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ABSTRACT 

This thesis mainly focuses on the research of the factors that influence the accuracy 

and efficiency of a UAV-based radio frequency (RF) and microwave data collection 

system.  Swarming UAVs can be utilized to create the unstructured morphing antenna 

arrays that reduce aliasing and improve convergence in sub-space direction of arrival 

techniques. 

This thesis first reports on the ramifications of using unstructured antenna arrays 

based on sub-space techniques. This work evaluates the classical MUSIC algorithm and 

root-MUSIC algorithm, and Fourier domain root-MUSIC algorithm (FD Root-MUSIC). 

Compared to the MUSIC algorithm, the root-MUSIC algorithm avoids the search of 

spatial spectrum, reduces the computational complexity and improves the ability of real 

world applications. 

Then, this thesis comes up with the data model for the UAV swarming system. 

Based on the data model, this work examines the impact of UAV swarm density and 

heterogeneity on synthetic aperture DOA convergence. The synthetic aperture is derived 

from the displacement of distributed UAVs operating in a sparse volumetric swarm. 

Heterogeneity arises from the changing orientation of a UAV’s antenna and receiving 

pattern function as it swarms in the distributed cluster of UAVs. This alters the UAVs’ 

antenna pattern functions over time and alters the convergence and overall performance 

properties of vector-space direction of arrival techniques. This work evaluates the impact 

of the swarm density and orientation in this framework and studies the convergence and 
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error using MUSIC algorithm. This work also discusses the impact of different type of 

errors introduced from UAV swarming. 

Furthermore, this thesis examines the DOA convergence performance of location-

varying volumetric random array using MUSIC algorithm. Simulation and measurements 

for up to sixteen elements on a thirty-two-location test platform are provided and 

comparisons are made to benchmark their performance with theoretical expectations. 

MATLAB simulation indicates that the volumetric random arrays can be applied in a very 

noisy condition by increasing the iterations and multiplying the MUSIC spectrum and 

experimental observations demonstrate that the system accurately capture the azimuthal 

and elevation angles of the source. 

At last, this thesis investigates and designs the tunable FM band monopole and 

loop antennas to locate the FM broadcasting stations.  The wavelength of the FM band is 

around three meters. This work uses lumped elements and meandering antenna structure 

technologies to reduce the antenna size and match the antenna. This work also uses the 

varactor diodes to tune the antenna. However, the antenna becomes electrically small and 

the antenna gain is so low that it cannot detect the FM signal from the local FM 

broadcasting stations.  
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1. INTRODUCTION 

 

With the development of modern electrical and information technologies and the 

increasing number of applications of mobile communication technologies on various 

domains, a variety of information services based on advanced communication 

technologies have attracted more and more attentions recently, including precise 

positioning services like global positioning system (GPS). However, wireless positioning 

and direction-finding technologies are also very prevailing in civil and military 

applications on wireless and mobile communication, such as directing and connecting the 

base station using the smart antenna technology, finding the source location in the seismic 

exploration, positioning the interference source in the military communications, etc. Those 

technologies always require real-time processing, highly precise measurement, and 

powerful antijamming capability. Classical radar direction-finding and GPS positioning 

systems are not able to be suitable for those applications. Therefore, the direction of arrival 

(DOA) estimation technologies are developing fast. 

1.1 Research Background 

At present, the research on direction-finding system is mainly in two aspects: one 

is to research the antenna array structure; the other is to research the direction-finding 

algorithm. 

For the research on the antenna array structure, the economic benefit of the system 

is very important. After satisfying the system performance, it always optimizes the array 

structure by reducing the number of the elements, which not only keeps the system simple, 
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but also reduces the cost by decreasing the complexity of the system. Since the application 

conditions are very complex in the military, the antenna structure is always irregular. 

Therefore, it is very important to optimize the irregular array structures.  

For the research on the algorithm, most of the algorithms are suitable for the 

applications of uniform linear arrays (ULAs) under all kinds of special conditions. 

However, many of the algorithms are not suitable for the arbitrary planar arrays. Even 

though a variety of algorithms have been proposed to provide the estimation for DOA, the 

multiple signal classification (MUSIC) algorithm remains quite prevalent since it offers a 

very robust eigen-based decomposition of the signal space [4]. However, relative to the 

one-dimension (azimuth angle) direction-finding, the two-dimension (both azimuth and 

elevation angles) direction-finding causes the computational complexity considerable. 

Therefore, it is important to reduce the calculation of the algorithm to achieve the real-

time measurement. 

In sum, it is necessary to optimize the antenna array structure and research the 

DOA algorithm for the practical direction-finding applications. 

1.2 Overview of the Development of DOA Estimation Methods 

 DOA estimation has been a topic of discussion for many years [1-3]. Initially, the 

DOA estimation based on sensor array structures used the Barlett beamformer method, 

which mainly contained the periodogram method and Blackman Tukey method. But, it 

was impacted by the Rayleigh limit so that it cannot obtain a high-resolution performance. 

In 1967, Burg came up with the maximum entropy (ME) method, which includes the ME, 

Autoregressive (AR) model, Moving Average (MA) model, Auto-Regressive and Moving 
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Average (ARMA) model parameter method. These methods have a high-resolution, 

however, they also have a low robustness and a considerable computation [5,6,7].  

When it came to the 1980s, a series of high-resolution spatial spectrum estimation 

methods based on decomposition of matrix eigen values for array signal processing came 

out and created a new era. All those estimations were represented by MUSIC and 

estimation signal parameters via rotational invariance technique (ESPRIT) [1,8,9,10]. 

MUSIC algorithm had attracted more and more attentions since it came out, which was 

the milestone of spatial spectrum estimation. MUSIC algorithm decomposes the eigen 

value data from sensor arrays and divides the linear space into the orthogonal noise 

subspace and signal subspace. Then, it builds up the space spectrum using the orthogonal 

property. In certain conditions, the MUSIC algorithm is one-dimensional implementation 

of maximum likelihood (ML) method, which share the same character with ML [11,12]. 

However, it has the weakness of heavy calculation, large buffer memory and high 

dependence on the signal model. In 1983, some search-free algorithms, such as root-

MUSIC, use root-solving technique to reduce the computational complexity [13,14]. The 

similar case is that ESPRIT algorithm and its improved algorithms such as LS-ESPRTI, 

TLS-ESPRIT and MI-ESPRIT avoid large computation in spectrum-searching, so it can 

increase the speed of DOA estimation. However, it can only be used under the special 

array structure to achieve the DOA estimation, so the practical application is relatively 

narrow [15].  

Recently, some researchers proposed that the classical DOA estimation algorithms, 

such as ML, MUSIC and ESPRIT, did not include the time characteristic of the signal. It 
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is necessary to add the appropriate time-domain data processing into the process of spatial-

domain data processing by using sufficiently the useful information of the signals. 

Researchers think we can sample the signals in the time domain and spatial domain at the 

same time. The 2D array signal processing method improves the ability of resistance to 

noise and reduces the restraint of array structure. 

Furthermore, recently researchers would like to employ the array signal processing 

method based on higher-order cumulant to reduce the colored noise in the environment, 

due to the natural blind feature for any Gaussian noise of the higher-order cumulant [16]. 

The algorithm can expand the classical DOA estimation algorithms to Gaussian spatial 

colored noise or symmetric distributed non-Gaussian spatial white noise and colored noise 

by using the cumulative amount. It also can enlarge the array aperture to some extent. 

Most of these methods are still in the experiment, simulation and theoretical stage, 

which is far from actual applications. The Massachusetts Institute of Technology (MIT)'s 

Lincoln Laboratory proposed that, MUSIC algorithm based on spatial spectrum was a 

leading candidate and the most promising for further study and actual hardware 

implementation among currently accepted super-resolution algorithms, after a detailed 

evaluation of thousands of simulations [17]. People usually choose the MUSIC algorithm 

to do research in the actual applications.  

1.3  Summarized Contributions Made by This Thesis 

The first contribution of this thesis is to apply FD Root-MUSIC onto volumetric 

antenna arrays to estimate both the azimuthal and elevational angles firstly. The classical 

MUSIC algorithm needs a lot of computational quantity due to spectrum-searching, the 
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FD Root-MUSIC algorithm solves the roots of the spectrum polynomial to obtain the 

incident signal angles estimation. The peaks in the spectrum space correspond to the roots 

of the polynomial lying close to the unit circle. However, when the number of the array 

elements is very big, the computational complexity is super high, so it is important to 

process the data reasonably. 

The second contribution of this thesis is to create the UAV swarm model when the 

array is swarming. This model includes the gain and phase pattern effects, and 

environment noise when the array swarms with time. Bases on the model, this work 

investigates the DOA performance of unstructured distributed arrays with space-varying 

and time-varying morphologies. The UAV swarm morphs over time to create a synthetic 

aperture, which alters the position and orientation of agents in the swarm. This work 

evaluates the impact of swarm density and heterogeneity. 

The third contribution of this thesis is to investigate the impact of different type of 

errors including uniformly and normal distribution errors as the UAVs swarm. Since the 

swarming UAVs change the orientation and receiving pattern, the DOA estimation 

performance properties are altered. This work adds this factor to promote the DOA 

performance. 

1.4 Thesis Organization 

This thesis firstly introduces the research background and significance of DOA 

arrival estimation, and the overview of the DOA algorithm. MUSIC and modified MUSIC 

algorithms are still prevalent in the modern DOA estimation. Chapter 2 describes the 

ramifications from using unstructured arrays in sub-space DOA techniques. Chapter 3 
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presents the impact of the UAV smarm density and heterogeneity of the synthetic aperture 

on DOA convergence. The antenna pattern morphing as the UAV swarms is consider into 

the DOA convergence. Different kind of errors are introduced in the UAV swarming 

system. Chapter 4 examines the impact of the location varying volumetric random array 

on DOA convergence, which proves that it can be applied under a very noisy condition 

using MUSIC algorithm. In chapter 5, tunable FM band monopole and loop electrically 

small antennas are investigated and designed. However, the electrically small antenna’s 

gain is too low and cannot detect the FM band signal from the local radio broadcasting 

stations. Chapter 6 concludes the thesis.  
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2. UNSTRUCTURED ARRAYS IN SUBSPACE METHODS 

2.1 Classic MUSIC Algorithm 

In 1986, Dr. Schmidt came up with the MUSIC algorithm [1], which was the 

theoretical cornerstone of the spatial spectrum estimation technology.  Many algorithms 

proposed later in this area were under the inspiration of the MUSIC algorithm.  Even 

though it has been studied for several decades, it is still popular in DOA estimation due to 

high resolution. 

2.1.1 Data Model 

Figure 1 shows a graphical representation of the M receiving array elements and 

D incident wave fronts and noise. 

 

 

Figure 1. MUSIC algorithm model. 

 

Assume the waveforms received at the M receiving array elements are linear 

combinations, thus a model can be created as representing the received vector signals X 

in: 
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 

1 1 1

2 2 2

1 2( ) ( ) ( )D

M M M

X F W

X F W
a a a

X F W

  

     
     
      
     
     
     

                  (1) 

or 

X AF W                   (2) 

 

where, M is the number of the receiving array elements; D is the number of the incident 

signals; X is the M × 1 received vector signals, including the phase difference and noise; 

A is the M × D matrix of the steering vector, determined by the signal arrival angle and 

the antenna array locations; F is the weighted coefficients; W is the complex vector noise.  

2.1.2 Covariance Matrix R 

Supposing the noise is the Gaussian white noise with zero mean and variance
2 , 

and the noise and the incident signals are uncorrelated. Thus, the M × M covariance matrix 

R of X can be obtained here: 

2

[ ]

[ ] [ ]

H

H H H

H

R E XX

E AFF A E WW

APA I



 

 

    (3) 

Where, 
HP FF  is diagonal and merely positive definite since the incident signal 

is uncorrelated.  

2.1.3   Signal and Noise Subspaces 

  Define: 

H

SR APA      (4) 
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 SR is the M × M matrix with rank D, therefore, it has the M-D repeated 

eigenvectors corresponding to the minimum eigenvalues (zero eigenvalues).  

Let ie be such an eigenvector, thus: 

0s iR e       (5) 

or 

0H

iA e       (6) 

That is, the M-D eigenvectors ( ie ) corresponding to zero eigenvalues are 

orthogonal to the D signal steering vectors. 

Define, 

Noise subspace: M-D dimensional subspace spanned by the noise eigenvectors. 

Signal subspace: D dimensional subspace spanned by the incident signal mode 

vectors. 

2.1.4   Algorithm 

Let nQ  be the M × (M-D) matrix of the noise eigenvectors. Then, we can structure 

the MUSIC spatial spectrum function, 

2

1 1
( )

( ) ( ) ( )
MU H H H

n n n

P
a Q Q a Q a


  

     (7) 

 

Then, search the spectrum peaks in the range of   and the spectrum points we 

obtain are the estimation of the arrival angles of the incident waves. 
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2.1.5  Simple Example for MUSIC Algorithm 

One simple example of DOA estimation using two elements is shown below. 

Assume that the DOA is 60 and the spacing is 0.5 λ. 

(1) Measure the phase information from S21: 

0.5000
=

2.1208
n

 
 
 

 rad 

(2) Calculate the phase difference: 

0
=

1.6208
n rad

 
  

 
 

(3) Calculate the vectors mapped on the polar coordinate: 

1
= =

0.05 0.9988*
nj

X e
j

  
 
  

 

(4) Calculate the covariance matrix R and perform the decomposition of R: 

1 -0.05-0.9988*
= * =

-0.05+0.9988* 1

H
j

R X X
j

 
 
 

 

[ , ]= ( )Q D eig R  

Eigen vectors: 
0.7071 0.7071

[ ]=
0.0353 0.7062* 0.0353 0.7062*

Q
j j

 
 
   

 

Eigen values: 
2 0

[ ]=
0 1.0447 ( 33) 5.64 ( 17)*

D
e e j

 
 

   
 

Therefore, the noise subspace: 

0.7071
=

0.0353-0.7062*
nQ

j

 
 
 
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and the signal subspace,  
 

0.7071
=

0.0353 0.7062*
sQ

j

 
 
  

 

(5) Perform the search in the searching space [0 π] rad: 

 

 

where ( )= ja e    and   increases from 0 to π with the step 0.01 rad.  

(6) Plot the MUSIC spectrum as shown in Figure 2. 

(7) Obtain the estimated DOA: 

The estimated DOA corresponds to the peak value in MUSIC spectrum. In this 

case, DOA is about 60.5 degree and close to the actual DOA. The small error is due to the 

noise existing in the phase difference information. 

 

=60

d= /2

        

 

Figure 2. MUSIC spectrum. 

 

2

1 1
( )= =

( ) ( ) ( )
MUSIC H H

H
n n

n

P
a Q Q a Q a


  
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2.2 Root-MUSIC Algorithm 

The disadvantage of the MUSIC algorithm is heavy computation, whereas the root-

MUSIC avoids the spectrum-searching by solving the roots of the polynomial. Thus, the 

root-MUSIC method can improve the code efficiency. However, the standard root-MUSIC 

is only suitable for uniform linear array (ULA) and nonuniform array (NUA) which lies 

on a uniform grid. The interest of developing search-free DOA estimation technologies 

for arbitrary array geometries has been increased. There are four popular search-free 

algorithms based on root-MUSIC algorithms: 1) The first is the interpolated root-MUSIC 

algorithm, which achieves the purpose by using a virtual ULA to approximate any actual 

NUA [18,19]; 2) The second is manifold separation (MS) algorithm based on root-MUSIC, 

which models the received wavefield using an orthogonal extension and a Vandermonde 

vector on the basis of the angle and array geometry [20,21,22]; 3) The third is the Fourier 

domain (FD) root-MUSIC algorithm, which finds that the null-spectrum MUSIC function 

is periodic in angle and uses the truncated Fourier series expansion of this periodic 

function to reformulate the DOA estimation problem by solving the roots of polynomial 

functions [10]; 4) The last is the FD-Weighted Least-Squares (FDWLS) root-MUSIC 

algorithm, which uses a weighted least-squares approximation of the MUSIC null-

spectrum function [10]. 

2.2.1 Standard Root-MUSIC Algorithm 

In this section, the ULA case would be introduced to demonstrate the basic 

knowledge of the standard root-MUSIC algorithm. The standard MUSIC algorithm has 

been derived from section 3.2. Since the signal subspace and noise subspace are 
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orthogonal, therefore, we can construct the polynomial zf  using the noise subspace nQ  

for ULAs, such that 

  0H H

z n nf V Q Q V                     (8)  

 

where the steering vector V is  

1 2 ( 1)[1 ]M Tz z z z        (9) 

 

and  

 
2

sin
d

j

z e



      (10) 

 

 where d is the spacing among the ULAs, the  is the wavelength, and  is the 

incident angle. 

 The roots of zf contain the DOA information. Ideally, the roots should be in the 

unit circle at locations, however, it may not at the unit circle due to the presence of the 

noise. For each root, we can find the incident angle by the equation, 

arcsin[ arg( )]
2

k kz
d





          (11) 

 

2.3 Fourier Domain Root-MUSIC Algorithm  

2.3.1 Classical Fourier Domain Root-MUSIC Algorithm  

The Fourier domain Root-MUSIC (FD Root-MUSIC) algorithm came up with first 

by Rubsamen and Gershman in [10] uses a different approach from root-MUSIC algorithm 
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to obtain a polynomial. They found that the MUSIC null-spectrum function has a period 

2π in  . Thus, Fourier series expansion can be used to rewrite the function as  

( ) jm

m

m

f F e 




                                                  (12) 

 

where mF  are the Fourier series coefficients, which can be expressed as 

 
1

2

jm

mF f e d
















                                            (13) 

 

The function (𝜃) can be approximated by truncating the Fourier series in (12) to 2M1-1 

points as 

1

1

1

1

1 ~

( 1)

1 ~

( 1)

( ) ( )

( )

M
jm

m

m M

M
m

m

m M

f z F e f

F z f z

 


 



 

 

 





                                          (14) 

 

where the jz e  , which is different from that used in (10).  

 The discrete Fourier transform (DFT) can be used to obtain the Fourier series 

coefficients mF  as 

1

1

1

( 1)

1
( )

2

M
jml

m m

l M

F f l e F 


 
 

 

                                    (15) 

 

where 12 / (2 1)M    . The final expression of the FD Root-MUSIC polynomial 

could be expressed by the DFT approximation as 
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1

1

1~

( 1)

( )
M

m

m

m M

f z F z
 

 

                                                (16) 

 

Since aliasing effects are brought in due to sampling the MUSIC null-spectrum 

function (𝜃), the DFT coefficients 
mF


are different from the Fourier series coefficients mF . 

Increasing 1M  can reduce the aliasing effect, but this will enhance the computational 

complexity. 

2.3.2 Apply the FD Root-MUSIC Algorithm to 2D DOA Estimation 

The FD Root-MUSIC algorithm can be applied in arbitrary NUAs, but it cannot 

be extended simply to the 2D (azimuth and elevation angles) DOA estimation. Since the 

roots close to the unit circle only exist in the incident angle, so we can search the elevation 

angle to find the roots to calculate the azimuth angles, the corresponding elevation angles 

are the incident angles. Below is the process: 

1) Step 1, calculate the covariance matrix 

1

1
( ) ( )

N
H

X

k

R X k X k
N 

                                           (17) 

where X is the receiving data matrix, and judge the number of the incident signals by AIC 

criterion; 

2) Step 2, search the elevation angle from (0, π); 

3) Step 3, for a given elevation angle 𝜃, calculate the Fourier series coefficients 𝐹𝑚 

using the formula (15); 

4) Construct the polynomial and find the roots of the polynomial and judge if there 

is a root close to the unit circle, if so, calculate the azimuth angle and the relative elevation 
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angle is the estimated angle; if not, it means there is not arrival angle in the certain 

elevation angle 𝜃, go to step 5; 

5) Repeat step 3 and 4 for the next elevation angle 𝜃, obtain the estimated angles 

of all the signals. 

2.3.3 Example for FD Root-MUSIC Algorithm 

Simple ULA and NUA are introduced for 1D DOA estimation using FD root-

MUSIC algorithm. Spherical array and volumetric random array are also discussed for 2D 

DOA estimation. 

First, this work uses a ULA as an example, and the array structure is shown in 

Figure 3. Uniform linear array. The roots of the polynomial are the same as Figure 4. Table 

1 shows that when the incident angle is 50 , the estimated angle is 130 , which is the 

supplementary angle of incident angle. Thus, the ULA has an aliasing problem.  

 

Figure 3. Uniform linear array. 
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Figure 4. Roots of the polynomial for ULA. 

 

Table 1. Incident and simulated angle for ULA 

 

Incident Angle Simulated Angle 

50° 130° 

 

 Then, FD Root-MUSIC is used to examine the DOA in NUA, which does not have 

the aliasing problem. The roots of polynomial are shown in Figure 5, the results are shown 

in Table 2. 
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Figure 5. Roots of the polynomial for NUA. 

 

Table 2. Incident and simulated angle for NUA 

 

Incident Angle Simulated Angle 

25° 24.9972° 

 

Then, take the spherical array as an example. Twenty-five elements are located in 

a sphere which is shown in Figure 6. The results are shown in Table 3. The estimated 

angles are very accurate. Figure 7 shows a volumetric random array. Sixteen elements are 

randomly located in a sphere with radius 380mm. Table 4 gives the estimated angles and 

incident angles, which shows that the results are very accurate. Furthermore, there is no 

aliasing problem in the 3D arrays. 
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Figure 6. Spherical array structure. 

 

Table 3. Incident and simulated angle for spherical array 

 

Simulation Results of DOA Estimation for Spherical Arrays 

Incident Signal Estimated DOA Error 

Azimuth Elevation Azimuth Elevation Azimuth Elevation 

90 170 89.911 170 0.089 0 

60 140 59.9995 140 0.0005 0 
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Figure 7. Volumetric random array structure. 

 

Table 4. Incident and simulated angle for volumetric random array 

 

Simulation Results of DOA Estimation for Volumetric Random Array 

Incident Signal Estimated DOA Error 

Azimuth Elevation Azimuth Elevation Azimuth Elevation 

90 170 89.9363 170 0.0637 0 

60 140 59.9818 140 0.0182 0 

 

V
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2.3.4 Contrast of Computational Complexity 

This section talks about the contrast of the computational complexity of MUSIC 

and FD Root-MUSIC algorithm. First, assume that N is the number of receiving elements, 

D is the number of incident signals, J is the total number of spectral points, M is the degree 

of FD Root-MUSIC polynomials, and 𝐽>>𝑁, 𝐽>>𝑀. The contrast of computational 

complexity of MUSIC and FD Root-MUSIC algorithm is shown in Table 5. According 

to the computational complexity, different scenarios provide different trade-offs. 

When the M << N, the FD Root-MUSIC algorithm reduces the complexity 

significantly.   

Table 5. Contrast of computational complexity 

 

Algorithm Computational Complexity 

Spectral MUSIC 𝛰(𝑁3 + 𝐽𝑁𝐷) 

FD Root-MUSIC 𝛰(𝑁3 +𝑀𝑁𝐷 +𝑀log2𝑀 + degree − 𝑀  𝑟𝑜𝑜𝑡𝑖𝑛𝑔) 
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3. IMPACT OF UAV SWARM DENSITY AND HETEROGENEITY ON 

SYNTHETIC APERATURE DOA CONVERGENCE 

3.1 Introduction 

This section comes up with a creative method to utilize swarming UAVs which 

morph over time to create unstructured morphing antenna arrays as a distributed data 

collection system. The position and orientation of the UAVs are altered over time to create 

a synthetic aperture. This work proposes a mathematic model of the data collection system 

and evaluates the performance of the system. According to the model, simulations are used 

to investigate the impact of the UAV swarm density and heterogeneity derived from 

rotated pattern functions.  

3.2 Swarming UAV Synthetic Aperture 

The swarming UAV synthetic aperture was first introduced in [24]. Figure 8 is a 

schematic diagram of a UAV swarm morphing in time. Assume that there are M UAVs 

and each of them has a position, orientation, and trajectory. Suppose that these UAVs have 

position  , , ,n tP r   , where n is the UAV’s index and t is the ‘snapshot’ time parameter. 

It is convenient to use a dual quaternion framework to handle the UAV swarming behavior, 

where the UAVs undergo rotations and translations during swarming. Therefore, the 

swarming process alters the antenna radiation pattern’s spatial orientation with respect to 

the global coordinate system and incident signals. Each UAV has local (u,v,w) coordinate 

system shown in the figure. The incident data  0 0,S    is collected over time and the 

parameters of interest  0 0,   can be obtained by the collection of the measurements. 
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Figure 8. Swarming UAV synthetic aperture reprinted from [24] © 2017 IEEE. 

 

3.3  Swarming Model 

In [23], Dr. Friedlander came up with a mutual coupling model, which includes 

the phase, gain and mutual coupling effects. Refer to the model, assume that N is the 

number of radiating sources and M is the number of elements in a receiving array. 

Therefore, the received signals at the mth agent can be represented as 

1

( ) ( ) ( ),

/ 2 / 2, 1,2, ,

N

m m n mn m m

n

x t s t w t

T t T m M

  


   

   


                              (18)          

                            

where the mutual coupling effects are not introduced, 
1{ ( )}N

n ns t 
 are the radiated signals, 

1{ ( )}M

m mw t 
 are the additive noise, and T is the observation period. { }mn  are delays from 

the nth source to the mth sensor with respect to the signal propagation time. In the end, 

m  and m  are the gain and the delay relative to the mth sensor. 

 It is convenient to use Fourier coefficients to separate the parameters. It can be 

defined by 
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/2

/2

1
( ) ( ) l

T
j t

m l m
T

X x t e dt
T

 


                                           (19) 

 

where 12 ( ) /l l l T   , 1,2, , ;l L  and 1l is a constant. The number of coefficients 

should be infinite to get all the signal information in theory. But, the signals we are 

interested in are narrow-band. Assume the spectrum is concentrated around 0 , and the 

bandwidth is small relative to 2 / T . Thus, L=1. Recall the Fourier coefficients of (8) on 

0 , we obtain 

0 0

1

1,2, ,

m mn

N
j j

m m n n

n

X e e S W

m M

     



  




                                     (20) 

 

where nS and nW are the Fourier coefficients of ( )ns t and ( )mw t , respectively. The m  and 

m change with respect to element location based on orientation of UAV; mn  changes 

with respect to location; nS is constant; nW may change with respect to location, velocity 

of UAV, and environment. Equation (10) can be represented by 

( ) ( ) ( ); 1,2, ,X k S k W k k K                                   (21) 

 

where k is the index of different (independent) samples and 

1 2( ) [ ( ), ( ), ( )]T

MX k X k X k X k ， , 

1 2( ) [ ( ), ( ), ( )]T

NS k S k S k S k ， , 

1 2( ) [ ( ), ( ), ( )]T

MW k W k W k W k ， , 

0 1 0 2 0

1 2{ , , , }Mj j j

Mdiag e e e
         

  , 
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0 1,2, , ; 1,2, , .mnj

mnA e m M n N
 

    

Here we consider the sources are in the far field from the observing array. It is easy to 

find that mn can be represented by 

/ ,

sin cos sin sin cos

mn mn

mn m n n m n n m n

d c

d x y z



    

 

  
                           (22) 

 

where mnd is the distance from origin (reference sensor) of the coordinate to the sensor m 

in the direction of nth source, c is the propagating velocity in free space, ( , , )m m mx y z  are 

the coordinates of the mth sensor, ( , )n n  are the DOA of nth source in the sphere 

coordinate. Figure 9 shows the geometry of one UAV swarming 8 times in the Cartesian 

coordinate system. 

From equations (11) and (12), the matrix A can be obtained by  

0( / )( sin cos sin sin cos )m n n m n n m nj c x y z

mnA e
      

                                     (23) 
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Figure 9. Geometry for one UAV morphing 8 times with the n-th wavefront. 

 

3.3.1 UAV Parameters 

Each UAV swarms in a cylinder region (r=𝜆, 10𝜆, or 100𝜆, h= 2r, 𝜆 is wavelength 

and 𝜆 = 1000mm). Each UAV has an initial location (x, y, z) in the swarming region with 

a vector velocity 
mV


. The swarming short distance at each iteration is a vector 
md


. The 

scalar quantity in the x, y, and z direction can be represented as dx, dy and dz, which uses 

the following relation: 

0.4 0.1 , (0.1 ,0.5 )

0.4 0.1 , (0.1 ,0.5 )

0.4 0.1 , (0.1 ,0.5 )

x t x

y t y

z t z

d d

d d

d d

    

    

    

   

   

   

                                  (24) 

where t  is a uniformly distributed random number between zero and one. We also can 

obtain: 
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m md V t
 

                                                              (25) 

 

3.3.2 Data Processing and Algorithm 

When the UAV swarms, there will be a lot of data information due to the number 

of iterations. There are several ways to process the data: 

1) Only use the current data to calculate the MUSIC spectrum 

2) Use current data and all previous data to calculate the MUSIC spectrum 

3) Use current and some previous data to calculate the MUSIC spectrum 

One of the benefits using the swarm system is to use the previous data to increase the 

performance of DOA convergence, so the benefits will be gone if the previous data are 

not utilized.  However, if all the previous data are accumulated to calculate the MUSIC 

spectrum, the data matrix will be very big and the computational complexity will be super 

high. So, it is necessary to compromise the previous data usage and computational 

complexity. Here we take the type 3 to investigate the performance.  

Another problem is how many data points should be used to calculate the MUSIC 

spectrum at each iteration. Since more data points for MUSIC spectrum calculation each 

time means more array elements using for data collecting in an antenna array, and more 

accurate for DOA estimation. However, more data processing points cause higher 

calculation cost. Thus, it is necessary to compromise the number of data points at each 

MUSIC spectrum calculation and computational complexity. Based on type 3, 6 data 

points, 10 data points, 100 data points and even more data points can be used to calculate 
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the MUSIC spectrum at each iteration. I will talk about the impact of different type of data 

sets at each iteration later. Here, we take 10 data points for each group. 

Figure 10 shows the data processing schematic for 6 data points each set in the 

UAV swarm system. When UAV swarms to a certain location, we will sample 5 times (5 

snapshots) and each snapshot takes the time td . After taking 5 snapshots, the program sets 

up a data point. After the number of data points dN  = 6, the program calculates the MUSIC 

spectrum and stores the result. Then UAV swarms again, we accumulate current data and 

previous data to calculate the MUSIC spectrum. Furthermore, we multiply the current 

MUSIC spectrum and previous MUSIC spectrum at each iteration where we obtain the 

MUSIC spectrum to reduce the noise level and improve the DOA performance. Note that 

if the iteration is too big, the value of the spectral points will be very small and might be 

taken as zero. If so, the correct DOA cannon be obtained. We should use dB instead of 

number at that situation.   

 

Figure 10. Data processing schematic for UAV swarm system. 

 

Consider the two problems above, the steps of the algorithm are: 
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Step 1: UAV swarms until the number of the data is 12, then, calculate the MUSIC 

spectrum; 

Step 2: UAV swarms again, and use current data and previous data to calculate the 

MUSIC spectrum at each iteration; 

Step 3: Multiply the current MUSIC spectrum and previous spectrum 

Step 4: Repeat step 2-3 until the swarming system converges 

The algorithm flow chart is shown in Figure 11. 

 

 

Figure 11. Flow chart of the algorithm. 
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3.3.3 Convergence Check 

The algorithm performs the calculation until the system converges. The 

convergence can be guaranteed, since the estimated DOA is a convergent series.  

When the signal is covered by a high noise level, the estimated DOA might be far 

from the ground truth and cannot be judged for the convergence. But as the iteration 

increases, the noise level is reduced and the estimated DOA is converged gradually. 

Avoiding the misjudgment, the equation for judging the convergence is given by 

10

1

, 1,2,n n m

m

DOA DOA n t



                                         (26) 

 

where t is the number of iteration and  is the preset threshold. 

3.4 Example and Performance for One UAV Swarm 

If there is only one source and one UAV at time 1t , (8) can be given by  

0 1 0 11( ) ( )

1 1 1 1( ) ( ) ( )
j t j t

X t t e e S W t
     

                                       (27) 

where subscript “1” represents UAV number one; 1 and 1 may change with respect to 

element location based on orientation of UAV; 11 changes with respect to location; 1S is 

constant; 1W may change with respect to location, velocity of UAV, and environment.  

 First, consider the ideal case: one UAV swarms without rotating at the cylinder 

region (r=𝜆, h=2𝜆), so the array constructed by the swarming system is identical, which 

gives 1 1  . Assume the SNR = 0, the snapshot K = 5, it is a very noisy condition. Choose 

200 iterations (enough for us to examine the performance) for one UAV swarming at one 

pass and keep the short distance as dx∈(0.1𝜆,0.5𝜆), dy∈(0.1𝜆,0.5𝜆), dz∈(0.03 𝜆,0.43𝜆). 
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The diagram is shown in Figure 12. Figure 13 shows the simulated azimuth and elevation 

errors, Figure 14-17 show the simulated two-dimension (2D) and three-dimension (3D) 

MUSIC spectrum with iteration increasing. Then, Figure 18 shows the average of azimuth 

and elevation errors with ten passes. 

 

Figure 12. Diagram of one UAV swarming with number of iteration t = 200, density of 

swarming region r = 1𝜆. 
  

  

Figure 13. Simulated DOA errors of an incident signal with an azimuth of 60 and 

elevation of 120 . 



 

32 

 

 

Figure 14. Simulated MUSIC spectrum with number of iteration t = 1, an incident signal 

with an azimuth of 60 and elevation of 120 . 

 

 

Figure 15. Simulated MUSIC spectrum with number of iteration t = 11, an incident 

signal with an azimuth of 60 and elevation of 120 . 

 

 

Figure 16. Simulated MUSIC spectrum with number of iteration t = 81, and DOA of an 

azimuth of 60 and elevation of 120 . 
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Figure 17. Simulated MUSIC spectrum with number of iteration t = 191, and DOA of an 

azimuth of 60 and elevation of 120 . 

 

 

Figure 18. Simulated average of azimuth and elevation errors of ten passes with number 

of iteration t = 200, and DOA of an azimuth of 60 and elevation of 120 . 

 

 Results above show that one UAV swarm system in the ideal case converges very 

fast. 

3.5 Impact Factors for DOA Convergence in the UAV Swarming System 

The convergence of a DOA estimation technique depends on a number of 

parameters. The scope, dependence, and complexity of these parameters changes 

significantly when a UAV swarm is used as the data collection platform. Key parameters 

for this include the total number of UAVs collecting data, the density (or number of data 
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collectors in a given region) that are swarming, each UAV’s velocity in the swarm, and 

the phase errors due to noise, interference, and a host of other uncertainties. A series of 

numerical simulations are presented in this section to observe the impact of these 

parameters – fixing some while varying others. All results provided in this section 

represent the average of ten simulation runs and each run of these simulations has an 

iteration count t = 500. The parameters varied are: 

– Number of UAVs: M = 1,10 

– Number of data processing points: dN  = 1, 10, 100, and 500 

– Number of snapshots: K = 1,10, and 100 

– Swarming range: r = 1,10, and 100  

– Velocity v (represented by the distance): d = 0.1~0.5 , etc. 

– SNR = -20, 0, and 20 dB 

– Phase errors due to environment and UAV rotation 

 

3.5.1 Impact of Number of UAVs 

When there is more than one UAV morphing at the same time, the antenna array 

will change fast at each iteration. Let the number of iterations t = 500, the number of data 

processing points dN =10, snapshots K=5, swarming range r =1𝜆, distance d∈ (0.1𝜆, 

0.5𝜆), SNR = 0 dB, phase error = 0. The number of UAVs varies at 1 and 10.  Figure 19-

22 show that the swarming system will converge faster when the number of the UAVs are 

increased.  
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Figure 19. Diagram of one UAV swarming for 500 iterations with different number of 

UAVs. 

 

  

Figure 20. Simulated average of azimuth and elevation errors of ten passes with number 

of UAVs M = 1, and DOA of an azimuth of 60 and elevation of 120 . 

 



 

36 

 

  

Figure 21. Simulated average of azimuth and elevation errors of ten passes with number 

of UAVs M = 10, and DOA of an azimuth of 60 and elevation of 120 . 

 

3.5.2 Impact of Number of Data Processing Points 

The number of data processing points at each iteration corresponds to the number 

of elements in an antenna array without time-varying. Thus, it is very important to decide 

how many data points should be utilized to calculate the MUSIC spectrum and estimation 

DOA.  

Choose the number of data points at each group dN = 10, 100. We already know 

that when dN  = 10, it can be converged well in the section 3.5.1.  In this section, one 

UAV swarm are used to investigate the impact factors. Let the number of iterations t = 

500, the number of UAVs M = 1, snapshots K=5, swarming range r =1𝜆, distance d ∈ 

(0.1𝜆, 0.5𝜆), SNR = 0 dB, phase error = 0.  The number of data processing points varies at 

6, 10, and 100. Figure 22 shows that when the dN = 6, it is not easy to converge. Figure 4 

shows that when dN = 100, it converges very fast. The results about dN = 10 is shown in 

Figure 20. 
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Figure 22. Diagram of one UAV swarming for 500 iterations with different data points. 

 

     

 

 

 

 

 

 
Figure 23. Simulated average of azimuth and elevation errors of ten passes with number 

of data points dN = 6, and DOA of an azimuth of 60 and elevation of 120 . 
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Figure 24. Simulated average of azimuth and elevation errors of ten passes with number 

of data points dN  = 100, and DOA of an azimuth of 60 and elevation of 120 . 

 

3.5.3 Impact of Snapshots 

When the snapshots are increased, obviously the noise would be reduced. Let the 

number of iterations t = 500, the number of UAVs M = 1, the number of data processing 

points dN =10, swarming range r =1𝜆, distance d ∈ (0.1𝜆, 0.5𝜆), SNR = 0 dB, phase error 

= 0. The number of snapshots K varies at 1, 10 and 100.  Figure 26-27 show that the noise 

will be reduced faster when the number of the UAVs are increased. 

 

Figure 25. Diagram of one UAV swarming for 500 iterations with different snapshots. 
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Figure 26. Simulated average of azimuth and elevation errors of ten passes with number 

of snapshot K = 10, and DOA of an azimuth of 60 and elevation of 120 . 

                 

 

    

 

 

 

 

 Figure 27. Simulated average of azimuth and elevation errors of ten passes with number 

of snapshots K = 100, and DOA of an azimuth of 60 and elevation of 120 . 

 

3.5.4 Impact of SNR 

When the SNR are increased, the noise level is reduced. Let the number of 

iterations t = 500, the number of UAVs M = 1, the number of data processing points dN

=10, snapshots K = 5, swarming range r =1𝜆, distance d ∈ (0.1𝜆, 0.5𝜆), phase error = 0. 

The SNR varies at -20, 0 and 20 dB.  Figure 19-30 show that the impact of SNR. 
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Figure 28. Diagram of one UAV swarming for 500 iterations with different SNR. 

  

 

 

 

 

 

Figure 29. Simulated average of azimuth and elevation errors of ten passes with SNR = -

20 dB, and DOA of an azimuth of 60 and elevation of 120 . 

 

  

 

 

 

 

Figure 30. Simulated average of azimuth and elevation errors of ten passes with SNR = 

20 dB, and DOA of an azimuth of 60 and elevation of 120 . 
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3.5.5 Impact of Swarming Density and UAV Velocity 

This section first discusses about the impact of swarming density, and then talks 

about the impact of UAV velocity related to the wavelength.  Bigger swarming region will 

bring in more noise. The UAV velocity related to the short distance at each iteration will 

change the array structure, and thus impact the DOA convergence. When the short 

distance is too small between 0.05 𝜆 and 0.1 𝜆, the estimated arrival angle even cannot be 

converged. When the short distance is too big between 10 𝜆 and 30 𝜆, the estimated arrival 

angle will be converged more slowly. Thus, the distance cannot be too small or too big, it 

should be suitable with respect to the wavelength to create a good antenna array structure. 

First, let the dx∈(0.1 𝜆,0.5𝜆), dy (0.1 𝜆,0.5𝜆), dz ∈(0.03 𝜆,0.43𝜆), and vary swarming 

region at r = 1𝜆, 10𝜆, and 100𝜆. Figure 20 and Figure 31-34 show the impact of swarming 

density from r = 1𝜆 to r = 100𝜆.  Then, let the swarming region r = 10 𝜆, and 100𝜆, vary 

the short distance d from dx∈(0.1 𝜆,0.5𝜆) to dx∈(10 𝜆, 50𝜆) to examine the impact of 

the UAV velocity. Figure 35-42 show the numerical simulation results. 
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Figure 31.  Diagram of one UAV swarming with number of iteration t = 500, swarming 

region r = 10 𝜆, and short distance dx∈(0.1 𝜆,0.5𝜆) , dy ∈ (0.1 𝜆,0.5𝜆), dz ∈(0.03 

𝜆,0.43𝜆). 

 

  

 

Figure 32. Simulated average of azimuth and elevation errors of ten passes with 

swarming region r = 10𝜆, short distance dx∈(0.1 𝜆,0.5𝜆) , dy ∈ (0.1 𝜆,0.5𝜆), dz ∈

(0.03 𝜆,0.43𝜆) and DOA of an azimuth of 60 and elevation of 120 . 
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Figure 33. Diagram of one UAV swarming with number of iteration t = 500, swarming 

region r = 100 𝜆, and short distance dx∈(0.1 𝜆,0.5𝜆) , dy ∈ (0.1 𝜆,0.5𝜆), dz ∈(0.03 

𝜆,0.43𝜆). 

 

 

  

Figure 34. Simulated average of azimuth and elevation errors of ten passes with 

swarming region r = 100𝜆, short distance dx∈(0.1 𝜆,0.5𝜆) , dy ∈ (0.1 𝜆,0.5𝜆), dz ∈

(0.03 𝜆,0.43𝜆) and DOA of an azimuth of 60 and elevation of 120 . 
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Figure 35. Diagram of one UAV swarming with number of iteration t =500, swarming 

region r = 1 𝜆, and short distance dx ∈(0.05 𝜆,0.1𝜆) , dy ∈ (0.05𝜆,0.1𝜆), dz ∈(0.05𝜆,0. 

1𝜆). 

 

  

Figure 36. Simulated average of azimuth and elevation errors of ten passes with 

swarming region r = 1𝜆, short distance dx ∈(0.05 𝜆,0.1𝜆) , dy ∈ (0.05 𝜆,0.1𝜆), dz ∈

(0.05𝜆,0. 1𝜆) and DOA of an azimuth of 60 and elevation of 120 . 
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Figure 37. Diagram of one UAV swarming with number of iteration t =500, swarming 

region r = 10𝜆, and short distance dx ∈(1𝜆,5𝜆), dy ∈ (1𝜆,5𝜆), dz ∈(0.93𝜆,4.93𝜆). 

 

 

  

Figure 38. Simulated average of azimuth and elevation errors of ten passes with 

swarming region r = 10 𝜆, and short distance dx ∈(1𝜆,5𝜆), dy ∈ (1𝜆,5𝜆), dz ∈

(0.93𝜆,4.93𝜆) and DOA of an azimuth of 60 and elevation of 120 . 
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Figure 39. Diagram of one UAV swarming with number of iteration t = 500, swarming 

region r= 100𝜆, and short distance dx ∈(1𝜆,5𝜆) , dy ∈ (1𝜆,5𝜆), dz ∈(0.93 𝜆,4.93𝜆). 

 

  

Figure 40. Simulated average of azimuth and elevation errors of ten passes with 

swarming region r = 100𝜆, short distance dx ∈(1𝜆,5𝜆) , dy ∈ (1𝜆,5𝜆), dz ∈(0.93 

𝜆,4.93𝜆), and DOA of an azimuth of 60 and elevation of 120 . 
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Figure 41. Diagram of one UAV swarming with number of iteration t = 500, swarming 

region r = 100𝜆, and short distance dx ∈(10𝜆,50𝜆), dy ∈ (10𝜆,50𝜆), dz ∈(9.93 

𝜆,49.93𝜆). 

 

  

Figure 42. Simulated average of azimuth and elevation errors of ten passes with density 

of swarming region r = 100𝜆, short distance dx ∈(10𝜆,50𝜆), dy ∈ (10𝜆,50𝜆), dz ∈

(9.93 𝜆,49.93𝜆) and DOA of an azimuth of 60 and elevation of 120 . 

 

3.6 Impact of Phase Errors 

This section introduces two types of distribution, uniformly distribution and 

normal distribution, for phase errors. In practice, the measured phase difference may have 

some errors due to the antenna shielding between each other and the UAV rotation as it 
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swarms. For one UAV swarm system, the shielding error is zero, and even for two or three 

UAV swarm systems, the shielding errors might be ignored. However, if there are 10, and 

even 100 UAVs swarming at the same time, the shielding errors would be increased. When 

the UAV rotates, the received antenna gain and phase would be different and it will cause 

the phase errors according to the antenna pattern. Some other errors may come from the 

phase test errors, UAV location test errors, the uncertain environment around the antenna 

in the UAV (e.g., the effect of metal objects near antenna, and the effect of UAV wings 

vibrating).  

 Assume the shielding errors, phase test errors, UAV location errors as the unknown 

errors unknowne , and randomly give the value of unknowne from -5 percent to 5 percent of 2

phase errors.  The relation is: 

2 ( 0.1 0.05)unknown te                                               (28) 

 

where t  is a uniformly distributed random number between zero and one. Let the number 

of iterations t = 500, snapshots K = 5, the number of UAVs M = 1, the number of data 

processing points dN =10, swarming range r =1𝜆, distance d ∈ (0.1𝜆, 0.5𝜆), SNR = 0 dB. 

One UAV swarming system in the ideal case is used to examine the impact of unknown 

phase errors. Figure 43-44 show that the system still converges fast with phase errors 

unknowne . 
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Figure 43. Diagram of one UAV swarming with number of iteration t = 500, swarming 

region r = 1𝜆, short distance d ∈ (0.1𝜆, 0.5𝜆), and unknown phase error = unknowne . 

 

 

Figure 44. Simulated average of azimuth and elevation errors of ten passes with phase 

errors = unknowne , and a DOA of an azimuth of 60 and elevation of 120 . 

 

 Then, take the phase errors due to UAV rotation as rotatione , and randomly add 

rotation phase errors rotatione  from -10 percent to 10 percent of 2 . The relation is: 

2 ( 0.2 0.1)rotation te                                               (29) 
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where t is a uniformly distributed random number between zero and one. Let the number 

of iterations t = 500, snapshots K = 5, the number of UAVs M = 1, the number of data 

processing points dN =10, swarming range r =1𝜆, distance d ∈ (0.1𝜆, 0.5𝜆), SNR = 0 dB. 

Figure 45-46 show that the system converges fast with phase errors rotatione . 

 

 

Figure 45. Diagram of one UAV swarming with number of iteration t = 500, swarming 

region r = 1𝜆, short distance d ∈ (0.1𝜆, 0.5𝜆), phase error = rotatione . 

 

 

  

Figure 46. Simulated average of azimuth and elevation errors of ten passes with phase 

errors = rotatione , and DOA of an azimuth of 60 and elevation of 120 . 
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Then, add both unknowne  and rotatione  phase errors to investigate the DOA 

convergence. Figure 477-48 show that the system converges fast even with both phase 

errors unknowne and rotatione . 

  

Figure 47. Diagram of one UAV swarming with number of iteration t = 500, swarming 

region r = 1𝜆, short distance d ∈ (0.1𝜆, 0.5𝜆), phase error = unknowne  and rotatione . 

 

 

  

Figure 48. Simulated 10 times average of azimuth and elevation errors with phase errors 

= unknowne  and rotatione , and DOA of an azimuth of 60 and elevation of 120 .  

 

If the unknown and rotation phase errors discussed above are satisfied with normal 

distribution. The probability density of normal distribution is: 
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where   is mean or expectation of the distribution,   is standard deviation, 2 is 

variance.  The normal distribution is shown in Figure 49.  

 

Figure 49. Normal distribution. 

 

Take both the unknown and rotation phase errors as normal distribution phase 

errors.  Randomly add the phase errors by varying  and   to investigate the impact of 

different type of phase error distributions. 

Let the number of random number as 1000, Figure 50-53 show the 4 types of 

normal distribution random number created by MATLAB. The phase error relation is: 

_ 0.1 2 ( , , , )normal dise normrnd m n                                     (31) 

 

where m is the row and n is the column of the created error matrix. 
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Let the number of iterations t = 500, the number of UAVs M = 1, the number of 

data processing points dN =10, SNR =0 dB, snapshots K = 5, swarming range r =1𝜆, 

distance d∈(0.1𝜆, 0.5𝜆), phase error = both unknown and rotation phase errors in normal 

distribution. Figure 54-57 show the numerical simulation results. Figure 55 and Figure 57 

tell us the system cannot converge when the normal distribution spreads out to certain 

range (  = 2). 

 

Figure 50. Normal distribution random number with  = 0,   = 0.5. 

 

Figure 51. Normal distribution random number with  = 0,   = 2. 
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Figure 52. Normal distribution random number with  = -2,   = 0.5. 

 

 

Figure 53. Normal distribution random number with  = -2,   = 2. 

 



 

55 

 

 

Figure 54. Simulated average of azimuth and elevation errors of ten passes with phase 

errors of normal distribution of  = 0,   = 0.5, and DOA of an azimuth of 60 and 

elevation of 120 . 

 

Figure 55. Simulated average of azimuth and elevation errors of ten passes with phase 

errors of normal distribution of  = 0,   = 2, and DOA of an azimuth of 60 and 

elevation of 120 . 

 

 

Figure 56. Simulated average of azimuth and elevation errors of ten passes with phase 

errors of normal distribution of  = -2,   = 0.5, and DOA of an azimuth of 60 and 

elevation of 120 . 
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Figure 57. Simulated average of azimuth and elevation errors of ten passes with phase 

errors of normal distribution of  = -2,   = 2, and DOA of an azimuth of 60 and 

elevation of 120 . 

 

3.7 Summary  

In this chapter, this thesis first gives a data model for UAV swarming system and 

investigates the impact factors for DOA convergence based on this model in this system. 

A lot of impact factor are discussed in this section. The SNR, number of snapshots K, 

number of iterations t are directly related to the noise level. When SNR, K and t are 

increased, the noise will be reduced quickly. The UAV velocity is very important and 

should be related to wavelength, since it decides the spacing among elements in an array. 

The number of data points dN is also very important because it decides the number of 

elements in an array. When dN  is less than 6, the system is difficult to be converged, and 

when the dN is too big (e.g. great than 100), the calculation cost will be increased, so it is 

necessary to choose the dN reasonably by compromising the computational complexity 

and DOA convergent rate. The number of UAVs M and swarming region r will not impact 
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the DOA convergence a lot, the convergence rate is almost the same. But when the 

swarming region is increased, there are more noise in the receiving data.  

 In the end, the impact of phase errors due to unknown noise and UAV rotation are 

examined in this section. Uniformly distribution and normal distribution phase errors are 

shown respectively. The numerical results show that the system still can converge fast, 

when 20 percent noise are randomly added to the ideal phase differences. However, the 

system will be broken up when the normal distribution is spread out to a certain range (e.g. 

 =2).  
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4. INVESTIGATE THE DOA CONVERGENCE USING THE VOLUMETRIC 

RANDOM ARRAY WITH LOCATION VARYING 

4.1 Introduction 

Antenna array structure has a greatly impact on the DOA estimation. There are 

many kinds of array structures applied in the history of DOA estimation studies. However, 

most of research are limited to either linear (1D) or planar (2D) array. The 3D volumetric 

antenna array structure based on cubic and spherical configurations have been proposed 

having the ability to overcome aliasing and improve the accuracy of DOA estimation [4]. 

This work is mainly to investigate the performance of the location-varying 

volumetric random arrays on DOA convergence.  

4.2 Location-varying Unstructured Antenna Arrays 

There are thirty-two locations in the volumetric space V and sixteen elements are 

positioned randomly in the arbitrary sixteen locations as shown in Figure 58. The 

volumetric random array constructed by rectangular patch antenna randomly positioned 

in a 380-millimeter radius sphere to estimate the DOA.  

1) At time 1t , take a measurement, calculate the DOA and store the spectrum data; 

2) At time 2t , move a subset of the elements and repeat step 1; 

3) At time 3t , sample and multiply MUSIC spectrum; 

4) Repeat step 2 and 3 above until the DOA estimation is converged. 
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Figure 58. Schematic diagram of the receiving antenna array platform. 

 

4.3 Simulation  

Based on what we have known about the linear array, the volumetric random array 

configuration in this work has the capacity to accurately estimate the azimuthal angle Φ 

and elevation angle θ of the incident narrow band signal. The conjecture assumes that the 

MUSIC algorithm can estimate the DOA easily under high SNR, and increasing the 

numbers of iterations are helpful for the system to converge under low SNR. 

Figure 59-63 show the examples of the simulated MUSIC spectrum from one to 

twenty iterations under different SNR conditions. Each of these has a DOA with an 

azimuth of 300 and elevation of 60 . 
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Figure 59. Simulated MUSIC spectrum with t = 1, and SNR = 0 dB. 

 

 
Figure 60. Simulated MUSIC spectrum with t = 1, and SNR = -10 dB. 
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Figure 61. Simulated MUSIC spectrum with t = 5, and SNR = -10dB. 

 

 
Figure 62. Simulated MUSIC spectrum with t = 1, and SNR = -15dB. 
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Figure 63. Simulated MUSIC spectrum with t = 20, and SNR = -15dB. 

 

4.4 Measurement 

A series of measurements at 2.45 GHz were executed to examine the convergent 

characteristics. A linearly polarized rectangular patch antenna positioned far enough from 

receiving antenna arrays to be considered in the far-field was used as a fixed source and 

the same sixteen rectangular patch antennas were placed randomly in the thirty-two 

locations as shown in the Figure 64. With the transmitting antenna connected to the port 

1 and one of the receiving antennas connected to the port 2 of the vector network analyzer 

(VNA), the phase between the transmitting and receiving antennas was measured using 

S21; an arbitrary special receiving antenna was chosen to calculate the phase difference. 
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Figure 64. Test platform. 

 

Figure 65-66 show the results obtained from one of these experiments when the 

transmitting antenna was placed at pre-calculated locations with the azimuthal angles 

43.3○ and 12.0○ in two iterations. A single iteration was used to estimate the incident 

angles and an accurate SNR was not available. The error between theoretical expectation 

and practical result is within 1 to 2 degrees. 
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Figure 65. Measured MUSIC spectrum with t = 1, an incident signal of an azimuth of 

43.3 and elevation of 12.0 . 

 
Figure 66. Measured MUSIC spectrum with t = 2, an incident signal of an azimuth of 

43.3 and elevation of 12.0 . 
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4.5 Summary 

The estimation of DOA was examined using a location-varying volumetric random 

array to create a synthetic receiving aperture. The simulations indicate that the technique 

can be utilized in very noisy environments. Experimental observations show that the 

system can accurately capture the azimuthal and elevation angles of the source, which also 

tells us the UAV swarming system is very promising in DOA estimation under very noisy 

conditions. 
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5. TUNABLE FM BAND LOCATING ANTENNA SYSTEM 

5.1 Introduction 

The frequency modulation (FM) broadcasting is one of the radio broadcasting and 

almost every city has the FM broadcasting station. This work is to detect the FM signal 

and investigate the performance of the low frequency electrically small antennas.  

The cube is the ground plane and each face except bottom has one monopole or 

loop antenna. Figure 67 is the schematic diagram, there are three monopole antennas and 

two loop antennas, the monopole and loop antennas are opposite, since the monopole is 

the omnidirectional antenna. RF switch is used to control these antennas. 

 

Figure 67. Simulated array diagram modeled in the HFSS. 

 

5.2 Tunable Meandered Monopole Antenna 

The wavelength for 100 MHz antenna is 3 meters, so the monopole length should 

be around quarter wavelength, which is 0.75 meters. The size of the monopole is too big 
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that meandered technology are utilized to reduce the size to less than 150 millimeters. 

Therefore, the monopole antenna becomes an electrically small antenna, and the gain will 

be very low and the bandwidth will be very small. 

5.2.1 Matching Technologies for the Small Monopole Antenna 

The input impedance of a short monopole is highly capacitive. Therefore, two 

strategies can be used as shown in Figure 68, one is series inductance and shunt inductance; 

the other is series inductance and shunt capacitance. Since the tunable inductance is not 

easy to be achieved and the capacitance can be obtained using varactor diodes, so part b 

is chosen to match the antenna. The capacitance 
pC  is mainly for matching the antenna, 

and the inductance sL  is mainly for tuning the antenna. 

 

                                                                        (a) 
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                                                           (b) 

Figure 68. Matching circuit model. 

 

5.2.2 Tuning Technology for the Small Monopole Antenna 

First, use series inductance L and variable capacitance 2C to replace the inductor 

sL , and use variable capacitance 1C to replace 
pC . Here we can get: 

2= 1/ ( )Sj L j L j C    

where,  

SL L  
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Figure 69. Tuning circuit model with variable capacitor. 

 

However, if the antenna is required to be tuned electrically, it is necessary to use 

varactor diodes to replace the variable capacitance. Furthermore, voltage should be 

provided to control the varactor diodes. Figure 69 shows the circuit.  

 

Figure 70. Tuning circuit model with varactor diode. 
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5.2.3 Process and Results of Simulation on HFSS 

 First, a metallic cube as a ground plane and a monopole with the length 150 mm 

are created to find the suitable value of the inductor and capacitor. The HFSS model is 

shown below, which matches at 101 MHz. 

 

Figure 71. HFSS model for monopole antenna. 
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Figure 72. VSWR for monopole antenna. 

 

 Second, the size is reduced by meandering the antenna and tuning inductor and 

capacitor slightly. The model is shown below, and the 11S  simulation results show that the 

antenna can be tuned in the FM band. Moreover, the simulation results demonstrate that 

the series inductor is mainly for tuning and the shunt capacitor is mainly for matching. 

Also, the gain of the antenna is very low. 
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Figure 73. HFSS model for meandering monopole antenna. 
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Figure 74. VSWR as the shunt capacitor varies. 
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Figure 75. VSWR as the series inductor varies. 

 

 

Figure 76. Simulated radiation pattern. 
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At last, varactor diodes are used to replace the capacitor and ass RF choke using 

shunt inductor to provide the power for varactor diode. The HFSS model and simulation 

data is shown below. 

 

 

Figure 77. HFSS model for adding varactor diode and RF choke. 
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Figure 78. Simulated VSWR for tunable monopole antenna. 

5.2.4  Measurement 

The fabricated loop antenna is shown below. The substrate of the antenna is FR-4 

and its dielectric constant is 4.1. 

         

Figure 79. Fabricated monopole antenna. 
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Figure 80. S11 of the fabricated monopole antenna. 

 

5.3 Loop Antenna  

The analysis of the loop antenna is same as the monopole antenna, so the process 

will be simplified.  

5.3.1 Matching Technologies for the Small Loop Antenna 

The input impedance of a short loop antenna is highly inductive impedance. So, 

two strategies can be used as shown in Figure 81, one is series capacitance and shunt 

capacitance; the other is series capacitance and shunt inductance. Since the tunable 

inductance is not easy to be achieved and the tunable capacitance can be obtained using 

varactor diodes, part b is chosen in Figure 81 to match the antenna. The capacitance 
pC  

and inductance
pL  is mainly for matching the antenna, and the capacitance sC  is mainly 

for tuning the antenna. 
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         (a) 

 

             (b) 

Figure 81. Matching circuit model for loop antenna. 

 

5.3.2 Tuning Technology for the Small Loop Antenna 

Different from the technology of tuning monopole antenna, the loop antenna can 

be directly tuned with the series capacitance, then the varactor diode is used to replace 

the capacitor. The model is shown below. 
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Figure 82. Tuning circuit model with varactor diode Cs. 

 

5.3.3 Process and Data of Simulation on HFSS 

The process is the same as the process of the monopole antenna design. First, a 

metallic cube as a ground plane and a loop antenna with the length 400 mm are created 

to find the suitable value of the inductor and capacitor. The HFSS model is shown 

below, which matches at 88 MHz. 
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Figure 83. HFSS model for loop antenna. 
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Figure 84. VSWR for loop antenna. 
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Second, the size is reduced by meandering the antenna and tuning the capacitors 

slightly. The model is shown below, and the VSWR simulation results show that the 

antenna can be tuned in the FM band. But the tuning range is smaller than the tuning range 

of tunable monopole antenna above. Also, the gain of the antenna is very low. 

 

Figure 85. HFSS model for meandering loop antenna. 
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Figure 86. VSWR as the shunt capacitor varies. 
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Figure 87. VSWR as the series capacitor varies. 

 

 

Figure 88. Radiation pattern for meandering loop antenna. 
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At last, varactor diodes are used to replace the series capacitor and add RF choke 

using shunt inductor to provide the power for varactor diode. The HFSS model and 

simulation data is shown below. 

 

Figure 89. HFSS model with varactor diode and RF choke. 
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Figure 90. Simulated VSWR for tunable loop antenna. 

 

     

Figure 91. Fabricated loop antenna. 
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Figure 92. VSWR of the fabricated monopole antenna. 

 

5.4 Discussion and Summary 

The electrically small monopole and loop antenna can be tuned electrically, 

however, the gain is so low that the local FM signal cannot be detected. Since the antenna 

gain is low, the SNR becomes very small. The amplifier should be added to the antenna, 

if we still want to use the system to detect the FM signals. 
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6. CONCLUSION 

6.1 Conclusions 

The thesis first examines the ramifications of using unstructured arrays for 2D 

DOA estimation based on sub-space techniques. This work successfully applies the FD 

domain Root-MUSIC onto 2D DOA estimation in volumetric random arrays. 

Second, this thesis comes up with a data model for the UAV swarming system. 

Based on this model, this thesis investigates the impact factors for DOA estimation in the 

UAV swarming system. Furthermore, this thesis discusses the impact of phase errors for 

DOA convergence. It shows that the swarming system offers a high performance of DOA 

convergence. 

Third, the location-varying simulation and experiment show that the space-varying 

with time method can be used in a very noisy condition. Moreover, it shows that the UAV 

swarming system can be applied into a very noisy condition and has a good promising.  
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