
 

 

 

 

IMPACT OF GROWING LOCATION AND HARVEST TIME ON HEALTH 

PROMOTING COMPOUNDS FROM DANDELION LEAFY GREEN  

 

A Thesis 

by 

MARICELLA KATHERINE GOMEZ  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

Chair of Committee,  Bhimanagouda S. Patil 

Co-Chair of Committee, G. K. Jayaprakasha 

Committee Member, Joseph M. Awika  

Head of Department, Boon Chew 

 

August 2017 

 

Major Subject: Food Science and Technology 

 

Copyright 2017 Maricella Katherine Gomez



 

ii 

 

ABSTRACT 

 

Dandelion is considered a weed and undervalued by most people. Dandelion’s 

bitter sensory appeal and lack of knowledge for its health benefits offsets its potential to 

be consumed as a leafy green. The focus of this study investigated the impact of growing 

location, harvest time and determined which leafy green part acquired high levels of 

health promoting compounds from various dandelion varieties.   

 Dandelion var. Catalonga leaf blade had higher amounts of vitamin C, 

carotenoids, chlorophyll A and chlorophyll B, antioxidant activity and dietary fiber 

versus the whole leaf and petiole during the late harvest. Catalonga from New Jersey had 

highest amounts of vitamin C, Catalonga from Texas and New Jersey contained 

violaxanthin, lutein, β-carotene, chlorophyll A and B. DPPH scavenging activity and 

total phenolic content was highest in the leaf blade of Catalonga Texas. Catalonga Texas 

had a higher percentage of bound bile acid salts, CDCA (sodium chenodeoxycholate) 

and DCA (sodium deoxycholate), and total dietary fiber.   

In continuation, various dandelion varieties were treated with different thermal 

processing techniques to acquire hot aqueous extracts and tested for antioxidant 

potential. Dandelion var. Garnet Stem from Texas, resulted in high DPPH scavenging 

activities when boiled for 15 min and microwaved for 4 min. Both boiling and 

microwaving contained highest antioxidant activity versus hot sonication. Lastly, 

successive extraction of phenolics decreased drastically as the time of boiling increased 
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but dandelion varieties were able to recover almost at the same level of phenolics when 

boiled for 15 min. 

Results from thermal extraction presented significant amounts of antioxidant 

activity from Garnet Stem and was furthered investigated. Garnet Stem’s red 

midvein/petiole tissue was used in an optimized extraction protocol and four 

anthocyanins were quantified for the first time, cyanidin-3-(6-malonyl)-glucoside (A-2) 

with the greatest amount present. Vitamin C and β-carotene were highest in the leaf 

blade of Garnet Stem from New Jersey. Lutein, violaxanthin, chlorophyll a, and 

chlorophyll b was the highest in leaf blade of Garnet Stem from Texas. Highest bound 

bile acid salt was CDCA and Garnet Stem from New Jersey contained the highest 

amount of total dietary fiber (40.5 %). 

Both Catalonga and Garnet Stem varieties have different amounts of 

phytochemicals dependent on location and time of harvest in the leafy blade, but the 

presence of such health benefitting compounds proposes its use as another leafy green 

vegetable in the market. Dandelion leafy greens can be eaten fresh, raw or in an herbal 

tea form.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

 Dandelion (Taraxacaum officinale) is a part of the Asteraceae family and has been 

known for its uses as an herbal medicine, depending on the locale, to improve human 

health.1 The Native Americans boiled the dandelion plant in water and consumed the 

infused boiled dandelion water to relieve from “stomach upset, heart burn, skin problems, 

swelling and kidney disease.”2 The Chinese prepared the dandelion as decoctions to treat 

“stomach problems, appendicitis, and inflammation.”2 Based on location and culture, the 

dandelion was used differently for its curative abilities. Different parts of the plant 

provides multitude health benefits based on the phytochemicals present in dandelion.1, 3, 4 

Dandelion root suppresses the appetite and acts as a diuretic, the leaves are 

hepatoprotective due to the polyphenols and leaves help with indigestion, heart health and 

may reduce blood pressure.3, 5-9   

Different varieties of dandelion have unique physical characteristics. Catalonga is 

a dark leafy green variety of dandelion grown in Mediterranean countries including 

Spain.10 Garnet Stem variety of dandelion, a dark leafy green but contains a red stem and 

midrib, containing antioxidant anthocyanins.11, 12 Previous studies have demonstrated 

certain health promoting properties due to dandelion’s unique food composition and 

phytochemicals including: dietary fiber, vitamin C, β-carotene, lutein, chlorophyll and 
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nitrates, minerals (phosphorus, magnesium, calcium,), phenolics and flavonoids (cichoric 

acid, chlorogenic acid, caffeic acid, luteolin and quercetin).13-16  

 The dandelion plant can be used in different ways, as a food source, to obtain its 

health promoting compounds. The dandelion leaves can be eaten fresh in a salad or sautéed 

with butter, bacon or other types of fats.5 The dandelion leaves and/or roots can be boiled 

to make tea and made into juices which may enhance bioavailability, depending on 

duration of boiling time or by type of processing during juicing.17, 18 Dandelion, 

unfortunately, has limited availability in the food market but is widely abundant in the 

wild as a foraging plant.1, 19 

Literature Review 

Dandelion background 

Dandelion (Taraxacum officinale) is a ubiquitous leafy green perennial plant and 

grows all over the United States in many warmer climate foraging areas, road sides, and 

residential areas.1, 20, 21 Dandelion, a part of the Asteraceae family, has been used for many 

years in various locations as a medicinal plant to treat different health issues by Native 

Americans, Europeans in Mediterranean countries and Asian countries.1, 3, 21  Dandelion 

is utilized by different cultures in various forms. Dandelion leaves are used by Spaniards 

and Italians to aid with stomach problems and dandelion roots are used by Asian countries 

to promote liver health.1 This historical evidences suggest that phytochemicals in 

dandelion vary by growing locations.1 Different sample parts of the dandelion plant (roots 

or leaves) may have distinctive amounts of specific phytochemicals and properties that 

may reduce the risk of certain diseases and illnesses, suggesting the health benefits of 
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dandelion may depend on the part consumed.22 Roots and leaves have been used for 

diuretic aid, roots for anti-inflammatory and antimicrobial, and leaves for anti-

hepatotoxicity, liver disorder, hypolipidemic, choleretic, cholesterol, heart disease and 

antioxidant activity.4, 22-25  

The form of consumption of dandelion varies from culture to culture. A common 

form to consume dandelion is by boiling the leaves and/or roots due to sensory appeal. 

Dandelion is bitter in taste because of the presence of certain bioactive compounds: 

sequiterpene lactones, taraxinic acid β-D-glucopyranoside, 11, 13-dihydrotaraxinic-acid 

β-D-glucopyranoside, p-hydroxyphenlacetic acid and β-sitosterols, which also provide its 

diuretic effect.22, 26 The bitterness of dandelion can be decreased when subjected to a 

thermal processing technique such as boiling, but the heat may also degrade and damage 

the phytochemicals17, 27 Therefore, it is critical that boiling time effect on phytochemicals 

need to be established. This research could inform consumers for optimal boiling to reduce 

bitterness while maintaining optimal health promoting properties.  

 Dandelion is considered “likely safe” when consumed as food in the form of plant 

based forms or as a supplementation at the recommended dosage for adults.28 The FDA, 

Food and Drug Administration, claims that dandelion is GRAS (Generally Recognized As 

Safe) as a food additive in the U.S. for consumption at maximum levels of 0.014% for 

fluid extracts and 0.003% for solid extracts.28  

Antioxidant and anti-hepatotoxicity 

Accumulative evidences demonstrated antioxidant inhibition of dandelion leafy 

greens. However, several studies have shown variation of antioxidant activity due to 
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species, growing location, maturity, specific parts of dandelion studied (flower, whole 

leaves or roots), climate and environment, and extraction technique and processing.13, 29-

34 Previous studies have identified phenolic compounds such as chicoric acid and 

caffeoylquinic acid isomers, flavonoids, in dandelion roots and herb juice from Germany, 

secondary metabolite terpenoids such as phenolic inositol esters, triterpene acetates and 

sesquiterpene lactone taraxinic acid b-D-glucopyranosyl ester also from Germany 

(Taraxacum officinale agg.) by methanol and hexane extraction contributing to 

dandelions’ antioxidant potential.4, 13, 35-44  Dandelion leaf extract has been found to 

contain chlorogenic acid, caffeic acid, quercetin, phenols, flavonoids, tannins and ascorbic 

acid which may also aid in contributing to antioxidant activity and antihepatotoxicity to 

protect and restore antioxidant enzymes.4, 45-47 

Dandelion varieties possess different physical leaf characteristics that may 

contribute to its antioxidant potential. Garnet Stem, a unique dandelion variety, has a red 

midrib and petiole. The red midrib and petiole may contribute to antioxidant activity due 

to the presence of pigmented flavonoids and anthocyanins. 48 To the best of our 

knowledge, very little information is available in relation to extraction and identification 

of anthocyanins of Garnet Stem’s red midrib and petiole for extraction and identification 

of anthocyanins. 

Heart disease and dietary fiber 

Dandelion’s dietary fiber may reduce the risk of heart disease by reducing 

cholesterol, preventing adipogenesis, reducing the production of cellular fat, and 

increasing the secretion of bile acids to break down cholesterol.9, 20, 23, 44, 49, 50 Dietary fiber 
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has been associated with the prevention of heart diseases due to the binding of bile acids.25  

Bile acids are acidic steroids that are synthesized in the liver from chloesterol.51 After the 

bile acids conjugate with glycine and taurine, they are secreted into the duodenum and 

reabsorbed by the ileum and undergo enterohepatic circulation.25 The synthesis of bile 

acids helps to break down ingested fatty substances.19 Foods, such as dandelion leafy 

greens, can help prevent the reabsorption of bile acids and prevent the stimulation of the 

plasma and liver cholesterol conversion to other bile acid secondary toxic metabolites.52  

The role of binding the bile acids with high fibrous leafy green foods helps to 

increase fecal excretion which can ultimately help lower cholesterol.52 Bile acid binding, 

from the consumption of leafy green fractions, seems to be proportional to its dry matter.51 

While very little information is available in relation to bile acid binding capacity of 

dandelion leafy greens, studies were conducted on bile acid binding with other leafy 

greens such as kale (9%) and mustard greens(14%).25  Total dietary fiber according to 

USDA National Nutrient  Database food composition of raw kale is 0.6g, raw mustard 

greens is 1.8g, and  raw dandelion greens is 1.9g per cup.15 This data suggests that 

dandelion leafy greens may have a high potential of binding bile acids to reduce 

cholesterol. 
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Chemical composition and phytochemicals from dandelion  

Dandelion chemical composition including: vitamin C, calcium, potassium, total 

phosphorus, magnesium, oxalic, quinic, malic, ascorbic, citric, and fumaric acids, fiber, 

nitrates, protein, fat, and vitamin E has been established.13, 36 Previous studies also 

identified carotenoids, specifically, lutein, violaxanthin, antheraxanthin, zeaxanthin, 

neoxanthin, β-carotene, and chlorophyll A and B in dandelion, Taraxacum officinale 

Monivip, from Slovenia.53  Also, total chlorophyll and carotenoids from dandelion whole 

leaf and root parts under an environmental stress of increasing concentration of copper 

contaminated soils over two month time period in Poland was studied.36 

Due to potential health benefits of consuming dandelion leaves, a more detailed 

analysis of phytochemicals needs to be conducted based on the different location, period 

of harvest and/or sample part of dandelion. To best of our knowledge, currently there are 

no reports on growing location, harvest period and/or plant part effect on antioxidant 

activity, phytochemicals and bile acid binding capacity of dandelion leafy green varieties. 

This research outcomes will help consumers to choose the appropriate variety, harvesting 

time and plant part for consumption of dandelion leaves.  

The overall goal of this study was to identify the potential health beneficial 

compounds and determine the antioxidant activity in dandelion green varieties including 

whole leaf, leaf blade and midrib/petiole, from different growing locations and times of 

harvest. 
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Research Objectives 

1. To determine the effect of harvest period and location on the levels of 

phytochemicals, radical scavenging activity and bile acid binding capacity of 

Catalonga (Taraxacum officinale) 

2. To determine the recovery of phenolics and radical scavenging activities using 

different thermal processing techniques on various dandelion varieties 

3. To optimize anthocyanins extraction and evaluate the phytochemicals levels in 

Garnet Stem (Taraxacum officinale) harvested from different geographical areas 
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CHAPTER II  

EFFECT OF HARVEST PERIOD AND LOCATION, AND THERMAL 

PROCESSING METHODS ON THE LEVELS OF PHYTOCHEMICALS, BILE ACID 

BINDING CAPACITY, AND FREE-RADICAL SCAVENGING ACTIVITY OF 

DANDELION (TARAXACUM OFFICINALE) AND CHICORY (CICHORIUM 

INTYBUS)  

 

Overview  

Dandelion (Taraxacum officinale) greens have vitamins, minerals, and 

phytochemicals that may help prevent the onset of human diseases and illnesses. In this 

study, dandelion variety Catalonga, grown in Texas and New Jersey was separated into 

whole leaf, leaf blade, and petiole then evaluated for vitamin C, carotenoids, radical-

scavenging activity, total phenolic content, bile acid binding capacity, and dietary fiber  

during early and late harvest periods. Catalonga leaf blade had higher amounts of 

vitamin C, carotenoids, chlorophyll a and b, radical scavenging activity, and total 

phenolic content versus the whole leaf and petiole. Catalonga harvested from New 

Jersey had the highest amount of vitamin C during the late harvest. Catalonga from 

Texas and New Jersey contained carotenoids and chlorophyll a and b. 2, 2-diphenyl-

1picrylhydrazyl (DPPH) scavenging activity and total phenolic content was highest in 

leaf blade of Catalonga from Texas during the late harvest. Catalonga from Texas had a 

higher percentage of bound bile acid salts CDCA and DCA. Catalonga from New Jersey 

contained higher % total dietary fiber during the late harvest. Boiling dandelion leaves 
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for 15 min or microwaving for 4 min was optimal for highest antioxidant activity. These 

results indicate that the growing location, harvest period, tissue type, and thermal 

processing method had different effects on phytochemicals, antioxidant activity, and bile 

acid binding capacity of Catalonga and Garnet Stem.   

Introduction 

Dandelions (Taraxacum officinale) are considered a weed and grow in the lawns 

of residential areas, along roadsides and highways and in different foraging areas all 

over the United States of America according to the USDA Natural Resources 

Conservation Service Plant Database.54 In their research published in the Journal of 

Weed Science, Wilson et al. studied how to control and decrease the growth of dandelion 

due its stature as an unwanted perenial.1, 21, 55 However, the idea that dandelions are 

weeds focuses on unnecessarily eliminating dandelion greens, which may provide 

human health benefits. 

 Dandelions are a part of the Asteraceae family and are used in Native American, 

Chinese, and European traditional medicine practices.1, 3 Dandelion is a dark bitter leafy 

green containing nutrients and bioactive compounds that may help aid human health.43 

Some of these nutrients and bioactive compounds include -carotene and other 

carotenoids, dietary fiber, sesquiterpene lactones (taraxinic acid β-D-glucopyranoside, 

11, 13-dihydrotaraxinic-acid β-D-glucopyranoside, p-hydroxyphenlacetic acid, and β-

sitosterols, which give dandelion its bitter taste and degrade when subjected to high 

temperatures for long periods of time), polyphenolic compounds, phenolics, flavonoids, 

and coumarins.5, 22, 24, 53, 56-59 
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 Other beneficial nutrients in dandelions include vitamins and minerals such as 

vitamin C, B vitamins, calcium, iron, potassium, manganese, magnesium, and 

phosphorus.24, 60 The diuretic effect of these nutrients and phytochemicals can aid in 

weight loss while the high fiber content improves heart disease, cholesterol absorption, 

colon cancer, and cardiovascular health.24, 53, 61 Dandelion also has antioxidant properties 

that may aid with oxidative stress and inflammation.38, 62 Despite being perceived as a 

weed, dandelion greens can be part of a nutritious diet and regular exercise regimen that 

may help prevent the onset of many diseases and illnesses. Different dandelion 

components can be used and consumed differently. Dandelion greens can be eaten raw 

in mixed salads and sautéed with onions and bacon as a great savory side dish. 

Dandelion root can be juiced with or without other fruits and vegetables as a beverage 

and brewed with dandelion leaves into hot herbal teas. When dandelion leaves are 

boiled, the resulting tea can have high antioxidant activity. Dandelion leaf extracted in 

hot water for 4 hours has been studied as an antioxidant and as an anti-inflammatory 

agent, to aid as a hepatoprotective from liver damage and liver and kidney function, and 

with depression.31, 63 The dandelion leaf hot aqueous extracts contained more 

polyphenolic compounds, sesquiterpene lactones, terpenoids, flavonoids, etc. compared 

with dandelion root hot aqueous extracts.4, 8, 29, 64, 65  

 Previous studies have analyzed the phytochemical and health benefits of 

dandelion root or whole dandelion leaf.30, 35 In the present study, dandelion variety 

Catalonga was harvested from two different locations and two different harvesting 

periods, and was separated into three plant parts: whole leaf, leaf blade, and petiole. 
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Each sample plant part was evaluated separately for the levels of phytochemicals, 

antioxidant activity, bile acid binding capacity, and dietary fiber to determine the 

optimal availability of health beneficial nutrients. Also, to the best of our knowledge, no 

studies have addressed the exact timing of thermal processing for highest bioavailability 

of antioxidants in various dandelion and chicory leaf varieties.4, 8, 22, 29, 64, 65 Efficiency, 

maximization, and recovery of total phenolic content and radical scavenging activities in 

dandelion leaves using different thermal processing methods was also investigated in 

this study.  

Materials and Methods 

Plant materials  

  Catalonga samples were obtained from J&D Produce Inc. harvested in Edinburg, 

TX early January to late April (Fig. 1a. and 1b.) and Vineland, NJ early June to late July 

(Fig. 1c. and 1d.). Catalonga was also obtained from Val Verde Vegetable Co. in 

McAllen, TX, and Garnet Stem (Taraxacum officinale) from J&D Produce Inc. in 

Edinburg, TX and Vineland, NJ. 
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Figure 1. Catalonga dandelions (Taraxacum officinale) from Edinburg, TX during 

early harvest period (a.) and late harvest period (b.), from Vineland, NJ during 

early harvest period (c.) and late harvest period (d.), and Catalonga plant parts: 

whole leaf (e.), leaf blade (f.) and petiole (g.) for phytochemical, antioxidant activity 

and bile acid binding capacity analyses. 
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Chemicals 

Ascorbic acid, gallic acid, β-carotene, lutein, β-cryptoxanthin, violaxanthin, 

neoxanthin, chlorophyll a, chlorophyll b, enzymes (α-amylase from porcine pancreas, 

pepsin, pancreatin from porcine pancreas), meta-phosphoric acid (MPA), 2,2-diphenyl-

1picrylhydrazyl (DPPH), phosphotungstomolybidic acid (Folin-Ciocalteu reagent), 

sodium carbonate, methanol, sodium hydroxide, sodium glycodeoxycholate, sodium 

cholate, sodium deoxycholate, sodium glycochenodeoxycholate, sodium glycocholate, 

sodium chenodeoxycholate, and mucin from porcine stomach were purchased from 

Sigma-Aldrich (St. Louis, MO, USA).  Nanopure HPLC grade water was purchased 

from Barnstead/Thermolyne (Dubuque, IA, USA). Tris (2-carboxylethyl) 

phosphinehydrochloride (TCEP) was purchased from Alfa Aesar (Ward Hill, MA, 

USA). Orthophosphoric acid 85% (w/w) was purchased from EMD Millipore 

Corporation (Billerica, MA, USA). All other solvents used as analytical reagents and 

HPLC grade solvents were purchased from Sigma-Aldrich (St. Louis, MO, USA).  

Sample preparations 

Catalonga from Texas and New Jersey were harvested at random during their 

early and late harvest periods. Each sample weighing a total of 300 gm was separated 

into whole leaf, leaf blade and petiole with a stainless-steel knife (Fig. 1e.-1g.) and 

chopped finely for phytochemical analyses and antioxidant assays. For thermal 

processing methods and antioxidant assays, Catalonga and Garnet Stem varieties were 

separated into whole leaves, rinsed with nanopure water, and finely chopped. 
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Determination of vitamin C: ascorbic acid, dehydroascorbic acid, and total ascorbic 

acid 

Vitamin C content was measured by according to our published methods.66 

Chopped fresh samples (2 g) of whole leaf, leaf blade, and petiole were treated with 4 mL 

of 3% meta-phosphoric acid and extracted by homogenization for 30 s, vortexed for 2 min, 

and sonicated for 2 h. The samples were centrifuged for 20 min and extracts were passed 

through 0.45 micron filters and used for ascorbic acid estimation. The above samples (0.5 

mL) were treated with 0.5 mL of Tris (2-carboxylethyl) phosphinehydrochloride (28.66 

mg TCEP/10 mL of nanopure water) for the reduction of dehydroascorbic acid to ascorbic 

acid and analyzed by HPLC. Ascorbic acid and total ascorbic acid were quantified on 

Thermo Scientific HPLC series using Eclipse XDB C-18 (4.6 × 150mm 5 μm pore size) 

column, with a guard column. Mobile phase 0.03 M phosphoric acid was used with a flow 

rate of 400 μL/min, and a sample of 10 L was injected into the HPLC. The absorbance 

was monitored at 243 nm with a run time of 18 min. The vitamin C was calculated 

according to a previously described formula.66  

Determination of carotenoids and chlorophylls 

Samples (3 g) of whole leaf, leaf blade, and petiole were extracted with 8 mL of 

acetone, homogenized, vortexed (1 min), sonicated (30 min), and centrifuged (15 min) 

under dark conditions, and extracts were filtered. The residue was re-extracted twice to 

recover all the carotenoids, pooled, and stored at -80 C until HPLC analysis. Waters 1525 

HPLC series (Milford, MA, USA) equipped with Waters 717 plus autosampler, Waters 

YMC C-30, 3-μm column (150 mm × 4.6 mm i.d.) with a guard cartridge (Phenomenex, 
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Torrance, CA, USA) was used for quantification. Mobile phase (A) methanol and (B) tert-

butyl-methyl-ether was used for gradient separation with a flow rate of 1 mL/min. Samples 

(50 μL) were injected into the HPLC and separated with a runtime of 25 min. All peaks 

were detected at 450 nm and compounds were identified by comparing retention times and 

UV spectra to the standards: lutein, β-carotene, β-cryptoxanthin, violaxathin, neoxanthin, 

chlorophyll a, and chlorophyll b. Quantification of each compound was calculated based 

on a regression equation and the dilution. 

Determination of DPPH-radical scavenging activity 

DPPH scavenging ability of MeOH triplicate extracted Catalonga Texas and New 

Jersey whole leaf, leaf blade and petiole samples were measured according to our 

published method.67  For each extract, different concentrations (5, 10, 20, 40, 80, and 100 

μL) of 0.2 mg/mL of ascorbic acid and 30 μL of extract were pipetted into the wells of a 

96-well plate. The total volumes of all the wells were adjusted to 100 μL with MeOH. A 

total of 180 μL of DPPH (40 mg/L MeOH) was pipetted to all wells and the changes in 

the absorbance of extracts and standards were measured at 515 nm with a microplate 

reader (BioTek Instruments, Inc., Winooski, VT) for 30 min. DPPH scavenging activity 

was expressed as µg/g ascorbic acid equivalents.   

Determination of total phenolics 

Concentrations of total phenolics were determined according to our published 

paper.68 MeOH extracts (30 μL) were pipetted into a 96-well plate and the total volume 

was adjusted to 200 μL with nanopure water. The blank was prepared with 200 μL 

nanopure water. Volumes (10, 20, 30, 40, 50, 75, and 100 μL) of 0.1 mg/mL gallic acid 
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were added to all wells and adjusted to 200 μL with nano-pure water. The Folin-Ciocalteu 

reagent (20 µL of 1 M Folin-Ciocalteu) was added to all wells, incubated for 10 min at 37 

°C, then sodium carbonate (40 µL of 0.035 g/mL sodium carbonate) was added to all wells 

and incubated for 20 min at 37 °C. The absorbance was measured at 760 nm using a 

microplate reader (BioTek Instruments, Inc., Winooski, VT) after 30 min of incubation at 

37 °C. Total phenolics were expressed as μg/g gallic acid equivalents.  

Determination of total insoluble and soluble dietary fiber  

Determination of total insoluble and soluble dietary fiber was conducted using 

AOAC Official Method 991.43 Total, Soluble, and Insoluble Dietary Fibre in Foods by 

Medallion Labs (Minneapolis, MN).69 Sequential enzymatically digested extraction was 

performed on lyophilized Catalonga whole leaves from Texas and New Jersey harvested 

during the early and late harvest periods using α-amylase, protease and 

amyloglucosidase for insoluble dietary fiber. Insoluble dietary fiber from 

amyloglucosidase solution was filtered, and the residue was washed several times with 

distilled warm water. A combination of filtrate and warm water was precipitated with 

95% EtOH then filtered to obtain soluble dietary fiber. Once soluble dietary fiber was 

precipitated with EtOH, the residue was filtered, dried and weighed, and total dietary 

fiber content was determined. 

Determination of bile acid salt binding capacity 

Extraction and quantification of bile acid binding capacity was determined based 

on the published procedure.61 Fresh Catalonga leaves (6 g) were chopped, added to 3 mL 

of nanopure water and subjected to in vitro simulation of human digestion including oral 
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digestion, gastric digestion, and intestinal digestion. Samples were added to 10 mL of -

amylase (3.1 mg in 100 mL of simulated saliva fluid buffer (Table 1).70 Samples were 

incubated in a shaking water bath (Julabo GmbH SW22, Seelbach, Germany) for 5 min at 

37 °C to simulate human oral digestion. The sample pH was adjusted to 2 with 0.1 N HCl 

and 600 μL of pepsin buffer (200 g of pepsin/mL 0.1 M HCl) was added. The samples 

were again incubated for 90 min in shaking water bath at 37 °C to simulate human gastric 

digestion. The samples were removed and the pH was adjusted to 6.8 with 0.1 N NaOH 

to stimulate human intestinal digestion, 4 mL of bile acid mixture in 0.05 M phosphate 

buffer (Table 2) and 5 mL of pancreatin (6.25 mg of pancreatin from porcine pancreas/ 

mL of 50 mM phosphate buffer) were added and incubated for 3 h in the shaking water 

bath at 37 °C to conclude the human intestinal digestion. The reaction was stopped by 

inactivating the enzymes at 78 °C, centrifuged for 20 min, and the residue was washed 

with excess water to remove the adhering bile acids, then the remainder was used for 

quantification of unbound bile acids.  

Unbound bound bile acids were quantified with an Agilent 1200 series HPLC 

(Foster City, CA, USA) using a Gemini C-18 5-μm column (250 mm × 4.6 mm i.d.) with 

a guard cartridge (Phenomenex, Torrance, CA, USA). Gradient mobile phase (A) 0.03 

mM phosphoric acid and (B) acetonitrile, were used as follows, 10 min 45% A and 55% 

B, 20 min 10% A and 90%, 25 min 75% A and 25% B, and 35 min 75% A and 25% B 

with a flow rate of 700 μL/min and 20 μL sample injected with as run time of 32 min. 

Unbound bile acids were quantified by using regression equations of standard bile acids: 

sodium glycodeoxycholate (GDCA), sodium cholate (CA), sodium deoxycholate (DCA), 
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sodium glycochenodeoxycholate (GCDCA), sodium glycocholate (GCA) and sodium 

chenodeoxycholate (CDCA). The levels of unbound bile acids were calculated by 

regression equations and dilution factors. The bound bile acids were calculated using the 

following formula, 

Bile acids binding capacity (%) =  

100 − (
𝑚𝑔 𝑜𝑓 𝑢𝑛𝑏𝑜𝑢𝑛𝑑 𝑏𝑖𝑙𝑒 𝑎𝑐𝑖𝑑𝑠 𝑏𝑦 𝐻𝑃𝐿𝐶 ∗ 100

𝑚𝑔 𝑜𝑓 𝑏𝑖𝑙𝑒 𝑎𝑐𝑖𝑑 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑎𝑠𝑠𝑎𝑦
) 

 

 

 

Table 1. Simulated salvia fluid in Nanopure water 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound Concentration (g/L) 

Sodium chloride 1.594 

Ammonium nitrate 0.328 

Potassium dihydrogen phosphate 0.636 

Potassium chloride 0.202 

Potassium citrate 0.308 

Uric acid sodium salt 0.021 

Urea 0.198 

Lactic acid sodium salt 0.146 

Porcine gastric mucin 1.000 

This data was adopted from Kahlon et al. 2012.61 
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Table 2. Bile acid mixture in 0.05 M phosphate buffer 

 

 

 

 

 

 

 

 

This data was adopted from Kahlon et al. 2012.61 

 

 

Determination of soil content and micronutrient analysis 

Soils of the growing area of each Catalonga sample from Texas and New Jersey 

during the late harvest period were analyzed at the Texas A&M AgriLife Extension Soil, 

Water, and Forage Testing Laboratory in College Station, TX. Each soil sample was 

analyzed for pH, conductivity and the amount (mg/kg) of micronutrients.  

Minimally processing of dandelion leafy greens effect on the phenolic compounds  

Boiling, microwaving and hot sonication for three different durations of time was 

performed to determine phenolics compounds and radical scavenging activities 

according to previously published protocols.17, 71  

Boiling: Ten g of freshly chopped dandelion leaves was added to 100 mL pre-

heated (100±2 °C) nanopure water in a 250 mL Erlenmeyer flask, boiled for 15 min and 

the aqueous extract was filtered and measured for total volume. Similarly, 10 g freshly 

chopped dandelion leaves were processed for 30 min and 120 min to get maximum 

extraction of phenolics, all extracts were filtered separately and adjusted to 100 mL with 

Compound Concentration (mM) 

Sodium glycocholate (GCA) 1.24  
Sodium cholate (CA) 12.08  

Sodium glycochenodeoxycholate (GCDCA) 5.14  
Sodium glycodeoxycholate (GDCA) 2.54  
Sodium chenodeoxycholate (CDCA) 5.84  

Sodium deoxycholate (DCA) 13.22  
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nanopure water. This experiment was performed in triplicate and samples were diluted 

prior to antioxidant assays.  

Microwaving: Ten g of freshly chopped dandelion leaves was added in a 250 mL 

beaker with 70 mL nanopure water, microwaved to 95 to 100 °C for a total of 2 min and 

the microwaved extract was removed and filtered. Similarly, freshly chopped dandelion 

leaves were microwaved for 4 and 6 min to obtain the water extract, filtered separately 

and adjusted to 100 mL with nanopure water. This experiment was performed in 

triplicate and diluted prior to antioxidant assays.   

Sonication: A third cooking technique, ultra-sonication, was used for a longer 

duration of time. Ten grams of freshly chopped dandelion leaves was added to 100 mL 

Nano-pure water in a 250 mL beaker, placed in an ultra-sonicator, covered with a lid, 

and sonicated for 60 min at 55-65 ºC. The application of energy vibration and heating 

reaction from the ultra-sonication technique demonstrated an alternative minimally 

thermal processing method to obtain an aqueous extract.72 Ultra-sonicated dandelion 

aqueous extracts were filtered, adjusted to 100 mL with nanopure water, replicated in 

triplicate, and diluted prior to DPPH scavenging activity and total phenolic antioxidant 

assays. 

Successive extraction of phenolics using different boiling technique 

This method, extraction of residual phenolics from dandelion leaves by boiling 

the residue after the first extraction, was determined and evolved from multiple 

studies.73-75 Ten g of freshly chopped dandelion was added to 100 mL pre-heated 

nanopure water (100±2 °C) in a 250 mL Erlenmeyer flask and boiled for 15 min. The 
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boiled aqueous extract was removed. The residue was extracted for 15 min to get 

residual compounds. After collecting the 2nd extract, the residue was re-extracted a third 

time for 90 min. All extracts were filtered, pooled individually, and adjusted to 100 mL 

with nanopore water. A fourth extract was achieved by combining 10 mL of the three 

extracts as a recovered dandelion leaf extract. All four extracts were replicated in 

triplicate, diluted, and analyzed for DPPH scavenging activity and total phenolic 

antioxidant bioassays. 

Statistical analysis 

Statistical analysis was performed using one-way analysis of variance (ANOVA) 

with JMP Pro 12.0.1 software. A general linear model was used to test significant 

differences and means were compared using Students t-test at the 5% probability level. 

Correlations were calculated using Pearson’s correlation coefficient (𝑅). All results were 

expressed as means ± SE. 

Results and Discussion 

Previous studies of dandelion have mainly focused on roots and whole leaves; 

this study examined and compared the phytochemicals, radical scavenging activity, and 

total phenolics in different tissues harvested in different locations at different times. 

Dandelion has untapped potential as a healthy leafy green and this study also examined 

the effects of boiling, microwaving, and sonicating the dandelion leaves on the recovery 

of phenolic contents and radical scavenging activities.  

 

 



 

22 

 

Vitamin C: ascorbic acid, dehydroascorbic acid and total ascorbic acid 

Catalonga dandelion samples from Texas and New Jersey were separated into 

whole leaf, leaf blade, and petiole and each analyzed for vitamin C content: ascorbic 

acid, total ascorbic acid, and dehydroascorbic acid. Catalonga New Jersey had the 

highest amount of ascorbic acid and dehydroascorbic acid during the late harvest in the 

leaf blade (Table 3). During the early and late harvest, Catalonga from New Jersey 

showed significant differences between the whole leaf, leaf blade and petiole for vitamin 

C content (p<0.01). Catalonga grown in Texas had non-detectable amounts of vitamin C 

in the early harvest; the only detectable amounts were dehydroascorbic acid present in 

the whole leaf, leaf blade, and petiole during the late harvest. Therefore, samples 

harvested at different locations and times showed large differences in vitamin C 

contents. 

The reduction of dehydroascorbic acid to ascorbate can be beneficial for brain 

functionality and prevent brain-related diseases and illnesses.62 The oxidized form of 

ascorbate, dehydroascorbic acid, present at high concentrations in the blood serum, can 

cross the blood-brain barrier into the cells, be reduced to ascorbate, and remain within 

the cells.62 Ascorbate can then perform antioxidant functions such as scavenging radical 

species, recycling α-tocopherol present in the lipid-rich brain cell membranes, and 

possibly prevent lipid peroxidation.62 Dehydroascorbic acid can also be reduced and 

preserve any ascorbate present within the cells at areas of high oxidative stress.62 

New Jersey leaf had the highest amount of vitamin C content contributed mostly 

by dehydroascorbic acid, compared with the whole leaf and stem (Table 3). Our study 
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showed a significant difference (p<0.05) based on growing location and time of harvest. 

Previous studies showed that wild dandelion leaves grown in San Luis, Argentina, 

contained higher vitamin C content compared to Catalonga from Texas and New Jersey, 

indicating that  harvest location plays a vital role in the amount of vitamin C content in 

dandelion.14 Also, during post-harvest production, if dandelions are exposed to high 

temperatures, the amount of vitamin C may decrease.18 New Jersey Catalonga leaf blade 

from the late harvest had the best vitamin C levels, based on our findings. 

Carotenoids and chlorophylls 

Carotenoids including violaxanthin, lutein, -carotene, and chlorophyll a and b 

were quantified in Catalonga from Texas and New Jersey whole leaf, leaf blade, and 

petiole samples.  The leaf blade samples contained higher amounts of carotenoids and 

chlorophylls, during the early and late harvest periods, except for β-carotene in the 

petiole from Texas’ early harvest sample (Table 3). The Catalonga Texas leaf blade 

sample had a significant decrease of violaxanthin from early to late harvest (16.53±1.21 

to 3.04±0.92 µg/mL) (p<0.05). The Catalonga New Jersey leaf blade sample contained 

significantly higher amounts of β-carotene during the late harvest (46.02±1.65 µg/mL) 

(p<0.05);  β-carotene is the main carotenoid responsible for pro-vitamin A activity 

essential for human nutrition.76 In the Catalonga from Texas, chlorophyll a and b in the 

leaf also significantly increased from early to late harvest (392.94±37.22 to 

762.64±64.58 and 361.36±33.27 to 709.77±53.21 µg/mL) (p<0.05). 

 We observed significant differences in chlorophylls and carotenoids based on the 

growing location, early and late harvest periods, and whole leaf, leaf blade and petiole 



 

24 

 

(p<0.05).A previous study quantified lutein, violaxanthin, antheraxanthin, zeaxanthin, 

neoxanthin, β-carotene, α-carotene, chlorophyll a, and chlorophyll b from whole leaf 

dandelion from Slovenia.53 In comparison, Catalonga dandelions from Texas and New 

Jersey contained higher amounts of lutein during the early and late harvest periods in 

leaf blade and in the whole leaf from New Jersey during the late harvest. Catalonga from 

Texas and New Jersey also contained higher amounts of violaxanthin in whole leaf and 

leaf blade samples during Texas’ early harvest and New Jersey’s late harvest and Texas 

had higher levels of chlorophyll b in leaf blade during the late harvest. Catalonga var. 

harvested in San Pietro Vernotico, Italy, had lower levels of lutein and β-carotene 

comparedto Catalonga whole leaf, leaf blade and petiole from Texas and New Jersey.77 

Other reported compounds neoxanthin, violxanthin, lutein and -carotene were found 

present in chicory (Cichorium intybus), similar to dandelion, from Sao Paulo, Brazil.78 In 

comparison to chicory, Catalonga leaf blade from Texas and New Jersey during the early 

and late harvest contained higher amounts of lutein and Catalonga leaf blade from New 

Jersey had higher amounts of β-carotene during the late harvest.  

Leafy green vegetables have bountiful amounts of lutein and β-carotene; 

however, depending on location and the environment, the levels of lutein and β-carotene 

and other carotenoids and chlorophyll a and b are subject to change.56, 79 Our data and 

previously reported research demonstrates that harvest location of dandelion greens 

plays a role in its levels of carotenoids and chlorophylls.  
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Table 3. Vitamin C, carotenoids and chlorophylls in Catalonga dandelion 

(Taraxacum officinale) 

Compound Sample Early Harvest Late Harvest 

  Texas New Jersey Texas New Jersey 

TAA 

Whole Leaf ND 273.2±17.4ᵇ 38.4±1.2ᵇ 302.0±10.7ª 

Leaf Blade ND 399.532.8ᵃ 113.619.3ª 256.9±12.4ᵇ 

Petiole ND 99.87.5ᶜ 25.20.3ᵇ 34.1±1.1ᶜ 

AA 

Whole Leaf ND 171.8±9.4ᵇ ND 394.3±37.3ᵇ 

Leaf Blade ND 234.413.8ᵃ ND 619.6±16.0ᵃ 

Petiole ND 52.90.0ᶜ ND 55.2±2.4ᶜ 

DHA 

Whole Leaf ND 101.4±26.4ᵇ 38.4±1.2ᵇ 92.3±31.9ᵇ 

Leaf Blade ND 165.17.1ᵃ 113.619.3ª 362.671.9ᵃ 

Petiole ND 46.86.6ᶜ 25.20.3ᵇ 21.094.2ᵇ 

Violaxanthin 

Whole Leaf 6.75±1.06ᵇ 8.91±1.08ᵇ 0.42±0.17ᵇ 11.66±0.85ᵇ 

Leaf Blade 16.531.21ᵃ 15.120.38ᵃ 3.040.92ª 18.300.29ᵃ 

Petiole 1.120.08ᶜ 0.640.15ᶜ 0.000.04ᵇ 1.260.04ᶜ 

Lutein 

Whole Leaf 25.48±2.45ᵇ 49.53±4.25ᵇ 25.99±3.37ᵇ 53.65±4.74ᵇ 

Leaf Blade 55.404.03ᵃ 78.695.37ᵃ 88.716.94ᵃ 84.764.16ᵃ 

Petiole 5.730.43ᶜ 5.640.13ᶜ 2.520.46ᶜ 7.430.53ᶜ 

-Carotene 

Whole Leaf 2.69±0.39ᵇ 14.13±1.01ᵇ 4.27±0.58ᵇ 23.18±0.54ᵇ 

Leaf Blade 4.410.38ª 17.630.84ᵃ 9.672.18ª 46.071.65ᵃ 

Petiole 2.530.30ᵇ 3.940.13ᶜ 0.770.07ᶜ 4.370.10ᶜ 

Chlorophyll 

A 

Whole Leaf 187.08±22.2ᵇ 428.91±43.15ᵇ 226.99±29.67ᵇ 333.21±37.28ª 

Leaf Blade 392.9437.22ª 655.6547.69ᵃ 762.6464.58ᵃ 500.0424.94ᵇ 

Petiole 43.953.57ᶜ 62.072.93ᶜ 33.332.35ᶜ 59.964.22ᶜ 

Chlorophyll 

B 

Whole Leaf 172.88±19.67ᵇ 389.79±45.67ᵇ 217.03±24.88ᵇ 326.81±25.55ᵇ 

Leaf Blade 361.3633.27ª 602.2647.62ᵃ 709.7753.21ᵃ 508.1722.54ª 

Petiole 44.543.37ᶜ 57.492.39ᶜ 37.643.33ᶜ 58.274.94ᶜ 

ND: below level of detectability, AA: ascorbic acid, TAA: total ascorbic acid, DHA: dehydroascorbic 

acid. Results are presented as mean  SE and replicated in triplicate. Early Harvest: December 2015 

to March 2016 and Late Harvest: April to July 2016. Different letters comparing sample during 

each harvest period for each compound indicate a significant difference (ANOVA, p<0.05). 

 

 

 

 

 

 



 

26 

 

DPPH-radical scavenging activity and total phenolics 

Whole leaf, leaf blade, and petiole MeOH extracts from Catalonga Texas and 

New Jersey were analyzed for DPPH scavenging activity during both early and late 

harvest periods (Fig. 2a.). DPPH scavenging activities were higher in the leaf blade and 

whole leaf from New Jersey versus Texas during the early harvest (p<0.05). Samples 

from Texas and New Jersey contained high DPPH scavenging activities during the late 

harvest but, Texas leaf blade contained the highest DPPH scavenging activity overall 

during the late harvest. Based on dandelion location and whole leaf, leaf blade, and 

petiole samples, there was a significant difference during early and late harvest periods 

(p<0.0001).  

Total phenolics was determined using Folin-Ciocalteu reagent.80 Total phenolics 

levels were similar to DPPH scavenging activities; Catalonga from Texas and New 

Jersey showed a significant increase in phenolic contents from early to late harvest 

(p<0.05) but, samples from Texas contained the highest levels of phenolics in the leaf 

blade during the late harvest (Fig. 2b.). Based on dandelion location and whole leaf, leaf 

and petiole tissue, there was a significant difference during each harvest period 

(p<0.0001). A Pearson correlation was conducted to determine the correlation of DPPH 

scavenging activity and total phenolic antioxidant activity analyses.  Catalonga from 

Texas had an R value of 0.8464 and 0.9743 and New Jersey with 0.9455 and 0.9646 

during the early and late harvest resulting in strong positive correlations of the amount of 

variance between the two antioxidant activity assays.  
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Depending on dandelion leaf maturity, location, time of harvest and antioxidant 

extraction techniques may cause of levels of DPPH scavenging activity and total 

phenolics to increase in the late harvest of Catalonga from Texas and New Jersey.21, 41, 81, 

82 Previously reported DPPH scavenging activities were found to differ based on 

extraction technique of dandelion flowers, leaves, or roots, from different areas and 

different times of harvest.13, 81, 83 Catalonga from Texas and New Jersey during the early 

and late harvest periods in whole leaf, leaf blade and petiole had higher DPPH 

scavenging activities compared to dandelion greens subjected to an ultrasound-assisted 

extraction method, harvested from China.34 Dandelion root harvested from Ireland, had 

higher scavenging activity in water extracts, lower activity in ethanol extracts, and 

higher levels of phenolics in both water and ethanol extracts compared to Catalonga 

from Texas and New Jersey during the early and late harvest periods.43 Another study 

detected high phenolic contents in dandelion leaves from plants exposed to oxidative 

stress in the presence of heavy metal concentrated soils.56 Dandelion leaf and root 

samples from Turkey were extracted with 80% methanol, giving similar total phenolics 

results compared to Catalonga from Texas and New Jersey during early and late 

harvest.31 Our results indicate that the antioxidant potential of dandelion greens is high 

in the leaf blade during later harvest periods  from Texas. When consumed, these healthy 

greens can provide optimal flavonoids, phenolic compounds, and other antioxidant 

compounds. 
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Figure 2. DPPH scavenging activity (a.) and total phenolics (b.) of Catalonga from 

Texas and New Jersey during early and late harvest periods. Different letters 

comparing Texas’ and New Jersey’s whole leaf, leaf blade and petiole during each 

harvest period indicate a significant difference (ANOVA, p<0.05). 
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Bile acid salt binding capacity and dietary fiber 

Determination of percent bound bile acid salts with Catalonga whole leaves from 

Texas and New Jersey during the early and late harvest was based on the methods in a 

previously reported study.61 Two bile acid salts predominant in the human bile profile 

are sodium chenodeoxycholate (CDCA) and sodium cholate (CA) and the two bile acid 

salts that can be toxic to the human body if accumulated at high concentrations are 

CDCA and sodium deoxycholate (DCA).84, 85 Catalonga from Texas and New Jersey 

during the early and late harvest periods showed the highest capacity for binding bile 

acid salts CDCA and DCA (Fig. 3.). Catalonga from Texas had the highest capacity for 

bound bile acid salts overall during the early and late harvest.  

The binding capacities for samples from Texas and New Jersey for all six bile 

acid salts were significantly different during the early harvest except for CDCA (p<0.05) 

and during the late harvest except for DCA (p<0.01). During the early and late harvest, 

binding capacities to all bile acid salts except for CDCA and DCA were significantly 

different in samples from Texas vs. New Jersey (p<0.05). Also, from early to late 

harvest, samples from Texas and New Jersey showed significant differences in binding 

to sodium glycocholate (GCA). Our results demonstrated that dandelion has a high 

binding capacity for CDCA and DCA bile salts that can be toxic at high levels in the 

human body. 

Another study  determined the different bile acid salt binding capacities of raw 

and cooked leafy green vegetables.61 Compared to raw mustard greens, kale, and collard 

greens, the samples of Catalonga from Texas during the early and late harvest had higher 
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binding capacities of each bile acid salt.61 The leafy vegetables subjected to different 

cooking methods had an increase in bile acid binding capacity, increase in soluble 

dietary fiber, and decrease of insoluble dietary fiber.61 This may also be true for 

dandelion greens if subjected to a cooking method and should be further studied.   

Dietary fiber analysis was conducted with freeze dried whole leaves based on the 

idea that a consumer would eat the whole dandelion leaf to receive the maximum 

amount of dietary fiber. Dietary fiber was analyzed for Catalonga whole leaves from 

Texas and New Jersey by Medallion labs (Table 4).69 Catalonga from Texas had a 

decrease in soluble, insoluble, and total dietary fiber from early to late harvest, unlike 

Catalonga from New Jersey, which showed no change in soluble fiber but an increase in 

insoluble and total dietary fiber from early to late harvest. Catalonga from Texas had the 

highest percentage of total dietary fiber in the early harvest (50.2%) and Catalonga from 

New Jersey (44.4%) during the late harvest. (Table 4). 

 Previous studies showed that dietary fiber and bile acid salt binding capacity are 

correlated. Binding capacities of different high-fiber food residues, such as apples, beans 

and celery concluded that the food residues were able to absorb the bile acid salts and 

the salts were excreted from the body.86 Dietary fiber present in specific high-fiber foods 

can absorb and eliminate bile acid salts from the body.86 A link between dietary fiber 

and food also showed that soluble fiber, also known as viscous fiber, binds to the bile 

acid salts.87, 88 However, this study disagrees with our results,  Catalonga from New 

Jersey has higher soluble dietary fiber in the early and late harvest period while 

Catalonga from Texas had higher binding capacity in the early and late harvest.  
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The soluble dietary fiber slows down digestion, can dissolve and thicken in water to 

reduce absorption of sugars, and can affect lipid balance by binding to bile acids for 

elimination from the body.87 The soluble fiber in dandelion greens is mostly 12-15% 

inulin β(2→1) fructan gel-like substances.57, 89 Insoluble dietary fiber absorbs water and 

passes substances through the colon.87-89 Based on our results, both Catalonga from 

Texas and New Jersey should be consumed during early or late harvest for their high 

fiber content, which will bind bile acids, aid in digestion, and lower cholesterol.87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Percent bound bile acids of Catalonga whole leaf samples from Texas and 

New Jersey during the early and late harvest periods. Different letters indicate a 

significant difference between each bile acid and location during early and late 

harvest (ANOVA p<0.05) 
 

 

 

Table 4. % Dietary fiber in Catalonga (Taraxacum officinale) whole leaf  

 

 

 

 

 

 

Results were conducted by Medallion Labs (Minneapolis, MN).69  

 

 

 

 

 

 

 Early Harvest Late Harvest 

Dietary Fiber Texas New Jersey Texas New Jersey 

Soluble Fiber 8.9 9.4 8.0 9.4 

Insoluble Fiber 41.3 31.1 34.2 35.0 

Total Fiber 50.2 40.5 42.2 44.4 
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Soil and micronutrient content 

The soil content was examined during the late harvest of Catalonga from Texas 

and New Jersey.  Soil analyses included: pH, conductivity, and micronutrient presence 

and content (mg/kg) (Table 5). Catalonga from New Jersey had a pH of 6.7 and 

Catalonga from Texas had a pH of 6.0 but had higher conductivity. The micronutrients 

present at high concentrations included calcium, phosphorus, potassium, magnesium, 

and sodium and at lower concentrations, nitrate, sulfur, iron, zinc, manganese, and 

copper.  

Soil contents may affect the amounts of phytochemicals in dandelion greens 

according to previously reported research. One study demonstrated how soil content 

played a role in the changing amounts of ascorbic acid present in dandelion leaves over 

different harvesting periods.36 Each soil sample for over two months was exposed to 

copper at increasing concentrations.36 Within each harvest period, there was a parallel 

effect; ascorbic acid increased as the concentration of copper increased.36 However, 

when the dandelion leaves matured, the ascorbic acid content decreased with the 

increasing amounts of copper in the soil.36 Another study tested the effect of increasing 

concentrations of nitrogen in the soil on the micro- and macro-nutrient profile of chicory 

(Cichorium intybus).90 A positive correlation was also observed; increasing 

concentration of nitrogen in the soil increased concentrations of ascorbic acid and other 

nutrients.90 Lastly, another study tested the oxidative stress of dandelion by exposing the 

dandelion to ammonium ion in a nutrient solution, which also increased the total 

ascorbic acid contents.56, 91, 92 In our study, the New Jersey soil had 85 and 1.31 mg/kg of 
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nitrate and copper versus 15 and 0.34 mg/kg of nitrate and copper in Texas possibly 

resulting in the higher amounts of vitamin C in Catalonga from New Jersey. 

 

 

 

Table 5. Soil and micronutrient content of Catalonga late harvest (ppm: mg/kg) 

Sample pH, Conductivity and Compounds Edinburg, TX Vineland, NJ 

pH 6.0 6.7 

Conductivity 521⃰ 310 

Nitrate-N 15 85 

Phosphorus 116 344 

Potassium 239 184 

Calcium 1,022 1,364 

Magnesium 217 106 

Sulfur 153 79 

Sodium 207 10 

Iron 4.36 16.56 

Zinc 1.10 2.86 

Manganese 10.39 5.55 

Copper 0.34 1.31 

*Units measured in umho/cm 

 

 

 

DPPH scavenging activity and total phenolics of dandelion leaves extracted by different 

thermal processing techniques   

Cooking and other thermal processing techniques can affect the antioxidant 

contents of plant matter. Therefore, we tested our dandelion samples with different 

thermal processing methods. Garnet Stem dandelion leaves from Texas were chopped up 

finely, boiled for 15, 30, and 120 min and microwaved for 2, 4, and 6 min separately in 
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nanopure water, diluted, then analyzed for DPPH scavenging activity and total phenolics 

(Fig. 4a.). As boiling time increased from 15 to 30 min, the DPPH scavenging activity 

decreased then remained the same from 30 to 120 min. Similarily, as microwaving time 

increased from 2 to 4 min scavenging activity increased then decreased from 4 to 6 min. 

DPPH scavenging activity could result from numerous compounds present in the 

dandelion leaf aqueous extracts, such as secondary metabolites and macronutrients 

(vitamin C, carotenoids, chlorophyll, flavonoids, phenolics, vitamin E, etc.).73, 93-96 

Observing total phenolic results in Fig. 5a., the trend from 15 to 30 to 120 min. of the 

boiled and microwaved extracts differ compared with DPPH scavenging activity. In the 

boiled extracts, the 30 min extract had the highest total phenolics, but this was not 

statistically different versus the 15 min extract. The 6 min microwaved extract had 

higher phenolic content versus the 4 min extract, but these were not significantly 

different. DPPH scavenging activity was highest from boiled and micorwaved Garnet 

Stem at 15 and 4 min and total phenolic content when boiled from 15 min to 30 min 

(Fig. 4a. and 5a.). These results contradict previously reported findings that showed 

microwaved aqueous extracts of Catalonga had highest antioxidant activity and total 

phenols versus boiled Catalonga.17 Comparing boiled and microwaved treated aqueous 

extracts, the results showed a significant difference for DPPH scavenging activity 

(p<0.0001) and total phenolics ( p<0.01), and both thermal processing techniques had a 

positive correlation between DPPH scavenging activity and total phenolic content.  

Catalonga and Garnet Stem dandelion samples from Texas were subjected to 

three different heating treatments (Fig. 4b. and 5b.). Boiling for 15 min at 100±0.2 ºC, 
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microwaving for 4 min at 95-100±0.2 ºC, and hot sonication for 60 min at 55 to 65±0.2 

ºC. Catalonga aqueous extracts had the highest DPPH scavenging activities for boiling, 

microwaving, and sonication vs. Garnet Stem aqueous extract which had higher total 

phenolics when boiled, microwaved, and sonicated. Garnet Stem total phenolic levels 

were higher than Catalonga due to the anthocyanins present in Garnet Stems red 

petiole/midrib. Both Catalonga and Garnet Stem had a sigificant differences in DPPH 

scavenging activity between each thermal processing technique (p<0.001 and p<0.0001).  

Overall, boiled and microwaved aqueous extracts had the highest levels of DPPH 

scavening activity and total phenolics vs. sonication for Catalonga and Garnet Stem. 

Correlation between DPPH scavenging activity and total phenolics assays showed a 

positive correlation. Both Catalonga and Garnet Stem results concluded that boiling or 

microwaving dandelion leaves for at least 15 min and 4 min was the optimal methods for 

achieving the highest antioxidant potential for human health. When boiled or 

microwaved and consumed as a hot tea, these dandelion leafy greens can benefit the 

body and alleviate oxidative stress.29, 40 

Successive extraction and recovery of phenolics using different boiling techniques   

Successive extraction of 5 dandelion leaf varieties was conducted to determine 

how antioxidants are affected when continously boiled. Also to observe how phenolic 

compounds are recovered when boiled extracts were combined and compared to the first 

boiling time of 15 min. Fresh chopped dandelion varieties harvested from different 

locations were boiled successively for 15, 30, and 120 min and a fourth combination 

recovery extract were analyzed for DPPH scavenging activity (Fig. 4c.) and total 
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phenolic content (Fig. 5c.). The 15 min boiled extract for each variety, except for 

Catalonga-TX J&D, had the highest DPPH scavenging activity and total phenolic 

content. DPPH scavenging activity decreased as boiling time increased. All dandelion 

varieties were significantly different for each 15, 30, 120 min and combination extracts 

(p<0.01). Comparing each boiled time and combination extract for each dandelion 

variety also showed a significant difference (p<0.05) except for Catalonga-TX J&D. 

DPPH scavenging activity from the three Catalonga varieties was highest in Catalonga 

from New Jersey when boiled for 15 min. Garnet Stem from Texas had the highest 

DPPH scavenging activity versus Garnet Stem from New Jersey and the six other 

varieties for all boiled and combination extracts.  

Similar results occurred for total phenolic content with dandelion varieties. Total 

phenolic content of Catalonga New Jersey was the highest in 15 min and combination 

extracts compared to the other two Catalonga varieties. Garnet Stem from Texas had 

higher total phenolic levels compared with Garnet Stem from New Jersey and other 

varieties for all boiled and combination extracts (Fig. 5c.). Each variety had a significant 

difference between each aqueous extract (p<0.01) except for Catalonga Texas and 

Garnet Stem New Jersey. Comparing all five varieties and recovered extracts, there was 

a significant difference for total phenolics (p<0.05), except between the 120 min extracts 

not including Garnet Stem-TX J&D. Both DPPH scavenging activity and total phenolics 

shared a relationship in expression of antioxidant activity resulting in a positive 

correlation.  
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These results demonstrated that dandelion varieities freshly boiled contain higher 

DPPH scavenging activities contrasting with another study, which used dried whole 

leaves, boiled for a total of 4 hours and had a DPPH scavenging activity of 207±0.84 

μg/mL.45 DPPH scavenging activity was predominately higher in our experiment while 

total phenolic content results were not. The total phenolics from the 4 hour boiled dried 

dandelion leaves were higher than all dandelion varieties except for Garnet Stem from 

Texas.45  

These results encourage that boiling for 15 min is sufficient for maximum 

antioxidant benefit from dandelion greens especially from Garnet Stem Texas due to its 

red midrib/petiole containing anthocyanins contributing to its high antioxidant activity. 

In a continuation of this study, a sensory analysis should be conducted comparing 

bitterness of fresh dandelion herbal teas harvested from different locations. It would also 

be interesting to assess the effects of antioxidant activity from cold-pressed dandelion 

leaf juice. Today, more cold-pressed juice products are being manufactured for 

consumers in the market.97 If cold-pressed dandelion leaf antioxidant potential is just as 

high or is higher versus boiled dandelion leaf extracts, the results could be a step towards 

a new way of consuming dandelion.  
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Figure 4. DPPH scavenging activities of dandelion (Taraxacum officinale) whole 

leaf varieties. (a.) Boiled and microwaved time comparison, (b.) boiled, microwave 

and sonication comparison, and (c.) successive boiling extraction of phytochemicals. 

Different alphabets indicate significant differences between each boiled, 

microwave, and sonicated time and variety (ANOVA p<0.05). 
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Figure 5. Total phenolics of dandelion (Taraxacum officinale) whole leaf varieties. 

(a.) Boiled and microwaved time comparison, (b.) boiled, microwave and sonication 

comparison, and (c.) successive boiling extraction of phytochemicals. Different 

alphabets indicate significant differences between each boiled, microwave, and 

sonicated time and variety (ANOVA p<0.05). 
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Chapter Summary 

 Our efforts suggest that the dandelion greens grown in Texas and New Jersey 

have high potential bioavailability of phytochemicals, antioxidant activity, and dietary 

fiber to support human health. Higher levels of vitamin C were present in the late harvest 

of Catalonga leaf blade from New Jersey. Three carotenoids, violaxanthin, lutein, -

carotene and chlorophyll A and B, were quantified in the whole leaf, leaf blade and 

petiole from Catalonga Texas and New Jersey during their early and late harvest periods. 

DPPH scavenging activity and total phenolics were highest in the Catalonga leaf blade 

from Texas during the late harvest. Bile acid binding capacity was higher in Catalonga 

from Texas. Overall, leaf blade from both Catalonga Texas and New Jersey had the 

higher content of phytochemicals and antioxidant activities during the late harvest 

period, compared with the early harvest. 

An innovative approach determined what type of heating technqiue to use for a 

specific time to collect dandelion leaf hot aqueous extracts with the highest potential 

bioavailabilty of antioxidants. Both boiling and microwaving dandelion leaves are the 

best techniques to use when cooking dandelion leaves into an herbal tea. However, as 

boiling time increases, less bitter flavor from the sesquiterpene lactones and antioxidant 

activity is present in dandelion leaves. Our research was also able to extend our 

knowledge of how different varieties of dandelion harvested from different locations 

contain different amounts of DPPH radical scavenging abilities and total phenolic 

compounds.  
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 There were a few limitations and understandings to still be determined to 

improve this study. First, the Catalonga Texas and New Jersey samples were not harvest 

in consecutive months due to lack of growth, weather, and consumer sales. Second, there 

needs to be better understanding of the ecological systems that play a role in growing the 

dandelion greens, such as climate, temperature, water, soil and other environmental 

stresses. Third, an understanding of how macronutrients and micronutrients are taken up 

from the soil into the dandelion greens correlate with the bioavailability of 

phytochemicals. Lastly, DPPH is one of many free radicals and it would be interesting to 

see how these dandelion hot aqueous extracts scavenge other free radicals.  

Our results can aid consumers in decisions, such as purchasing mature Catalonga 

greens and consuming the leaf blade part to ensure higher bioavailability of 

phytochemicals and antioxidant activities, based on location. Growers can also continue 

to harvest and increase the availability and yield of dandelion greens based on the 

phytochemicals, antioxidant activity, and dietary fiber present, which may aid human 

health similarly to other leafy green vegetables. Fresh dandelion hot teas are a great 

alternative to consuming raw dandelion leaves but more information about thermally 

processing fresh dandelion leaves into a shelf-stable product will be required before any 

industrial implementation could be considered. 
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CHAPTER III 

EXTRACTION, IDENTIFICATION, QUANTIFICATION, AND HEALTH-

PROMOTING PROPERTIES OF ANTHOCYANINS FROM GARNET STEM 

DANDELION (TARAXACUM OFFICINALE)  

Overview 

Dandelion (Taraxacum officinale) var. Garnet Stem was harvested from Texas and 

New Jersey for identification and quantification of phytochemicals, and for measurement 

of free radical scavenging activity and bile acid binding capacity. The red midvein/petioles 

were extracted with methanol or ethanol and with or without water in combination with 

four different acids: formic, hydrochloric, acetic, and citric acid. All 28 different solvent 

extracts were analyzed by LC-ESI-HR-QTOF-MS to identify four anthocyanins, 

cyanidin-3-glucoside, cyanidin-3-(6-malonyl)-glucoside (A-1), cyanidin-3-(6-malonyl)-

glucoside (A-2), and peonidin-3-(malonyl)-glucoside for the first time. Results from all 

anthocyanin extracts and antioxidant assays suggest that methanol: water: citric acid 

(80:19:1) had the highest DPPH scavenging activity and ethanol: water: hydrochloric acid 

(50:49:1) had the highest total phenolic content. Analysis of phytochemicals in whole 

leaves, leaf blades and midvein/petioles showed that in the samples from New Jersey, 

vitamin C and β-carotene were highest in the leaf blades versus whole leaves and 

midvein/petioles and, in samples from Texas, lutein, violaxanthin, chlorophyll a, and 

chlorophyll b were highest in leaf blades versus whole leaves and midvein/petioles. The 

highest bound bile acid salt was sodium chenodeoxycholate (CDCA) and the extracts from 

plants grown in Texas contained the highest total dietary fiber (44.1%). Results from this 
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study provide the first report of anthocyanin identification from the midvein and petiole 

of Garnet Stem dandelions and show that the phytochemicals and nutrients are highest in 

the leaf blade but may vary in amount depending on harvest location. 

Introduction 

Dandelion (Taraxacum officinale) has long been used as a medicinal herb to treat 

various ailments including dyspepsia, heartburn, spleen and liver complaints, hepatitis, 

and anorexia.77, 98 In the United States, dandelion has been considered a weed due to its 

undesirable perennial growth. Interestingly, despite its status as a weed, dandelion has 

potential health benefits due to the presence of phenolics, flavonoids, coumarins, 

terpenoids, sesquiterpene lactones, carotenoids, chlorophylls, dietary fiber, and 

alkaloids.4, 21, 22, 42 The reported potential health benefits of dandelion include anti-

hepatoxicity, antioxidant activity, diuretic, anti-inflammatory activity, and mitigation of 

cardiovascular disease.21, 98 

 Dandelion var. Garnet Stem has green leaves with red petioles and leaf midveins, 

possibly due to the presence of anthocyanins. In leafy vegetables, the red colors mainly 

result from cyanidin derivatives.11 For example, the commonly consumed leafy green 

vegetables red cabbage and red leaf lettuce possess cyanidins.99 Red cabbage contains 

higher amounts of cyanidin compared with red leaf lettuce.  

Every anthocyanin has the same structural backbone and anthocyanin diversity 

depends on the number and arrangement of different functional groups. The position of 

the B-ring and presence of hydroxyl groups at the different positions influences stability 

and radical scavenging activity.48 Anthocyanins can become unstable and are strongly 
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influenced by their chemical structure and the environment including pH, storage 

temperature and solvents.48  

  For extraction, solvent polarity, pH, and other conditions must be taken into 

consideration to successfully extract and preserve the water-soluble pigments present. Red 

leaf pigments need to be extracted under acidic conditions to maintain the red color and 

anthocyanin stability. Common solvents used for the extraction of anthocyanins include 

aqueous ethanol or methanol in combination with acid.48 Depending on the solvent, and 

the acid, and water ratio, anthocyanins can be extracted and preserved. A previous study 

reported that methanol with hydrochloric acid effectively extracted anthocyanins from 

wine grape pomace, compared with ethanol and water with organic acids.100 In the present 

study, we aimed to optimize anthocyanin extraction and evaluate antioxidant activities of 

extracts from the red midvein/petiole tissue of Garnet Stem dandelions, using 28 different 

solvent compositions. In addition, all the extracts were quantified for the levels of 

anthocyanins by HPLC, anthocyanins were identified by high-resolution mass 

spectrometry, and extracts were tested for bile acid binding ability. To examine the effect 

of environment, we compared the levels of phytochemicals in plants harvested from two 

different locations. 

Materials and Methods 

Plant materials 

Dandelion variety Garnet Stem was obtained from J&D Produce Inc., grown in 

Edinburg, TX during January 2016 and Vineland, NJ during May 2016 (Fig. 6a. and 6b.).  
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(a.) Edinburg, TX (b.) Vineland, NJ 

(d.) Leaf Blade (c.) Whole Leaf  (e.) Midvein/ Petiole 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Garnet Stem dandelion (Taraxacum officinale) leafy green samples 

harvested from different locations (a.) and (b.) and samples processed and used for 

analysis (c.), (d.), and (e.). 

 

 

Chemicals 

Formic acid, hydrochloric acid, acetic acid, citric acid, methanol, ethanol, 

phosphoric acid, acetonitrile, tert-butyl methyl ether, meta phosphoric acid (MPA), 2,2-

diphenyl-1-picrylhydrazyl (DPPH), sodium carbonate, Folin-Ciocalteu reagent, and 

HPLC standards including pelargonidin, ascorbic acid, gallic acid, β-carotene, lutein, β-

cryptoxanthin, violaxanthin, neoxanthin, chlorophyll a, and chlorophyll b were purchased 

from Sigma-Aldrich (St. Louis, MO, USA). Nanopure HPLC grade water was used from 
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Barnstead/Thermolyne (Dubuque, IA, USA). Tris (2-carboxylethyl) 

phosphinehydrochloride (TCEP) was purchased from Alfa Aesar (Ward Hill, MA, USA). 

Ortho phosphoric acid 85% (w/w) HPLC grade was purchased from EMD Millipore 

Corporation (Billerica, MA, USA). 

Sample preparations 

Midvein/petiole tissue was manually separated with a stainless-steel knife from 

Garnet Stem dandelion leaf blades from Edinburg, TX (Fig. 6e.), chopped finely, and used 

for optimization of anthocyanin extraction and antioxidant activities. For phytochemical 

and antioxidant analyses, Garnet Stem plants from Texas and New Jersey were separated 

into whole leaf (Fig. 6c.), leaf blades (Fig. 6d.), and midvein/petiole (Fig. 6e.) and 

extracted as described below. 

 

Optimization of anthocyanin extraction  

Extraction of anthocyanins was optimized with modifications of a procedure from 

a published paper 101 with 28 solvent compositions containing solvents (water, methanol, 

ethanol) and different acids (formic, acetic, citric and hydrochloric acid) as mentioned in 

Table 6. Chopped Garnet Stem midvein/petiole tissue (10 g) from Texas was treated with 

12 mL of different solvent combinations and extractions were conducted in duplicate. All 

samples were sonicated for 1 h, in ice cold water (7 °C), vortexed for 2 min and centrifuged 

at 7826 ×g for 30 min under dark conditions, the supernatant was decanted into new tubes 

and the residue was re-extracted twice with 6 and 3 mL using respective solvents as 

mentioned above. All three colored supernatants were pooled, measured to find the total 

volume, filtered, and stored at -80 C for HPLC and LC-HR-ESI-QTOF-MS analysis. 
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Table 6. Garnet Stem anthocyanin solvent, water and acid extractant combinations 

Number of 

solvent 

combinations 

ªSolvent/Water: Water: Acid Combinations 

1 Water: FA  

(99:1) 

Water: HCl  

(99:1) 

Water: AA 

 (99:1) 

Water: CA  

(99:1) 

2 MeOH: water: FA 

(80: 19: 1) 

MeOH: water: HCl 

(80: 19: 1) 

MeOH: water: AA 

(80: 19: 1) 

MeOH: water: CA 

(80: 19: 1) 

3 MeOH: water: FA 

(50: 49: 1) 

MeOH: water: HCl 

(50: 49: 1) 

MeOH: water: AA 

(50: 49: 1) 

MeOH: water: CA 

(50: 49: 1) 

4 MeOH: FA  

(99: 1) 

MeOH: HCl  

(99: 1) 

MeOH: AA  

(99: 1) 

MeOH: CA  

(99: 1) 

5 EtOH: FA  

(99: 1) 

EtOH: HCl 

 (99: 1) 

EtOH: AA 

 (99: 1) 

EtOH: CA  

(99: 1) 

6 EtOH: water: FA 

(80: 19: 1) 

EtOH: water: HCl 

(80: 19: 1) 

EtOH: water: AA 

(80: 19: 1) 

EtOH: water: CA 

(80: 19: 1) 

7 EtOH: water: FA 

(50: 49: 1) 

EtOH: water: HCl 

(50: 49: 1) 

EtOH: water: AA 

(50: 49: 1) 

EtOH: water: CA 

(50: 49: 1) 

MeOH: methanol, EtOH: ethanol, FA: formic acid, HCl: hydrochloric acid, AA: 

acetic acid and CA: citric acid. ªEach solvent, water and acid combinations was 

replicated in duplicate for reproducibility of anthocyanin quantification. 

 

 

Separation and quantification of anthocyanins 

Chromatographic separation of anthocyanins was performed with a Waters 1525 

HPLC (Milford, MA, USA) equipped with Waters 717 plus autosampler. Symmetry 

reverse-phase C-18 and 5-µm (3.9 x 150 mm) column and with a guard cartridge 

(Phenomenex, Torrance, CA, USA). The gradient mobile phase consisted of (A) 0.03 M 

phosphoric acid and (B) acetonitrile: water (1:1) with a gradient elution of 70-50% A for 

0–2 min, 50-40% A at 2–7 min, 40-70% A at 7–8 min, isocratic for 4 min with a flow rate 

of 0.5 mL/min. A 20-µL sample was injected at ambient temperatures and the 

chromatogram was monitored at 520 nm. Quantification of the anthocyanins was achieved 
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by comparison to a calibration curve. Each anthocyanin was expressed as µg/g of fresh 

weight of sample.  

 

LC-ESI-HR-QTOF-MS identification of anthocyanins  

 All anthocyanin extracts were analyzed by liquid chromatography electrospray 

ionization with high resolution quadruple time of flight mass spectrometry (LC-ESI-HR-

QTOF-MS). HPLC analyses were carried out using an Agilent 1290 Series Rapid 

Resolution LC system (Agilent Technologies, Palo Alto, CA, USA), equipped with a 

vacuum degasser, an autosampler, binary pump, and PDA detector. The column used for 

the chromatographic separation was a rapid resolution high definition Zorbax Eclipse Plus 

C18 (1.8 µm, 50 mm×2.1 mm) (Agilent Technologies, Palo Alto, CA, USA). In order to 

obtain separation of the compounds from the dandelion extracts, 0.50 mL/min flow was 

used at room temperature. The gradient mobile phases used were (A) 0.1% formic acid in 

LC-MS grade water and (B) 0.1% formic acid in acetonitrile. The following gradient 

system was applied: 0 min, 5% B; 45 min, 100% B; 55 min, 5% B; and finally, a 

conditioning cycle of 5 min with the same conditions for the next analysis. The samples 

(1 µL) were injected and peaks were monitored with a diode array detector between 190 

and 640 nm. This LC was coupled with a maXis Impact (Bruker Daltonik, Bremen, 

Germany) instrument, an orthogonal accelerated TOF mass spectrometer, using an ESI 

interface. The detection of the compounds of interest was carried out considering a mass 

range (m/z) 50-1000. External mass spectrometer calibration was performed using a Cole 

Palmer syringe pump (Vernon Hills, Illinois, USA) directly connected to the interface, 

equipped with a Hamilton syringe (Reno, Nevada, USA) containing sodium formate (10 
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mM sodium hydroxide and water: 2-propanol 1:1 (v/v) with 0.2% of formic acid). The 

calibration solution was injected at the end of each run and all the spectra were calibrated 

prior to the identification. The accurate mass data for the molecular ions were processed 

using the software Data Analysis 4.3, which provides the list of possible elemental 

formulae by using the SmartFormula.  

 

DPPH scavenging activity of anthocyanin extracts  

DPPH radical scavenging ability of anthocyanins extracts was measured according 

to our published method.67  For each anthocyanin midvein/petiole tissue extract, different 

amounts (5, 10, 20, 40, 80, and 100 μL) of 0.2 mg/mL of ascorbic acid and, 30 μL of 

extract was pipetted into the wells of a 96-well plate. The total volumes of all the wells 

were adjusted to 100 μL with MeOH. A total of 180 μL of DPPH (40 mg/L MeOH) was 

pipetted into all wells and the changes in the absorbance of anthocyanin midvein/petiole 

extracts and standards were measured at 515 nm with a microplate reader (BioTek 

Instruments, Inc., Winooski, VT) for 30 min. DPPH scavenging activity was expressed as 

µg/g ascorbic acid equivalents.   

 

Total phenolics of anthocyanin extracts 

Concentrations of total phenolics were determined according to our published 

paper.68  Anthocyanin petiole/midrib extracts (30 μL) were pipetted into a 96-well plate 

and the total volume was adjusted to 200 μL with nanopure water. The blank was prepared 

with 200 μL nanopure water. Different volumes (10, 20, 30, 40, 50, 75 and 100 μL) of 0.1 

mg/mL gallic acid were added to all wells and adjusted to 200 μL with nanopure water. 



 

51 

 

The Folin-Ciocalteu reagent (20 µL of 1 M Folin-Ciocalteu) was added to all wells, 

incubated for 10 min at 37 °C, then sodium carbonate (40 µL of 0.035 g/mL sodium 

carbonate) was added to all wells and incubated for 20 min at 37 °C. The absorbance was 

measured at 760 nm using a microplate reader (BioTek Instruments, Inc., Winooski, VT) 

after 30 min of incubation at 37 °C. Total phenolics were expressed as μg/g gallic acid 

equivalents.  

 

Determination of vitamin C: ascorbic acid, dehydroascorbic acid and total ascorbic 

acid 

 Vitamin C content was measured according to our published protocols.66 Chopped 

and ground fresh samples (2 g) of whole leaf, leaf blades and midvein/petiole tissue were 

treated with 4 mL of 3% meta-phosphoric acid and extracted by homogenization for 30 s, 

vortexed for 2 min and sonicated for 2 h. The samples were centrifuged for 20 min and 

extracts were passed through 0.45 micron filters and used for ascorbic acid estimation. 

The above samples (0.5 mL) were treated with 0.5 mL of Tris (2-carboxylethyl) phosphine 

hydrochloride (28.66 mg TCEP/10mL of nanopure water) for the reduction of 

dehydroascorbic acid to ascorbic acid and analyzed for HPLC. Ascorbic acid and total 

ascorbic acid were quantified on Thermo Scientific HPLC series using Eclipse XDB C-

18 (4.6 × 150 mm 5 μm pore size) column, with a guard column. Mobile phase 0.03 M 

phosphoric acid was used with a flow rate of 0.4 mL/min, and a sample of 10 L was 

injected into the HPLC. Absorbance was monitored at 243 nm with a run time of 18 min. 

The vitamin C was calculated according to a previously described formula.66  
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Determination of carotenoids and chlorophylls content 

Samples (3 g) of whole leaf, leaf blade, and midvein/petiole tissue were extracted 

with 8 mL of acetone, homogenized, vortexed (1 min), sonicated (30 min), and centrifuged 

(15 min) under dark conditions, then the extracts were filtered. The residue was re-

extracted twice to recover all the carotenoids, pooled, and stored at -80 C until HPLC 

analysis. Waters 1525 HPLC series (Milford, MA, USA) equipped with Waters 717 plus 

autosampler, Waters YMC C-30, 3-μm column (150 mm × 4.6 mm i.d.) with a guard 

cartridge (Phenomenex, Torrance, CA, USA) was used for quantification. Mobile phase 

(A) methanol and (B) tert-butyl-methyl-ether was used for gradient separation with a flow 

rate of 1 mL/min. Samples (50 μL) were injected into the HPLC and separated with a 

runtime of 25 min. All peaks were detected at 450 nm and compounds were identified by 

comparing retention times and UV spectra to the standards: lutein, β-carotene, β-

cryptoxanthin, violaxathin, neoxanthin, chlorophyll a, and chlorophyll b. Quantification 

of each compound was calculated based on a regression equation and the dilution. 

Determination of total, insoluble and soluble dietary fiber  

Determination of total, insoluble, and soluble dietary fiber was conducted using 

ANNEX G- AOAC Official Method 991.43 Total, Soluble, and Insoluble Dietary Fibre 

in Foods method by Medallion Labs (Minneapolis, MN).69 

Determination of bile acid binding capacity 

Extraction and quantification of bile acid binding capacity was conducted based 

on the published procedure.61 Fresh Garnet Stem whole leaves (6 g) were chopped, added 
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to 3 mL of nanopure water and subjected to in vitro simulation of human digestion, 

including oral digestion, gastric digestion, and intestinal digestion. Samples were added 

to 10 mL of -amylase (3.1 mg in 100 mL of simulated saliva fluid buffer (Table 1).70 

Samples were incubated in a shaking water bath (Julabo GmbH SW22, Seelbach, 

Germany) for 5 min at 37 °C to simulate human oral digestion. The sample pH was 

adjusted to 2 with 0.1 N HCl and 600 μL of pepsin buffer (200 g of pepsin/mL 0.1 M 

HCl) was added. The samples were again incubated for 90 min in shaking water bath at 

37 °C to simulate human gastric digestion. The samples were removed and the pH was 

adjusted to 6.8 with 0.1 N NaOH to stimulate human intestinal digestion, 4 mL of bile acid 

mixture in 0.05 M phosphate buffer (Table 2) and 5 mL of pancreatin (6.25 mg of 

pancreatin from porcine pancreas/mL of 50 mM phosphate buffer) were added and 

incubated for 3 h in the shaking water bath at 37 °C to conclude the human intestinal 

digestion. The reaction was stopped by inactivating the enzymes at 78 °C, centrifuged for 

20 min, and the residue was washed with excess water to remove the adhering bile acids, 

then the remainder was used for quantification of unbound bile acids. Unbound bile acids 

were quantified with an Agilent 1200 series HPLC (Foster City, CA, USA) using a Gemini 

C-18 5-μm column (250 mm × 4.6 mm i.d.) with a guard cartridge (Phenomenex, 

Torrance, CA, USA). Gradient mobile phase (A) 0.03 mM phosphoric acid and (B) 

acetonitrile, were used as follows, 10 min 45% A and 55% B, 20 min 10% A and 90%, 25 

min 75% A and 25% B and 35 min 75% A and 25% B with a flow rate of 0.7 mL/min and 

20 μL sample injected with a run time of 32 min. Unbound bile acids were quantified by 

using regression equations of standard bile acids: sodium glycodeoxycholate (GDCA), 



 

54 

 

sodium cholate (CA), sodium deoxycholate (DCA), sodium glycochenodeoxycholate 

(GCDCA), sodium glycocholate (GCA), and sodium chenodeoxycholate (CDCA). The 

levels of unbound bile acids were calculated by regression equations and dilution factors.  

The bound bile acids were calculated using the following formula: 

Bile acid binding capacity (%) =  

100 − (
𝑚𝑔 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑 𝑏𝑖𝑙𝑒 𝑎𝑐𝑖𝑑𝑠 𝑏𝑦 𝐻𝑃𝐿𝐶 ∗ 100

𝑚𝑔 𝑜𝑓 𝑏𝑖𝑙𝑒 𝑎𝑐𝑖𝑑 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑎𝑠𝑠𝑎𝑦
) 

Statistical analysis 

 Statistical analysis was performed using one-way analysis of variance (ANOVA) 

with JMP Pro 12.0.1 software. A general linear model was used to test significant 

differences, and means were compared using Student’s t-test at the 5% probability level. 

Correlations were calculated using Pearson’s correlation coefficient (𝑅). The results were 

expressed as means ± SE. 

Results and Discussion  

Extraction efficiency of anthocyanins 

 To identify the best extraction solvent for the isolation of anthocyanins from 

Garnet Stem dandelion (Fig. 6e.), we used 28 different solvent compositions, which 

included a wide range of polarities of solvent compositions. All these extracts were 

analyzed by analytical HPLC for the separation and quantification of anthocyanins. In the 

dandelion midvein/petiole, four anthocyanins were identified using UPLC-HR-QTOFMS 

in positive ionization mode. The total ion chromatogram, extracted ion chromatograms, 

and tandem mass spectra of identified anthocyanins along with broad band collision 

induced mass spectra (bbCID) are presented in Fig. 7 UV-Vis spectra show the absorption 
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at 520 nm, which corresponds to the presence of the characteristic flavylium cation or 

anthocyanidin nucleus. The tentatively proposed fragmentation patterns of identified 

anthocyanins are presented in Fig. 8. The peak eluted at RT 3.8 min exhibits an accurate 

mass value at m/z 449.1088 [M]+ (mass error 2.2 ppm). In +bbCID spectra, the precursor 

ion loses one molecule of glucose and gives a prominent base peak at m/z 287.0556 [M-

162]+ (mass error 2.09 ppm), which corresponds to the cyanidin aglycone moiety. Thus, 

on the basis of UV-Vis spectra and high resolution mass spectra, the peak at RT 3.8 min 

was identified as cyanidin-3-glucoside.  

Two peaks eluted at RT 4.4 and 4.9 min were considered as isomers, because they 

had the same mass spectra and UV-Visible spectral data. The peak eluted at RT 4.4 min 

represents the molecular ion peak at m/z 535.1116 [M]+ (mass error 6.4 ppm) along with 

a characteristic fragment ion peak at m/z 287.0568 [M-162-86]+ (mass error 6.3 ppm) 

which was emerged as a result of the loss of glucose and the malonyl moiety from the  

molecule. Similarly, the major peak at RT 4.9 shows an accurate mass value at m/z 

535.1106 [M]+ (mass error 4.5 ppm) and a characteristic aglycone moiety at m/z 287.0565 

[M-162-86]+ (mass error 5.22 ppm). Similar cyanidin derivatives were also reported in 

dandelion callus culture.102 These isomeric cyanidin anthocyanins with malonyl 

glucosides were also reported in purple maize and are distinguished mainly by their 

chromatographic elution retention time.103, 104 On the basis of mass spectral data and 

published literature, the peak at RT 4.4 and 4.9 were identified as isomer of cyanidin-3-

(6ˊˊ-malonyl)-glucoside and its isomer, which may be possible at β-glyosidic linkage.  
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Figure 7. Extracted ion chromatograms by LC-HR-ESI-QTOF-MS (a.) and Tandem mass spectra of anthocyanins in 

positive ion mode (b.) identified from the midvein/petiole Garnet Stem dandelions. 
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Figure 8. Proposed fragmentation scheme for anthocyanins (1-4) identified in 

midveins/petioles of Garnet Stem dandelions. 
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Further, the 4th peak eluted at RT 5.5 represents the molecular ion at m/z 549.1253 [M]+ 

(mass error -5.5). It undergoes 3-O-glycosidic cleavage to produce a prominent base peak 

at m/z 301.0717 [M-162-86]+ (mass error 3.65 ppm), which corresponds to the peonidin 

aglycone moiety.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. HPLC Chromatogram of anthocyanins quantified in Garnet red stem 

(Taraxcum officinale) from Edinburg, TX. Peak 1- Cyanidin-3-glucoside, Peak 2- 

Cyanidin-3-(6-malonyl)-glucoside A-1, Peak 3- Cyanidin-3-(6-malonyl)-glucoside 

A-2 and Peak 4- Peonidin-3-(malonyl)-glucoside. 
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On the basis of the fragmentation pattern and accurate mass, the present peak was 

identified as peonidin-3-(6ˊˊ-malonyl)-glucoside. These four anthocyanin peaks were 

detected at 520 nm (Fig. 9.) and those were identified as cyanidin-3-glucoside, cyanidin-

3-(6-malonyl)-glucoside A-1, cyanidin-3-(6-malonyl)-glucoside A-2 and peonidin-3-

(malonyl)-glucoside (Fig. 7.).  

The levels of anthocyanin varied significiantly in the different solvent 

compositions (Table 7). The level of cyanidin-3-glucoside was significantly higher 

(4.96±0.26 μg/g) in MeOH: acetic acid (99:1). Cyanidin-3-(6-malonyl)-glucoside A-1 and 

peonidin-3-(malonyl)-glucoside were found to be maximal (4.43±0.09 and 3.78±0.05 

μg/g) in  MeOH: water: citric acid (CA) (80:19:1) respectively. The major cyanidin-3-(6-

malonyl)-glucoside A-2 was found to be highest (35.78±1.95 μg/g) in MeOH: formic acid 

(FA) (99:1). Based on a 2-way ANOVA, an overall significant difference occurred 

between all MeOH, EtOH, and water extraction solvents versus each concentration of acid 

(p<0.01) in quantifying cyanidin-3-glucoside and cyanidin-3-(6-malonyl)-glucoside A-2. 

Comparing FA, hydrochloric acid (HCl), AA and CA in each extraction solvent (1-7) 

(Table 6), there was a significant difference (p<0.05) except in solvent: water: acid 

combinations 3, 4, 6, and 7 for each compound.  

 These results suggest that there was a significant difference (p<0.05) using the 

seven different extractant solvents combinations with each acid but the best extraction 

solvent for Garnet Stem was found to be MeOH: FA (99:1) or MeOH: water: FA (80:19:1) 

(Table 7). However, most of the reported studies have used MeOH: HCl to extract  

anthocyanins.101, 102, 105, 106 This may be due to the nature of the plant matrix, moisture 
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content, and polarity of the anthocyanins present in each crop. All acids used in this study 

were natural except HCl. Anthocyanins extracted with organic acids has a great potential 

to use as coloring agents in food formulations.48, 99 

The bioavailability of anthocyanins for their potential roles as antioxidants has 

been studied.107 Anthocyanins are metabolized forming multiple derivatives in the 

gastrointestinal tract, mostly being absorbed in the small intestine. Some small 

unmetabolized parent compounds from anthocyanins have been identified in circulation 

systems as well as in urine samples from human pharmacokinetics and animal studies. 

Low bioavailability of certain anthocyanins may be due to the attachmnet of di- or 

trisaccharides to the parent anthocyanin moiety, but recent studies have discovered that 

lower molecular weight phenolic and aromatic ring-fission catabolites form from 

anthocyanins and are much more bioavailable. The primary bioavailable products of 

anthocyanin upon consumption are the catabolites, which may be responsible for the 

reported bioactivity of anthocyanins.107 
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Table 7. Levels of anthocyanins quantified midveins/petioles by HPLC (μg/g)* 

Compound Extraction Solvent FA HCl AA CA 

Cyanidin-3-

glucoside 

Water: acid (99:1) 3.50.1ᵃᵇ 3.10.0ᶜ 3.20.0ᵇᶜ 3.70.1ᵃ 

MeOH: water: acid (80:19:1) 4.40.0ᵃ 3.70.2ᵇ 4.30.3ᵇ 4.70.1ᵃ 

MeOH: water: acid (50: 49:1) 4.30.1ᵃ 4.00.1ᵃ 4.10.1ᵃ 4.30.2ᵃ 

MeOH: acid (99: 1) 4.50.1ᵃᵇ 4.00.2ᵇ 4.90.2ᵃ 4.30.2ᵃᵇ 

EtOH: acid (99:1) 3.90.1ᵃ 3.30.1ᵇ 3.40.2ᵇ 3.00.0ᵇ 

EtOH: water: acid (80: 19: 1) 4.20.1ᵃ 3.70.3ᵃᵇ 3.40.1ᵇ 3.30.1ᵇ 

EtOH: water: acid (50: 49: 1) 3.90.0ᵃ 3.40.0ᵃ 3.10.1ᵃ 3.70.2ᵃ 

Cyanidin-3-

(6-malonyl)-

glucoside 

A-1 

Water: acid (99:1) 3.30.1ᵃ 3.00.0ᵃᵇ 2.80.0ᵇ 3.20.0ᵃ 

MeOH: water: acid (80:19:1) 3.90.1ᵃᵇ 3.40.2ᶜ 3.50.1ᵇᶜ 4.40.0ᵃ 

MeOH: water: acid (50: 49:1) 3.70.1ᵃ 3.20.2ᶜ 3.30.1ᵇᶜ 3.60.3ᵃᵇ 

MeOH: acid (99: 1) 4.10.1ᵃ 3.60.1ᵇ 4.10.0ᵃ 3.40.0ᵇ 

EtOH: acid (99:1) 4.00.1ᵃ 3.30.0ᵇ 3.20.2ᵇ 2.80.0ᶜ 

EtOH: water: acid (80: 19: 1) 4.00.0ᵃ 3.30.2ᵇ 3.00.1ᵇ 3.00.0ᵇ 

EtOH: water: acid (50: 49: 1) 3.70.1ᵃ 3.10.0ᵃ 3.00.0ᵃ 3.30.3ᵃ 

Cyanidin-3-

(6-malonyl)-

glucoside 

A-2 

Water: acid (99:1) 14.11.5ᵃ 7.90.3ᵈ 9.60.2ᶜ 11.60.6ᵇ 

MeOH: water: acid (80:19:1) 32.91.6ᵃ 21.41.9ᶜ 27.91.5ᵇ 33.41.8ᵃ 

MeOH: water: acid (50: 49:1) 26.51.3ᵃ 21.12.0ᵇ 23.71.6ᵃᵇ 23.62.1ᵃᵇ 

MeOH: acid (99: 1) 35.71.9ᵃ 27.21.3ᶜ 33.71.8ᵃᵇ 30.32.4ᵇᶜ 

EtOH: acid (99:1) 29.20.6ᵃ 22.70.7ᵇ 16.70.4ᶜ 11.20.6ᵈ 

EtOH: water: acid (80: 19: 1) 29.90.9ᵃ 19.11.7ᵇ 15.61.8ᵇᶜ 13.21.3ᶜ 

EtOH: water: acid (50: 49: 1) 23.20.9ᵃ 16.90.1ᵃᵇ 14.60.4ᵇ 15.70.3ᵇ 

Peonidin-3-

(malonyl)-

glucoside 

Water: acid (99:1) 3.20.1ᵃ 2.90.0ᵇ 2.90.0ᵇ 3.20.1ᵃ 

MeOH: water: acid (80:19:1) 3.50.1ᵃ 3.00.1ᵇ 3.10.1ᵇ 3.70.0ᵃ 

MeOH: water: acid (50: 49:1) 3.50.1ᵃ 2.90.0ᶜ 3.20.0ᵇ 3.40.1ᵃ 

MeOH: acid (99: 1) 3.60.0ᵃ 3.20.0ᵇ 3.30.1ᵃᵇ 3.40.1ᵃᵇ 

EtOH: acid (99:1) 3.50.1ᵃ 2.80.0ᶜ 3.10.0ᵇ 2.80.0ᶜ 

EtOH: water: acid (80: 19: 1) 3.50.0ᵃ 3.20.0ᵇ 3.00.1ᵇ 3.10.0ᵇ 

EtOH: water: acid (50: 49: 1) 3.30.0ᵃ 2.90.0ᵃ 2.80.1ᵃ 3.20.0ᵃ 

*: All results were expressed as relative to pelargonidin 

FA: formic acid, HCl: hydrochloric acid, AA: acetic acid, CA: citric acid 

All results are presented as mean  SE and repeated in triplicates.  

Different alphabets within the column indicates the significant differences between extraction of 

anthocyanins using particular acid (ANOVA, p<0.05) 
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DPPH scavenging activity and total phenolics of anthocyanin extracts 

All anthocyanin extracts from different solvent compositions were analyzed for 

DPPH free radical scavenging activity and total phenolics (Table 8).  The correlation 

between DPPH free radical scavenging activity and total phenolics in various solvent 

compositions were analyzed by ANOVA.  The FA and CA in each of its seven solvent 

combinations demonstrated a significant difference (p<0.01). Comparing FA, HCl, AA, 

and CA in each extraction solvent (1-7) (Table 6), there was a significant difference 

(p<0.05) except in solvent: water: acid combinations 1, 6, and 7 for DPPH scavenging 

activity. Overall, MeOH: water: CA (80:19:1) extract was found to have the highest DPPH 

scavenging activity (575.424.4 μg/mL). HCl and AA in each of their seven solvent ratios, 

showed no significant difference in scavenging DPPH.  

  The DPPH scavenging activity of each solvent: water: acid combination, in 

descending order was: FA, AA and CA, and HCl. These results indicated that 

solvent/water/FA combinations had the highest DPPH scavenging activity and FA was the 

best acid to preserve the anthocyanins and other radical scavenging compounds from the 

red midvein/petiole of Garnet Stems dandelions. Results of solvent and water 

combinations suggest that MeOH: water: acid (80:19:1) and MeOH: acid (99:1) are the 

best solvent and water extraction combinations to stabilize and preserve the anthocyanins 

and other phenolics present in the samples.  

DPPH free radical scavenging activity was influenced by the solvent, water, and 

acid combinations. Anthocyanins are susceptible to oxidation because they are water 

soluble compounds. MeOH: water: CA (80: 19: 1) and MeOH: acid (99: 1) with FA or 
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AA demonstrated the best ability for stabilizing anthocyanins and other phenolic 

compounds. Lastly, DPPH scavenging activity of the anthocyanin extracts may have also 

been influenced by the presence of other compounds such as vitamin C, tocopherols, 

carotenoids, etc in obtaining various DPPH scavenging activities.93, 108 

 Based on ANOVA, significant differences in phenolic content was observed 

between all 7 solvent extract combinations for FA, HCl, AA, and CA (p<0.01) (Table 8). 

Highest total phenolic content (939.810.9 μg/mL) was achieved with EtOH: water: HCl 

(50: 49: 1), indicating its ability to preserve the anthocyanins and other phenolics present 

for quantification of gallic acid equivalents (Table 8). A significant difference occurred 

for CA (p<0.0001), FA (p<0.001), AA (p<0.01), and HCl (p<0.05) in each of their seven 

solvent and water combinations. Comparing FA, HCl, AA, and CA in each extraction 

solvent (1-7) (Table 6), there was a significant difference (p<0.05) except in solvent: 

water: acid combinations 1, 4, and 7 for total phenolic content.  The total phenolics could 

vary if the best extraction solvent: water: acid combination stabilized phenolic 

compounds. Total phenolic contents were achieved highest in FA, followed by HCl and 

CA and AA, and observing the seven solvent: water: acid combinations total phenolic 

content sums and ANOVA, EtOH: water: acid (80: 19: 1 or 50: 49: 1) was the best to 

extract Garnet Stems red midvein/petioles for phenolic compound contents.  

The correlation between DPPH scavenging activity and total phenolics with all 

anthocyanin extracts were found to be strong positive correlation between DPPH 

scavenging activity and total phenolics for all MeOH, EtOH, and water compositions. We 

found excellent correlations coefficients (R2) for FA, HCl, AA, and CA were 0.9213, 
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0.8729, 0.8293, and 0.943 (Fig. 10.). These positive corrections could suggest that DPPH 

scavenging activity is directly influenced by the phenolic compounds present in each 

extract. 

 

 

 

Table 8. DPPH free scavenging activity (µg/g of ascorbic acid equivalents) and total 

phenolics (µg/g of gallic acid equivalents) of extracted Garnet Stem anthocyanins 

Analysis Extraction Solvent FA HCl AA CA 

DPPH 

Scavenging 

Activity  

Water: acid (99:1) 323.456.3ᵃ 289.49.7ᵃ 379.120.2ᵃ 370.017.2ᵃ 

MeOH: water: acid (80:19:1) 537.132.2ᵃ 430.530.7ᵇ 548.726.9ᵃ 575.424.4ᵃ 

MeOH: water: acid (50: 49:1) 502.827.7ᵃ 415.924.7ᵇ 533.922.9ᵃ 512.215.5ᵃ 

MeOH: acid (99: 1) 551.012.7ᵃ 432.632.5ᵇ 550.136.4ᵃ 535.724.0ᵃ 

EtOH: acid (99:1) 513.112.7ᵃ 388.232.4ᶜ 499.919.7ᵃᵇ 458.213.0ᵇ 

EtOH: water: acid (80: 19: 1) 544.417.7ᵃ 411.741.5ᵃ 518.753.8ᵃ 477.714.2ᵃ 

EtOH: water: acid (50: 49: 1) 486.530.4ᵃ 451.383.0ᵃ 464.720.4ᵃ 491.332.0ᵃ 

Total 

Phenolics 

Water: acid (99:1) 554.45.3ᵃ 385.34.8ᵇ 488.410.1ᵃ 419.726.1ᵃᵇ 

MeOH: water: acid (80:19:1) 836.639.2ᵃ 668.548.1ᵇ 688.40.7ᵇ 802.013.7ᵃ 

MeOH: water: acid (50: 49:1) 745.515.1ᵃ 647.211.0ᵇ 636.524.8ᵇ 664.226.3ᵇ 

MeOH: acid (99: 1) 837.232.2ᵃ 709.322.9ᵇ 717.422.4ᵇ 745.249.4ᵃᵇ 

EtOH: acid (99:1) 725.722.0ᵃ 656.723.6ᵃᵇ 541.442.9ᶜ 624.13.08ᵇ 

EtOH: water: acid (80: 19: 1) 850.319.4ᵃ 711.519.8ᵇ 626.320.0ᶜ 641.626.3ᵇᶜ 

EtOH: water: acid (50: 49: 1) 780.434.7ᵃ 939.810.9ᵃ 576.57.0ᵃ 692.09.6ᵃ 

All results are presented as mean  SE and repeated in triplicates 

Different alphabets comparing each 1% acid in each extraction solvent indicate a 

significant difference (ANOVA, p<0.05) 
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Figure 10. Linear regression(R²) and Pearson correlation coefficients (R) between 

DPPH scavenging activities and total phenolics in solvent, water, and acid 

extraction solvent combinations with (A) FA: formic acid, (B) HCl: hydrochloric 

acid, (C) AA: acetic acid and (D): citric acid. 
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Ascorbic acid, dehydroascorbic acid and total ascorbic acid 

Garnet Stem dandelions, harvested from two different locations, Texas (Fig. 6a,) 

and New Jersey (Fig. 6b,) were evaluated for vitamin C content in the whole leaf, leaf 

blades, and midvein/petiole (Fig. 6c.-6e). Garnet Stem samples from Texas contained no 

detectable amounts of vitamin C (Fig. 11.); however New Jersey leaf blade sample had 

highest total ascorbic acid (301.9±17.7 µg/g) and dehydroascorbic acid (247.8±23.8 µg/g) 

as compare to whole leaf and midrib (Table 9). Dehydroascorbic acid contributed the most 

to total ascorbic acid content in the whole leaf, leaf blade and midvein/petiole from New 

Jersey. The finding of no detectable amounts of vitamin C in Garnet Stem samples from 

Texas could be due to environmental stress, temperature, soil, pre- and post-harvest 

practices, storage conditions, etc.18, 36, 109-112 To confirm no detectable amounts of ascorbic 

acid in Garnet Stem from Texas, extracted ion chromatograms of standard ascorbic acid, 

Garnet Stem from New Jersey, and Garnet Stem form Texas were completed by UV 

absorption spectra and electrospray positive ionization on UPLC-HR-QTOFMS (Fig. 

11.).  
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Studies have demonstrated that high nitrogen present in soils could decrease 

vitamin C, light intensity could alter the amount of vitamin C present, conditions of high 

water loss could decrease vitamin C, and high temperatures inflicted on crops after harvest 

could degrade vitamin C.109, 113 Another study reported that with increasing concentrations 

of copper in the soil, an increase in vitamin C occurred.36 Due to the vast geographical 

difference between the harvest areas, location could be a major factor for the non-

detectable amounts of vitamin C in the Garnet Stem samples from Texas. We conclude 

that more experimental and analytical investigations will need to be conducted to examine 

vitamin C in Garnet Stem dandelions from Texas. 
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Figure 11. Extracted ion chromatograms of standard ascorbic acid and Garnet 

Stem from New Jersey and Texas, UV absorption spectra and electrospray positive 

ionization of ascorbic acid. 
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Carotenoids and chlorophylls 

Three carotenoids (lutein, β-carotene, and violaxanthin) and chlorophyll a and 

chlorophyll b were identified in the Garnet Stem samples harvested from Texas and New 

Jersey (Table 9). Garnet Stem leaf blades from Texas and New Jersey, contained 

significantly different amounts of carotenoids, chlorophyll a and chlorophyll b (except for 

β-carotene) compared with the whole leaf and midvein/petiole tissue (p<0.05) (Table 9). 

Both chlorophyll a and chlorophyll b were doubled in amount in the leaf blade versus the 

whole leaf. Texas samples contained 270.7±24.4 µg/g chlorophyll a and 285.9±26.8 µg/g 

chlorophyll b and New Jersey samples contained 67.5±14.0 µg/g chlorophyll a and 

65.1±13.2 µg/g chlorophyll b in the whole leaf. In the leaf blade, Texas samples contained 

404.7±32.7 µg/g chlorophyll a and 420.9±32.6 µg/g chlorophyll b and New Jersey 

samples contained 128.0±2.0 µg/g chlorophyll a and 125.2±15.3 µg/g chlorophyll b.  

Location and climate of Garnet Stem samples from Texas resulted in significant 

differences in chlorophyll (p<0.05). The UV-A and UV-B from sunlight could increase 

carotenoid and chlorophyll levels, depending on exposure.114, 115 Compared with other 

leafy greens such as kale, the Garnet Stem samples had lower amounts of chlorophyll a.116 

After two consecutive full years of harvest, kale varieties contained an average of 155.5 

and 132.2 mg/100g of chlorophyll a and 45.1 and 32.9 mg/100g of chlorophyll b.116 These 

values are higher compared to Garnet Stem from Texas except for chlorophyll b 

420.9±32.6 µg/g  (Table 3).116  

Both chlorophyll a and chlorophyll b has been demonstrated for the inhibition of 

colon cancer cells and liver detoxification.117, 118 A previous study showed that dandelion 
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leaves harvested from Slovenia had higher concentrations of β-carotene and chlorophyll a 

and b, but lower amounts of lutein and violaxanthin 53 compared to the Garnet Stem from 

Texas and New Jersey (Table 3). The lutein from Garnet Stem could also aid with eye 

health due to higher amount, which can decrease the risk of age-related macular 

degeneration.119 

 

 
 

   Table 9. Phytochemicals of Garnet Stem samples grown in different locations 

Analysis Sample* Phytochemical Texas New Jersey 

Total 

Vitamin C 

(μg/mL) 

 

Whole Leaf 

AA ND 49.612.7ᵃ 

DHA ND 169.916.2ᵃ 

TA ND 219.615.6ᵇ 

Leaf Blade 

AA ND 54.13.7ᵃ 

DHA ND 247.823.8ᵃ 

TA ND 301.917.7ᵃ 

Midvein/ 

Petiole 

AA ND 26.92.4ᵃ 

DHA ND 35.15.7ᵇ 

TA ND 62.13.8ᶜ 

Carotenoids 

and 

Chlorophylls 

(μg/g) 

 

Whole leaf 

 

Lutein 36.72.1ᵇ 18.16.1ᵇ 

-Carotene 3.80.2ᵃ 13.12.7ᵃ 

Violaxanthin 9.00.7ᵇ 1.81.3ᵃᵇ 

Chlorophyll a 270.718.3ᵇ 67.514.0ᵇ 

Chlorophyll b 285.917.9ᵇ 65.113.2ᵇ 

Leaf Blade 

Lutein 57.44.6ᵃ 46.07.3ᵃ 

-Carotene 2.40.2ᵃᵇ 28.74.9ᵃ 

Violaxanthin 15.30.6ᵃ 3.51.7ᵃ 

Chlorophyll a 404.741.1ᵃ 128.02.0ᵃ 

Chlorophyll b 420.941.0ᵃ 125.25.3ᵃ 

 

Midvein/ 

Petiole 

Lutein 3.00.1ᶜ 1.50.6ᶜ 

-Carotene 1.40.1ᵇ 0.10.3ᶜ 

Violaxanthin 0.10.08ᶜ 0.00.0ᵇ 

Chlorophyll a 28.71.1ᶜ 19.02.6ᶜ 

Chlorophyll b 37.61.7ᶜ 20.12.3ᶜ 

ND: not detectable, AA: ascorbic acid, DHA: dehydroascorbic acid, and 

TA: total ascorbic acid 

Results are presented as mean  SE from triplicates samples  

Different alphabets within the column indicates the significant differences between 

different plant materials (ANOVA, p<0.05) 
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Determination of bile acid binding capacity and dietary fiber  

Six bile acid salts were used to determine the bile acid binding capacity of Garnet 

Stem whole leaf samples from Texas and New Jersey. These samples were able to bind to 

all six bile acid salts with the highest capacity for binding CDCA and DCA (Fig. 12.). 

According to a previous study, the bile salts CDCA and DCA were toxic if produced at 

high concentrations within our bodies.85 Both CDCA and DCA have low critical 

micellization concentrations, meaning the micelle surface interface saturation is lower 

than that of other bile acid salts; lipid saturation of CDCA and DCA is lower thus giving 

them a higher chance of becoming cytotoxic if oversaturated.85 The binding capapcities 

for all six bile acid salts were not significantly different between samples from Texas and 

New Jersey. Binding of bile acid salts may result from the total dietary fiber present in 

Garnet Stem samples. Texas had the highest total dietary fiber (44.1%), soluble dietary 

fiber (10.4%) and insoluble dietary fiber (33.7%) versus Garnet Stem from New Jersey 

(35.4% total, 8.7% soluble and 26.7% insoluble). Soluble and insoluble dietary fiber have 

many effects and binding of bile acid salts likely is one of the mechanisms.88 According 

to the chemical composition and mechanism of action of soluble fiber, it is responsible for 

binding bile acid salts.87, 88 Soluble dietary fiber, also known as viscous dietary fiber, can 

slow down digestion by slowing diffusion of digestion products.87 The soluble fiber in 

dandelion is mostly (12–15%) inulin β(2→1) fructan gel-like substances, which can 

dissolve and thicken in water. These compounds can reduce absorption of glucose and 

lower insulin responses by stabilizing and controlling the absorption of sugar and affect 

the synthesis of lipids.87-89 Soluble fiber can enhance digestion by binding to bile acid salts 
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and eliminating them from the body, thereby reducing serum cholesterol.87-89 Insoluble 

dietary fiber absorbs water and any substances in the colon, which then pass through the 

digestive system.87 Further, dandelion dietary fiber binding capacity and removal of toxic 

waste from the body is not fully uunderstood. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Bile acids binding capacity of Garnet Stem whole leaf samples from 

Texas and New Jersey. Different letters indicate a significant difference of binding 

for each bile acid (ANOVA, p<0.05). 
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Chapter Summary 

 

In conclusion, this study focused on the extraction efficiency, quantification, and 

identification of anthocyanins in the red midvein and petiole tissue of Garnet Stem 

dandelions, using 28 different solvent combinations. Four anthocyanins, cyanidin-3-

glucoside, cyanidin-3-(6-malonyl)-glucoside (A-1), cyanidin-3-(6-malonyl)-glucoside 

(A-2) and peonidin-3-(malonyl)-glucoside, were extracted at maximum level was found 

in MeOH: FA (99:1). DPPH scavenging activity was highest with MeOH: water: CA (80: 

19: 1) and total phenolics were highest with EtOH: water: HCl (50: 49: 1). The levels of 

anthocyanins and other phytochemicals differed depending on the harvest location and the 

part of the plant. Phytochemical contents differed depending on the harvest location and 

sample part of Garnet Stem. These findings also indicate multiple routes for continuation 

of this research to explore the use the anthocyanin extracts as c colourlants for food 

formulations.   
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CHAPTER IV  

CONCLUSION 

Dandelion is currently being underutilized as a leafy green vegetable for its 

health promoting compounds. Consumers perceptions of dandelion as a weed is 

neglecting dandelions potential as another source of antioxidant activity, diuretic aid, 

hepatoprotective aid, dietary fiber, heart health benefits, and various sources of vitamins 

and minerals. Dandelion roots and bitter leafy greens leaves has been traditionally used 

by Native Americans, Europeans in Mediterranean countries and Asian countries to help 

treat disease and illness associated with the liver, kidneys, heart, stomach and etc by 

consumption. Various ways of consuming dandelion are by boiling the roots and leaves 

into herbal teas and tonics and eating the dandelion leaves raw for many health benefits. 

 Catalonga and Garnet Stem dandelion varieties from Texas and New Jersey were 

separated in whole leaf, leaf blade and petiole and evaluated for phytochemicals, 

antioxidant activity by different thermal techniques, bile acid binding capacity and 

dietary fiber. Catalonga from Texas contained no detectable amounts of vitamin C 

during the early harvest while Catalonga from New Jersey did during the early and late 

harvest, Garnet Stem’s red midvein/petiole tissue contains four anthocyanins which 

express DPPH scavenging activity and total phenolics that were first to be reported, the 

anthocyanin extracts that best extracted with MeOH: FA (99: 1) are a bright red/pink 

color which have the potential to be used as a natural red colorant in food products, 

boiling or microwaving dandelion greens, especially Garnet Stem variety, for 15 min 

and 4 min is sufficient to obtain highest levels of antioxidants in the form of an herbal 
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tea, both Catalonga and Garnet Stem varieties were able to bind to six different bile acid 

salts with highest level of binding to CDCA and DCA, which can be toxic to humans if 

accumulated at high concentrations within the body, and Catalonga from Texas and 

Garnet Stem from New Jersey had higher total dietary fiber.  

 These results amongst the rest, confirm that based on location and harvesting 

time, there are differences in the levels of health promoting compounds of dandelion 

Catalonga and Garnet Stem varieties. Also, between whole leaf, leaf blade and 

midvein/petiole, the fully matured leaf blade overall had the highest amounts of 

phytochemicals, DPPH radical scavenging activity, and total phenolics. Further studies 

can use these results as a foundation to research dandelion leaf blades for liver, kidney, 

cardiovascular, gastric, intestinal, and other related diseases.  

Dandelions dietary fiber role in reducing cholesterol and aiding cardiovascular 

health could also be further examined.  Bioavailability of these quantified 

phytochemicals, especially Garnet Stem’s red midrib/petiole anthocyanin, could be 

further analyzed to prevent oxidative stress related illnesses. Garnet Stem’s red 

midrib/petiole extract has the potential be used in food products as a natural red colorant 

and should be tested for its stability. Lastly, dandelion hot herbal leafy green teas could 

be compared to cold-pressed dandelion green juice to determine if heat or non-heated 

dandelion greens have different levels of antioxidants and bitter sesquiterpene lactones 

and terpenoids. 

    The potential for dandelion leafy green research can continue to be explored 

through many routes. Dandelions have the potential to become more available in 
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produce markets of grocery stores if its research is continued to inform consumers of its 

health benefitting compounds. Dandelion leafy greens have the potential to prevent the 

onset of disease and illness, help aid growers to increase yield of their dandelion crop, 

and bring awareness and educated consumers of the multiple ways dandelion can be 

consumed as a food product such as a fresh salad, savory side dish and/or herbal 

detoxifying tea. 
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