11]. As a result, any medical data used for research must be rigorously reviewed for

release, and availability often remains restricted. Another barrier is the preponder-

ance of free text in medical records, driving a need to support identifying structure

in clinical text which has long been recognized as a prerequisite to algorithmic anal-

ysis [12]. Most machine learning techniques also require labeled data for training,

so the lack of annotated clinical text for natural language processing (NLP) remains

another restraint [13].

1.2 Research Questions

In this work, we will focus on the development of a cross-domain proof-of-concept

methodology for organizing and processing electronic medical records so that outcomes-

oriented data can be automatically extracted. In part, our motivation is to help

reduce the time spent managing records and reconstructing outcomes of former en-

counters. We also wish to alleviate some of the existing limitations in research

involved medical data with the development of an ontology-driven redaction engine

to support end-to-end processing of patient records and an annotated corpus for ma-

chine learning tasks related to interventions and outcomes of care in clinical text.

Together, these concerns form the basis of a pipeline with the potential to revolu-

tionize care plan management through better reporting of outcomes. Identifying the

symptoms of surgical site infections or recognizing the need to discontinue a certain

medication due to side effects are just two simple examples illustrating the value of

closed-loop outcomes-oriented feedback.

This work is centered around answering the following research questions:

2



1. Can cross-domain medical records be encoded in a single, feedback-based on-

tology representing outcomes-oriented concerns?

2. What features are necessary to divide patient records into related segments of

episodes of care?

3. Can we extract interventions and, in particular, outcomes data from free med-

ical texts in the absence of a structured record?

1.3 Outline

The remaining content is outlined sequentially, matching the order of exploratory

efforts undertaken to answer each of these questions. First, in Chapter 2, is a com-

mon background providing an overview of related and prior work to each task in the

pipeline: ontology development, pre-processing and redacting of medical data, struc-

tured record analysis, and clinical text annotation and mining. Then, our methodolo-

gies, including the most relevant literature, and evaluations are provided in greater

detail for each task. Chapter 3 discusses the necessary, underlying ontology which

is used to inform all later outcomes-oriented development, alongside the competency

questions it seeks to answer. Chapter 4 describes the pre-processing our data un-

derwent, ontology-driven redaction, and the clinical validation of the cleaned data.

In Chapter 5, a set of analyses of the structured portion of the data is assessed.

The unstructured text, which holds some of the richest source of outcomes-oriented

information, is the subject of a number of studies, annotations, and evaluations in

Chapter 6. Ongoing work, future avenues of research, and ideas for potential appli-

cations are reviewed in Chapter 7. Finally, we close in Chapter 8 by revisiting the

research questions in the context of our findings before moving on to an overview

and general conclusion. Appendices and references comprise the final pages.
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2. BACKGROUND

Some motivating works for analyzing outcomes of care with more computational

vigor have been shared in the previous section. In general, the literature recognizes

the current methods of recognizing outcomes are limited; they are either rarely cap-

tured from the patient or not well-documented in the EMR [5, 4, 8, 14, 7]. We turn

to ontologies, which are models defined by formal terms and relationships, to assist

in the task of better documenting outcomes in existing records. An ontology allows

cleaning the data in such a way that supports algorithmic analysis. In this section,

we provide background on each of the relevant tasks.

2.1 Ontologies and Biomedical Informatics

One of the more fundamental aspects of recent biomedical informatics research

has been a focus on ontology-driven development [15, 16, 17, 18, 19, 20, 21]. In a

domain like healthcare – where information is dense, diverse, and specialized – an

ontology allows representing knowledge in a usable manner, because it describes a

framework for clearly defining known terms and their relationships [22, 23, 24, 25, 26].

Once the data has been formally described via an ontology, new applications become

apparent. To provide several examples, simply by formalizing electronic records as

an ontology, researchers have shared better ways to represent patient care profiles

[27], perform risk assessment [28], evaluate elderly care [29], and more [30, 31].

The greatest promise lies in ontology-driven computational models, where the

structure of an ontology makes the data accessible to programmatic operations. Per-

haps the best known example is computer-aided diagnosis (CAD), in which a com-

puter analyzes patient data to generate a patient diagnosis [32, 33, 34]. Biomedical

informatic researchers have explored other applications as well, such as identifying
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groups of similar patients [35], mining for co-morbidities [36], enabling improved

management of Parkinson’s disease [37], and automatically assisting with patient

care coordination based on free text [38], to name just a few specific examples.

2.2 Redaction of Medical Records

Knowledge buried in medical text is valuable, but protection of Protected Health

Information (PHI) is a special concern when dealing with medical records data as it

is protected by law [19]. Appropriately, many efforts have been made to build reliable

de-identification pipelines. Most existing methods rely on rule-based systems that

match patterns and dictionaries of expressions that frequently contain PHI. Sweeny

built one such tool called Scrub, which uses templates and a context window to

replace PHI [39]. Datafly, another program developed by Sweeny, offers user-specific

profiles, including a list of preferred fields to be scrubbed [40]. Thomas developed a

method that uses a lexicon of 1.8 million names to identify people along with “Clinical

and Common Usage” words from the Unified Medical Language System (UMLS) [41].

Miller developed a de-identification system for cleaning proper names from records of

indexed surgical pathology reports at the Johns Hopkins Hospital [42]. Proper names

were identified from available lists of persons, places and institutions, or by their

proximity to keywords, such as “Dr.” or “hospital.” The Perl tool Deid is a recent

development which combines several of these rule-based and lexical approaches with

some additional capabilities like better handling of time [43]. Rule-based approaches

have been widely used with good success, but there are alternatives. For instance,

Dernoncourt applied recurrent neural networks to the task of identifying PHI to

remove the need for large dictionaries [44]. South introduced “pre-annotation” to

improve retention of some information content, breaking down all PHI by type in

detail, a necessary aspect of redacting while retaining value [45].
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2.3 Medical Records Analytics

In [46], the authors suggest some approaches researchers can use to help miti-

gate the lack of medical data available, among them being the suggestion to release

clearly-annotated data, but as described in [47], annotation can be time-consuming,

difficult, and narrowly-targeted. To provide just a few examples, consider some ex-

isting corpora: [48] focused on identifying terms related to ovarian cancer; [49] looks

specifically at medications; [50] developed a data set for improving part-of-speech

tagging on medical text; [51] looks at temporal relationships; and [52] use annota-

tion to improve co-reference resolution. These works and their respective data sets

have been undeniably influential and beneficial to the research community, but there

continue to be gaps in supporting generalizable solutions to multiple domains. Some

works have addressed generalization by providing more comprehensive sets of patient

records [53] or with a prescriptive framework for annotation [54, 55, 56, 57]. Even

with experts and annotation software, there is still the difficulty of creating general-

izable annotation schema. The authors of [57] and [55] explain well their annotation

schema, but the approach used in [58] is particularly memorable because it utilizes

an existing ontology, as we too rely on an ontology for structure.

Of particular interest to this work is text processing which seeks to extract rele-

vant information from free medical texts like clinical notes and discharge summaries.

As with the structured record, extracting this information following an ontology

presents many new applications, but there is a prerequisite challenge of recogniz-

ing the data in the first place since it is not necessarily elsewhere in the patient file

[13, 47]. Many biomedical informatics researchers have tackled parts of this problem,

be it in the form of algorithms, toolkits, or ideas. In [33], the authors use random

forest classifiers to weight sentences from clinical notes as relevant to diagnosis or
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not. The authors of [34] use bag-of-words features to assist the prediction of presence

of cancer. More related to our proposed approach, [38] develops an ontology to define

care-related terms and extracts types of care “activities” from clinical notes using

regular expressions. The Clinical Language Annotating, Modeling, and Processing

Toolkit (CLAMP) has also been used extensively on clinical texts and discharge

summaries [59]. CLAMP’s pipelines are generally built around conditional random

fields (CRFs) or Neural Networks (NNs) to support tasks like semantic role labeling

or entity recognition [60, 61, 62, 63].

CRFs, which are similar to Hidden Markov Models (HMMs), and NNs are a

common approach to automatic text annotation [64, 65, 66, 67]. A CRF essentially

describes a set of states and learns the likelihoods of transitioning among them [62].

These models rely on a number of practices from natural language processing (NLP)

to develop their features. Prominent features are topological in nature. These are

the word itself, case, part-of-speech (POS), root word, suffix, or other characteristics.

Additional features include semantic labels, n-gram overlap, hyponymy, hypernymy,

and other relationships.

Our efforts builds on many of these works. For instance, feature encoding of

medical terms will be used to inform computational methods at later stages in our

pipeline [30, 68]. Applications like prediction of clinical events or association rule

mining will be tied to outcomes-oriented feedback [36, 69]. The overarching goal

of detecting outcomes-oriented feedback appears very rarely in related literature.

Ontology reference tools like “Ontobee” show that certain outcome terms exist in

certain ontologies [70], but their use is limited. In [71], the authors discuss the value

of assessing outcomes, and while they present an objective technique, there is no

ontology encoding. The need to report outcomes is motivated in [72], but rather

than attempting to capture information automatically, only a means of describing
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adverse outcomes is presented. Our strategy is to encode both positive and negative

outcomes in an ontology which can bind outcomes automatically to a care encounter,

informing later encounters and closing the feedback loop between encounters.
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3. INTEGRATED OUTCOMES ONTOLOGY

While not the emphasis of this work, all subsequent steps build on the outcomes-

oriented ontology developed to answer our research questions. An ontology is useful

prior to working with data because it formalizes the desired structures and smooths

the cleaning and pre-processing steps. We present the “Integrated Outcomes” ontol-

ogy (IOO), so-named for its prominent feedback loop tying outcomes to subsequent

encounters, according to roles, encounters, interventions, and outcomes. Most

of these components are measurable parts of the medical record and form the basis

of the relationships governing the ontology.

3.1 Ontology Competency Questions

A set of core competency questions was used to develop IOO:

1. Can the actors filling the following roles be identified for each encounter?

2. Can related encounters be identified, distinguished and worked with program-

matically independent of unrelated encounters?

3. Can the intervention(s) of the encounter be identified, specifically those related

to outcomes that determine whether care should be continued or altered?

4. Can the outcomes related to the specific interventions above be identified, dis-

tinguished and worked with programmatically independent of unrelated out-

comes?

5. Among the outcomes related to the relevant interventions, can the intended

outcomes be identified and differentiated from unintended outcomes? Also can
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potential outcomes be identified and distinguished from actual outcomes that

have occurred?

6. Can therapy change interventions be classified as one of initiate, continue, alter,

or discontinue therapy?

7. Can sub-classes of therapy be identified, distinguished and worked with pro-

grammatically with regards to specifically related outcomes (e.g, medication,

bandaging, preventative, exercise, diet, procedure, etc.)?

Corresponding ontological elements were selected around being able to answer

one or more of the posed questions:

• Roles – #1

• Encounters – #2

• Interventions – #3, #6, and #7

• Outcomes – #4, #5, and #7

Notice that several of the questions incorporate programmatic analysis. While

the programmatic portion is not covered in this chapter, later methods and results

will relate back to the IOO competency questions. These competency questions

associated with our earlier research questions to a certain extent as well, which will

become more apparent throughout our methodology.

Before discussing each aspect in greater detail, we should note that IOO is not

intended to capture all the information in a medical record. Many existing ontologies

have been shared which attempt to formalize as much data from as many sources as

possible, as in [22] or [73]. IOO is designed to be as simple as possible to support

10



identifying outcomes, but this means not all information is saved. What is saved may

be reduced in complexity for the purposes of IOO’s modeling. This was a deliberate

choice made to promote generality and scalability over a complex ontology that can

store all necessary information standing alone. In other words, IOO is intended

enable outcomes-oriented decision making in multiple medical domains, not describe

the structure for general EMR data.

3.2 Roles

For our purposes, a “role” is a living entity who fills a position relative to another

role and affects or is affected by other entities. There are many roles in medical data

– doctors, receptionists, patients, insurance claims processors, family, therapists, and

many more. In [31], the authors compile a list of 220 roles from seven ontologies,

finding that any single one is inadequate at covering all roles. As stated, IOO’s

simple design precludes the need to represent all 220 roles. For codifying outcomes

of care, we define only three distinct roles.

3.2.1 Patient

The first and most obvious role is the patient. A patient is critical because he

or she is the one who receives medical intervention and experiences outcomes. For

each record, a patient is a unique entity; a different patient would be the focus of a

different record. Patients are the only unique role.

3.2.2 Observing Caregiver

The observing caregiver may also be called the “outcome observer.” This is the

person recognizing an outcome has occurred, either desirable or not. In certain

domains, this will be the patient. In others, e.g. veterinary care or pediatrics, there

will likely be someone else acting as the observing caregiver. The caregiver is vital in
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regard to outcomes because he or she reports them. The interval between encounters

may also be heavily influenced by the observing caregiver because the time taken to

observe the outcome and the time taken for the outcome itself will differ. When

there is only the patient, the outcome may be observed more immediately. There

may be multiple observing caregivers for a single patient.

3.2.3 Prescribing Provider

The provider is the medical entity prescribing an intervention which will lead

to an outcome. This can be a doctor, nurse, therapist, or some other professional

who has interacted with the patient and/or observing caregiver during an encounter.

As with the observing caregiver, there may be multiple prescribing providers for a

patient, and often, there will be because different doctors or clinics may treat the

same patient depending on the current condition.

3.3 Encounters

An “encounter” is an interaction between a patient and/or observing caregiver

and a prescribing provider. Usually, this will be an in-person visit at a clinic, although

encounters may take other forms of client communication. Because the encounter

describes the interaction between several roles, it contains the medical interventions

that will lead to outcomes.

Sequences of encounters also have an interesting relation since they may be tied

together with manifestations of an outcome. “Episodes” of encounters, which are sets

of encounters grouped by a similar problem and, therefore, similar interventions, will

internally be linked by outcomes. Episodes usually change for different problems

because the expected outcomes will likely also change. Thus, between episodes,

encounters are not typically linked by outcomes.
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Figure 3.1: The feedback-based ontology showing support for outcomes of care,
including roles and interventions.

3.4 Interventions

The “intervention” is some form of medical prescription given by the prescribing

provider. Most often, this will be medicine, but it can also be a therapy, dietary

change, or some other restriction. Interventions have the greatest potential to be

affected by capturing outcomes in a feedback loop because they are most-closely

linked to outcomes. Interventions should both be informed by the previous outcome

and lead to the next.
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For the purposes of IOO, interventions are contained within encounters, which

are linked by outcomes. Thus, we can describe the effect of the outcome on the next

intervention by breaking down interventions into four classes:

• Initiate Therapy - Changed from no previous to a new intervention

• Continue Therapy - Unchanged between encounters

• Alter Therapy - Changed from a previous intervention to a new, different in-

tervention

• Discontinue Therapy - Changed from a previous intervention to no intervention

Each class is straightforward except Alter Therapy. Several instances of altering

a therapy exist, ranging from changing only the dosage or specific type of therapy

all the way to prescribing a completely different medicine.

3.5 Outcomes

The final important component of IOO is the “outcome” itself. An outcome

is the result of an intervention; it may be desirable or undesirable. We consider an

outcome to be observable since generally the intervention is effective and the outcome

is probably desirable or a complication occurs and the outcome is not. In either case,

the change or lack thereof would be observed.

Outcomes are associated with an interval of time from the intervention. These are

typically difficult to locate in EMRs because they are pieced together during the next

encounter rather than saved to the system in real time. Similarly, outcomes may not

be stored in any structured part of an EMR, appearing only in the clinical notes or

presenting complaint of a subsequent visit. IOO was motivated largely by the need to

identify outcomes in existing EMRs. Its formality will help support machine learning
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techniques that can automatically learn outcomes and their intervals, promising new

ways of augmenting clinical decision making.

At this point, we have walked through all the major parts of IOO. The complete

ontology is shown, including a more graphical display of the relationships, in Figure

3.1. We hope that the intervention and outcome sections have helped illustrate the

value of an ontology like IOO. It is true that some existing works have considered

outcomes, like the reporting system in [72] or the prescriptive framework in [71], but

even when the authors have had similar goals to our work, like the ontology-driven

clinical text mining system in [33], they focus on diagnoses over outcomes due to the

popularity of computer-aided diagnosis today.
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4. PRE-PROCESSING*

Medical health records data has immense potential for research in furthering the

field of automated healthcare. Like all data, in order to be analyzed more rigorously,

it must be pre-processed, a series of steps comprised of cleaning and normalizing the

digital record. One of the challenges facing biomedical informatics is the dissemina-

tion and sharing of digital records for research due to the additional strict regulations

regarding patient confidentiality. Protecting private health information (PHI) is a

critical responsibility of health care providers, with the U.S. Health Insurance Porta-

bility and Accountability Act (HIPAA) outlining a number of principles. Removing

PHI can also mean removing critical parts of a record, so building redaction tech-

niques that preserve as much information about the original data as possible while

still retaining anonymity is an important pre-processing step.

First, we will provide an overview of the data sources used throughout the re-

mainder of this project. Next, we will turn to the pre-processing steps which are

predominantly built around an ontology-driven redaction procedure built in Python.

4.1 Data Sources

IOO was designed to support multiple EMRs. Our current pipeline has been de-

ployed on two existing data sets, one veterinary and the other hospice care. Ongoing

works will feature other domains like community health providers and hospitals.

*Portions of this chapter reprinted with permission from “Role-Preserving Redaction of Medical
Records to Enable Ontology-Driven Processing” by Polsley et al., 2017. Proceedings of BioNLP
2017, 194-195, Copyright 2017 by ACL [74].
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4.1.1 Veterinary Care

The larger of our two data sets, the veterinary care records were provided by

the Texas A&M Veterinary Medical Teaching Hospital (VMTH) in College Station,

TX. The EMR, formally the VMTH Medical Information System, is called VMIS

for short and was developed in-house by the university before digital records were

commonly used. VMIS features files for approximately 300,000 patients, including

digitized records dating back to the 1970’s, over half a million appointments, and

gigabytes of medical text. For the remainder of the text, the veterinary care data

will be referred to as VCD for simplicity.

Despite that all of our other data regards human-centered care, we consider vet-

erinary care an important component of this work. The One Health Initiative1 is

a growing idea in health fields, and one of its stated goals is to encourage collab-

orative research across veterinary and human disciplines. While we are not yet to

explicit applications, one small example of the benefit of a One Health perspective

is the ability to completely model zoonotic diseases [75, 76, 77, 78, 79]. These dis-

eases spread from animals to humans, and they are gaining particular attention from

mosquito-borne pandemics like Zika [80, 81, 82] but also consider diseases originating

in companion animals [83]. All of our data is run through the same pipeline, so we

expect to explore unique interactions between veterinary and human data at a later

time.

4.1.2 Hospice Care

Our hospice care data, HCD for consistency, is provided by the Hospice Bra-

zos Valley (HBV) clinic in Bryan, Texas. The data provided includes nearly 8,000

1http://www.onehealthinitiative.com
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patients, each with regular in-home visits from nurses and doctors, totalling to en-

counters and interventions in the tens of millions. Hospice is a slightly distinct

domain from other types of human treatment because the expected outcome is not

necessarily obvious. In a usual case, one would think the desirable outcome is to

solve the cause of the problem, but in hospice care, the problems are often terminal.

Thus, expected outcomes tend to be pain management or treating symptoms. HBV’s

EMR stores outcomes to some extent and doesn’t have nearly as much free text as

the VCD, with about half a gigabyte of clinical notes.

4.2 Ontology-Driven Redaction

To manage cleaning, normalizing, and securing our data, we employ a redaction

framework for removing PHI from medical records through de-identification. One

of the primary goals of this framework is to preserve valuable information like roles,

semantics, and time intervals as much as possible. Because this forms the pre-

processing stage of future text processing, we elected to model roles according to

the formal IOO; this maintains relationships and enables straightforward detection

of ontological terms in later phases.

The core reasoning for our methodology is that knowing the role of a redacted

name can be vital. For instance, was a condition reported by the caregiver or by

the clinician? That is just a single question illustrating the potential for confusion

when names are redacted without roles, yet, there is no need to blindly attempt to

extract roles from free text. Nearly every EMR maintains structured data like a pa-

tient’s name, family contact, and attending physician. By leveraging this knowledge,

pseudonyms can be constructed that remove confusion regarding roles in the final

text.
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Table 4.1: Sample dictionary of names. Reprinted with permission from [74].
Patients Caregivers Providers

Original
Patricia Jones Michael Jones Daniel Moore

Barbara Davis Mary Johnson
Redacted

Clark
ClarkCAREGIV ER1 ClarkPROV IDER1

ClarkCAREGIV ER2 ClarkPROV IDER2

The redaction pipeline operates on data in two stages to support better iden-

tification of roles in the text. First, the structured data is used to extract what-

ever knowledge is available, typically roles like doctors and patients, to perform

knowledge-based redaction. Second, the unstructured text undergoes entity recog-

nition to clean missed terms. While this approach requires some insight about the

data beforehand, it is a logical means of ensuring we can remove all PHI without

damaging roles and relationships.

4.2.1 Structured

The first round of redaction is performed using structured data in the EMR. We

explain the principles of each step here, but Appendix A lists the detailed mappings

between the original structured data from each source and the resulting usage or

storage location.

4.2.1.1 Patient-Centric Role Preservation

Our system initially builds a dictionary of known individuals in each role. A

person can have any number of names of any length but all of them are drawn

directly from the fields in the EMR. In accordance with the ontology, patients will

be identified first as the subject of care, a unique field in most systems. Depending on

the domain, there will be a personal doctor, an attending physician, or some other
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clinician name given in a separate field. Caregivers may be drawn from locations

like billing or family contacts. For this part, knowledge of the data structure is

necessary, but once the source fields are identified, they will be consistent across the

other records.

Once the dictionary of names and roles is built, patients are assigned a pseudonym

randomly from a list of non-matching family names to provide anonymity and linked

to the pseudonym in the dictionary. Subsequently, all individuals associated with

that patient are assigned a derivative pseudonym denoting their role. Consider the

example shown in Table 4.1. For this small dictionary of a single patient, we see

more than one caregiver and provider listed. The system first replaces the patient’s

name, Patricia Jones, with a false name, Clark. This identifier then becomes the

basis for all subsequent individuals with a connection to the patient.

After the dictionary has been constructed, the system knows all the original

names and their new pseudonyms. The medical texts are scanned for any occurrence

of any known name, ignoring case or modifiers like possessive forms. Full names will

be on file, but given names and family names may appear separately in the record.

Regular expressions are used to match variants of names while enforcing order.

4.2.1.2 Date Offsets

It is worth emphasizing the importance of dates in medical record data. One can

simply remove or replace dates to redact PHI, as with names, but just like names,

we wished to preserve more information in support of the ontology. In particular,

intervals between encounters or patient ages under 89 are compliant with HIPAA and

useful for tasks like association mining. A common solution is to use offsets for dates

because the original date will be erased from the document without losing intervals.

However, an unconstrained random offset still loses information. For instance, inter-
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vals given in the free text will be broken if a day of the week is mentioned and then a

date given. Our system ensures intervals are undamaged by constraining date offsets

in week-long intervals. Thus, even if the dates are moved by years, there’s no loss in

day-granular intervals.

The date offset is applied across all records of a single patient uniformly to main-

tain interval and continuity of encounters. Furthermore, the system is very flexible

about handling dates in free text, using as much knowledge as possible to piece to-

gether correct, redacted dates. For example, a snippet of a medical note may read:

“A surgery was performed in 2005 to correct the issue; on March 4, the patient...”

Because the redaction system makes use of the structured fields, it would extract the

date of entry for this medical note. Assuming that date is March 7, 2006, the system

will move forward labeling unspecified years as 2006, giving a means of differentiating

the vague dates 2005 and March 7.

4.2.2 Unstructured

The second pass of de-identification also operates over free text, but it does not

make use of known information such as the dictionary of names or the dates of

an entry. Instead, general attributes of potential PHI are used to locate and remove

sensitive data. Email addresses, phone numbers, mailing addresses, and medical case

numbers are located through common regular expressions. ZIP codes are retained

because they are not considered PHI and can be useful for location-based operations.

Unknown entities appear frequently in the text due to other names of people or

places being written that are not listed in the dictionary of names. To account for

these entities, we attempted two versions of the unstructured protocol. In the first,

the well-known text analysis system from Stanford, CoreNLP, was used to detect any

remaining entities in the text which do not belong to a linked pseudonym [84]. In
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the second, the Perl-based tool deid was used to find remaining entities. Deid is pre-

dominantly dictionary-based, which gives it a performance bonus versus CoreNLP ’s

more extensive modelling [43]. Regardless of the tool used, all entities are redacted

according to their determined type, e.g. NAME1 for a person or LOCATION1 for

a place. Even in the unstructured phase, sequential naming schemes ensure unknown

people and places do not become confounded with any other entities.

4.2.3 Complete Pipeline

By the time the pipeline has finished, the text has been run through two rounds

of de-identification. First, any useful knowledge is pulled from the data in the EMR

to build a dictionary for rule-based redaction that preserves roles. Second, operating

without any knowledge, a set of regular expressions and more sophisticated entity

recognition methods are employed to clear other sensitive data without adding am-

biguity or destroying valuable non-PHI information. The inclusion of a general tool

like CoreNLP or deid in the final part supports more advanced entity recognition

than the former set of regular expressions. This allows the complete pipeline to

capture almost any potential PHI while still recognizing known entities, particularly

those relevant to IOO, or types of entities, such as contact numbers of locations.

4.3 Validation

To ensure the removal of PHI from the data sets, a team of clinicians reviewed a

large set of documents from both VCD and HCD. The clinicians were asked to mark

any missed PHI and any non-PHI mistakenly labeled as such; by counting all the

redacted and non-redacted words, we were able to create confusion matrices for the

PHI recognition performance of the complete redaction pipeline. In the following

tables, the error rates are defined as:

• False Negatives (FNs) - Missed PHI left unscrubbed
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• False Positives (FPs) - Non-PHI mistakenly labeled as PHI and anonymized

• True Positives (TPs) - Correctly identified PHI that has been redacted

• True Negatives (TNs) - Non-PHI correctly ignored

As alluded to before, we performed two distinct iterations of redaction initially –

one using CoreNLP and the other using deid with slightly tweaked patterns to im-

prove compatibility. For VCD, we generated data from both iterations and performed

validation. However, because deid showed a boost in accuracy over CoreNLP, HCD

only has data for the second iteration using deid. The performance benefit is not

entirely unexpected, even given CoreNLP ’s more sophisticated modeling, because

deid is designed specifically to support redaction tasks. However, the validation re-

sults on VCD did give quantifiable support that CoreNLP could be removed from

the completed pipeline.

4.3.1 VCD

In each of the VCD validation iterations, clinical experts reviewed sets of mixed-

length texts. The document classes were:

• reason - Free text containing the presenting complaint of the encounter

• description - Description of MR entry

• fulltext - Free text from the discharge summaries

• followup - The call-if or followup subsection at the end of the fulltext

4.3.1.1 First Iteration

In the first iteration of VCD redaction, clinical experts reviewed approximately

250 documents in all. Table 4.2 shows the error rates for each document type ac-

cording to the definitions given above. Table 4.3 gives several performance metrics.
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Table 4.2: Error rates by document type in the first iteration of VCD redaction.
reason description fulltext followup

False Negatives 5 7 218 13
False Positives 1 1 209 22
True Positives 18 325 6265 640
True Negatives 504 617 127593 16057

Table 4.3: Performance metrics by document type in the first iteration of VCD
redaction.

reason description fulltext followup
Sensitivity 78.3% 97.9% 96.6% 98.0%
Specificity 99.8% 99.8% 99.8% 99.9%
Precision 94.7% 99.7% 96.8% 96.7%

When found, the vast majority of PHIs were case numbers, which were fully not

considered in this version of the protocol. In fact, a full 110 of the PHIs reported in

the fulltext category are case numbers. On rare occasion, an animal name could slip

through if abbreviated or misspelled, while other times parts of addresses were not

found and fully redacted. The short texts did not tend to contain PHIs except dates,

which were nearly always replaced. The larger free text documents contained more

errors, although the followup sections performed quite well. These sections tended

to not contain as much PHI, but they were typically replaced when present.

Of the 13 PHIs found in the followup text, 4 were parts of clinician names not

being removed, and the remaining 9 were missed animal names. No case numbers,

addresses, phone numbers, owner names, or other directly traceable PHIs were found

in the followup section.
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Table 4.4: Error rates by document type in the second iteration of VCD redaction.
reason description fulltext followup

False Negatives 0 0 76 0
False Positives 0 0 5 0
True Positives 2 6 3391 91
True Negatives 268 244 75694 3031

Table 4.5: Performance metrics by document type in the second iteration of VCD
redaction.

reason description fulltext followup
Sensitivity 100.00% 100.00% 97.81% 100.00%
Specificity 100.00% 100.00% 99.99% 100.00%
Precision 100.00% 100.00% 99.85% 100.00%

4.3.1.2 Second Iteration

Experts reviewed about 120 documents for the second iteration. Table 4.4 and

Table 4.5 show the error rates and performance metrics, respectively.

In this version of the protocol, no PHIs were found in the reason, description, or

followup fields in the sample of 122 documents. The full document text continues

to carry some challenges. Only 1 instance of a patient name was found out of all 76

FNs and a total of 79,085 correct redaction determinations. Overall, this version of

the pipeline showed a marked improvement in sensitivity, specificity, and precision

over the previous version.

4.3.2 HCD

Based on the increase in performance between the first and second runs of VCD

redaction, we elected to use only the latter pipeline for HCD. There are not as many

text documents in the hospice EMR, so only clinical notes were used. Subject matter
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Table 4.6: Error rates for the HCD redaction considering both all names and the
pure HIPAA-defined PHI.

All names, including clinicians HIPAA-defined PHI
False Negatives 170 29
False Positives 250 250
True Positives 1478 1478
True Negatives 51451 51592

Table 4.7: Performance rates for the HCD redaction for all names, including clini-
cians, and true PHI.

All names, including clinicians HIPAA-defined PHI
Sensitivity 89.68% 98.08%
Specificity 99.52% 99.52%
Precision 85.53% 85.53%

experts read through 500 notes to generate the error rates shown in Table 4.6 and

the performance metrics in Table 4.7.

From a very rigorous measure, which includes any names as possible PHI, the

system had 170 missed out of 51,621 words. This is likely due to the difference

between VCD and HCD text. In VCD, most of the text is client-side communication,

and the names and other PHI used originate elsewhere in the patient record. In HCD,

all of the text belongs to clinical notes. These are different in structure than client

communication, written more informally with abbreviations and references to names,

entities, and PHI not anywhere else in the record.

However, the definition of any name being PHI is beyond the requirements of

HIPAA since clinician names are not generally considered PHI. These are instances

of clinicians not being listed elsewhere in the file. The measure based strictly on the

HIPAA definition of PHI cuts down dramatically on false negatives. We were able to

identify for certain over 100 instances of clinician names because of titles like LVM,

26



RN, MD, etc. Of the remaining 29 false negatives, the majority referred to ages over

89 years old and some were ambiguous names that may either be clinician or patient.
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5. ANALYSIS OF THE STRUCTURED RECORD

After completing data pre-processing, we began to investigate the structured part

of the patient files for outcomes-oriented information. The majority of the analyses

discussed in this chapter relate to the VCD set of data, but they are not tied to

veterinary care due to the generality of the features and algorithms. As with the

pre-processing pipeline, all of the remaining work is done in Python through built-in

functionality and third-party libraries.

Revisiting the competency questions from Section 3.1, we know that the first

question is answered directly by grabbing fields like patient name and attending

clinician from the EMR; Appendix A contains the full list of these fields. The re-

maining questions need further exploration. To answer the second question, we must

be able to relate encounters, which we refer to as “episodes” (Section 3.3). Encoun-

ters themselves are saved as appointments, so we set about generating features of

encounters that could describe their “relatedness,” establishing episodes.

5.1 Features of Encounters

Without delving into the free text, we wish to use simple fields in the data set to

generate features. One of the most obvious features is the reason for the encounter.

This is typically given in the form of a presenting complaint at the start of the

encounter, although there may also be a medical diagnosis associated with the visit.

In VCD, we have both.
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5.1.1 Diagnosis Codes

Technically, VCD has diagnosis codes and problem codes. The former are codes

defined in the Veterinary Medical Databases1 (VMDB), and the latter are defined

internally by VMIS tables. VMDB codes are themselves an extension of the standard

SNOMED coding (formerly, short for the Systemized Nomenclature of Medicine but

currently a brand name) developed by International Health Terminology Standards

Development Organisation (IHTSDO) [85]. While clinical experts on our team did

create a mapping between the VMDB codes and problem labels, it has not yet been

used for encounter features. We’d first like to build a better understanding of the

diagnosis codes themselves. Ideally, this effort could be augmented by the mappings

to problems in the future, or perhaps more importantly, the problems could be

augmented by this effort. For now, we focus on how to build a feature vector from

the diagnosis codes and what the current feature space looks like.

5.1.1.1 Vector Representation

The codes are themselves already similar to a vector. They are 9-digit alphanu-

meric identifiers. Some structure is inherent in the design, and thus, even a simple

vectorization method will incorporate meaning into the representation. To provide a

concrete example, Table 5.1 shows several diagnosis codes. The leading digit is most

significant and indicates that all codes beginning with a ’9’ are tied to neurology.

The first two are closely related, as seen by the similarity in their codes, while the

third may fall under the same broad category but associate with a different part of

the body. The fourth shows that codes starting with an ’X’ fall under an entirely

different category, in this case ophthalmology.

1https://vmdb.org
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Table 5.1: Sample VMDB diagnosis codes showing similarity among different code
groups.

Code Explanation
98118451D NEUROFIBROMA NERV ROOT
98118Y00D NERVE ROOT TUMOR D
982460000 SYNCHRONOUS CONTRACT HRT/DIAPH
X13001400 CONGN HYPERPLAS SCLERA

After some discussion, it was decided that we should make use of this structure.

The first-pass attempt is based on converting the base 36 (10 numeric + 26 alphabet)

codes into base 10. Once we have the base 10 vector, it is easy to plot and visualize

codes and compute weighted distances between them to preserve digit significance.

Python facilities this conversion with its built-in int() function; int(’98118451D’,36)

will tell the interpreter to take the string representation of the code and interpret

it as a base 36 number into a base 10 integer. The result is 26019153358465. This

is unsatisfactory, however, because the numbers are very large and do not take into

account the structure of VMDB. For instance, consider the following example codes:

int(′400000000′, 36) = 11284439629824

int(′4ZZZZZZZZ ′, 36) = 14105549537279

int(′500000000′, 36) = 14105549537280

In truth, because of the way VMDB groups categories, 400000000 and 4ZZZZZZZZ

should be more closely related to each other than either would be to 500000000, but

because we just converted the numbers linearly without care for the significance of the

digits, 4ZZZZZZZZ and 500000000 are represented as being much closer than they

otherwise would be (a difference of 1). The solution is to apply weighted distances

using the digit significance. To do that, we have to apply conversion digit-by-digit,

as we see in Table 5.2 for the code 4ZZZZZZZZ.
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Table 5.2: Sample VMDB code conversion at the digit-level.
Base 36 4 Z Z Z Z Z Z Z Z
Base 10 4 35 35 35 35 35 35 35 35

With this process, when we compute the distance between codes with a weight

for each digit, we can more accurately represent the groupings in VMDB. In fact, if

we give each digit a base 10 order of magnitude increase over the previous place, so

that the leading digit would have the weight 108, the difference between 4ZZZZZZZZ

and 500000000 would be 1 ∗ 108 + 35 ∗ 107 + 35 ∗ 106 + .... The difference between

4ZZZZZZZZ and 400000000 would be 0 ∗ 108 + 35 ∗ 107 + 35 ∗ 106 + .... Thus,

4ZZZZZZZZ will be 108 closer to 400000000 than it would to 500000000. This is

just an example of how using a weighted distance better captures the intent behind

VMDB.

5.1.1.2 Clustering Diagnosis Codes

Given a method for vectorizing codes, we wanted to see how much structure we

could capture simply by using VMDB directly. This is just an investigation because

we’d like to incorporate more meaning into the diagnosis code vector. For instance,

down the road we plan to embed co-mordibity of diagnosis codes so that even codes

appearing outside the same category could be grouped closer than they otherwise

might be if they occur together frequently, e.g. a food allergy with skin irritation.

To determine how related the diagnosis codes are to one another from this vector-

ization method, we converted all codes into vectors, performed Principal Components

Analysis (PCA) down to 2 dimensions [86, 87], and then plotted the findings on a

scatter plot. The results are shown in Figure 5.1. The color bar shows the colors for

the text category labels provided by the clinicians.
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Figure 5.1: Principal Components Analysis of diagnosis codes.

The differences among the classes is very noticeable. Though they’re not sepa-

rated by as large a gap as we might hope, they are clearly in distinct groups. The

striations along the diagonal direction demonstrate that many of the codes with

leading digits are of the same class, and the digits progress incrementally. Therefore,

as we had hoped, there is an existing structure to the VMDB coding which can be

easily captured in a simplified base 10 form.

5.1.2 Presenting Complaint

Diagnosis codes describe the prescribing provider’s reason for an encounter, but

there is also the reason given by the patient or observing caregiver. In VCD, these

are presenting complaints, single lines of text explaining the problem from a layman

perspective. These are not as inherently structural as VMDB codes and are only use

for surface similarity comparisons. We elected to use the common cosine similarity

method from the field of Information Retrieval (IR) [88]. Cosine similarity, very
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similar to the Jacaard Coefficient [89], measures the number of elements in both sets

divided by the total number of elements in each set. It is essentially a ratio of the

overlap between two sets; in IR, this is a quick way to determine the relatedness of

two documents. The formal representation is shown in Equation 5.1.

similarity = cosθ =
A ·B
‖A‖‖B‖

(5.1)

5.1.3 Medications

Although the list of prescribed medications may be more close to interventions,

we use medication lists as features of encounters as well. The reasoning is that

common treatment are given for similar types of problems. Rather than a detailed

exploration, like presenting complaints, the string list of medications is compared

using cosine similarity between two encounters.

5.1.4 Age

Consultation with subject matter experts led to the recommendation to include a

time-based feature in identifying episodes of care. While the pre-processing pipeline

does preserve time intervals, even though dates themselves are shifted, a much better

solution is to use patient age. Age is already a scalar value with a standard minimum,

maximum, and average across patient cohorts, like breeds in veterinary data.

Another benefit to age is supporting direct comparison between patients. Using

only time intervals, one wouldn’t be able to find the average age of cancer onset, for

instance, but age encodes this type of query into the encounter features.

5.2 Episode Identification

Using encounter features, we can separate multiple encounters into groups based

on their similarity. Because two features, presenting complaint and medications, are
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Figure 5.2: A scatter plot showing multiple encounters relative to each other in a
vector space comprised of age, medications, and diagnosis codes.

based on differences between sets, we are able to generate a pairwise-similarity, or

distance, matrix between a group of encounters. Several machine learning techniques

would be appropriate for identifying episodes of care. We use hierarchical clustering

because it gives a consistent grouping of encounters across all patients for a single

patient’s distance matrix [90].

Figure 5.2 gives a case study in the form of a single patient’s encounters plotted

relative one another. This plot does not include the presenting complaint similarity

axis, and all other axes are normalized between 0 and 1. For this patient, there are
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three episodes of care identified by human experts, and when plotted according to

their similarity, we see that most clustering techniques would select three groups.

In preparation for the evaluation of hierarchical clustering and episode identifi-

cation, clinical experts on our team provided an episode key. This list consisted of

groupings of encounters for 285 patients. The criteria was based largely on human

expert intuition. Discussion revealed that time, presenting complaint, and diagnosis

were heavily used.

5.2.1 Baseline Using Age

We see in Figure 5.2 that the age axis plays a significant role in separating clus-

ters. Human experts suggested that age was the single greatest criteria for grouping

encounters during discussion. For a trial attempt at grouping encounters and to

form a baseline, we first use only age to generate the distance matrix for hierarchical

clustering. We use the third-party Python library SciPy2 to perform hierarchical

clustering using the fcluster function. It includes a parameter called max d that

specifies the distance to allow before cutting.

Rand index is used for evaluation, being one of the more reliable measures of

clustering because it considers true positives and false negatives [91]. In our case,

SciPy’s adjusted rand score function can generate the results. To make a compati-

ble list of labels, all the clusters created by the algorithm and experts were sorted

according to their encounter numbers. Then, cluster numbers were assigned based

on that ordering. Once labels have been assigned to every encounter, they can be

compared directly and the final results obtained by averaging over all 285 samples,

although this does introduce high variability to the results.

2https://www.scipy.org
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Figure 5.3: Area chart comparing the baseline model against the multidimensional
one for hierarchical clustering of encounters into episodes.

5.2.2 Combining Features

After developing the baseline, we used SciPy’s ability to create multidimensional

linkage graphs for hierarchical clustering. A cutoff still needed to be selected, so we

ran the algorithm at multiple cutoff points and selected the best performance.

Figure 5.3 shows the performance of the combined model at multiple cutoff points

against the baseline. Surprisingly, the baseline method of using only age performs

exceedingly well against a more comprehensive model. In particular, it is less sus-

ceptible to forming poor clusters at low cutoffs, which tend to divide every encounter

into its own episode and ignore similarity if too small. Both improve with a higher

cutoff, until eventually yielding diminishing returns before the scores begin to drop,

albeit more slowly. We can conclude that a higher cutoff is better than a lower
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one because fewer episodes is more likely than many episodes for most patients. At

around 1.6 cutoff, the model incorporating all features is slightly better with a rand

index score of 83.9 ± 26.1% versus 81.6 ± 29.1% using only age. Peak performance

is obtained at 2.6 for the baseline with 85 ± 26.4% against 81.9 ± 29.2% using all

features.

Even though none of these scores is perfect, with a rand index of 84%, we can

reasonably segment episodes of care algorithmically, a partial answer to the second

competency question of IOO. The most significant takeaway of these findings is that

a simple model based solely on age truly may be enough to identify episodes of care.

Other algorithms may perform even better, such as logistic regression comparing only

the current encounter with the previous as opposed to clustering on all encounters

at once. Leaving that further investigation for later, we now turn to the remaining

key ontological elements, their competency questions, and the associated research

questions: interventions and outcomes.

5.3 Interventions and Outcomes

IOO’s third and sixth competency questions are concerned with locating inter-

ventions in the medical record and determining if a change has occurred. Our initial

approach to interventions is to consider only prescribed medications. With this def-

inition, not only are the interventions recorded, but changes are a simple matter to

detect by matching medicine names across encounters. In the current system, dosage

and formulation are ignored.

We performed qualitative analysis on this approach with clinical experts and

found that initiating, continuing, and discontinuing a therapy are trivial to detect

and classify. Alterations are more complex because humans judge the content to

determine the type of alteration. That is, many drugs may be discontinued, but if
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a new one is added with more dangerous side effects, the human expert considers

the addition to be the most relevant alteration to the care plan. Such information

is not present in the structured record and must be pulled from elsewhere since the

computer doesn’t have any intuitive way of evaluating the relative importance of the

medications.

Attempts to identify outcomes in the structured record have proven largely un-

successful. In VCD, outcomes are not captured at all except in cases like death.

In HCD, outcomes are stored more coherently, with an associated intervention and

goal code. Unfortunately, almost all outcomes-oriented details are found in the free

text documents. With the limitations of structured analysis for interventions and

outcomes in mind, we turn to the very large field of NLP to mine information in the

medical texts.
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6. ANALYSIS OF THE UNSTRUCTURED RECORD

In VCD, there are several types of documents: emails, clinical notes, diagnostic

results, and more. The bulk of free text comes in the form of patient discharge

summaries, comprehensive write-ups given to the caregiver at the time of release.

These are sectioned documents with patient history, descriptions of the presenting

problem, treatments given, and the recovery care plan. In HCD, the only free text

type of document is a clinical note.

In both cases, identifying potential outcomes has proven difficult from the struc-

tured record. However, in documents like discharge summaries, prescribing providers

do explain outcomes to some extent. Certainly, undesirable side effects of the treat-

ment are stated as a caution. In other cases, the time until recovery is likely to be

given. This type of knowledge is lacking in the rest of the patient file, but it is the

form of information needed to answer the remaining competency questions posed by

IOO.

6.1 Segmenting Discharge Summaries

Discharge summaries follow a template. Because they are released to patients,

they must be well organized and easy to understand. We leveraged this attribute

by identifying the standard headers and formats in VCD discharge summaries and

auto-segmenting them. The most common sections we could automatically segment

are listed below.

• History - A brief background on the patient leading up to the current encounter

• Physical examination - The results of the exam given at admission

• Diagnosis - The likely problem that led to the encounter
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• Treatment - Actions taken to resolve the problem

• Exercise - Recommended activities or restrictions to perform at home

• Diet - Any recommended alterations to food and drink intake after discharge

• Followup or Call if - Information about side effects or complications which

require a subsequent encounter

These are all written in natural language, but they are rich with potential for

IOO tasks. In particular, based on our focus groups with subject matter experts,

the latter sections were chosen as most likely to contain interventions and outcomes;

these are “treatment,” “exercise,” “diet,” and “call if.” HCD clinical notes are not

as easily segmented, so in order to address the seventh competency question from

Section 3.1, we sought ways to programmatically segment the text based on content

rather than format.

Using Python’s scikit-learn module1, we built a segment classifier to determine

the type of therapy based on the words in the section [92]. Bag-of-words model-

ing, looking only at the collection of words in a document to decide its type, is

commonly used in NLP and IR [93]. Scikit-learn contains a bag-of-words vectorizer

with TF*IDF scoring. TF*IDF, Term-Frequency*Inverse-Document-Frequency, cal-

culates a weighted score of a word based on its frequency [94, 95, 96]. In Equation

6.1, TF*IDF is the product of term frequency, the count of a given term in a doc-

ument over all terms in the document, with inverse document frequency, the total

number of documents over the number of documents with the term.

1http://scikit-learn.org
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Figure 6.1: Different classifier performance on labeling three classes based on bag-
of-words.

TF ∗ IDF =
ft, d∑
t′∈d ft′,d

∗ log
N

nt

(6.1)

Initially, we test classifying over three different sections, a subset of the VCD

documents – 34,577 of treatment, 32,601 of exercise, and 33,068 of diet containers.

With TF*IDF scoring and bag-of-words, we tested a large collection of classifiers.

Figure 6.1 shows labeling accuracy for multiple classifiers. With only three classes,

the accuracy is quite high overall, and the words in the containers are fairly distinct.

The top ten words in each container are given in Table 6.1

By way of visualization, Singular Value Decomposition (SVD) was used to create a

three dimensional graph of the words in each segment. SVD, similar to PCA, reduces

the high dimensional vector space of the TF*IDF weights to only three dimensions
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Table 6.1: Several segments of discharge summaries and their 10 most frequent words.
Segment Top 10 Words

Treatment
change, diet, time, continue, exercise, food, usual, iv, weight,
today

Diet
normal, diet, continue, regular, current, exercise, feed, routine,
eat, resume

Exercise
pace, set, let, allow, exercise, continue, activity, restrictions,
level, home

Figure 6.2: Bag-of-words scoring vectors decomposed to a three dimensional repre-
sentation.
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[97]. Figure 6.2 indicates that the classes remain relatively separable even at this

lower dimensional representation as there are several distinct groups of words.

Another visual tool for characterizing the text data is a word cloud. Figure 6.3 is

a decorative word cloud, displaying the relative weight of each of the most frequent

words in the VCD documents. We also generated clouds to help visualize the words

in the treatment, diet, and exercise segments. These were originally created to

aid discussion with subject matter experts and help identify keywords for types of

interventions. Appendix B includes all of these visuals.

6.2 Word Embeddings

To power more sophisticated NLP algorithms, we developed word embeddings in

favor of bag-of-words with TF*IDF scoring. Like with our earlier goal of vectorizing

VMDB diagnosis codes, a vector representation of the vocabulary of words is needed.

This conversion is more challenging than working with codes because words contain

so much variety, but many researchers have developed approaches that are widely

used.

In order to prepare our data for clustering, all VCD discharge summaries and

HCD clinical notes were downloaded and concatenated to form single input files

from each domain. We returned to our role-based redaction while normalizing text

to serve as training corpora. Specifically, instances like ClarkCAREGIV ER1 as we saw

back in Table 4.1 were replaced by caregiver in the text. Addresses, case numbers,

prescribing providers, and other redacted entities were replaced with their recog-

nized role. From a semantic perspective, this allows the meaning of the terms to

be retained, also preserving the context of nearby words, without needing to revisit

any original data from the redacted source – an excellent argument in support of

role-preserving redaction.
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Figure 6.3: Stylized word cloud showing weighted significance of the most frequent
words in all the VCD documents.
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Figure 6.4: Word2Vec embeddings in two dimensions using PCA for the most fre-
quent 100 words in VCD; we see that some semantics are retained through word
proximity even at this crude level.

6.2.1 Word2Vec

One of the latest techniques for vectorizing words is the Word2Vec algorithm

[98, 99]. Word2Vec builds large dimensional vectors to embed (hence, word embed-

dings) the semantics of a word into a number. These vectors are so sizable, typically

hundreds of axes, because words have very complex meanings and require a signif-

icant vector space to retain their meaning. The location of the word in the vector

space imparts some of its meaning, and nearby words are semantically similar. In

fact, one of the interesting aspects of Word2Vec is that mathematical operations like

addition and subtraction are applicable, as well as analogies. Using the Word2Vec

representation, an equation like king −man should return queen.
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Word2Vec uses a window of words on either side of the current word to build

an expectation-maximization model [100]; that is, the system attempts to guess the

most likely word given the surroundings and learns the semantics of that word in

the process. We used the open source TensorFlow2 toolkit with its built-in word

embeddings generator functions to create our Word2Vec model.

TensorFlow generates 200-dimensional vectors by default to represent each word.

Using PCA to reduce these vectors to only two dimensions, Figure 6.4 plots the

most frequent 100 words in VCD. Even reduced to two dimensions, some of the

semantics are retained through word proximity. For example, “student,” “dvm,”

and “clinician” are all nearby each other; “her” and “him” are next to each other;

and so on.

Unfortunately, too much information is lost using PCA or SVD to encode the

entire vocabulary. In order to use Word2Vec as a single feature in other models, we

applied K-Means clustering to clump large sets of nearby words into semantically-

similar groups [101]. To inspect the clusters created by the K-Means algorithm, we

placed the entire vocabulary in a K-D Tree, a k-dimensional tree structure which is

very efficient for searching across large data sets [102]. Scikit-learn has functions for

K-D Trees and K-Nearest-Neighbor (KNN) querying [103], so the nearest words to

each K-Means cluster center could be quickly retrieved.

With the ability to locate the cluster centers and nearby words quickly, we tested

multiple values for k (the number of clusters) and computed the average sum of

squares distance from the centroid to other words in the cluster. As the number of

clusters increases, the distance should drop with improving coverage, but, ideally,

there would be an “elbow” to the curve when more clusters lead to diminishing

2https://www.tensorflow.org
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Figure 6.5: Average sum of squares distance within the clusters for different values
of k when building K-Means clusters to reference the expansive Word2Vec model.

returns. No prominent “elbow” can be seen in Figure 6.5, but significant gains

slow after about a dozen cluster centers. Though slightly subjective in precision, we

selected 10 for the value of k for VCD and HCD.

In Table 6.2, the five nearest words to each cluster center using the K-D Tree are

given. Although these words have been stemmed and are mostly medical terminology,

we can see that the clusters are consistent internally. Clusters 0 and 9 have grouped

pseudonyms; cluster 1 contains words relating to conversations about health care;

cluster 2 is ways to give medicine; etc. Looking back at Figure 6.4, the word points
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Table 6.2: Five nearest words to the 10 cluster centers selected by K-Means in VCD.
# Nearest 5 Words
0 ’masonic’, ’portofino’, ’claremont’, ’vicksburg’, ’refugio’
1 ’talk’, ’invested’, ’recommendation’, ’adjuster’, ’valued’
2 ’antiparas’, ’diar’, ’histami’, ’antiproto’, ’bymouth’
3 ’comodones’, ’hyperkeratinization’, ’edematous’, ’evident’, ’erythematous’
4 ’psammoma’, ’intima’, ’striation’, ’nodularity’, ’desmoplasia’
5 ’tomaintain’, ’scaple’, ’washers’, ’equidistant’, ’slits’
6 ’barginear’, ’hirschman’, ’playford’, ’kerfoot’, ’flemings’
7 ’igloo’, ’sneaking’, ’digs’, ’comforting’, ’catnip’
8 ’thompson’, ’lopez’, ’miller’, ’johnson’, ’jones’
9 ’positi’, ’hemolysin’, ’infeccin’, ’secundaria’, ’hinchazn’

are also colored according to their cluster label. Not only are “student,” “dvm,” and

“clinician” near each other, but they have been assigned the same cluster as well.

The same goes for “her” and “him” and others.

6.2.2 Brown Clusters

Another vectorization technique, Brown clustering is a means of grouping words

by contextual similarity [104, 105]. The algorithm creates binary cluster labels,

adding a new digit as the number of vocabulary words grows. Words are assigned a

cluster label based on the words around them and their own n-grams, incorporating

some topological similarity which can place words with similar structure, prefixes, or

suffixes closer to each other.

Consider the example given in Table 6.3. One can see how the clusters become

progressively finer with more binary digits. If we only consider the first two digits,

“the” and “chased” would belong in their own group while “dog,” “mouse,” and

“cat” would be grouped together. All of the computation is done beforehand; with a

dictionary of words and clusters, any granularity grouping can be achieved by choos-

48



Table 6.3: Sample Brown clusters.
Input Sentences Word Cluster

the cat chased the mouse

the dog chased the cat

the mouse chased the dog

the 0000
chased 1000
dog 1100
mouse 1110
cat 1111

ing the cluster size in real time. While not as meaningful a vector space as Word2Vec,

Brown clusters are flexible, making them an appealing word representation to have.

We use an open source C++ implementation of Brown clustering provided by

Percy Liang3 [106]. The algorithm ran on the same data as TensorFlow, but because

it only uses binary labels instead of high-dimension vectors, the results are stored in

a human readable text file. The only consideration when building Brown clusters is

the number of clusters to allow. Interestingly, investigative work by Derczynski has

shown that approximately 103 or 1000 Brown clusters consistently performs well on

data sets of varying size, which is the number we chose [107].

6.3 Expert Annotation

To this point, we have not yet discussed the IOO competency questions related

to outcomes, four and five, and our efforts to answer intervention-related questions

three and six have been partially successful but are ultimately limited by the lack of

information in the EMR fields. Following an extensive discussion of text character-

ization, we now turn to automatic labeling of document terms as a means to mine

potential intervention and outcome content from medical texts. Two clinical experts

3https://github.com/percyliang/brown-cluster
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on our team built a training corpus using the Java-based CLAMP application, which

features an annotation user interface [59].

The focus was on finding and labeling interventions and outcomes in the text.

Consistent with our slightly-constrained definition that an intervention is a medicine

or therapy, they labeled terms according to one of five intervention classes:

• Therapy

– Change

– Continue

– Stop

– Initiate

• General

They labeled both undesirable and desirable outcomes, along with outcome risks

or side effects.

• Unintended Outcome Risk

• Intended Outcome Risk

• Unintended Outcome

• Intended Outcome

In total, they annotated 173 discharge summary segments from VCD and 53

clinical notes from HCD. Inter-rater agreement was evaluated using Kappa scoring,

a common method of quantifying the level of agreement between human annotators

[108]. It is very similar to other scoring metrics, increasing points when a label is the
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Table 6.4: Kappa scores denoting inter-rater agreement for the intervention and
outcome corpus.

Interventions Outcomes
Iteration VCD HCD VCD HCD
1st 0.6133 0.5378 0.5369 0.6029
2nd 0.7530 0.8004 0.8055 0.8594
3rd 0.9528 0.9727 0.9246 0.9633

same from both annotators and decreasing for disagreement, as in rand index scoring

and cluster overlap [109]. Table 6.4 shows the kappa scores for both data sets and

label groups across three iterations. By incrementally evaluating the agreement, the

final training corpus has very high internal consistency.

6.4 Computer Annotation

We use a Conditional Random Field (CRF) model to perform automatic labeling

of interventions and outcomes in the medical text. The specific implementation is

python-crfsuite4, a Python library binding to the C-based CRFsuite fast implemen-

tation built by Naoaki Okazaki5 [110, 111]. All of the text parsing is done with

Python’s Natural Language Toolkit6 (NLTK) [112].

6.4.1 Features

The CRF models are trained over the expert-annotated data, learning over an

assortment of features. Word embeddings are used to capture semantics. Both

the Word2Vec cluster label, which allows the full 200-dimensional vector space to

be represented in a single number by grouping only similar words, and the Brown

binary cluster labels are used.

4https://python-crfsuite.readthedocs.io/en/latest/
5http://www.chokkan.org/software/crfsuite/
6http://www.nltk.org
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Figure 6.6: The overall F1-score for the CRF on VCD interventions according to
different window sizes and feature sets. Window sizes vary from the single word to
the past three words and next two. Feature sets consider only topology, topology +
part of speech, and topology + part of speech + semantic clustering.

However, we need more than just the semantic grouping to build a good CRF. A

word’s part of speech (POS) is very important in NLP, supporting tasks like chunking

and entity recognition. We use NLTK’s built-in POS tagger to generate this feature.

Likewise, NLTK has a stemming component which can trim all words to their base

form; we apply the popular Porter stemming algorithm [113].

There is also an undeniable importance to the topology of a word. That is, words

that have the same structure may mean different things but can be used in similar

ways. Consider how many words ending in “ing” represent an action or state. Words

with the suffix “ology” often refer to a field of study. Thus, we take the last three

characters of a word to represent the suffix. Python supports easily grabbing other
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Figure 6.7: Individual class F1-scores in the -3:+2 word window. ‘Word’ uses only
the word stem, while ‘topology’ includes other aspects like the suffix. ‘PartOfSpeech’
remains the same as before, but ‘Brown’ and ‘Word2Vec’ have been split into two
stages from the former ‘Semantics’ label.

features, such as if the first letter is uppercase, the entire word is capitalized or in

title case, or if it is a number.

With a large pool of available features, we conducted several experiments to

evaluate the performance of the CRF using different combinations of features and

window sizes. Figure 6.6 shows how the overall F1-score changes with window size

and feature sets, with mean and standard deviations computed from five iterations

at each point. The feature sets consider only topology (e.g. the word stem, suffix,

or character case), topology + part of speech, and topology + part of speech +

semantics (e.g. Brown and Word2Vec clusters. While parts of speech and semantics

improve performance, the most noticeable performance boost comes from growing

the window from -1:+1 to -2:+2.
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Figure 6.8: Radar chart showing F1-scores by class according to the feature set.

We selected the -3:+2 window size with the full feature set based on the overall

F1-score. Figure 6.7 provides a more detailed look at how the feature set affects

individuals classes. The labels remain the same as before with only ‘Word’ being

broken out of ‘Topology’ as a special case of only the word stem, and ‘Brown’ and

‘Word2Vec’ being separated from the single ‘Semantics’ label. The features are still

cumulative, so all preceding ones are included in the ‘Word2Vec’ iterations. As we

see, there is quite a bit of variability across the classes, but the overall F1-score does

maintain a steady climb as the features become more rich.

Figure 6.8 shows another visualization of this information. Because ‘Word2Vec’

has the largest area, it gives the most coverage across all classes and represents the

final feature set. Unfortunately, detecting therapy changes is weak in all cases. This

seems largely due to the difficulty of differentiating between a changed or continued

therapy, which can be a subtle distinction to a human expert as well. We will see

this particular issue again in the example given at the end of Section 6.4.2.
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Table 6.5: Features of each word in the CRF word window; the number is the distance
from the current word (0). Key: Brown - Brown cluster, POS - POS tag, IsCap -
Starts with a capital letter, IsUpper - Word is uppercase, Stem - Porter stem of the
word, Suffix - Last 3 characters, W2V - Cluster number in the Word2Vec vector
space

-3 -2 -1 0 +1 +2

Features
Brown
POS
Stem

Brown
POS
Stem

Brown
POS
IsCap
Stem
W2V

Brown
POS
IsCap

IsUpper
Stem
Suffix
W2V

Brown
POS
IsCap
Stem
W2V

Brown
POS
Stem

Regarding the apparently low F1-scores, recall that the CRF is labeling terms

in text amid thousands of non-relevant words. Even though these scores are sub-

optimal, the system performs very well at distinguishing relevant and non-relevant

text, an important difference from an approach like majority classification. Table

6.6 will demonstrate this point for this CRF.

Table 6.5 shows the complete, final set of features in the word window from the

current word. Word 0 is the central word, word -1 the previous, word +1 the next,

and so on. Notice that the richness of the features varies with the distance from

the current word. This is to avoid selecting too many features, given that there

is only data from two annotators, while also preserving the contextual features of

each word. As we saw in Figures 6.6 and 6.7, improvements diminish as the word

window and number of features increase too high because the limited size of our

corpus; availability of data must always be a consideration when determining the

final feature set.
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Table 6.6: Performance metrics for VCD CRF trained to extract interven-
tion/therapy labels.

Label Precision Recall F1-score Support
General 0.85 0.67 0.75 33
Therapy::Change Therapy 0.00 0.00 0.00 1
Therapy::Continue Therapy 0.75 0.47 0.58 19
Therapy::Initiate Therapy 0.75 0.63 0.68 43
Therapy::Stop Therapy 1.00 0.50 0.67 8
Average / Total 0.79 0.60 0.68 104
Unlabeled Text 0.98 1.00 0.99 1303

6.4.2 Evaluation

By splitting the annotated data into 85% training and 15% testing, we were able

to compute several performance metrics for the CRFs, broken down by classes of

labels. For VCD, there are two distinct CRFs, one for interventions and the other

for outcomes. HCD uses a single CRF with combined labeling.

Table 6.6 shows generally consistent performance when labeling therapies, with an

average F1-score of 68%. This score and the others we present may appear low, but as

briefly discussed before, because the CRF must label words in large text documents,

there is huge potential for error, indicated by the high precision scores but lower

recall. To emphasize this consideration, all unlabeled text can be treated as its own

class to generate error metrics. This is reported in the last row under “Unlabeled

Text,” which shows the CRF is highly competent at detecting non-relevant text with

an F1-score of 99%. A majority classifier running on this data would mark all text as

non-relevant and could achieve high scores as well, but it would be unable to locate

any relevant text. Our CRF maintains a strong ability to differentiate labeled and

unlabeled text.
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Table 6.7: Confusion matrix for the VCD Intervention CRF based on human valida-
tion.

Labeled + Labeled -
Actual + 363 53
Actual - 40 36796

Certain classes perform lower than others; this is in part due to availability of

data. Notice that there is less support for the Change Therapy and Stop Therapy

labels. These do not seem as common in discharge summary text because changes

to the medication or discontinued therapies no longer need to be included with

instructions for discharge and followup.

We also asked our clinical experts to perform human validation of this CRF

before creating the other models. The CRF was used to generate a set of 100 new

intervention-tagged files, and the clinicians were asked to count the number of missed,

wrong, or mislabeled tags. By counting the overall number of tags (positives) and

non-tagged words (negatives), the confusion matrix values are found by subtracting

missed tags from negatives (false negatives) and wrong tags from positives (false

positives). As we see in Table 6.7, the system performed favorably from human

readers’ perspectives. Although, it is important to remember that this validation is

only considered on the global level of tags being right (tagged correctly or not tagged

correctly) or wrong (tagged incorrectly [”wrong” or special “mislabeled” case] or not

tagged incorrectly [”missed”]). Because there are multiple classes of potential tag

labels, there’s actually an accompanying precision and recall score with each type,

which we saw with the auto-generated results but lacked sufficient experts to compute

individually. Those are encompassed here as “mislabeled” tags, and for the purposes

of reporting global results, they have been assumed as tagged incorrectly alongside

the “wrong” count. Several performance metrics based on Table 6.7 are listed below.
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Table 6.8: Performance metrics for VCD CRF trained for outcomes-oriented labels.
Label Precision Recall F1-score Support
Outcome::Intended Outcome 1.00 0.50 0.67 10
Outcome::Intended Outcome Risk 0.00 0.00 0.00 10
Outcome::Unintended Outcome 1.00 0.69 0.82 26
Outcome::Unintended Outcome Risk 0.91 0.74 0.82 208
Average / Total 0.89 0.70 0.78 254
Unlabeled Text 0.90 0.95 0.93 981

Precision = 0.9007444169

TPR, Recall, Sensitivity = 0.8725961538

TNR, Specificity = 0.9989141058

FPR = 0.001085894234

FNR = 0.1274038462

LR+, Pos Likelihood = 803.5737981

LR-, Neg Likelihood = 0.1275423436

Diagnostic Odds = 6300.44717

Table 6.8 is the other VCD CRF, trained to label outcome-oriented words in the

text. In keeping with the findings of Figures 6.6 and 6.7, this CRF uses the same

set of features as listed in Table 6.5. Unintended Outcome Risk is over-represented

in the data due to the definition covering complications and side effects from med-

ication use. Side effects are commonly listed in discharge papers, while the actual

outcomes remain difficult to find. As with Table 6.6, the “Unlabeled Text” row gives

perspective on the CRF’s ability to identify relevant text out of large documents.

In Table 6.9, the metrics for the combined CRF running on HCD’s clinical notes

are listed. Change Therapy and Stop Therapy are still under-represented, but sur-

prisingly, outcome risks weren’t found at all by our clinical experts when generating
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Table 6.9: Performance metrics for HCD CRF trained to extract both intervention
and outcome labels.

Label Precision Recall F1-score Support
General 0.64 0.45 0.53 40
Outcome::Intended Outcome 0.71 0.37 0.49 100
Outcome::Unintended Outcome 0.58 0.53 0.55 83
Therapy::Change Therapy 0.00 0.00 0.00 2
Therapy::Continue Therapy 0.78 0.51 0.62 74
Therapy::Initiate Therapy 0.80 0.67 0.73 18
Therapy::Stop Therapy 1.00 0.38 0.55 8
Average / Total 0.69 0.47 0.55 325
Unlabeled Text 0.94 0.98 0.96 2420

the data. The practitioners for HCD’s source do not list side effects in their internal

notes with the level of frequency with which they appear in discharge documents.

This made finding outcomes themselves slightly easier, but the data set is smaller in

general and leaves room for improvement.

The following block gives a short example of the CRF’s output text:

We suspect that $Kin$ has a bleeding GI ulcer. We are lowering his dose

of <tag class=“Therapy::Continue Therapy”>prednisone</tag> for this rea-

son. Please apply topical <tag class=”Therapy::Initiate Therapy”>cortisone

cream</tag> to $Kin$ EM lesions as directed in the medication chart. $Kin$

pancreatitis may be secondary to his suspected GI disease. Recommend recheck-

ing the cPLI on Monday, $2015-07-13$.

This snippet includes redaction from earlier in the pipeline with a substituted

patient name and altered dates. Also, the labeled text is offset with tags denoting

the recognized type. We see how adept the system is at distinguishing between non-

relevant or conversational text and information associated with the intervention and

outcome care plan. Notably, the CRF correctly identifies cortisone cream as a new
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treatment, and it recognizes that prednisnone is not new. This example illustrates

the subtlety of the annotation task because prednisnone is technically a changed

therapy, which is slightly distinct from a continued one. These minor mistakes partly

contribute to the poor performance between classes of labels, even though the CRF

is adept at isolating the relevant text.

We are continuing to explore other means of enhancing annotation performance

and recognizing outcomes-oriented information in other parts of the patient record.

As we have shown, the current stage is able to identify some such materials, albeit

only in the free text, but it is more than we were formerly able to achieve from the

structured fields in the data.
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7. FUTURE WORK

An enormous body of work has been completed thus far, but there are still many

avenues for future development. Foremost, the underlying ontology will likely see

changes in its next version based on findings from the current applications to vet-

erinary and hospice care data. The pre-processing stage will need to be adjusted

accordingly as more domains are added to our data store, including community and

public health records. In the future, zoonotic disease may be a worthwhile inves-

tigation given the vastness of VCD. Unfortunately, that cannot move forward until

comparable human data is available.

The most exciting possibilities lie in data analysis. We have only begun to un-

derstand the potential information available in the structured record. Not only is

episode grouping going to change from a clustering model to logistic regression in

the near future, but more extensive sequential modeling should reveal associations

among fields. If there is sufficient data, we would like to form patient cohorts based

on a measure of patient similarity. At some point, patient similarity will become a

necessary metric for learning typical outcomes and time intervals for a given inter-

vention, and that should carry additional findings.

We are looking forward to bringing more NLP tools to bear. Medical text contains

much more information than just outcomes of care, although that has been the focus

of our current work. One example is the ability to incorporate diagnostic information

from the text with lab results saved in the database. That could augment features

of existing automated diagnosing systems. There are also several other algorithms

we wish to use in our current pipeline to find ways of improving performance.
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8. CONCLUSION

8.1 Research and Competency Questions Revisited

In this paper, we have presented our extensive operations for developing an

end-to-end pipeline for moving from raw data sources, through formalization, pre-

processing, and analyses, to extracting outcomes-of-care-oriented information from

patient records. The primary difficulty associated with this task is the lack of out-

comes in most modern EMRs. By using a formal encoding, the Integrated Outcomes

Ontology, we were able to phrase exactly what we wished to retrieve from the data

in the form of competency questions. Section 3.1 shows the set of seven questions

which we have sought to answer, at least partially, throughout the processing and

analysis of veterinary and hospice care data. These questions are also related to our

central research questions posed in Section 1.2. We will revisit them now in light of

the explanation of our work.

1. Can cross-domain medical records be encoded in a single, feedback-

based ontology representing outcomes-oriented concerns?

This question ties to all seven IOO competency questions but is best answered

by Chapters 3 and 4. We found that, yes, it is possible to create a very

simple ontology which can represent the core components of the patient record

necessary to label outcomes of care. In our experiments, we use two data sets

from different domains, veterinary and hospice care, without adjusting IOO

definitions. Only the original mapping must be created to enable encoding;

these mappings are given in entirety in Appendix A.
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2. What features are necessary to divide patient records into related

segments of episodes of care?

This is associated with the second IOO competency question. Episodes of care

have been a significant focus of our work, reflected by their presence in our

research questions. This is because episodes of care form the bridge between

roles/encounters and interventions/outcomes – an outcome must tie back to

a related encounter. In our case, using patient age, presenting complaint,

diagnosis, and prescribed medications, we can group encounters into related

episodes with a rand index score of 83.9± 26.5%

3. Can we extract interventions and, in particular, outcomes data from

free medical texts in the absence of a structured record?

Interventions and outcomes are connected to IOO’s third through seventh com-

petency questions. We had some success identifying interventions in structured

records when constraining them to medications. The more flexible solution has

been to use CRFs to label likely interventions and outcomes in the patient’s

medical text. In the veterinary domain, we have been able to identify interven-

tions and outcomes with average F1-scores of 68% and 78%, respectively. In

the hospice domain, the cumulative F1-score was a lower 55%, likely due to the

smaller set of text in clinical notes and limited amount of written outcomes.

Research questions two and three are not fully answered as we are still pursuing

other methods of improving these results. However, we take these early results as en-

couragement that text mining is a rich resource for augmenting medical information

systems without much other patient information.
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8.2 Final Remarks

As we continue to apply new methods to this problem, we expect to find better

answers to the posed questions. In the meantime, we have been able to build an

extensive framework for processing digital patient records to identify outcomes of

care. The ultimate goal of this study will be the deployment of a system which can

gather outcomes-related information directly from patients, integrate it into the rest

of the record in the EMR, and inform future care.
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[76] Alexis Garćıa, James G Fox, Thomas E Besser, et al. Zoonotic enterohem-

orrhagic escherichia coli: a one health perspective. ILAR J, 51(3):221–232,

2010.

75



[77] Filipe Dantas-Torres, Bruno B Chomel, and Domenico Otranto. Ticks and tick-

borne diseases: a one health perspective. Trends in parasitology, 28(10):437–

446, 2012.

[78] Richard Coker, Jonathan Rushton, Sandra Mounier-Jack, Esron Karimuribo,

Pascal Lutumba, Dominic Kambarage, Dirk U Pfeiffer, Katharina Stärk, and

Mark Rweyemamu. Towards a conceptual framework to support one-health

research for policy on emerging zoonoses. The Lancet infectious diseases,

11(4):326–331, 2011.

[79] Jonna AK Mazet, Deana L Clifford, Peter B Coppolillo, Anil B Deolalikar,

Jon D Erickson, and Rudovick R Kazwala. A one health approach to address

emerging zoonoses: the hali project in tanzania. PLoS Med, 6(12):e1000190,

2009.

[80] Stephen Higgs. Zika virus: emergence and emergency, 2016.

[81] Alfonso J Rodriguez-Morales, Antonio Carlos Bandeira, and Carlos Franco-

Paredes. The expanding spectrum of modes of transmission of zika virus: a

global concern. Annals of clinical microbiology and antimicrobials, 15(1):13,

2016.

[82] Massimo Franchini and Claudio Velati. Blood safety and zoonotic emerging

pathogens: now its the turn of zika virus! Blood Transfusion, 14(2):93, 2016.

[83] Michael J Day. One health: the importance of companion animal vector-borne

diseases. Parasites & vectors, 4(1):49, 2011.

[84] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel,

Steven Bethard, and David McClosky. The stanford corenlp natural language

processing toolkit. In ACL (System Demonstrations), pages 55–60, 2014.

76



[85] Kent A Spackman, Keith E Campbell, and Roger A Côté. Snomed rt: a
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APPENDIX A

DATA PROCESSING AND REDACTION MAPPINGS

The next few tables provide reference information showing the exact mapping

between the original data sources and the cleaned, redacted data. Table A.1 reviews

the old storage location of each field and the new, cleaned data location alongside

the intention of that mapping for VCD. The intention column is primarily influenced

by compliance with the ontology.

HCD includes several tables. Table A.2 is the primary mapping between original

and new fields. Because HBV is not reliant on regular discharges, being a hospice

setting, the only free text comes in the form of clinical notes. Table A.3 shows

the supplemental mappings for notes and problems. Also, as HBV supports limited

measurement of goals and outcomes, additional tables were used as reference for the

resulting data set. Table A.4 shows these references and their purpose.
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Table A.1: VCD mappings from the original VMIS data.
Old Table Old Field Intention New Table.Field

mr entry patient id
Gather patient info
for ontology

Not stored, only
used for later calls

vw case card
(view)

patient name Used to generate
pseudonyms for
role-based redaction
of known names

protocol patients.
patient name
(pseudonym only)

owner fname Not stored, only for
role-based redactionowner lname

admission

admission
datetime

Dates collected to
preserve timeframes

protocol encounters.
start time (offset)

discharge
datetime

protocol encounters.
end time (offset)

attending
clinician id

Used to locate
clinician

Not stored, only
used for later calls

presenting
complaint

Reason for visit
which informs
outcome from
previous visit

protocol encounter.
reason (redacted)

id
Used to locate
mr entries

Not stored, used
only for later calls

vmis user
fname Clinician name for

role-based redaction
Not stored, only for
role-based redactionlname

mr entry

class Used to group type
protocol interventions.
class

date recorded
Used to allow in-text
date offset to reflect
appropriate year

protocol interventions.
recorded date (offset)

description
Describes MR type
or points to document

Protocol interventions.
description (redacted)

id
Used to reference full
documents

protocol interventions.
mr entry

document
rtf document

Full text MRs
retrieved and processed
for more information

protocol interventions.
fulltext (redacted)
protocol interventions.
followup (redacted)

image
document

Full text of binary files
where RTF is not used

protcol interventions.
full text (redacted)

medication directions
Medication directions
entry for more detail
about medical entry

protocol interventions.
full text (redacted)
where applicable

necropsy clinical history
More details about
patient history

protcol interventions.
full text (redacted)
where applicable
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Table A.2: HCD mappings from the original HBV data.
Old Table Old Field Intention New Table.Field

PT BASIC
patient id Patient info Not stored

name full For redaction
protocols patient.
patient name
(pseudonym only)

notes Patient notes
protocol patients.
notes (redacted)

PT ADMISSION

patient id
Used to reference
other tables

protocol admission.
patient id (new id)

admit date Dates collected to
preserve timeframes

protocol admission.
admit date (offset)

termination
date

protocol admission.
termination date
(offset)

date of birth Ignore age >= 89
protocol admission.
patient age

RES ROLE
TABLE

Clinician name
collected for role-
based redaction

Not stored
RES ROLE
DESCRIPTION

Caregiver code Caregiver type
protocol admission.
caregiver code

latest class
Whether patient is
palliative or hospice

protocol admission.
latest class

PTC INTERVENTIONS

start date Dates collected to
preserve time frames
by using same offset
for a patient

protocol encounter
interventions.
start date (offset)

end date
protocol encounter
interventions.
end date(offset)

problem code
For storing the
problem warranting
intervention

protocol encounter
interevention.
problem code

intervention
code

For storing
interevention code

protocol encounter
intervention.
intervention.code

C Intervention I Description
For the corresponding
intervention
description

protocol encounter
intervention.
description
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Table A.3: HCD mappings for supplemental table data from HBV.

PTC Clinical notes

note id
Auto-generated
identifier

protocol notes.
note id (new id)

patient id
To maintain
relationships

protocol notes
patient id (new id)

discipline code
Discipline for
providers code

Protocol notes.
discipline code

cn text Clinical notes
Protocol interventions
.cn text (redacted)

create date
Preserving time
frame for notes

protocol notes.
create date (offset)

PTC PROBLEM
patient id

Reference the
patient problem

protocol problems.
patient id

ptc problem id
To track problem
with other tables

protocol problems.
problem id

problem code Code for the problem
protocol problems.
problem code

C Problem
problem
description

Code for the problem
protocol problems.
description (passing)
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Table A.4: HCD support information referenced from HBV tables.
Old Table Old Field Redaction Strategy

PTC DIAGNOSIS
diagnosis id

To get the diagnosis
description from C
Diagnosis

patient id

Self generated random
patient id to reference the
diagnosis for single pass
for redaction

diagnosis date
Random offset to change
date

C DIAGNOSIS diagnosis
To get the generic diagnosis
description associated with
the diagnosis id

PTC INTERVENTION
VARIANCE

PP INTERVENTION
ID

To reference the patient
intervention from PTC
INTERVENTION

Variance
Variance code to get generic
description of variance from
C Interevention variance

create date Date will be offset

C Intervention Variance description
To get the generic variance
description

PTC GOAL
pp goal id For referencing the goal id

patient id
Self generated random
patient id to reference the
patient goal

goal code Code for the goal

C Goal goal description
To access the generic
description

PTC GOAL VARIANCE
PP GOAL ID

Goal id referenced from
prc goal

MEETS
Boolean value to assess
the goal

Variance Code for goal variance

C Goal Variance Description Generic goal description
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APPENDIX B

WORD CLOUDS FOR DISCHARGE SUMMARY SEGMENTS

These word clouds, generated with wordclouds.com1, show the weighted relation-

ships among the 60 most frequent words in each segment for treatment, exercise, and

diet.

1http://www.wordclouds.com/
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Figure B.1: Word cloud visualizing the top 60 words in the “treatment” subsection.

Figure B.2: Word cloud visualizing the top 60 words in the “exercise” subsection.
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Figure B.3: Word cloud visualizing the top 60 words in the “diet” subsection.
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