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ABSTRACT 

 

 

Being the largest tissue that accounts for 40-50% of overall metabolism in non-obese 

individuals, skeletal muscle is a modifiable target for reducing the risk of chronic 

diseases. Resistance exercise induces cell signaling pathways that promote muscle 

protein synthesis via muscle contraction, inflammation, and hormones. Lipids facilitate 

these mechanisms through the provision of energy and building blocks for cell 

regeneration, regulation of membrane permeability for hormones, and formation of 

lipid rafts for signaling molecules. Exercise increases free fatty acids and mobilizes 

several kinases, the factors that activate the skeletal muscle lipid regulator PPARδ. The 

purpose of this study was to test the hypotheses that dietary lipids would improve 

skeletal muscle adaptations to resistance exercise training and that resistance exercise 

would enhance lipid metabolism as demonstrated by the upregulation of PPARδ.  

 

The first study examined the changes in skeletal muscle mass, strength, peak power, 

and quality in response to a 12-week whole-body progressive resistance exercise 

training (8 sets/12 reps, 70% 1RM) with different levels of dietary cholesterol 

supplementation. Secondary analyses included determination of the association 

between dietary fatty acids and skeletal muscle adaptation. No effects of dietary 
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cholesterol on the training-induced muscle adaptation was observed. Exploratory 

analyses of dietary fatty acids suggested potential effects on adaptations. The second 

study explored the effects of dietary cholesterol and fatty acids on the muscle protein 

synthesis and soreness induced by a short-term high-intensity unilateral leg resistance 

exercise (5 set/reps until failure, 85% 1RM). Muscle protein synthesis rate was not 

significantly different between the exercised and non-exercised legs during the 22 

hours after the exercise. In the high cholesterol intake group, muscle PPARδ protein 

content was 38.9±24.1% higher in the exercised than the non-exercised legs and 

soreness levels were 91.6±3.6% lower than the low cholesterol intake group. The third 

study investigated the effects of a 10-week whole-body progressive resistance exercise 

training (8 sets/12 reps, 75% 1RM) on muscle PPARδ protein content. Before the 

training, PPARδ protein content acutely increased by 49.1±0.29% after one bout of 

exercise and the increase was inversely proportional to body fat percentage. Resting 

muscle PPARδ protein content increased by 114.7±0.32% after the training.  

 

The findings in these studies provided insights into the potential effects of lipids on 

skeletal muscle adaptation and the mechanism of lipid regulation induced by resistance 

exercise.  
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CHAPTER I 

INTRODUCTION AND REVIEW OF LITERATURE 
 

 

Physical inactivity and poor nutrition are primary contributors to preventable death in 

the United States (97). Central to this link among mortality, nutrition, and activity is the 

role of skeletal muscle function. Skeletal muscle accounts for 40-50% of total body 

mass in non-obese individuals. It is responsible for more than 50% of overall resting 

metabolism and increases metabolism by 10-fold during exercise. Skeletal muscle plays 

a major role in the regulation of electrolytes, acidity, and glucose and lipid metabolism, 

and therefore, the impact of calorie, fat, glucose, and cholesterol intake on disease is 

associated with skeletal muscle activity (121).  

 

The metabolism in skeletal muscle is highly regulated by hormones and activity levels, 

making it one of the potential therapeutic target for metabolic diseases (37). For 

instance, skeletal muscle takes up and utilizes up to 75% of glucose when stimulated by 

insulin, making it the primary site of insulin resistance which contributes to metabolic 

diseases such as type 2 diabetes. Muscle contraction also affects skeletal muscle 

metabolism independent of insulin and other hormones. For example, muscle 

contraction increases glucose uptake without the influence of insulin (87). Therefore, 
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skeletal muscle health and activity have been identified as modifiable targets for 

reducing the risk of chronic diseases. 

 

Adaptation of skeletal muscle is strongly affected by the workload. High workload, such 

as resistance exercise, leads to the muscle hypertrophy and strength gain while disuse 

of muscle may result in the muscle atrophy (144). These adaptations are localized to 

the working muscle, indicating the regulation by the local signals within the muscle 

(37). Nutrition and hormones also contribute to the adaptation of skeletal muscle (12). 

For example, protein and carbohydrate whose uptake are regulated by insulin and 

growth factors have been identified to be essential for muscle hypertrophy following 

resistance exercise training (12, 59). While the effects of dietary protein and 

carbohydrate on the resistance exercise-induced muscle adaptation have been well 

studied, the effects of dietary lipids on this adaptation are unclear. Most studies 

investigating lipid metabolism and resistance exercise training focus on the changes of 

endogenous lipid profile such as triglyceride (TG), total cholesterol (TC), low-density 

lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL) but not the 

effects of dietary lipids on muscle adaptation. Furthermore, the effects of dietary 

nutrients have not been monitored or controlled in many exercise training studies. 

 

Exercise training increases the oxidative capacity of muscle by upregulating the 

expression of proteins involved in the uptake, transport, and oxidation of fatty acids 
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(FAs) (11, 14, 135). Being the largest tissue and source of energy expenditure, the 

adaptation of skeletal muscle to exercise may affect general health on the whole-body 

level thorough energy regulation. Exercise induces expression of metabolic regulators 

such as PPARδ, which has been identified as a major regulator of lipid metabolism in 

skeletal muscle and the potential therapeutic target for metabolic syndrome (8, 88, 

119, 141). Studies have shown that endurance exercise increases PPARδ expression and 

that the exercise-induced increase of PPARδ may be beneficial as a clinical treatment 

for the type 2 diabetes (43, 156). Furthermore, a significantly higher PPARδ mRNA 

expression has been found in the high fat-fed exercised rats than the exercised-only 

and high fat-fed-only rats, implying a combined effects of fat intake and exercise on 

PPARδ expression (76). However, not only does the effects of resistance exercise on 

PPARδ protein content in humans remain to be elucidated but the studies regarding 

PPARδ and exercise have been focusing on PPARδ mRNA content, while the mRNA 

levels do not necessarily predict its protein content. The protein abundance in humans 

may be affected by transcription, mRNA decay, translation, and protein degradation 

(151). 

 

The purpose of this dissertation was to investigate the relationship between dietary 

lipids (FAs and cholesterol) and the skeletal muscle adaptation to resistance exercise 

training as well as the effects of resistance exercise training on PPARδ, the lipid 

metabolism regulator in skeletal muscle (Figure 1). 
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It was hypothesized that dietary lipids would be associated with enhanced skeletal 

muscle mass, strength, and peak power following resistance exercise training and that 

resistance exercise training would improve lipid profile and increases the PPARδ 

protein content as a biomarker of enhanced lipid metabolism in skeletal muscle.  

 

 

 

Figure 1. The Proposed Relationship among Dietary Lipids, Resistance Exercise-
induced Skeletal Muscle Adaptation, and the Regulation of Endogenous Lipids. 
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Three studies were conducted to test this hypothesis:  

• Study 1 (Chapter II): A randomized, placebo controlled trial was conducted to test 

the effects of dietary cholesterol on the changes in skeletal muscle mass, strength, and 

peak power with a 12-week whole-body progressive resistance exercise training 

program. Additionally, FA intake variability was examined as a potential contributor to 

and these adaptations. It was hypothesized that dietary cholesterol enhanced the 

training-induced skeletal muscle adaptation, and dietary FAs were positively associated 

with the adaptation;  

• Study 2 (Chapter III): Effects of high and low cholesterol intake on muscle protein 

synthesis, soreness levels, and PPARδ protein content following a high-intensity short-

term resistance exercise were examined. Additionally, dietary FA intake variability was 

examined as a potential contributor to these adaptations. It was hypothesized that the 

exercise-induced muscle protein synthesis would increase and soreness levels would 

decrease with high cholesterol intake, and that the exercise would increase muscle 

PPARδ protein content;  

• Study 3 (Chapter IV): The effects of a 10-week whole-body progressive resistance 

exercise training on skeletal muscle PPARδ protein content and serum lipid profile were 

examined. Additionally, the association between the changes in muscle PPARδ protein 

content and lipid profile following the training were analyzed. It was hypothesized that 

resistance exercise would acutely and chronically increase muscle PPARδ protein 

content, and that the increase would be associated with improved serum lipid profile.  
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Resistance Exercise and Fatty Acid Oxidation 

 

Exercise is defined as “a subset of physical activity that is planned, structured, and 

repetitive, and has as a final or an intermediate objective the improvement or 

maintenance of physical fitness” (22). Endurance exercise is defined as a type of 

exercises performed to improve endurance. Performing endurance exercise training 

increases mitochondrial density, FA oxidation, and decreases the use of muscle 

glycogen and blood glucose at absolute intensities (63). On the other hand, resistance 

exercise utilizes resistance to induce muscle contraction and enhances strength, 

anaerobic power, and skeletal muscle mass. Unlike endurance exercise, resistance 

exercise is generally considered less related to lipid metabolism. Furthermore, some 

early studies suggested that muscle hypertrophy induced by resistance exercise 

reduced the oxidative capacity of skeletal muscle due to the dilution of mitochondria. 

Alway et al. (3) revealed that resistance exercise-induced muscle hypertrophy did not 

increase mitochondria proportionally with contractile protein, while cytoplasm, 

sarcoplasmic reticulum, and lipid components did. MacDougall et al. (91) also reported 

the reduction in the mitochondrial volume density following a 6-month intensive 

resistance exercise training program and concluded that resistance exercise training 

attenuated endurance performance. Tesch et al. (145) compared the activities of 

mitochondrial enzymes in resistance exercise-trained (more than four years of training) 

to sedntary subjects and found decreased activities in citrate synthase (CS) and 3-OH-
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acyl-CoA dehydrogenase as well as lower density of capillary and mitochondria in the 

trained subjects and thus concluded that resistance training decreased aerobic 

capacity. In the study of Chilibeck et al. (27), 12 weeks of resistance training reduced 

the activity of succinate dehydrogenase (SDH). The decrease in SDH activity was 

associated with the reduced mitochondrial volume density caused by muscle 

hypertrophy, and therefore the authors suggested that the muscle oxidative capacity 

was reduced by the resistance exercise training.  

 

These assumptions of the decreased oxidative capacity following resistance exercise 

training were mainly based on the reduction of mitochondrial volume density following 

resistance exercise training. Although Tesch and Chilibeck investigated some oxidative 

enzymes, such as CS, 3-OH-acyl-CoA dehydrogenase, and SDH, the results were 

inconsistent and other important oxidative enzymes remained to be examined (142).  

 

Tang et al. (142) argued that it is problematic in the previous studies to assume the 

cause of lower oxidative potential to be merely training-induced hypertrophy, but not 

other independent factors. They also found inconsistent results of mitochondrial 

enzyme activities with different protocols of resistance exercise training. In their study, 

mitochondrial enzyme activities were examined in 12 untrained men before and after 

performing a 12-week, high-intensity, whole-body resistance exercise training. Their 

results showed increased activities of CS, β-hydroxyacyl-CoA dehydrogenase (β-HAD), 
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and Hexokinase (HK). There was no change in the activity of 6-phosphofructokinase (6-

PFK), the rate-limiting enzyme in glycolysis, implying a limited effect of resistance 

exercise training on glycolysis. With the increases in CS and β-HAD activities, the 

authors concluded that the resistance exercise training enhanced muscle oxidative 

potential. Furthermore, the increase in HK and the unchanged 6-PFK activities may 

favor glycogenesis. Whereas resistance exercise causes glycogen depletion, resistance 

exercise training increases the ability of glycogen synthesis in the skeletal muscle (143).  

 

Resistance exercise has also been shown to acutely utilize fat as an energy source. Goto 

et al. (50) found increases in glycerol in the blood stream after a bout of resistance 

exercise, suggesting hydrolysis of triglyceride (TG) during the exercise. They also 

observed the enhanced FA oxidation in the endurance exercise 20 minutes after 

resistance exercise. In a review article by Ozaki et al. (109), VO2max was shown to 

increase following resistance exercise training in young and old individuals.  

 

Besides exercise, nutrition and its metabolism are major factors that affect skeletal 

muscle biology and whole-body metabolism. Dietary lipids provide essential energy, 

not only for daily physical activities but also for energy expenditure during exercise 

(122). When combining with exercise, saturated FAs improve cardiac health by 

increasing brachial artery dilation (111). Monounsaturated (MUFA) and 

polyunsaturated fatty acids (PUFA) help maintain blood cholesterol and lipid levels, 
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lower blood pressure, and therefore reduce cardiovascular risk (5, 96). They may also 

decrease the risk of type 2 diabetes by enhancing insulin sensitivity (85, 117, 146). 

Cholesterol may have several important roles in muscle hypertrophy induced by 

exercise through provision of building blocks for cell repair (cell membrane), facilitating 

inflammation to repair exercised muscle, forming lipid rafts for cell signaling, and being 

the precursor to endogenous steroids (121). 

 

 

Resistance Exercise and Skeletal Muscle 

 

Resistance exercise is a type of physical activity specializing in the use of resistance to 

induce muscle contraction. It involves the sequence cascade: 1. activation of muscle 

fibers, 2. cell signaling stimulated by muscle contraction, hormones, and 

immune/inflammatory responses, 3. muscle protein synthesis, and 4. hypertrophy 

(134).  

 

During resistance exercise, skeletal muscle fibers are activated by α motor neurons to 

create force. The regulation of the force produced is determined by the frequency of 

neural stimulation and the number of motor units recruited. Higher frequency of neural 

stimulation produces larger force. The recruitment of muscle fiber is determined by the 

need of force to perform a movement. These determination factors include exercise 
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load, the rate of force development, and muscle fatigue. According to the size principle, 

the smaller motor units (mainly Type I) are recruited first, followed by the larger units 

(mainly Type II) until the need of force is fulfilled (19, 61). While performing resistance 

exercise, a large force is produced, and therefore high-threshold motor units (Type II) 

are recruited. When performing an explosive exercise, the large force is induced by the 

high acceleration (force = mass x acceleration), and therefore the motor units with 

higher threshold are recruited. The recruitment of motor units may also be affected by 

fatigue and failure (116). For instance, when performing a prolonged exercise, higher-

threshold motor units may be recruited to compensate the force needed while the 

lower-threshold units start to fatigue. 

 

Resistance exercise activates several cell signaling pathways that induce muscle protein 

synthesis via muscle contraction, hormones, and inflammatory responses (Figure 2). 
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Figure 2. Resistance Exercise-induced Cell Signaling. IGF-1: Insulin-like growth factor 1; GH: Growth 
hormone; PI3K: Phosphoinositide 3-kinase; MAPK: Mitogen-activated protein kinase; PA: Phosphatidic acid; 
AMPK: 5' adenosine monophosphate-activated protein kinase; PKB: Protein kinase B (Akt); TSC2: Tuberous 
Sclerosis Complex 2; mTOR: mammalian target of rapamycin; 4EBP1: Eukaryotic initiation factor 4E binding 
protein 1; eIEF4E: Eukaryotic initiation factor 4E; p70S6K: Ribosomal protein S6 kinase beta-1 (S6K1); GSK-3: 
Glycogen synthase kinase-3; eIF2B: Eukaryotic initiation factor 2B; FOXO: Fork-head box O transcription 
factor. 
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Cell Signaling Induced by Muscle Contraction 

Muscle contraction induces mechanical deformation of muscle fiber, which evokes 

signaling pathways independent of hormones and growth factors, including protein 

kinase B (PKB/Akt)-mammalian target of rapamycin (mTOR), phosphatidic acid (PA)-

mTOR, adenosine monophosphate-activated protein kinase (AMPK), and mitogen-

activated protein (MAPK) pathways (Figure 2) (6, 58, 67, 134, 149). Muscle contraction 

may also activate the mTOR-independent phosphatidylinositol-3-kinases (PI3K)-PKB 

cascade through PA (108).  

 

PKBα and PKBβ are the two main PKB/AKt isoforms in skeletal muscle, while PKBγ is 

mainly expressed in brain, lung, and kidney (161). While PKBα is essential in the early 

stage of myoblast differentiation, including the embryonic, myogenic developments, 

and postnatal survival, PKBβ plays a critical role in the glucose homeostasis and insulin 

sensitivity by inducing the translocation of glucose transporter (GLUT) for glucose 

uptake. It may be activated by either insulin and muscle contraction alone.  

 
Stimulation and overexpression of PKB result in muscle hypertrophy via mTOR and GSK-

3β pathways (29, 134). PKB activates mTOR by directly phosphorylating it or repressing 

its inhibitors such as AMPK and tuberous sclerosis complex 2 (TSC2) (55). mTOR 

enhances translational efficiency by phosphorylating ribosomal protein S6 kinase 

(p70S6K) and eukaryotic initiation factor 4E binding protein 1 (4EBP1). When p70S6K is 
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phosphorylated, it activates the S6 subunit on the 40S ribosomal subunits, which 

regulates translation. 4EBP1 binds to the eukaryotic initiation factor 4E (eIF4E) and 

suppresses its functionality on recruiting 40S ribosomal subunits and therefore inhibits 

the translation. When 4EBP1 is phosphorylated by mTOR, it releases eIF4E and 

facilitates the translation.  

 

PKB also phosphorylates glycogen synthase kinase-3β (GSK-3β) and the fork-head box O 

transcription factor (FOXO) (9). GSK-3β attenuates translation by suppressing eIF2B, 

which regulates the translation through 40S ribosomal subunits. The phosphorylation 

of GSK-3β by PKB reduces its inhibitive effect on eIF2B and therefore enhances the 

translation. FOXO induces protein degradation by enhancing the expression of 

proteolytic ubiquitin ligases. Phosphorylation of FOXO by PKB attenuates its effect on 

protein degradation.  

 

AMPK is the master metabolic switch in cells. When energy status is low (high AMP and 

low glycogen concentrations), AMPK is activated to increase energy production and 

reduce energy consumption. whereas AMPK inhibits mTOR activity to lower the energy 

consumption for muscle protein synthesis, PKB may suppress AMPK (13, 55). 

 

MAPK are the protein kinases that are activated by stress stimuli in skeletal muscle 

(161). The parallel MAPK signaling pathways include extracellular signal-regulated 
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kinase 1/2 (ERK 1/2), extracellular signal-regulated kinase 5 (ERK5), and the stress-

activated protein kinase cascades including p38 MAPK and c-Jun NH2-ternminal kinase 

(158). Besides growth factors and hormones, mechanical stress and intracellular 

calcium induced by muscle contraction stimulate MAPK signal pathways, resulting in 

enhanced transcription and translation.  

 

Cell Signaling Induced by Hormones 

Resistance exercise induces several hormonal responses depending on the protocol. 

Two of the important muscle hypertrophy promoting hormones are growth hormone 

(GH) and insulin-like growth factor-1 (IGF-1) (134).  

 

Growth hormone (GH) is a family of more than 100 hormones, including 22 kDa GH 

monomers, 20 kDa mRNA spice variants, disulfide-linked homodimers and 

heterodimers, glycosylate GH, high molecular weight oligomers, and hormone 

fragments from proteolysis (107, 134). Resistance exercise increases circulating GH 

acutely and chronically (68, 80, 107). When the circulating GH binds to its receptor on 

the membrane, the janus kinase 2 (JAK2) is activated. JAK2 activates 

phosphatidylinositol-3 Kinase (PI3K), which activates the PKB signaling pathways and 

increase muscle protein synthesis by enhancing transcriptional efficiency (134).  
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Insulin-like growth factor 1 (IGF-1) is a polypeptide protein hormone that binds to both 

the IGF-1 receptor (IGF1R) and the insulin receptor on the cell surface in many tissues 

including skeletal muscle. It stimulates cell growth and inhibits programmed cell death. 

Resistance exercise increases both circulating and muscular IGF-1, putatively via the 

increase of GH (134). IGF-1 increases muscle protein synthesis by activating the PI3K-

PKB pathways and stimulating the proliferation and differentiation of satellite cells (92, 

124). As described previously, PI3K stimulates PKB and activates the cell signaling 

cascades that induce muscle protein synthesis. PKB also facilitates satellite cell 

proliferation by attenuating the cell-cycle inhibitor Cyclin-dependent kinase inhibitor 1B 

(CDKN1B) (92). Furthermore, IGF-1 promotes muscle differentiation by enhancing the 

activity and expression of myogenic regulatory factors (100).  

 

Besides GH and IGF-1, other hormones may also play roles in the muscle growth in 

response to resistance exercise. Testosterone is one of the most discussed hormones 

that promotes muscle hypertrophy. Testosterone is an anabolic steroid hormone that 

induces muscle protein synthesis by binding to androgen receptors and enhancing gene 

expression. The increase in satellite cells by testosterone is independent of 

testosterone quantity (134).  
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Cell Signaling Induced by Inflammatory Responses 

Resistance exercise induces muscle damage by overstretching muscle fibers. The 

muscle damage causes the inflammatory response resulting in the recruitment of 

macrophages and neutrophils (134). They break down damaged muscle tissue and 

produce cytokines including interleukin-6 (IL-6) and transforming growth factor-β 

(TGFβ), which play important roles in the exercise-induced muscle hypertrophy (57, 

77). IL-6 induces satellite cell proliferation by activating the MAPK and PI3K cell 

signaling cascades via the JAK signaling pathway (60, 127). TGFβ enhances muscle 

differentiation and regulates local collagen synthesis to build up skeletal muscle 

architecture (57).  

The factors involved in the signaling pathways not only affect muscle protein synthesis, 

but they may also contribute to the regulation of energy sources during and after 

exercise. It will be discussed in the following sections. 

 

 

Lipid 

 

Lipids, including FAs and sterols, are essential for energy production and the regulation 

of metabolism. They not only provide a key dense energy source but are also the 

building blocks for biological components such as membranes, signaling constituents, 

and hormones. Plasma lipid concentrations are regulated primarily by the liver, 
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adipose, and muscle tissues (14, 15). Therefore, this dissertation studied the 

interaction, especially with exercised skeletal muscle, of dietary lipids, blood lipids, and 

exercise training responses. 

 

Cholesterol 

Cholesterol is a 27-carbon, four-ring sterol that is involve in the formation of the 

semipermeable membrane, regulation of membrane fluidity and membrane proteins, 

and modulation of membrane trafficking and cell signaling processes (70). It is also a 

component of bile and the precursor of bile acids and salts, vitamin D, and steroid 

hormones including testosterone and estrogen. With its regulatory roles in the plasma 

membrane, cell signaling, and inflammation, cholesterol may be important for skeletal 

muscle hypertrophy (121).  

 

Cholesterol is abundant in the plasma membrane, Golgi complex, and endocytic 

recycling compartments. The sources of cholesterol in the human body are de novo 

synthesis and diet. Dietary cholesterol has been suggested to be the contributor of 

cardiovascular diseases. A limit of 200 mg cholesterol daily intake has been 

recommended by the American Heart Association (AHA) to improve the blood 

cholesterol concentration and reduce the risk of coronary heart disease (112). 

However, the elevation of blood cholesterol after dietary cholesterol consumption is 

inconsistent and some individuals show increases in both low-density lipoprotein (LDL) 
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and high-density lipoprotein (HDL) levels (122, 129). The recommendation of limiting 

dietary cholesterol to <300 mg per day for the general population by USDA has recently 

been rescinded due to the lack of evidence that higher intakes contributes to diseases 

(39, 66, 147). 

 

Cholesterol biogenesis is regulated by the intracellular cholesterol levels. Sterol 

regulatory element binding protein-2 (SREBP-2) is the main transcriptional regulator of 

cholesterol homeostasis. When the sterol levels are high, cholesterol binds to the 

SREBP cleavage-activating protein (SCAP) on its sterol-sensing domain (SSD) and 25-

hydroxycholesterol binds to the endoplasmic reticulum (ER) retention protein insulin 

induced gene protein (INSIG), resulting in the attachment of INSIG to the SREBP-SCAP 

complex. The attachment of INSIG and SREBP-SCAP complex prevents the 

transportation of the complex to Golgi apparatus, where the mature SREBP is released 

to nucleus (Figure 3). When sterol levels are low, INSIG releases the SREBP-SCAP 

complex, which is then transported to Golgi apparatus by the COPII vesicle from ER. At 

the Golgi apparatus, the site-1 protease (S1P) and site-2 protease (S2P) cleave the 

SREBP precursor protein and release the active part of SREBP to the nucleus. SREBP 

binds to the sterol regulatory element (SRE) area on the DNA and upregulates the 

transcription of genes involved in the synthesis of low-density lipoprotein receptor 

(LDLR) and 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase. 
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Figure 3. Regulation of Cholesterol in Skeletal Muscle. SREBP2: Sterol regulatory element binding protein-2; 
SCAP: SREBP cleavage activating protein; Insig 1/2: Insulin induced gene protein 1/2; S1P: Site-1 protease; 
S2P: Site-2 protease; SRE: Sterol regulatory element; SR: Sarcoplasmic reticulum. 

 

 

HMG-CoA reductase regulates cholesterol biosynthesis and therefore it has been a 

target for the treatment of hypercholesterolemia (53, 72, 104). HMG-CoA is 

synthesized from three acetyl-CoA through thiolase and HMG-CoA synthase. HMG-CoA 

reductase binds to four HMG-CoAs and transforms them to mevalonate, which is then 

converted to squalene via multiple steps. Following the function of enzyme squalene 
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cyclase, squalene is then oxidized to lanosterol, which is further oxidized to synthesize 

cholesterol (Figure 4). 

 

 

 

Figure 4. Cholesterol Synthesis. 
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Our laboratory was the first to demonstrate that dietary and serum cholesterol are 

associated with skeletal muscle adaptation to resistance exercise training (120). 

Exercise, especially resistance exercise, induces muscle damage, which causes 

inflammation. The mechanical deformation also promotes the release of growth 

factors. Muscle damage-induced inflammation is essential for the muscle growth 

because it causes the accumulation of nutrient, cytokines, and growth factors that are 

delivered by the elevated blood flow and released from neutrophils and macrophages. 

Cholesterol plays important roles in the process of inflammation, cell signaling, and cell 

stability during muscle hypertrophy. At the inflammation site, cholesterol functions as 

the component of the cell membrane that increases membrane viscosity and promotes 

the membrane stability. Cholesterol forms lipid rafts, which modulate signaling 

molecules, regulate membrane fluidity and membrane protein trafficking, and 

influence neurotransmission and receptor trafficking, with glycosphingolipids at the cell 

membrane (115). In skeletal muscle, the deficiency of cholesterol has been found to be 

associated with decreased lipid rafts, which may be restored by the cholesterol 

supplementation (114). By forming the lipid rafts as a platform for the molecules of cell 

signaling pathways, cholesterol facilitates pathways such as the PKB-mTOR and MAPK 

that promote muscle protein synthesis. Lipid rafts are also essential for the muscle 

growth pathways through the receptors of insulin, IGF-1, TNF-α, EGFR, PDGFR, IL-6, 

ERK-2, AKt-1 and steroid hormones.  
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Besides the contribution to the muscle contraction-induced cell signaling pathways, 

cholesterol also contributes to the formation of steroid hormones that stimulate 

muscle growth.  

 

In summary, cholesterol may have important roles in muscle hypertrophy induced by 

exercise by providing the building blocks for cell membrane repair, facilitating 

inflammation, and forming lipid rafts and steroids that enhance cell signaling (121). 

 

Fatty Acids  

A FA consists of a long hydrocarbon chain and a carboxyl group (COOH) (Figure 5). They 

are either saturated when containing no carbon-carbon double bond or unsaturated 

when having one or more carbon-carbon double bonds in their structures. There are 

two categories of unsaturated FAs: monounsaturated FAs (MUFAs) which contain only 

one carbon-carbon double bond and polyunsaturated FAs (PUFAs) that have two or 

more carbon-carbon double bonds. Non-essential FAs (NEFAs) may be endogenously 

synthesized or derived from other FAs. Essential FAs (EFAs) cannot be synthesized 

endogenously, and therefore they must be obtained from dietary sources (33).  
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Figure 5. General Structure of Fatty Acids. 

 

 

Linoleic acid (LA, 18:2 n-6) and α-linolenic acid (ALA, 18:3 n-3) are the two EFAs for 

animals. Endogenous n-6 and n-3 FAs are derived from LA and ALA, respectively. The n-

9 FAs are derived from the desaturation of saturated FAs (SFAs) by the ∆9 desaturase 

(33). ∆6 desaturase converts LA to γ-linolenic acid (GLA, 18:3 n-6) which is elongated to 

di-homo-GLA (DGLA, 20:3 n-6) and further desaturated to arachidonic acid (AA, 20:4 n-

6) by the ∆5 desaturase. DGLA is the precursor of 1 series-prostaglandins (PGs) and AA 

serves as the precursor of 2 series-PGs, thromboxanes (TX), and 4 series-leukotrienes 

(LTs). Eicosapentaenoic acid (EPA, 20:5 n-3) is derived from ALA by elongation and ∆5, 

∆6 desaturation. It is further converted to docosahexaenoic acid (DHA, 22:6 n-3) by the 

elongation and ∆6 desaturation, and partial peroxisomal oxidation. EPA is the precursor 

of 3 series-PGs and 5 series-LTs while DHA is a critical component of the human brain, 

cerebral cortex, retina, and skin.  
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Dietary n-3 FAs such as DHA and EPA have been shown to decrease inflammation by 

enhancing the production of less pro-inflammatory PGs, LTs, and TXs, including PGE3, 

PGF3α, LTB5, LTC5, LTD5, and TXA3 (33). n-6 FAs have been recommended to be 

reduced in the diet because some PGs and LTs produced from AA, such as PGE2, 

PGF2α, TXA2, LTB4, LTC4, and LTD4, are essential for inflammation and known to be 

involved in atherosclerosis (33). However, anti-inflammatory factors such as 

prostacyclin, lipoxin A4, and epoxyeicosatrienoic acids are also derived from AA. In a 

review of AHA Science Advisory (56), n-6 FAs were indicated to reduce coronary heart 

disease. Studies have shown that n-6 FAs play roles in the regulation and suppression of 

excess inflammation by increasing anti-inflammatory markers such as TGFβ and 

suppressing the production of adhesion molecules, chemokines, and interleukins (23, 

40).  

 

AA, DHA, and EPA all are capable of producing lipoxins and resolvins, the anti-

inflammatory factors that aid the cellular debris clearance and leukocyte infiltration at 

the inflammation site (33, 56). Linking FAs to the cardiovascular diseases based on its 

potential of producing pro-inflammatory factors without considering its anti-

inflammatory effects may be inappropriate. Further studies are needed to identify the 

factors that drive the derivation of FAs to either the pro- or anti-inflammatory routes. 
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Dietary FAs provide energy not only for fasting metabolism and daily physical activity, 

but also for bulk energy expenditure of exercise. They contribute to the recovery after 

exercise by providing energy, serving as building blocks for membrane and hormones, 

and facilitating the cell signaling and membrane trafficking by forming lipid rafts with 

cholesterol. When combined with exercise, SFAs improve cardiac health by increasing 

brachial artery dilation. Padilla et al. (111) reported that after performing a single 

aerobic exercise after a meal, participants consuming a high-SFA meal showed bigger 

changes in brachial artery diameter than those who consumed a low fat meal. MUFA 

and PUFA have shown to help maintain blood cholesterol and lipid levels, lower blood 

pressure, and therefore reduce the risk of cardiovascular disease. Mensink et al. (96) 

reported that diets rich in MUFA and PUFA both lowered blood LDL cholesterol. Appel 

et al. (5) found that diet containing high unsaturated FAs decreased systolic blood 

pressure, lowered blood TGs, and increased HDL cholesterol (noting that these studies 

were outside the context of exercise). Furthermore, MUFA and SFA may modulate 

resting testosterone concentration independent of exercise (152).  
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Figure 6. Lipid Transport and Metabolism. NCP1L1: Niemann-pick C1-like 1, ABCG5/G8: ATP-binding cassette sub-family G member 5 and 8; ACAT: Acyl-CoA cholesterol 
acyltransferase; LPL: Lipoprotein lipase; HL: Hepatic lipase; ABCA1: APT-binding cassette transporter; ABCG1: ATP-binding cassette sub-family G member 1; TG: 
Triglyceride; 2-MAG: sn-2-monoacylglycerol; NEFA: Non-esterified fatty acid; CETP: Cholesteryl ester transfer protein; VLDL: Very-low-density lipoprotein; IDL: 
Intermediate-density lipoprotein; LDL: Low-density lipoprotein; HDL: High-density lipoprotein; LDLR: LDL receptor; LRP: Low-density lipoprotein receptor-related protein; 
SR-B1: Scavenger receptor class B member 1.
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Lipid Transport and Metabolism 

Figure 6 shows the overall lipid transport and metabolism. The small intestine plays a 

critical role in the lipid homeostasis and is the primary site where lipids are absorbed 

(1). When the lipid consumed from the diet enters the small intestine, cholecystokinin 

at the intestinal mucosal cell is activated. Cholecystokinin evokes the secretion of 

pancreatic lipase and colipase from pancreas as well as the release of bile from the 

gallbladder. The release of pancreatic lipase may also be activated or inhibited by bile 

acid at low concentration or high concentration, respectively. The inhibitory reaction of 

high concentration bile acid on pancreatic lipase may be reduced by the binding of 

colipase to the micelles.  

 

Pancreatic lipase hydrolyzes TG into two FAs and one sn-2-monoacylglycerol (2-MAG). 

The 2-MAG may be further broken down into a free fatty acid and glycerol by MAG 

lipase. Bile containing bile acid is produced in the liver and stored in the gallbladder. 

Bile acid induces the emulsification of TGs, FAs (long-chain FAs), 2-MAG, phospholipids 

(mostly lysolecithin), and cholesterol to form micelles. Micelles travel across the small 

intestine until the FAs, 2-MAG, phospholipid, and cholesterol dissociate from micelle at 

the enterocytes.  

 

Phospholipid and 2-MAG are absorbed by diffusion through the brush-border 

membrane. FAs may diffuse through the brush-border membrane or be absorbed by 
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the FA translocase (FAT), also known as cluster of differentiation 36 (CD36), on the 

brush-border membrane. Cholesterol is absorbed or transferred by the Niemann-Pick 

C1-Like 1 (NPC1L1) on the brush-border membrane of the small intestine. There may be 

other NPC1L1-independent pathways for sterol transportation (1). Once reaching the 

ER, cholesterol may be esterified with the FAs to form cholesterol ester (CE) by acyl-

CoA cholesterol acyltransferase (ACAT). The FAs, 2-MAG, and phospholipids are then 

resynthesized to TGs in the ER and released to the Golgi complex to be packed into 

chylomicrons with CEs.  

 

FAT/CD36, NPC1L1 and ATP-binding cassette sub-family G member 5 and 8 (ABCG5/G8) 

regulate lipid absorption at the enterocyte. Besides the small intestine, FAT/CD36 is 

abundant in the heart, skeletal muscle, adipose tissue, and capillary endothelium 

where FA uptake is essential for the energy production (1). Although the contribution 

of FAT/CD36 to the net fat absorption in the small intestine is insignificant, FAT/CD36 is 

important for the chylomicron formation by facilitating the packaging of FAs and CEs 

into chylomicron. However, the mechanism is unclear. NPC1L1 is expressed in human 

small intestine, liver, ovary, lung, and muscle. It binds to cholesterol and other sterols 

at the brush border membrane and intracellularly transports it to the ER. At ER, the 

sterols are esterified by ACAT (1). The expression of NPC1L1 are shown to be decreased 

by PPARα and PPARδ (71, 148, 150, 153). The ABCG5/G8 complex is the sterol export 
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pump that releases cholesterol and other sterols back to the gut at the brush-border 

membrane (51).  

 

Chylomicrons are formed in ER packing TG, phospholipid, cholesterol, and CE with 

apolipoprotein-B48 (ApoB48), which is transported to Golgi complex via the COPII 

vesicle. They are then delivered by the Golgi vesicle to the cell membrane, extracted to 

the lacteals, and then transported to the subclavian vein via lymphatics. Chylomicrons 

contain ApoB48, E, and C2. When ApoC2 binds to lipoprotein lipase (LPL), the TG in 

chylomicrons is hydrolyzed to release two FAs and one 2-MAG by LPL. The chylomicron 

remnants with less TGs, ApoC2, and higher cholesterol density are then released into 

the circulation and are eventually taken up by the low-density lipoprotein receptor-

related protein (LRP) through ApoE at the surface of the liver. Although the LDLR may 

also attract and take up ApoE, it is not the main receptor for chylomicron remnant (10).  

 

In liver, the lipids received from lipoproteins, including chylomicron remnants, 

Intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL), and high-density 

lipoprotein (HDL), are packed with ApoB100 to form very-low-density lipoprotein 

(VLDL) in the ER. VLDL is transported to the Golgi complex via the COPII vesicle and 

then released into the circulation. VLDL containing ApoB100, ApoC2, and ApoE is then 

taken up by LPL at the tissues via the ApoC2. TG in VLDL is hydrolyzed to release two 

FAs and 2-MAG at the tissue. VLDL then becomes IDL with higher cholesterol density. 
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IDL loses its ApoE and deposits the cholesterol to tissues in the circulation, causing the 

increase in density. It may either be hydrolyzed by attaching to hepatic lipase (HL) via 

ApoE at the tissue when the ApoE is abundant or taken up by the LDLR via Apo B100 at 

the tissue and liver. After losing the ApoE and releasing cholesterol in the circulation, 

IDL becomes LDL, which travels to tissues and is taken up by the LDLR via ApoB100 at 

extrahepatic tissues and liver.  

 

Nascent discoidal HDL is synthesized in the liver, small intestine, and extrahepatic 

tissues. In the liver and small intestine, ApoA1 at the ER is relocated to Golgi complex, 

where a small amount of cholesterol and phospholipid are packed with ApoA1 to form 

nascent discoidal HDL. Discoidal HDL is then released into the circulation. At the tissue, 

the circulating ApoA1 is picked up by ATP-binding cassette transporter (ABCA1) which 

transports cholesterol and phospholipid in the cell membranes to the apolipoprotein to 

form nascent discoidal HDL. The nascent discoidal HDL then picks up cholesterol and 

phospholipid at the ATP-binding cassette sub-family G member 1 (ABCG1) on the 

surface of tissues. While ABCG1 transports cholesterol and phospholipid from the 

tissue to the discoidal HCL, the lecithin:cholesterol acyltransferase (LCAT) esterifies the 

free cholesterol into CE. After picking up the cholesterol in the tissue, discoidal HDL 

becomes a more globular HDL3 and then HDL2 with the increase of cholesterol content. 

The circulating HDL and LDL exchange lipids via the plasma cholesteryl ester transfer 

protein (CETP), where the CE in HDL is transported to LDL, and the TG in LDL is 
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delivered to HDL. HDL circulates through the body and collects excess cholesterol from 

tissues. The mature HDL is eventually taken up by the scavenger receptor class B 

member 1 (SR-B1). This cholesterol efflux pathway driven by HDL is known as the 

reverse cholesterol transport (70).  

 

 

Resistance Exercise and Lipid Metabolism 

 

During exercise, working muscle takes up and uses the FAs mainly from the blood, and 

not the stored intramuscular TG. However, during prolonged exercise leading to 

glycogen depletion, intramuscular TG may be utilized (154). FAs are also used during 

recovery from fatiguing exercise and glycogen depletion. 

 

As shown in Figure 7, at the onset of exercise, the adrenal gland releases epinephrine 

(EPi) and cortisol, while the sympathetic nervous system (SNS) releases norepinephrine 

(NEP) (2, 50, 81, 95). The catecholamines increase heart rate, stroke volume, and 

cardiac output. They also induce vasoconstriction, limiting the blood flow to the non-

working tissues. For example, NEP works on precapillary sphincter and causes the 

arteriole vasoconstriction. At the active muscles, muscle contraction causes the release 

of local metabolites such as adenosine, ATP, hypoxia, hydrogen ion, nitric oxide, 

potassium, prostanoids, and endothelium-derived hyperpolarizing factor (30). These 
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factors are vasodilators that overweigh the effects of the catecholamines and cause 

vasodilation. Therefore, blood flow is elevated at the working muscle and reduced at 

the non-working muscle. This reaction is known as functional sympatholysis. 

 

Glucagon released from the pancreas is activated by sympathetic nerve stimulation, 

specifically by the NEP (132). Hormone-sensitive lipase (HSL) in adipose and muscle 

tissues is activated by the catecholamines and glucagon via the adenylate cyclase-cAMP 

system. The activated HSL hydrolyzes stored TG to release 2-MAG and two free FAs 

(FFAs). 2-MAG may be further broken down into a FA and glycerol by MAG lipase. 

Glycerol in adipose tissue and muscle cells cannot be oxidized or reused because 

adipose tissue and muscle lack the enzyme glycerol kinase, which phosphorylates 

glycerol to glycerol-3-phosphate, the active form of glycerol for TG synthesis. 

Therefore, glycerol in the bloodstream is considered the indicator of lipolysis in adipose 

tissue and muscle. Glycerol was found in the blood after a bout of resistance exercise, 

suggesting the use of FAs during resistance exercise or recovery (50). GH is released 

from the anterior pituitary gland 10-15 minutes after the onset of exercise and 

continues to activate HSL to release FFAs for prolonged exercise. FFAs are not water 

soluble, and therefore it is carried by albumin in the bloodstream (133). Each albumin 

carries three FAs. When it arrives at the working muscle, the FA translocase/FA binding 

protein (FAT/FABP) complex at the sarcolemma transports the FAs into the muscle (15).  
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Figure 7. Exercise-induced Lipid Metabolism. 
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Glucagon also stimulate LPL. LDL-receptor (LDLR) on the muscle tissue picks up LDL in 

the blood stream. The catecholamines activate the TG lipase via the cAMP-PKA 

pathway (73).  

 

The FAs must be converted to fatty acyl-CoA for further use in the mitochondria. Acyl-

CoA synthase (ACS) at the outer membrane of mitochondria converts the FAs to fatty 

acyl-CoA with the use of ATP. Then the fatty acyl-CoA is transported to the inter-

mitochondrial space by the carnitine palmitoyltransferase 1 (CPT1) at the outer-

mitochondrial membrane. During this process, coenzyme A is replaced by carnitine to 

form acyl-carnitine, allowing it to be transported between the outer- and inner-

mitochondrial membranes. The acyl-carnitine is picked up by the carnitine transporter 

(CT) at the inner-mitochondrial membrane and delivered into the mitochondria matrix. 

When the acyl-carnitine enters the mitochondria matrix, CPT2 replaces the carnitine 

with coenzyme A, forming acyl-CoA. Acyl-CoA are then oxidized to acetyl-CoA, NADH, 

and FADH2 via beta-oxidation. Acetyl-CoA enters TCA cycle and releases NADH, FADH2, 

and GTP. NADH and FADH2 enter the electron transport chain (ETC) at the inner 

mitochondrial membrane to produce ATPs. Each NADH may produce three ATPs while 

one FADH2 creates two ATPs through the ETC. 
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Peroxisome Proliferator-Activated Receptors 

 

Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors 

that belong to the nuclear receptor superfamily. In animal, there are 48 known 

transcription factors, including endocrine and metabolite-activated receptors (105). 

Three PPARs have been identified so far: PPARα (NR1C1), PPARδ/β (NR1C2), and PPARγ 

(NR1C3). While the three PPARs share similar function and structure, human PPARα, 

PPARδ and PPARγ are encoded by gene PPARA on chromosomal region 22q12-q13.1 

with eight exons, gene PPARD on chromosomal region 6p21.2-p21.1 with nine exons, 

and PPARG on chromosomal region 3p25 with nine exons, respectively (37).  

 

Structure and Distribution 

PPARs consist of four functional domains: A/B, C, D and E/F (Figure 8). Domain A/B 

contains the ligand-independent activation function (AF-1) at the N-terminal and its 

activity is almost insignificant. PPARα and PPARγ share respectively 23% and 12% of 

similarity on the A/B domain to PPARδ. Domain C is structured with α-helical and two 

zinc finger-like configuration. It accommodates the DNA binding motif and is highly 

conserved among the PPARs with 86% and 85% similarity in PPARα and PPARγ to 

PPARδ, respectively. Domain D is the hinge region that interacts with cofactors and 

preserves the functional structure by connecting the domains C and E/F. PPARα and 

PPARγ share 57% and 40% similarity to PPARδ on the domain D, respectively. Domain 
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E/F is the ligand-binding domain that contains the ligand-dependent activation function 

(AF-2) at the COOH-terminus and forms a heterodimer with Retinoid X Receptor (RXR). 

It consists of 13 α-helices and one small four-stranded β sheet, which forms a large 

hydrophobic Y-shape area with a flexible binding pocket. This Y-shape area is larger 

than other nuclear receptors, and therefore it can bind to many endogenous and 

synthetic lipophilic ligands. Beside the ligand binding area, domain E/F also contains a 

folded region that forms hydrogen bonds with carbohydrate groups on cofactors. It is 

well conserved among PPARs with 76% and 73% similarity in PPARα and PPARγ to 

PPARδ, respectively (8, 37, 105).  

 

 

 

Figure 8. The Structure of PPARs. 
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The distribution of PPARs is tissue-specific (37). PPARγ promotes adipogenesis and lipid 

storage and is expressed mostly in adipose tissues and immune cells such as 

macrophages (52). PPARs -α and -δ are expressed mainly in high-metabolic tissues. 

PPARα is primarily expressed in liver, kidneys, heart and skeletal muscle. While PPARδ 

is also seen in liver and kidney at relatively low levels, it is the most abundant isoform 

in skeletal muscle and is the key regulator of FA catabolism and metabolism in skeletal 

muscle. In skeletal muscle, expression of PPARδ is higher in type I than type II fibers 

(156).  

 

Activation of PPARs 

PPARs are activated by ligand binding and phosphorylation. Ligands that activate PPARs 

include endogenous long chain FAs and their derivatives and specific synthetic 

compounds. The endogenous ligands include eicosanoids, leukotrienes, leukotriene B4, 

prostaglandins, 8(s)-hydroxyeicosatetraenoic acid, the PPARγ specific activators 9-

hydroxy-10, 12-octadecadienoic acid, 13-hydro-9, 11- octadecadienoic acid, 15∆-deoxy-

12, 14-postaglandin J2, and the PPARδ specific activator retinoic acid. The synthetic 

ligands include fibrates that activate PPARα, thiazolidinediones that activate PPARγ, 

and derivatives of phenoxyacetic acid, L-165041, GW501516, GW0742, and MBX-8052 

that activate PPARδ. However, there is no synthetic ligand for PPARδ in clinic use (8, 37, 

105).  
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PPARδ has the smallest cavity on its ligand binding domain among the PPAR isoforms. 

The size of the cavity determines its capability and variety of ligand binding. The ligands 

need to be delivered to the nucleus to activate the PPARs that bind to DNA. FABPs 

transport the ligands to specific PPARs. FABP3, FABP4, and FABP5 deliver the ligands to 

PPARα, PPARγ, and PPARδ, respectively (8, 105).  

 

RXR is also a member of nuclear hormone receptor superfamily and is activated by 9-

cis-retinoic acid (RA). Three isoforms, RXRα, RXRβ, and RXRγ, form heterodimers with 

PPARα, PPARδ, and PPARγ, respectively. PPARs heterodimerize with RXR and attach to 

the PPRE (Peroxisome Proliferator Response Element) in the regulatory region of a 

gene without ligand binding (Figure 9). PPRE contains a DR-1 motif that includes two 

direct repeats of the consensus sequence AGGTCA, separated by a single nucleotide. 

The DNA binding sites on PPARs and RXR bind to the AGGTCA sections. The PPAR/RXR 

heterodimer may be activated by either RA or PPAR ligands while the combination of 

both activators yields a stronger effect. When the heterodimer is activated, it promotes 

the transcription of proteins related to lipid and lipoprotein metabolism, lipid 

transportation, inflammation, wound healing, mitochondrial respiration, cell 

proliferation and differentiation, and thermogenesis (105).  

 
PPARs may also be regulated by phosphorylation (20). The activities of PPARα and γ are 

regulated by the phosphorylation via AMPK, MAPK, and PKA. While the 
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phosphorylation of PPARδ is less studied, PPARδ may also be activated by AMPK, 

MAPK, and PKA (20, 34). 

 

 

 
Figure 9. The Heterodimer of PPAR and RXR. 

 

 

Cofactors 

Cofactors influence the transcriptional activity by changing the chromatin structures. 

There are two kinds of cofactors: coactivator and corepressor. Coactivators of PPARs 

containing one or more LXXLL amphipathic α-helix consensus sequence interact with 

the Ligand-binding domain (E/F) of the PPARs to enhance the target gene expression. 

Coactivators are recruited when the agonists bind to the receptors. Two groups of 

coactivators have been identified. The first group alters the chromatin structure by 



40 
 

maintaining the histone acetyl-transferase and methyltransferase activities. The 

changes in the chromatin structure induce the transcription. The second group forms 

multiprotein complexes connecting the nuclear receptors and the basal transcriptional 

machinery. Steroid hormone receptor coactivator family and PPARγ coactivator 1α 

(PGC1α) are coactivators that belong to the second group. PGC1α co-activates most 

nuclear receptors, including PPARs. Overexpression of PGC1α and PPARδ have been 

shown to have similar effects on muscle metabolism. Furthermore, activation of PPARδ 

has been shown to increase PGC1α contents (37, 79). Corepressors inhibit gene 

transcription by influencing histone deacetylase (HDAC) and other enzyme activities to 

maintain a solid chromatin structure. PPARs interact with the silencing mediator for 

retinoic acid, thyroid hormone receptor (SMRT), and the nuclear receptor corepressor 

in the absence of ligands or receptor-interacting protein 140 (RIP140) when binding to 

ligands. In skeletal muscle, RIP140 has been shown to suppress the expression of 

PPARδ-dependent genes that affect mitochondrial activity and fiber type 

determination. When binding to DNA, PPARδ may interact with SMRT, HDAC, and their 

associated repressor proteins to inhibit PPARα and PPARγ-activated transcriptions.  

 

Regulation of PPARδ Expression in Skeletal Muscle 

Among three PPARs, PPARδ is the most abundant isoform in skeletal muscle and has 

higher expression in oxidative than glycolytic muscle fibers. Short-term exercise, 
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endurance training, and short-term muscle unloading have been shown to increase 

PPARδ expression (93).  

 

Exercise and fasting elevate the FFA levels, a physiological signal that triggers the 

increase in PPARδ protein content (37). mRNA expression of PPARδ and PGC1-α are 

shown to increase three hours after a bout of high-intensity cycling exercise (93). 

Similar PPARδ mRNA expression has been observed to increase after endurance 

exercise performed at either elevated or depressed FA levels, suggesting that muscle 

contraction, not the nutritional condition, may be the main stimulator of the elevated 

PPARδ mRNA expression induced by exercise (37, 157). However, no evidence of 

increasing muscle PPARδ protein content by resistance exercise in humans has been 

reported. Resistance exercise induces both muscle contraction and the increase of FFAs 

(50). Both are the stimulators of PPARδ expression. Therefore, we hypothesized that 

muscle contraction induced by resistance exercise would result in a similar elevation of 

PPARδ protein content induced by the endurance exercise.  

 

Most previous studies regarding PPARδ expression have been focusing on the PPARδ 

mRNA content. However, the mRNA levels do not necessarily predict its protein 

content (54). The protein abundance in humans may be affected by transcription, 

mRNA decay, translation, and protein degradation (151). In this dissertation, the 
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changes in PPARδ protein content in response to resistance exercise is determined as a 

contributor to the mechanism by which resistance exercise induces lipid metabolism. 

 

Regulation of Skeletal Muscle Fiber Types by PPARδ 

Skeletal muscle can be classified into three fiber types: Type I, Type IIa, and Type IIx. 

Type I fiber has the highest mitochondrial density and is the most oxidative. It is also 

identified as the slow red oxidative fiber based on its physical appearance and 

contractile properties. Type IIa fiber is the fast red oxidative fiber that has a higher 

capability for glycolytic oxidation. Compared to the Type IIx fiber, Type IIa fiber is more 

oxidative and therefore is more resistant to fatigue. Type IIx fiber is referred as the fast 

white glycolytic fiber. It contains few mitochondria and is very susceptible to fatigue.  

 

Resistance exercise training induces hypertrophy in all muscle types. The proportion of 

Type IIx fibers decrease while Type IIa fibers increase with the resistance training, 

suggesting the conversion of muscle fiber type from IIx to IIa (137, 138). Because Type 

IIa fibers exhibit a more oxidative potential, the increase in the Type IIa fiber proportion 

implies a conversion of the preference for energy source induced by resistance exercise 

training. PPARδ is a key regulator of muscle fiber type (37). The reduction of PPARδ’s 

corepressor RIP140 and the increase of its coactivator PGC1α enhance the formation of 

Type I fibers. PGC1α is one of the first muscle fiber type regulators to be identified and 

it promotes the conversion of fast type II to slow type I fibers. In skeletal muscle, it is 



43 
 

PPARδ that regulates the activation and expression of PGC1α, not PPARα (65, 126). 

Other fiber-type regulators such as calcineurin may interfere with the PPARδ/PGC1α 

pathway. However, while these studies were mainly conducted on animals, the switch 

between type II and Type I fibers has not been demonstrated in human skeletal 

muscles. The effects of PPARδ and PGC1α on muscle fiber type in humans were 

suggested in the studies that presented higher expressions of PPARδ and PGC1α in the 

human muscle samples with a higher portion of oxidative fibers (37). 

 

Regulation of Lipid Metabolism and Fuel Utilization by PPARδ in Skeletal Muscle 

Skeletal muscle is the largest tissue for lipid metabolism, and therefore whole body 

homeostasis is affected by the factors that regulate skeletal muscle lipid metabolism. 

The importance of PPARδ in the regulation of whole-body metabolism was revealed by 

the studies showing that PPARδ mRNA expression declines with age and is higher in the 

adults with heavier birth weight (37). The number of mitochondria in a cell may 

indicate its ability to utilize lipid as fuel. The activation and expression of PGC1α, the 

master regulator of mitochondrial biogenesis and quantity, is regulated by PPARδ in 

skeletal muscle (65, 126). Therefore, activation of PPARδ may increase the amount of 

mitochondria via PGC1α (37).  

 

PPARδ upregulates genes involved in lipid and FA metabolism proteins in skeletal 

muscle. These proteins include cholesterol metabolism proteins ABCA1, FA and TG 
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synthetic gene regulator sterol regulatory element-binding protein 1c (SREBP-1c), FA 

uptake proteins LPL, FAT/CD36 and FABP, essential mitochondrial membrane FA 

transport proteins ACS and CPT1, β oxidation enzymes long-chain acyl-CoA 

dehydrogenase and acetyl-CoA acyltransferase, and other FA oxidation facilitating 

proteins including malonyl-CoA decarboxylase, pyruvate dehydrogenase kinase 2 

(PDK2), and PDK4 (35, 38, 75, 99, 123). As discussed in previous sections, these proteins 

play important roles in the lipid utilization and FA oxidation during and after resistance 

exercise. 

 

SREBP-1c is a transcription factor that regulates the expression of genes involved in FA 

and TG synthesis. In muscle, adipose tissue, and liver, SREBP-1c expression is enhanced 

by insulin. Exercise training also increases the expression of SREBP-1c (69, 101). It has 

been identified to be the possible cause for the elevated intramuscular TG in skeletal 

muscle of exercise-trained individuals (101).  

 

Pyruvate dehydrogenase complex (PDC) is the rate-limiting step in muscle glucose 

oxidation. The deactivation of PDC by PDK2 and PDK4 results in the switching of fuel 

utilization toward FA oxidation. PPARδ enhances both PDK2 and PDK4 in skeletal 

muscle. In fact, these proteins and enzymes interplay with PPARδ to keep the utilization 

of FA favorable (37, 102). The upregulation of FAT/CD36 expression by PPARδ increases 

the uptake of FAs, which then activates PPARδ and further promotes the expression of 
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FAT/CD36 and other FA metabolism proteins, PDK2, and PDK4. PDK2 and PDK4 inhibit 

glucose oxidation and favors FA utilization. Therefore, when blood FA concentration is 

increased, PPARδ is activated and alter the fuel utilization towards lipid oxidation. It 

explains how fasting and exercise, the conditions when blood FFA is elevated, may 

enhance lipid metabolism.  

 

Although glucose oxidation may be attenuated with the increased PDK expression, 

glucose uptake may be enhanced by PPARδ (83). When PPARδ is activated, the 

increased FA oxidation lowers the FFA levels in the blood, and therefore a negative 

feedback is induced to increase glucose uptake by the effect of insulin (82). Insulin 

sensitivity may also be improved by PPARδ (86). The increased glucose uptake and 

suppressed glucose oxidation by PPARδ cause the accumulation of glucose in cells. The 

accumulated glucose may either be metabolized via glycolysis or be used to synthesize 

glycogen. Although PPARδ increases both glycogen synthase-2 mRNA expression and 

content in adipose tissue, whether it has effects on glycogen synthase-1 in skeletal 

muscle remains to be investigated (94). Taken together, PPARδ increases the 

availability of glucose in the muscle cell. The elevated glucose may be further oxidized 

as energy or synthesized into glycogen.  

 

AMPK has been identified as an energy sensor that plays a major role in energy 

homeostasis. It is activated when energy is low to promote energy production and 
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suppress energy consuming processes. AMPK increases glucose uptake and FA 

oxidation, while suppresses FA synthesis by phosphorylating (inhibiting) Acetyl-CoA 

carboxylase (ACC) and depresses protein synthesis by inhibiting mTOR (13, 17, 160). 

Since AMPK mainly promotes energy production and inhibits energy consumption, it 

has been shown to inhibit glycogen synthesis by suppressing glycogen synthase through 

the activation of glycogen synthase kinase-3α and β (GSK-3α/β), the glycogen synthase 

inhibitor (64, 74). However, studies also showed that the chronic activation of AMPK 

might increase glycogen in skeletal muscle because of the accumulation of glucose (78). 

Activation of PPARδ has been shown to be coincident with enhanced expression and 

phosphorylation of AMPK. Unlike PPARδ, AMPK does not seem to directly regulate the 

transcription of lipid metabolism genes (82). However, AMPK may affect the 

transcriptional activity of PPARδ by a protein-to-protein interaction in the skeletal 

muscle (103). Moreover, AMPK activity has been shown to increase with activated 

PPARδ (37, 82, 103). In summary, there seems to be an interaction between PPARδ and 

AMPK that enhances the activity of transcription of PPARδ target genes, but the 

mechanism remains to be clarified. 
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Figure 10. The Effects of Exercise on Lipid Regulation via PPARδ. 
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The Effects of Exercise on Lipid Regulation via PPARδ 

Exercise activates PPARδ and upregulates its mRNA expression (Figure 10). The 

exercise-induced PPARδ expression is primarily via AMPK and MAPK phosphorylation 

induced by muscle contraction, but not the elevated FFAs (93, 157). The activated 

PPARδ promotes the expression of lipid transport and metabolism proteins, and thus 

enhances the lipid metabolism in skeletal muscle. 

 

The Role of PPARδ in Muscle Protein Synthesis  

Besides the regulation of energy source and the determination of muscle type, PPARδ 

may also affect protein synthesis in skeletal muscle. Resistance exercise induces 

mechanical deformation (muscle contraction) and the increase in IGF-1 and GH (134). 

These factors activate and increase the expression of PPARδ activators including AMPK, 

MAPK, and PKA (20, 34). PPARδ may increase muscle growth via the forkhead box class 

O transcription factor 1 (FOXO1). It activates and promotes the expression of FOXO1, 

which inhibits the early stage of myoblast proliferation and enhance the later stage of 

fusion of differentiated myocytes into myotubes (125). The combination of the effects 

of PPARδ on the different stages of skeletal muscle regeneration has been shown to 

have a positive effect on muscle growth (4).  
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Summary 

 

Resistance exercise induces cell signaling pathways that promote muscle protein 

synthesis via muscle contraction, inflammation, and hormones. Lipids facilitate these 

mechanisms by providing energy and building blocks for cell membrane regeneration, 

regulating membrane permeability for hormones, and forming lipid rafts for the 

signaling molecules. Exercise increases the oxidative capacity by upregulating the 

expression of proteins responsible for uptake, transport, and oxidation of FAs in 

skeletal muscle. Exercise increases FFAs and mobilizes several kinases, the factors that 

activate PPARδ, which has been identified as a major regulator of lipid metabolism in 

skeletal muscle and a therapeutic target for metabolic syndrome. While PPARδ has 

been studied with endurance exercise, the effects of resistance exercise on muscle 

PPARδ protein content remain unclear.  

 

The following chapters tested the hypotheses that dietary lipids would be associated 

with enhanced skeletal muscle mass, strength, and peak power following resistance 

exercise training and that resistance exercise would improve lipid profiles and increases 

the PPARδ protein content as biomarkers of enhanced lipid metabolism in skeletal 

muscle. 
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CHAPTER II 

THE EFFECTS OF DIETARY CHOLESTEROL AND FATTY ACIDS ON SKELETAL 

MUSCLE RESPONSES TO RESISTANCE EXERCISE TRAINING 

 

 

Overview 

 

Cholesterol and FAs may be essential for the resistance exercise-induced skeletal 

muscle adaptation through the provision of an energy source and cell signaling 

regulators (FAs), providing the building blocks for the cell membrane, forming steroid 

hormones and lipid rafts for cell signaling molecules, and regulating inflammation 

(cholesterol). Thirty-seven generally healthy, untrained older adults (50-65 years old) 

were recruited and randomly assigned to three cholesterol intake groups (LC: zero 

additional cholesterol per day, n=13; MC: 3.5 mg additional cholesterol/kg lean/day, 

n=11; HC: 10.5 mg additional cholesterol/kg lean/day, n=13) and performed a 12-week 

whole-body progressive resistance exercise training program. Changes in skeletal 

muscle mass, strength, peak power, and muscle quality by cholesterol intake as well as 

the association with dietary FA intake were analyzed. The results showed that skeletal 

muscle mass, strength, peak power, and muscle quality increased with the training in all 

cholesterol intake groups and both gender, but the increases were not affected by 
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cholesterol intake levels. There were associations between specific dietary FAs and 

gains in skeletal muscle mass, strength, peak power, and muscle quality in different 

cholesterol intake groups and gender. In conclusion, although skeletal muscle 

adaptations to resistance exercise training were not altered by cholesterol intake, the 

exploratory analyses of dietary FA suggested potential effects on the adaptations. 

 

 

Introduction 

 

Obesity and physical inactivity are major risk factors for cardiovascular disease (42, 

159).  While obesity may be caused by overconsumption of energy and insufficient 

physical activity, nutritional control and exercise may be the countermeasure to 

prevent obesity.  

 

Overconsumption of fat and cholesterol has been linked to the increased risk of 

cardiovascular diseases (84, 128). However, lipids, including FAs and sterols, are 

essential for energy production and maintenance of metabolism. Cholesterol is 

abundant in the plasma membrane, Golgi complex, and endocytic recycling 

compartments. It controls membrane fluidity, regulates membrane proteins, and 

modulates membrane trafficking and cell signaling (70). Dietary cholesterol is 

considered the contributor to cardiovascular diseases, and a limit of 200 mg daily 
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intake is recommended by AHA to reduce the risk of coronary heart disease (112). 

However, the elevation of blood cholesterol after dietary cholesterol consumption is 

inconsistent and some individuals show increases in both low-density lipoprotein (LDL) 

and high-density lipoprotein (HDL) levels (122, 129). MUFA and PUFA have been shown 

to help maintain blood cholesterol and lipid levels, lower blood pressure, and therefore 

may reduce the cardiovascular risk (5, 96). Studies have shown that n-6 FAs play 

important roles in the regulation and suppression of excess inflammation by increasing 

the anti-inflammatory factors and prevent coronary heart disease (23, 40, 56). Dietary 

n-3 FAs such as DHA and EPA have been shown to regulate inflammation by enhancing 

the production of less pro-inflammatory PGs, LTs, and TXs (33). The n-3 and n-6 FAs are 

both capable of producing anti-inflammatory factors such as lipoxins and resolvins that 

aid the cellular debris clearance and leukocyte infiltration at the inflammation site.  

 

Physical activity has been shown to reduce the risk of cardiovascular diseases by 

influencing lipid and lipoprotein metabolism (36). Skeletal muscle accounts 40-50% of 

total body mass in non-obese individuals and is responsible for more than 50% of 

resting metabolism. It may further increase metabolism by 10-fold with exercise. 

Skeletal muscle plays a major role in the regulation of electrolytes, acidity, glucose and 

lipid metabolism. Therefore, the impact of calorie, fat, glucose, and cholesterol intake 

on disease is associated with skeletal muscle activity (121). In fact, skeletal muscle has 

been recognized as the determinant of resting metabolic rate (16). Therefore, 
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resistance exercise, which increases skeletal muscle mass, has the potential to reduce 

the risk of cardiovascular disease and is suggested to be included in the diseases-

prevention exercise program by American College of Sports Medicine, American Heart 

Association, and American Diabetes Association (16). Dietary and serum cholesterol has 

been observed to be associated with skeletal muscle adaptation to resistance exercise 

training (120). Furthermore, when combined with exercise, dietary cholesterol and FAs 

may have beneficial effects. Dietary SFAs have been shown to improve cardiac health 

by increasing brachial artery dilation (111). Cholesterol, MUFA, and SFA intake may 

modulate testosterone which affects the adaptation of skeletal muscle to resistance 

exercise (121, 152). 

 

Exercise-induced cell signaling pathways for muscle protein synthesis may be induced 

by muscle contraction, hormones, and inflammation (134). Muscle contraction causes 

mechanical deformation of muscle fiber, which promotes the release of growth factors 

and evokes signaling pathways including PKB-mTOR, PA-mTOR, PA-PI3K, AMPK, and 

MAPK, independent of hormones and growth factors (Figure 2) (6, 58, 67, 108, 134, 

149). Cholesterol facilitates the cell signaling pathways by forming lipid rafts as the 

platform for transporting the signaling molecules through the membrane trafficking. It 

also contributes to the formation of steroid hormones such as testosterone that 

stimulates muscle growth (121).  
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Resistance exercise induces skeletal muscle damage that causes inflammation. At the 

inflammation site, macrophages and neutrophils are recruited to break down damaged 

muscle tissue and produce cytokines including IL-6 and TGFβ (57, 77, 134). IL-6 induces 

satellite cell proliferation by activating the MAPK and PI3K cell signaling cascades via 

JAK signaling pathway (60, 127). TGFβ enhances muscle differentiation and regulates 

local collagen synthesis to build up skeletal muscle architecture (57). At the 

inflammation site, FAs and cholesterol provide building blocks for the regeneration of 

muscle membrane, increase membrane viscosity and promote membrane stability, and 

facilitates cell signaling pathways by forming lipid rafts. 

 

Studies have been investigating the effects of resistance exercise on lipid metabolism 

by examining its influence on the lipoproteins. However, the effects of dietary lipid on 

the skeletal muscle adaptation to resistance exercise remain to be clarified. The 

purpose of this study is to investigate the effects of dietary cholesterol and FAs on 

muscle mass, strength, peak power, and muscle quality (strength and power adjusted 

to mass) in response to the 12-week whole-body progressive resistance exercise 

training program.  
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Methods 

 

 

Figure 11. Timeline of Study 1. 

 

 

Subjects 

Thirty-seven, 50 to 65 years old, generally healthy men (n=15) and women (n=22) were 

recruited via flyers and advertisements in local newspapers. Smokers and individuals 

with any of the following conditions were excluded: hypertension (Blood pressure > 

160 Systolic/100 Diastolic mmHg), cardiac arrhythmias, cancer, hernia, aortic aneurysm, 

kidney disease, diabetes, lung disease, and blood cholesterol >240 mg/dl or <160 

mg/dl, taking cholesterol lowering medications, and participating in one hour or more 

of resistance exercise training (RET) in the previous year. Women were 

postmenopausal for more than two years. The eligible participants were randomly 

assigned into one of three cholesterol intake groups in a double-blind manner: Low 

Cholesterol Intake Group (LC, n=13, 5 men and 8 women, zero additional cholesterol 
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per day), Mediam Cholesterol Intake Group (MC, n=11, 5 men and 6 women, 3.5 mg 

per kilogram lean mass of additional cholesterol per day), and High-Cholesterol Intake 

Group (HC, n=13, 5 men and 8 women, 10.5 mg per kilogram lean mass of additional 

cholesterol per day). Figure 11 shows the general protocol of this study. This study was 

approved by Texas A&M University Institutional Review Board (IRB2015-0175M), and 

all the participants provided written informed consent before participating in the study. 

 

Orientation 

Participants attended two sessions of nutrition education and four sessions of exercise 

familiarization during the 2 weeks before the training. Each nutrition education session 

lasted for two hours and was performed by a registered dietitian (RD). The participants 

learned about proper nutrient intake, calorie and portion control, study specific diet 

guidelines, and the operation of a nutrition software (Nutribase; version 7; Client Intake 

Module; Cybersoft Inc., Phoenix, AZ) to maintain diet records throughout the study. 

The exercise familiarization provided the participants with the information about the 

benefits of regular exercise and principles of resistance exercise. Proper exercise 

techniques were demonstrated to help participants become familiar with the resistance 

exercise protocol by practicing the techniques with light weight on the Keiser 300 series 

pneumatic exercise machines (Keiser, Palo Alto, CA). The intensity was gradually 

increased to 40% of their estimated maximum strength (4/10 on the Omnibus-RE Scale 

[OMNI-RES] ratings of perceived exertion [RPE]) (48). The purpose of the exercise 
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familiarization was to standardize strength measures while minimizing skeletal muscle 

adaptations, estimate maximum strength (1RM) before testing, and reduce the 

possibility of exercise-induced injury. 

 

Testing 

Following the orientation and at least 72 hours before the first resistance exercise 

training session, 1RM, peak power, body composition, and resting metabolic rate 

(RMR) were measured. 1RM’s for all the exercises in the RET program were determined 

by gradually increasing exercise weights until the maximum resistance, at which only 

one repetition could be completed with proper form in full range of motion, was 

reached using the Keiser machines. Following a three-minute warm-up on a cycle 

ergometer (Schwinn Fitness, Inc., Denver, CO) and stretching, participants performed 

four warm-up repetitions with the weight corresponding to 55% of an estimated 1RM 

obtained during the exercise orientation. The weight was then increased to 75% of a re-

estimated 1RM (based on RPE) to perform only one repetition. After 60 seconds of rest, 

the weight was increased again to 90% of a re-estimated 1RM to perform one 

repetition. Additional attempts for 1RM were made after 60 seconds of rest until the 

true 1RM value was obtained, in a manner that the total number of 1RM attempts was 

minimized. The same procedure was performed for all exercises and in the same order 

for all participants. 
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The power (force x velocity) output for each exercise was be measured during 1RM 

tests. Participants were instructed to perform the concentric phase of repetitions at 

their maximal speed. The Keiser machines calculated the power output for each 

repetition. The peak power was recorded as the value of the power outputs at 100% 

1RM. 

 

Body composition was assessed by a dual energy X-ray absorptiometry (DEXA) Lunar 

Prodigy machine (General Electric, Fairfield, CT). RMR was measured with ParvoMedics 

TrueMax 2400 Metabolic Measurement System (Sandy, UT) in the morning after an 

overnight fast to determine the total calorie required for the nutrition control.  

 

Fasted (12 hours, overnight) blood samples were collected from antecubital veins 

immediately before, immediately after, and 48 hours after the first and the last 

resistance exercise. Blood serum samples were drawn from an antecubital vein into 

vacutainer tubes containing a serum clotting factor (Becton Dickinson and Company, 

Rutherford, NJ) with the participant seated at rest. The serum samples were 

immediately isolated by centrifugation at 1500x g for 30 minutes at 4°C and then stored 

at -80°C for later analysis. The blood lipid panels were analyzed with standard methods 

at St. Joseph Regional Health Center’s CDC certified laboratory (Bryan, TX) to examine 

the effects of dietary cholesterol intake and resistance exercise training on blood lipid 

profiles.  
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All tests were repeated at the completion of the 12-weeks resistance exercise training 

program. 1RM and body composition were measured 48 and 72 hours after the last 

exercise, respectively. Blood samples were collected immediately before, immediately 

after, and 48 hours after the last exercise (Figure 11). 

 

Resistance Exercise Training 

Participants performed a full body resistance exercise training program on 3 non-

consecutive days per week for 12 weeks on the Keiser 300 series exercise machines. 

The resistance exercise training program consisted of 10 minutes of warm-up on a cycle 

ergometer (Schwinn Fitness, Inc., Denver, CO), 5 minutes of dynamic stretching, seated 

chest press, lat pull down, leg press, calf raises, seated leg curls, knee extension, biceps 

curls, and triceps extension exercises. Participants performed three sets of 8-12 

repetitions with resistance set at 70% of 1RM. They were instructed to perform as 

many repetitions as possible until they reached 12 repetitions or muscle failure on each 

set. When a participant was able to complete 12 repetitions on all three sets of an 

exercise, the weight was increased by 3-5% of 1RM in the next exercise session so that 

only eight repetitions would be possible. Rest periods between sets and exercises were 

restricted to one and two minutes, respectively. All exercise sessions were supervised 

by Exercise Physiology graduate students, and the participants were instructed to 
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maintain their regular physical activities at the pre-study level and not to perform any 

additional resistance exercise. 

 

Nutrition Control 

Participants were instructed to consume 50% of total calories from carbohydrate, 30% 

from fat, 20% from protein, and <10% from saturated fat to meet daily caloric 

consumption goals as determined by RMR test. They were also instructed to consume 

>1.0 g/kg/day of protein, 25-30 g/day of fiber, and <200 mg/day of cholesterol, as 

recommended by the AHA (112). Participants were required to maintain 24-hour diet 

logs at least four times per week (three weekdays and one weekend day) during the 

study period. Feedback on the diet logs was provided weekly, and adjustments were 

made as necessary to ensure adherence to the study dietary guidelines. All nutrition 

data were recorded and analyzed using the NutriBase 7 software. 

 

Supplement 

The Low Cholesterol Intake Group (LC, n=13) consumed zero additional cholesterol per 

day, the Medium Cholesterol Intake Group (MC, n=11) consumed 3.5 mg additional 

cholesterol/kg lean/day, and the High Cholesterol Intake Group (HC, n=13) consumed 

10.5 mg additional cholesterol/kg lean/day in the supplement consisting of egg white 

and yolk powder and/or peanut oil. Egg white powder and peanut oil were used to 

achieve equivalent amounts of protein and fat content for each group’s supplement, 
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and the supplement provided additional 0.9 g/kg lean/day of carbohydrate and 0.3 g/kg 

lean/d of fat equally for all groups. Peanut oil was used because its fat content best 

matched the fat in eggs among the edible oils. To minimize any potential effect that the 

variability of protein consumption may have, participants consumed protein 

supplements (0.4 g/kg lean mass/supplement; MET-Rx protein [MET-Rx USA Inc., Boca 

Raton, FL] + egg protein) every 12 hours throughout the study period.  

 

Composite Strength (CS) 

Composite strength was defined as the combination of 1RMs of chest press and leg 

press assessed by the Keiser exercise machine. 

 

CS (kg) = Chest Press 1RM (kg) + Leg Press 1RM (kg) 

 

Thigh Strength (TS) 

Thigh strength was defined as the 1RM of leg press assessed by the Keiser exercise 

machine. 

 

TS (kg) = Leg Press 1RM (kg) 
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Composite Peak Power (CP) 

Composite peak power was defined as the combination of peak powers of chest press 

and leg press assessed by the Keiser exercise machine. 

 

CP (W) = Chest Press Peak Power (W) + Leg Press Peak Power (W) 

 

Thigh Peak Power (TP) 

Thigh peak power was defined as the peak power of leg press assessed by the Keiser 

exercise machine. 

 

TP (W) = Leg Press Peak Power (W) 

 

Whole Body Muscle Quality 

Whole body muscle quality-strength (WBMQ-S) was defined as composite strength 

adjusted to total lean mass. Whole body muscle quality-peak power (WBMQ-P) was 

defined as composite peak power adjusted to total lean mass.  

 

 WBMQ-S = Composite Strength (kg) / Total Body Lean Mass (kg) 

 WBMQ-P = Composite peak power (W) / Total Body Lean Mass (kg) 
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Thigh Lean Mass and Thigh Muscle Quality 

Total thigh lean mass was determined through the construction of a four-sided polygon 

encompassing the entire region of each thigh and combining lean mass of both thighs 

together. As shown in Figure 12, the first line segment of the polygon consisted of point 

(a) inferior to the pubic bone immediately below any flesh as a reference point with 

point (b) positioned as to obliquely transverse the intertrochanter crest of the femur 

bone. The next line segment (c-d) transected the tibiofemoral joint. Two more line 

segments were drawn to enclose the entire thigh tissue (b-c, a-d). Lean mass values 

located inside the polygon were calculated with DEXA and defined as thigh lean mass. 

Inter- and intra-rater coefficient of variability was <2%. 

 

 

 

Figure 12. Example of DEXA Scan Image of Right Thigh. A four-sided 
polygon is constructed with one point below the pubic bone (a) that is 
connected to another point (b) as to obliquely cross the intertrochanter 
crest of the femur bone. Points (c) and (d) are positioned as to be 
traversing the tibio-femoral joint. Points (b)-(c) and (a)-(d) are connected 
to ensure the entire thigh was encompassed. 
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Thigh muscle quality-strength (TMQ-S) was defined as leg press 1RM adjusted to total 

thigh lean mass for both legs. Thigh muscle quality-peak power (TMQ-P) was defined as 

leg press peak power adjusted to total thigh lean mass for both legs.  

 

 TMQ-S = leg press 1RM (kg) / total thigh lean mass (kg) 

 TMQ-P (W/kg) = leg press peak power (W) / total thigh lean mass (kg) 

 

Statistics 

The assumption of normal distribution was checked using Shapiro-Wilk test. Differences 

in baseline values (age, BMI, initial body fat percentage, TG, TC, HLD, LDL, total 

cholesterol intake, total FA intake, n-3 FA intake, n-6 FA intake, MUFA intake, and PUFA 

intake) among groups and between genders were tested with One-way ANOVA and 

Student's t-test, respectively. One sample t-test was performed to compare the 

proportion of calories from protein, carbohydrate, and fat to the required nutrition 

control value. Differences of the proportion of calories from protein, carbohydrate, and 

fat on two weeks before and the first week of the training were detected by paired 

sample t-test. Changes in lean mass, strength, peak power, and muscle quality before 

and after training were detected by Mixed-ANOVA with gender and cholesterol intake 

group as the between-subject factors to detect the effects of gender and dietary 

cholesterol on skeletal muscle adaptation to resistance exercise, respectively. 
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Correlations of fatty acids to percentage changes in lean mass, strength, peak power, 

and muscle quality were analyzed by Pearson Correlation and Linear Regression.  

 

Data were expressed as means ± SEM. The comparison-wise error rate, α, was set to be 

0.05 for all statistical tests. All data were analyzed using Statistical Package for Social 

Science software (SPSS version 24; IBM, New York, NY).   

 

 

Results 

 

Baseline and Dietary Lipids among Cholesterol Intake Groups and Gender 

Baseline measurements were presented in Table 1 and Table 2. Age, body weight, body 

fat percentage, and BMI were not significantly different among cholesterol intake 

groups while men had significantly higher body weight and lower body fat percentage 

before training. Women consumed more FA and less cholesterol than men.  
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Table 1. Baseline Measurement by Cholesterol Intake Groups. 

 LC MC HC Sig. 

N 13 11 13  

Age (years) 58.77 ± 1.87 60.66 ± 1.39 60.11 ± 1.46 0.700 

Pre-train Body Weight (kg) 82.11 ± 4.40 80.81 ± 6.90 79.85 ± 4.27 0.950 

Pre-train Lean Mass (kg) 47.52 ± 2.86 46.89 ± 3.26 45.24 ± 3.10 0.858 

Pre-train Body Fat % 38.92 ± 2.93 37.61 ± 2.83 40.92 ± 1.98 0.651 

Pre-Train BMI (kg/m2) 29.07 ± 1.64 28.13 ± 1.71 27.95 ± 1.22 0.851 

Cholesterol Intake (mg/kg) 147.29 ± 10.91 141.82 ± 9.96 137.05 ± 13.30 0.817 

Total FA Intake (g/kg) 1.45 ± 0.15 1.16 ± 0.06 1.35 ± 0.13 0.271 

n-3 FA Intake (g/kg)  0.008 ± 0.001 0.005 ± 0.001 0.007 ± 0.001 0.133 

n-6 FA Intake (g/kg) 0.06 ± 0.01 0.05 ± 0.01 0.07 ± 0.01 0.065 

MUFA Intake (g/kg) 0.25 ± 0.03 0.20 ± 0.02 0.33 ± 0.06 0.140 

PUFA Intake (g/kg) 0.13 ± 0.03 0.09 ± 0.01 0.15 ± 0.03 0.210 

Cholesterol and protein did not include supplements. * No significant difference on the baseline measurements 
between groups. Data are Mean ± SEM. 
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Table 2. Baseline Measurement by Gender. 

 Men Women Sig. 

N 15 22  

Age (years) 60.77 ± 1.63 59.15 ± 1.08 0.393 

Pre-train Lean Mass (kg) 57.06 ± 1.95 39.35 ± 0.90 * >0.001 

Pre-train Body Weight (kg) 90.72 ± 3.90 74.25 ± 3.45 * 0.004 

Pre-train Body Fat % 33.04 ± 1.54 43.25 ± 1.61 * 0.000 

Pre-Train BMI (kg/m2) 29.07 ± 1.35 27.94 ± 1.13 0.525 

Cholesterol Intake (mg/kg) 179.12 ± 8.37 116.81 ± 4.27 * >0.001 

Total FA Intake (g/kg) 1.13 ± 0.05 1.46 ± 0.11 * 0.025 

n-3 FA Intake (g/kg) 0.006 ± 0.001 0.007 ± 0.001 0.359 

n-6 FA Intake (g/kg) 0.06 ± 0.01 0.08 ± 0.01 0.197 

MUFA Intake (g/kg) 0.23 ± 0.02 0.29 ± 0.04 0.262 

PUFA Intake (g/kg) 0.10 ± 0.01 0.14 ± 0.02 0.149 

Cholesterol and protein did not include supplements. * P<0.05, significantly different compared to male. Data are 
Mean ± SEM. 
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Nutrition Control  

The proportion of nutrition intake two weeks before (week -2), on the first week (week 

0), and throughout the 12-week training (week 0-12) are presented in Table 3. 

Participants initially (week -2) consumed fewer calories from carbohydrate and more 

calories from fat comparing to the required proportion. They also consumed more than 

200 mg of cholesterol per day two weeks before the training. At the start (week 0) and 

through the 12 weeks (week 0-12) of training, participants only consumed fewer 

calories from protein and maintained less than 200 mg of daily cholesterol intake 

through the training period.  

 

 

Table 3. Daily Proportion of Nutrients at Two Weeks before, at the beginning of, and throughout the Training.  

 Required Week -2 Week 0 Week 0-12 

% Calories from Carbohydrate 50 45.54 ± 1.35 * 48.08 ± 1.18 49.04 ± 0.67 

% Calories from protein 20 17.98 ± 1.05 18.04 ± 0.52 * 17.39 ± 0.40 * 

% Calories from fat 30 34.33 ± 1.11 * 30.66 ± 1.21 † 31.32 ± 0.73 

Cholesterol (mg) <200 247.77 ± 28.58 137.65 ± 8.82 *† 142.07 ± 6.58 * 

Cholesterol and calories from protein did not include supplements. * P<0.05, significantly different compared to 
required value. † P<0.05, significantly different between week -2 and week 0. Data are Mean ± SEM. 
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Adaptation to Resistance Exercise Training 

The response to the 12-week resistance exercise training among cholesterol intake 

groups and between genders are presented in Table 4. Body fat percentage decreased, 

total lean mass, thigh lean mass, composite strength (CS), thigh strength (TS), whole 

body muscle quality-strength (WBMQ-S), and thigh muscle quality-strength (TMQ-S) 

increased in all three cholesterol intake groups and both genders. The increase of CS in 

men was significantly higher than the increase in women (P=0.049).  

 

Body weight, body mass index (BMI), composite peak power (CP), thigh peak power 

(TP), whole body muscle quality-peak power (WBMQ-P), thigh muscle quality-peak 

power (TMQ-P), and resting serum lipid profile, including triglyceride, total cholesterol, 

HDL, and LDL, did not change after the training.  

 

Besides the higher CS in men than women, no significant difference was observed on 

the changes in these adaptations among cholesterol intake groups and between 

gender.  

 

 

 



70 
 

Table 4. Changes before and after Training. 

  Group   Gender  
  LC MC HC Men Women 

Body Fat Percentage Pre Train 38.92 ± 2.92 37.61 ± 2.38 40.92 ± 1.98 33.04 ± 1.54 43.25 ± 1.61 
(%) Post Train 37.99 ± 3.07 * 35.66 ± 2.60 * 39.02 ± 1.98 * 31.59 ± 1.52 * 41.61 ± 1.79 * 

Body Weight Pre Train 82.11 ± 4.40 80.81 ± 6.90 79.85 ± 4.27 90.72 ± 3.90 74.25 ± 3.45 
(kg) Post Train 83.09 ± 4.50 81.66 ± 7.08 80.40 ± 4.41 91.67 ± 3.96 74.94 ± 3.59 
BMI Pre Train 29.07 ± 1.64 28.12 ± 1.71 27.95 ± 1.22 29.07 ± 1.35 27.94 ± 1.13 

(kg/m2) Post Train 29.41 ± 1.63 28.42 ± 1.77 28.13 ± 1.26 29.38 ± 1.36 28.19 ± 1.15 
Total Lean Mass Pre Train 47.52 ± 2.86 46.89 ± 3.26 45.24 ± 3.10 57.06 ± 1.95 39.35 ± 0.90 

(kg) Post Train 48.85 ± 3.14 * 48.31 ± 3.06 * 47.18 ± 3.09 * 58.88 ± 1.87 * 40.75 ± 0.94 * 
Thigh Lean Mass Pre Train 9.92 ± 0.60 9.67 ± 0.63 9.38 ± 0.72 11.88 ± 0.36 8.14 ± 0.26 

(kg) Post Train 10.25 ± 0.63 * 10.16 ± 0.61 * 9.85 ± 0.71 * 12.30 ± 0.36 * 8.57 ± 0.25 * 
CS Pre Train 254.29 ± 29.50 216.82 ± 13.84 212.04 ± 21.72 290.81 ± 22.65 185.68 ± 9.04 

 (kg) Post Train 316.82 ± 28.34 * 297.27 ± 18.21 * 292.81 ± 31.94 * 388.03 ± 19.92 * 244.30 ± 11.16 *† 
TS Pre Train 219.19 ± 25.51 183.13 ± 11.66 177.56 ± 19.03 239.29 ± 22.07 162.86 ± 8.27 

(kg) Post Train 273.03 ± 24.44 * 256.94 ± 15.41 * 249.16 ± 26.04 * 325.38 ± 18.29 * 215.19 ± 10.44 * 
WBMQ-S Pre Train 5.21 ± 0.35 4.76 ± 0.33 4.71 ± 0.37 5.13 ± 0.39 4.74 ± 0.22 

 Post Train 6.40 ± 0.29 * 6.22 ± 0.27 * 6.06 ± 0.36 * 6.60 ± 0.30 * 5.98 ± 0.21 * 
TMQ-S Pre Train 21.57 ± 1.52 19.70 ± 1.63 19.25 ± 1.58 20.27 ± 1.83 20.15 ± 0.90 

 Post Train 26.37 ± 1.36 * 25.71 ± 1.36 * 24.86 ± 1.31 * 26.45 ± 1.35 * 25.09 ± 0.90 * 
CP Pre Train 724.73 ± 151.99 1112.50 ± 171.97 753.09 ± 152.48 796.36 ± 110.38 862.95 ± 134.72 

(W) Post Train 809.73 ± 162.32 865.88 ± 175.94 710.09 ± 105.24 872.91 ± 151.13 739.11 ± 98.73 
TP Pre Train 561.08 ± 116.61 864.11 ± 125.35 586.69 ± 111.67 583.14 ± 77.46 698.65 ± 105.50 

(W) Post Train 647.42 ± 139.92 764.78 ± 137.43 545.08 ± 72.02 661.86 ± 109.10 623.60 ± 86.34 
WBMQ-P Pre Train 16.36 ± 4.10 25.55 ± 5.53 17.96 ± 11.53 14.14 ± 1.77 22.44 ± 3.62 

(W/kg) Post Train 18.10 ± 4.55 18.27 ± 10.39 15.96 ± 6.47 15.01 ± 2.38 18.71 ± 12.40 
TMQ-P Pre Train 61.38 ± 16.63 99.64 ± 19.90 64.73 ± 12.51 49.33 ± 6.63 89.21 ± 14.26 
(W/kg) Post Train 69.19 ± 19.23 79.61 ± 14.14 57.01 ± 7.19 54.35 ± 8.88 76.35 ± 12.11 

Triglyceride Pre Train 99.40 ± 10.52 117.10 ± 15.45 123.00 ± 24.82 103.77 ± 10.24 120.35 ± 16.22 
(mmol/L) Post Train 95.50 ± 11.40 122.20 ± 19.59 114.70 ± 21.97 102.38 ± 9.80 117.24 ± 16.81 

Total Cholesterol Pre Train 183.10 ± 9.04 203.90 ± 11.52 179.70 ± 9.26 186.46 ± 8.96 190.76 ± 8.09 
(mmol/L) Post Train 178.30 ± 5.22 206.30 ± 9.41 185.40 ± 10.51 190.54 ± 10.36 189.59 ± 5.37 

HDL Pre Train 54.40 ± 3.19 55.20 ± 3.29 52.10 ± 3.78 51.00 ± 3.14 56.12 ± 2.35 
(mmol/L) Post Train 53.80 ± 3.07 54.80 ± 3.00 54.80 ± 4.08 51.69 ± 3.06 56.59 ± 2.37 

LDL Pre Train 108.70 ± 7.38 115.30 ± 6.35 103.10 ± 9.18 114.77 ± 8.35 104.65 ± 4.38 
(mmol/L) Post Train 105.30 ± 5.51 127.00 ± 9.82 107.70 ± 10.19 118.38 ± 10.54 109.47 ± 4.57 

LC: Low cholesterol intake group; MC: Median cholesterol intake group; HC: High cholesterol intake group; Pre Train: Before training; Post Train: After Training; BMI: 
Body mass index; CS: Composite strength; TS; Thigh strength; WBMQ-S: Whole body muscle quality-strength; TMQ-S: Thigh muscle quality-strength; CP: Composite 
peak power; TP: Thigh peak power; WBMQ-P: Whole body muscle quality-peak power; TMQ-P: Thigh muscle quality-peak power. * P<0.05, significantly different 
after training. ‡ P<0.05, significantly different between. † P<0.05, significantly different between the increase between genders. Data are Mean ± SEM
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Correlation of Dietary Fatty Acids to Skeletal Muscle Adaptation 

Table 5 and Figure 13-25 shows the correlation between dietary FAs and the skeletal 

muscle adaptation to resistance exercise training. Note that a large number of 

correlation analyses were performed and the possibility of type 1 error was high. These 

exploratory analyses were intended to provide a preliminary reference for future 

studies.  

 

In the analysis that included all participants, only thigh lean mass gain had positive 

correlations to several dietary n-6 FAs. In men, gains in thigh lean mass, TS, and TMQ-S 

had correlations with several dietary FAs. In women, thigh lean mass gain was positively 

correlated to dietary n-6/n-3 ratio, and total lean mass gain was negatively correlated to 

DHA intake (Figure 17). After removing the two outliers, the correlation between total 

lean mass gain and DHA intake in women was deceased (R2=0.030, P=0.466). In the LC 

group, thigh lean mass was correlated to GLA intake, while peak power gains, including 

CP, TP, WBMQ-P, and TMQ-P, were correlated to several dietary FAs. In MC and LC 

groups, thigh lean mass gain was correlated to dietary MUFA and n-6 FAs, respectively. 
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Table 5. Correlation of Dietary Fatty Acids to Skeletal Muscle Adaptation to Resistance Exercise Training. 

  Total Fat n-3 n-6 Sc-SFA PUFA MUFA SFA n-6/n-3 DHA LA GLA 
All  Total Lean Mass (kg) 0.004 0.001 0.002 0.002 0.011 0.023 0.017 0.003 0.023 0.001 0.037 

Participants Thigh Lean Mass (kg) 0.090 0.001 0.117 * 0.025 0.105 * 0.163 * 0.065 0.162 * 0.002 0.061 0.136 * 

 CS (kg) 0.001 0.029 0.007 0.011 0.000 0.000 0.031 0.010 0.038 0.079 0.002 

 TS(kg) 0.000 0.042 0.011 0.010 0.002 0.001 0.026 0.011 0.032 0.061 0.000 

 WBMQ-S 0.000 0.028 0.008 0.010 0.000 0.000 0.027 0.012 0.031 0.084 0.000 

 TMQ-S 0.002 0.046 0.022 0.005 0.007 0.008 0.015 0.024 0.026 0.044 0.005 

 CP (W) 0.000 0.047 0.004 0.002 0.028 0.011 0.020 0.027 0.006 0.047 0.025 

 TP (W) 0.001 0.005 0.000 0.003 0.003 0.001 0.002 0.017 0.002 0.020 0.006 

 WBMQ-P (W/kg) 0.001 0.047 0.004 0.003 0.025 0.010 0.020 0.029 0.011 0.046 0.021 

 TMQ-P (W/kg) 0.002 0.004 0.000 0.003 0.001 0.000 0.001 0.022 0.001 0.013 0.002 

Men Total Lean Mass (kg) 0.102 0.213 0.083 0.216 0.131 0.252 0.121 0.166 0.015 0.000 0.209 

 Thigh Lean Mass (kg) 0.224 0.013 0.013 0.582 * 0.025 0.117 0.356 * 0.009 0.001 0.048 0.568 * 

 CS (kg) 0.100 0.072 0.029 0.028 0.038 0.014 0.044 0.011 0.038 0.225 0.000 

 TS(kg) 0.096 0.089 0.032 0.017 0.051 0.021 0.004 0.006 0.037 0.287 * 0.002 

 WBMQ-S 0.086 0.086 0.033 0.015 0.047 0.022 0.033 0.006 0.039 0.223 0.001 

 TMQ-S 0.078 0.093 0.034 0.005 0.056 0.029 0.027 0.005 0.038 0.267 * 0.010 

 CP (W) 0.212 0.067 0.054 0.024 0.006 0.059 0.060 0.101 0.004 0.067 0.138 

 TP (W) 0.030 0.003 0.000 0.037 0.021 0.000 0.003 0.041 0.021 0.003 0.011 

 WBMQ-P (W/kg) 0.197 0.053 0.047 0.014 0.003 0.048 0.050 0.094 0.002 0.052 0.118 

 TMQ-P (W/kg) 0.026 0.004 0.001 0.043 0.023 0.000 0.005 0.038 0.022 0.004 0.005 

Women Total Lean Mass (kg) 0.000 0.058 0.000 0.086 0.002 0.008 0.003 0.014 0.230 * 0.001 0.009 

 Thigh Lean Mass (kg) 0.042 0.001 0.115 0.017 0.094 0.147 0.028 0.183 * 0.089 0.054 0.053 

 CS (kg) 0.000 0.002 0.000 0.008 0.036 0.008 0.032 0.005 0.091 0.095 0.015 

 TS(kg) 0.001 0.005 0.001 0.009 0.024 0.005 0.027 0.004 0.089 0.062 0.006 

 WBMQ-S 0.000 0.000 0.000 0.001 0.040 0.006 0.035 0.010 0.050 0.121 0.014 

 TMQ-S 0.005 0.005 0.001 0.005 0.007 0.000 0.017 0.026 0.059 0.040 0.001 

 CP (W) 0.000 0.058 0.004 0.000 0.060 0.013 0.022 0.011 0.006 0.085 0.016 

 TP (W) 0.000 0.039 0.002 0.005 0.032 0.006 0.015 0.006 0.005 0.059 0.014 

 WBMQ-P (W/kg) 0.001 0.065 0.003 0.002 0.056 0.013 0.024 0.013 0.018 0.085 0.014 

 TMQ-P (W/kg) 0.001 0.039 0.000 0.007 0.023 0.003 0.013 0.010 0.010 0.046 0.009 



73 
 

Table 5 Continued.  
  Total Fat n-3 n-6 SCFA PUFA MUFA SFA n-6/n-3 DHA LA GLA 
LC Total Lean Mass (kg) 0.001 0.105 0.053 0.161 0.006 0.053 0.007 0.006 0.021 0.025 0.025 
 Thigh Lean Mass (kg) 0.130 0.004 0.011 0.017 0.112 0.048 0.231 0.041 0.032 0.284 0.385 * 
 CS (kg) 0.077 0.040 0.004 0.043 0.048 0.008 0.139 0.037 0.120 0.237 0.232 
 TS(kg) 0.057 0.057 0.016 0.055 0.018 0.000 0.105 0.032 0.110 0.168 0.160 
 WBMQ-S 0.102 0.023 0.001 0.021 0.063 0.020 0.178 0.047 0.116 0.243 0.239 
 TMQ-S 0.038 0.064 0.027 0.054 0.006 0.001 0.070 0.026 0.106 0.116 0.102 
 CP (W) 0.004 0.398 * 0.325 0.261 0.506 * 0.481 * 0.192 0.129 0.008 0.550 * 0.666 * 
 TP (W) 0.013 0.071 0.163 0.007 0.382 * 0.334 * 0.099 0.021 0.035 0.492 * 0.506 * 
 WBMQ-P (W/kg) 0.006 0.487 * 0.358 0.368 * 0.518 * 0.531 * 0.219 0.136 0.027 0.529 * 0.646 * 
 TMQ-P (W/kg) 0.005 0.074 0.145 0.010 0.332 * 0.309 0.070 0.033 0.026 0.421 * 0.424 * 
MC Total Lean Mass (kg) 0.437 0.074 0.000 0.323 0.022 0.211 0.169 0.000 0.070 0.007 0.106 
 Thigh Lean Mass (kg) 0.353 0.163 0.089 0.164 0.194 0.536 * 0.164 0.026 0.048 0.065 0.161 
 CS (kg) 0.004 0.069 0.003 0.119 0.041 0.125 0.065 0.206 0.042 0.007 0.064 
 TS(kg) 0.000 0.048 0.000 0.111 0.029 0.095 0.061 0.224 0.052 0.002 0.058 
 WBMQ-S 0.001 0.056 0.004 0.090 0.035 0.008 0.039 0.216 0.062 0.011 0.043 
 TMQ-S 0.005 0.023 0.001 0.059 0.008 0.034 0.029 0.246 0.066 0.000 0.024 
 CP (W) 0.139 0.014 0.002 0.143 0.023 0.003 0.032 0.128 0.064 0.082 0.102 
 TP (W) 0.071 0.028 0.015 0.141 0.050 0.004 0.032 0.109 0.097 0.070 0.090 
 WBMQ-P (W/kg) 0.121 0.017 0.048 0.159 0.022 0.003 0.027 0.127 0.068 0.079 0.118 
 TMQ-P (W/kg) 0.050 0.031 0.015 0.146 0.056 0.008 0.025 0.106 0.110 0.068 0.093 
HC Total Lean Mass (kg) 0.022 0.110 0.008 0.032 0.122 0.062 0.026 0.000 0.043 0.284 0.007 
 Thigh Lean Mass (kg) 0.220 0.009 0.320 * 0.019 0.209 0.259 0.018 0.470 * 0.000 0.014 0.059 
 CS (kg) 0.008 0.112 0.039 0.000 0.028 0.023 0.015 0.025 0.037 0.188 0.172 
 TS(kg) 0.005 0.140 0.041 0.000 0.041 0.027 0.029 0.022 0.037 0.275 0.176 
 WBMQ-S 0.010 0.125 0.039 0.001 0.037 0.028 0.013 0.024 0.046 0.220 0.174 
 TMQ-S 0.012 0.143 0.062 0.000 0.059 0.044 0.024 0.042 0.036 0.262 0.188 
 CP (W) 0.116 0.051 0.006 0.005 0.004 0.009 0.080 0.020 0.039 0.000 0.095 
 TP (W) 0.093 0.006 0.003 0.025 0.010 0.009 0.117 0.010 0.045 0.001 0.045 
 WBMQ-P (W/kg) 0.117 0.002 0.069 0.004 0.055 0.009 0.182 0.018 0.040 0.000 0.094 
 TMQ-P (W/kg) 0.102 0.006 0.006 0.027 0.013 0.012 0.117 0.015 0.046 0.002 0.051 

LC: Low cholesterol intake group; MC: Median cholesterol intake group; HC: High cholesterol intake group; CS: Composite strength; TS; Thigh strength; WBMQ-S: 
Whole body muscle quality-strength; TMQ-S: Thigh muscle quality-strength; CP: Composite peak power; TP: Thigh peak power; WBMQ-P: Whole body muscle quality-
peak power; TMQ-P: Thigh muscle quality-power; n-3: Omega 3 fatty acids; n-6: Omega 6 fatty acids, SCFA: Short-chain fatty acids; PUFA: Polyunsaturated fatty acids; 
MUFA: Monounsaturated fatty acids; SFA: Saturated fatty acids; n-6/n-3: Omega 6 to omega 3 fatty acid ratio; DHA: Docosahexaenoic acid; LA: Linoleic acid; GLA: 
gamma-linoleic acid. * P<0.05, significant correlation. Data are R-square (R2). 
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Figure 13. Correlation of Change in Thigh Lean Mass Gain to Dietary (A) Omega 6 Fatty Acids, (B) PUFA, (C) MUFA, (D) 
Omega 6 to Omega 3 Fatty Acids Ratio, and (E) GLA, per KG Lean Mass, in All Participants. 
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(B) 

 

(C) 

 

 

Figure 14. Correlation of Change in Lean Mass Gain to Dietary (A) Short-chain Saturated Fatty Acids, (B) Saturated 
Fatty Acids, and (C) GLA per KG Lean Mass in Men. 
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. 

 
Figure 15. Correlation of Change in Thigh Strength (TS) to Dietary LA in Men. 

 

 

 
Figure 16. Correlation of Change in Thigh Muscle Quality- Strength (TMQ-S) to Dietary LA in Men. 
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Figure 17. Correlation of Change in Lean Mass Gain to Dietary DHA per KG Lean Mass in Women. 

 

 

 
Figure 18. Correlation of Change in Thigh Lean Mass to Dietary Omega-6 to Omega-3 Fatty Acids Intake Ratio per KG 
Lean Mass in Women. 
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Figure 19. Correlation of Change in Thigh Lean Mass to Dietary GLA per Lean Mass in LC. 

 
 
 
 
 
 
 
 
 
 
(A) 

 

(B) 

 
Figure 20. Correlation of Change in Composite Peak Power (CP) to Dietary (A) Omega-3 Fatty Acids, (B) PUFA, (C) 
MUFA, (D) LA, and (E) GLA per KG Lean Mass in LC. 

 
 



79 
 

(C) 

 

(D) 

 
(E) 

 

 

Figure 20 Continued.  
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(A) 

 

(B) 

 
(C) 

 

(D) 

 
Figure 21. Correlation of Change in Thigh Peak Power (TP) to Dietary (A) PUFA, (B) MUFA, (C) LA, and (D)GLA per KG 
Lean Mass in LC. 
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(F) 

 
Figure 22. Correlation of Change in Whole Body Muscle Quality-Peak Power (WBMQ-P) to Dietary (A) Omega-3 Fatty 
Acids, (B) Short-chain Saturated Fatty Acids, (C) PUFA, (D) MUFA, (E) LA, and (F) GLA per KG Lean Mass in LC. 
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(C) 

 

 

Figure 23. Correlation of Change in Thigh Muscle Quality-Peak Power (TMQ-P) to Dietary (A) PUFA, (B) LA, and (C) 
GLA per KG Lean Mass in LC. 
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Figure 24. Correlation of Change in Thigh Lean Mass to Dietary MUFA per Lean Mass in MC. 

 

 

(A) 

 

(B) 

 
Figure 25. Correlation of Change in Thigh Lean Mass to Dietary (A) Omega-6 Fatty Acids and (B) Omega-6 to Omega-
3 Fatty Acids Ratio per Lean Mass in HC. 
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Discussion 

 

The results in this study showed that the 12-week whole-body progressive resistance 

exercise training program decreased body fat percentage, increased skeletal muscle 

mass, strength, and quality. These changes were not affected by different levels of 

cholesterol intake. The exploratory analyses suggested potential effects of dietary FAs 

on the skeletal muscle adaptation to resistance exercise training. 

 

Resistance exercise training has been shown to increase lean mass and strength in 

order adults in previous studies (113, 139). In this study, after 12 weeks of the whole-

body resistance exercise training, lean mass, strength, and muscle quality-strength 

were increased, and body fat percentage was decreased in all three cholesterol intake 

groups and both gender. These increases were consistent with previous studies and 

expected. However, the increases were not significantly different among groups and 

between gender. Although we expected dietary cholesterol to enhance the adaptation 

of skeletal muscle with resistance exercise training, higher cholesterol intake was not 

shown to have the effects.  

 

Total cholesterol, LDL, and HDL did not change after the training, and there was no 

significant difference in the lipid profile among cholesterol intake groups and between 

gender. It may indicate that when the body is capable of maintaining stable cholesterol 
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levels, cholesterol supplementation is not necessary for enhancing the skeletal muscle 

adaptation to resistance exercise training. Furthermore, with resistance exercise 

training, the excess cholesterol intake did not increase serum cholesterol. A study by 

Crouse et al. (32) showed that plasma volume decreased immediately and increased 24 

hours after a high intensity exercise (80% VO2 max). In the present study, the serum 

lipid levels were not adjusted to plasma volume. Therefore, the interpretation on the 

changes in lipid profile in this study warranted caution.  

 

There was no change in skeletal muscle peak power after the 12-week resistance 

exercise training program. Cholesterol intake and gender showed no effects on the 

peak power with the training. In a previous study by Fielding et al. (41) comparing the 

changes in peak power between high- and low-velocity resistance exercise training, the 

high-velocity training showed a significantly higher increase in peak power than the 

low-velocity training. Their study showed the need of incorporating velocity in training 

to improve the peak power. Since the training protocol in the present study did not 

include high velocity, the results were expected.  

 

Although the proportion of fat intake was controlled in this study, the type of FAs 

consumed from the diet was not modulated. The association of different FAs to the 

resistance exercise training-induced skeletal muscle adaptation were analyzed. 

Although the associations between some fatty acids to gains in lean mass, strength, and 
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muscle quality in different groups and gender were identified, the large number of 

analyses (a necessary Type I error adjustment) prevents any conclusions from this data. 

However, as preliminary data, these results may help direct more focused studies on 

the effects of certain dietary FAs on the skeletal muscle adaptation to resistance 

exercise.  

 

After 12 weeks of whole-body resistance exercise training, both men and women had 

decreases in body fat percentage and increases in lean mass, which were not 

significantly different between gender, identifying a similar response to the resistance 

exercise training in body composition between gender. These results suggest that the 

lean mass gain induced by resistance exercise training is more dependent of starting 

lean mass than gender. The common perception that men gain more muscle than 

women is not supported by this study.  

 

Within two weeks of adjustment before the training, participants were able to adapt 

their proportions of dietary carbohydrate and fat to the required value while keeping 

daily cholesterol intake lower than 200 mg, and these adjustments were maintained 

throughout the 12 weeks of training. The two sessions of nutrition education and two 

weeks of adjustments were efficient for the nutritional control.  
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Protein is essential for the skeletal muscle adaptation to resistance exercise on lean 

mass and strength (24). Therefore, it is important for the participants to consume 

sufficient protein during the study. Although the proportion of dietary protein (without 

supplement) were lower than advised, the protein supplements were provided to not 

only ensure the sufficiency but also minimize the potential effect of the variability of 

protein consumption.  

 

 

Conclusion 

 

This study showed no significant difference among different levels of cholesterol intake 

on the skeletal muscle adaptation to the 12-week whole-body progressive resistance 

exercise training. While serum cholesterol remained the same after the training, excess 

dietary cholesterol may not be necessary for enhancing the adaptation, and the dietary 

cholesterol did not affect serum cholesterol level when combined with the resistance 

exercise training. This study suggested a potential association between dietary FAs and 

resistance exercise training-induced skeletal muscle gain in mass, strength, and muscle 

quality. Further studies are warranted to investigate the effects of FAs on skeletal 

muscle adaptation to resistance exercise training by controlling selected FAs, which 

may be suggested by the results of this study.  
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CHAPTER III 

DIETARY LIPIDS, PPARδ, AND SHORT-TERM HIGH-INTENSITY RESISTANCE 

EXERCISE 

 

 

Overview 

 

Resistance exercise-induced muscle damage promotes inflammation and muscle 

protein synthesis. Cholesterol and FAs are essential for the inflammation and cell 

signaling through energy and immune cell proliferation and membrane fluidity 

regulation. The purpose of this study is to investigate the effects of cholesterol on 

muscle protein synthesis and the association between lipids and the exercise-induced 

muscle soreness. PPARδ, the key lipid metabolism regulator in skeletal muscle, was also 

measured to investigate the effects of resistance exercise and dietary cholesterol on 

the regulation of lipid metabolism. Sixteen untrained, healthy young men and women 

were randomly assigned to a high cholesterol (HC: 10.5 mg additional cholesterol/kg 

lean/day, n=9) or a low cholesterol intake group (LC: 0 mg additional cholesterol, n=7) 

and instructed to perform two bouts of high-intensity eccentric resistance exercise (RE, 

85% 1RM) consisting of five sets of unilateral leg presses and extensions to fatigue on 

day 0 and day 9. Two light exercise (LE, 50% 1RM) consisting of three sets and ten 
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repetitions per set was performed on day 3 and 6. Muscle biopsies were performed on 

both exercised (EX) and non-exercised (CON) legs 22 hours after the second RE. 

Deuterium oxide (2H2O, heavy water) was used to measure muscle protein synthesis. 

PPARδ protein content was analyzed via Western Blotting. The results showed no effect 

of dietary cholesterol on skeletal muscle protein synthesis in respond to the training. 

Soreness levels were lower with high cholesterol intake. Despite the expectation of the 

negative correlation, there were positive correlations of n-3 FAs (DHA, DPA, and EPA) to 

muscle soreness. PPARδ protein content increased 22 hours after the exercise in the 

high cholesterol intake group. In conclusion, the present study revealed potential 

effects of dietary lipids on skeletal muscle recovery after resistance exercise. It also 

showed a short-term effect of resistance exercise on PPARδ protein content with high 

cholesterol intake.  

 

 

Introduction 

 

Resistance exercise-induced muscle damage causes inflammation, which results in the 

recruitment of macrophages and neutrophils which break down damaged muscle tissue 

and produce cytokines including interleukin-6 (IL-6) and transforming growth factor-β 

(TGFβ) (28, 57, 77, 134). IL-6 induces satellite cell proliferation by activating the MAPK 

and PI3K cell signaling cascades via JAK signaling pathway (60, 127). TGFβ enhances 
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muscle differentiation and regulates local collagen synthesis to build up skeletal muscle 

architecture (57). They are essential for muscle hypertrophy in response to resistance 

exercise. 

 

Cholesterol is a part of the semipermeable membrane, regulates membrane fluidity 

and functions of membrane proteins, and modulates membrane trafficking and cell 

signaling processes (70). It is involved in the process of inflammation, cell signaling, and 

cell stability during muscle hypertrophy. At the inflammation site, cholesterol provides 

the component of the cell membrane that increases membrane viscosity and promotes 

stability. With or without inflammation, cholesterol facilitates the cell signaling 

pathways that promote muscle protein synthesis, including PKB-mTOR, PA-mTOR, and 

MAPK pathways, by forming lipid rafts as platforms for transporting cell signaling 

molecules (121). Lipid rafts are also essential for the muscle growth through the 

pathways activated by insulin, IGF-1, TNF-α, EGFR, PDGFR, IL-6, ERK-2, AKt-1 and 

steroid hormones. Furthermore, cholesterol contributes to the formation of the steroid 

hormone such as testosterone that stimulates muscle growth (121).  

 

Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors 

that belong to the nuclear receptor superfamily. PPARα, PPARδ, and PPARγ are three 

PPARs that have been identified. PPARα is primarily expressed in liver, kidneys, heart 

and skeletal muscle. PPARγ promotes adipogenesis and lipid storage and is expressed 
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mostly in adipose tissues and immune cells such as macrophages (52). PPARδ is the 

most abundant PPAR isoform in skeletal muscle and is the key regulator of FA 

catabolism and metabolic adaptation in skeletal muscle (156). It may be activated by 

ligand binding (FAs) or phosphorylation. Short-term exercise and endurance training 

have been shown to increase PPARδ expression (93).  

 

Exercise elevates FFA levels, a physiological signal that triggers the increase in PPARδ 

protein content (37). mRNA expression of PPARδ and PGC1-α were shown to increase 

three hours after a bout of high-intensity cycling exercise (93). Similar PPARδ mRNA 

expression has been observed after the endurance exercise performed at either 

elevated or depressed FA levels, suggesting that muscle contraction, not the nutritional 

condition, may be the main contributor to the elevated PPARδ mRNA expression 

induced by exercise (37, 157). Muscle contraction activates several kinases, including 

MAPK, AMPK, and PKA, which may phosphorylate PPARδ (20, 34). Resistance exercise 

induces muscle contraction and the release of FFAs (50). Both are the stimulators of 

PPARδ expression. However, the effect of resistance exercise on PPARδ protein content 

in humans has not been studied.  

 

The purpose of this study is to investigate the effects of dietary cholesterol and FAs on 

muscle protein synthesis and soreness after the short-term high-intensity resistance 
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exercise. PPARδ protein content will also be analyzed to test the effects of the 

resistance exercise on skeletal muscle lipid regulation.   
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Methods 

 

 

Figure 26. Timeline of Study 2. 

 

 

Subjects 

Sixteen untrained, healthy young men (n=12) and women (n=4), 20 to 35 years old, 

were recruited through advertisements and flyers on the campus of Texas A&M 

University. Participants were required to be generally healthy, non-smoking, and able 

to perform exercise testing and training. They were excluded if any of the following 

condition was detected via pre-screen testing and questionnaire: high blood pressure 

(>160/100), cardiac arrhythmias, cancer, hernias, aortic aneurysms, diabetes, kidney 

disease, and lung disease. Furthermore, to limit variances in training history, those who 

participated in one or more hours of resistance exercise per week were disqualified. 



94 
 

Participants were randomly assigned to a Low Cholesterol Intake Group (LC, n=7, 5 men 

and 2 women, zero additional cholesterol per day) or High Cholesterol Intake Group 

(HC, n=9, 7 men and 2 women, 10.5 mg per kilogram lean mass of additional 

cholesterol per day) in a double-blind manner. Figure 26 shows the general protocol of 

this study. This study was approved by Texas A&M University Institutional Review 

Board (IRB2015-0835M), and all the participants provided written informed consent 

before participating in the study. 

 

Orientation 

All participants attended a session of nutrition education instructed by a registered 

dietitian (RD) and an exercise orientation before the start of the study. During the 2-

hour nutrition education, the participants learned about proper nutrient intake, calorie 

and portion control, and study specific diet guidelines as well as the use of the 

Nutribase nutrition software (Nutribase; version 9; Client Intake Module; Cybersoft Inc., 

Phoenix, AZ). The Nutribase software was used to maintained diet logs by the 

participants throughout the study. During the exercise orientation, participants were 

provided the information and knowledge on the resistance exercise, and the proper 

exercise techniques were demonstrated. The participants became familiarized with the 

resistance exercise by practicing the techniques with light weight on the Keiser 300 

series pneumatic exercise machines (Keiser, Palo Alto, CA) and the intensity was 

gradually increased to 40% of their estimated maximum strength (4/10 on the 
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Omnibus-RE Scale [OMNI-RES] ratings of perceived exertion [RPE]) (47). The purpose of 

the exercise orientation was to allow rapid motor learning while minimizing skeletal 

muscle adaptations to standardize strength measures, estimate maximum strength 

(1RM) before testing, and reduce the possibility of exercise-induced injury. 

 

Testing 

Following the orientation and at least 72 hours before the first resistance exercise 

session, 1RM, peak power, body composition, and RMR were measured. 1RM was 

determined by gradually increasing exercise weights until the maximum resistance, at 

which only one repetition could be completed with proper form in full range of motion, 

was reached using the Keiser machines. Following a three-minute warm-up on a cycle 

ergometer (Schwinn Fitness, Inc., Denver, CO) and stretching, participants performed 

four warm-up repetitions with an exercise weight corresponding to 55% of an 

estimated 1RM obtained during the exercise orientation. The weight was then 

increased to 75% of a re-estimated 1RM (based on RPE) for only one repetition being 

performed. After 60 seconds of rest, the weight was increased again to 90% of a re-

estimated 1RM for one repetition being performed. Additional attempts for 1RM was 

made after 60 seconds of rest until the true 1RM value was obtained, in a manner that 

the total number of 1RM attempts was minimized. 
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Body composition was assessed by a dual energy X-ray absorptiometry (DEXA) Lunar 

Prodigy machine (General Electric, Fairfield, CT). RMR was measured with ParvoMedics 

TrueMax 2400 Metabolic Measurement System (Sandy, UT) in the morning after an 

overnight fast to determine the total calorie required for the nutrition control.  

 

Resistance Exercises 

Participants performed a short-term high-intensity resistance exercise protocol 

consisting of unilateral leg press and extension with five sets and repetitions until 

failure per set at 85% 1RM performed on the Keiser 300 series pneumatic exercise 

machines (Keiser, Palo Alto, CA) in the Resistance Exercise (RE) sessions. During the RE 

session, participants were asked to concentrate on the 3-second eccentric contraction. 

The Light Exercise (LE) sessions consisted of unilateral leg press and extension with 

three sets and ten repetitions per set at 50% 1RM performed on the Keiser machine. 

One leg (EX) performed two REs and two LEs while the other leg served as non-exercise 

control (CON) throughout the study. The RE was performed on the starting day (day 0) 

and the test day (day 9) while LE was performed on day 3 and 6 (Figure 26).  

 

Nutrition Control 

Participants were instructed to consume 50% of total calories from carbohydrate, 30% 

from fat, 20% from protein, and <10% from saturated fat to meet daily caloric 

consumption goals as determined by RMR test. They were also instructed to consume 
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>1.0 g/kg/day of protein, 25-30 g/day of fiber, and <200 mg/day of cholesterol, as 

recommended by the AHA (112). Nutrition control started three days before the 

resistance exercise program. Participants were required to maintain 24-hour diet logs 

three times per week during the study period. Feedback on the diet logs was provided, 

and adjustments were made as necessary to ensure adherence to the study dietary 

guidelines. All nutrition data were recorded and analyzed using the NutriBase 9 

software.  

 

On the test day (Day 9), caloric-standardized meals were provided. Caloric 

requirements were calculated using the Harris-Benedict equation and meals were 

provided following a macronutrient ratio of 55% carbohydrates, 20% fat, and 25% 

protein. Meals consisted of a Lean Cuisine Culinary Collection (Wilkes-Barre, PA) frozen 

meal for breakfast and dinner and any additional caloric needs were provided 

throughout the day with Boost High Protein (Fremont, MI) drinks. 

 

Supplement 

Low Cholesterol Intake Group (LC) consumed zero additional cholesterol per day, and 

High Cholesterol Intake Group (HC) consumed 10.5 mg/kg lean/day of additional 

cholesterol in the supplement consisting of egg yolk, egg white, peanut oil, and Boost 

High Protein (Fremont, MI) drinks. Egg white and peanut oil were used to achieve 

equivalent amounts of protein and fat content for each group’s supplement, and the 
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supplement additionally provided 0.9 g/kg lean/day of carbohydrate and 0.3 g/kg 

lean/d of fat equally for all groups. Peanut oil was used because its fat content best 

matched the fat in eggs among the edible oils. To minimize any potential effect that the 

variability of protein consumption might have, participants consumed protein 

supplements (0.4 g/kg lean mass/supplement; MET-Rx protein [MET-Rx USA Inc., Boca 

Raton, FL] + egg protein) every 12 hours throughout the study period.  

 

Soreness Assessment 

The soreness levels were assessed on day 0 (before the first RE), day 1, day 2, day 3 

(before the first LE), day 6 (before the second LE), day 9 (before the second RE), day 10 

(before the biopsy), day 11, and day 12. As shown in Figure 27, a soreness visual 

analogue scale adapted from a previous study (25) with the top as “extremely sore” 

and bottom as “no soreness at all” was used to obtain the soreness levels. Participants 

were asked to mark their soreness levels on the scale based on how sore they felt on 

their EX legs. To identify their soreness level, the distance between the marked point 

and the bottom of the scale bar was measured and adjusted to the total length of the 

scale bar.  
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Figure 27. Soreness Visual Analogue Scale. 

 

 

Muscle Biopsy 

Muscle samples were taken from both EX and CON legs at 1 and 22 hours after the 

second RE on day 9. Muscle biopsies were obtained from the vastus lateralis using a 5-

mm needle with local anesthetic (1% Xylocaine HCL). Visible fat, connective tissue and 

blood were removed from all muscle samples which were immediately frozen in liquid 
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nitrogen (-190°C) and stored at -80°C until analysis. Participants were able to return to 

regular activities in a few hours after the procedure.  

 

Muscle Protein Synthesis Rate 

Muscle protein synthesis rate was accessed by analyzing the myofibrillar Fractional 

Synthetic Rate (FSR) using deuterium oxide (2H2O, heavy water). Deuterium oxide 

(2H2OCambridge Isotopes, Andover, MA) was provided in four servings of 6.5 ml of 

70% 2H2O/kg lean body mass at the following time points: four hours before RE, two 

hours before RE, three hours after RE, and five hours after RE. The administration of 

deuterium oxide was aiming for approximately 0.8% of total body water enrichment. 

The 2H rapidly equilibrated with body water leading to the intracellular 2H labeling of 

alanine via transamination reactions (47). The gas chromatography-mass spectrometry 

(GC-MS, Agilent 7890 GC/5975 MSD, Santa Clara, CA) was used to determine 2H labeled 

alanine incorporated into skeletal muscle and plasma as the marker of muscle protein 

synthesis (47). 

 

To determine Plasma 2H ratio, 2 μl of 10 N NaOH and 4 μl of 5% (vol:vol) acetone in 

acetonitrile solution was added to 20 μl of each plasma sample and incubate for 24 

hours. The reaction was stopped by the addition of 0.6 ml of chloroform and 0.5 g of 

Na2SO4 (a drying agent) to remove the acetone. A 1 μl of sample was injected and 
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separated by size (using helium) in the GC-MS. Samples were then be injected into the 

mass spectrometer to differentiate between deuterated and non-deuterated acetone. 

To determine myofibrillar FSR, 30 mg of tissue was homogenized with 360 µl Norris 

buffer and 40 µl 10% Triton on ice for a minimum of 1 hour and then centrifuged at 

14,000 rpm for 30 min at 4°C. After discarding the supernatant, 0.3 ml of 10% TCA was 

added to the pellet which was then homogenized with a Polytron homogenizer and 

centrifuged at 3800 rpm for 15 minutes at 4°C. The supernatant was discarded and 0.3 

ml of 10% TCA was added to the pellet and vortexed. This process was repeated for 

three additional times to remove all free amino acids in the sample. Each sample was 

then incubated in 0.4 ml of 6 N HCl for 24 hours at 100°C to hydrolyze the proteins into 

free amino acids. A solution with 3:2:1 ratio of Methyl-8 (Fish Scientific, Waltham, MA), 

methanol, and acetonitrile was used to derivatize the samples before analysis. After 

heated at 70°C for one hour, a 1 μl of the aliquot was injected with a split ratio of 10:1 

into the GC-MS to determine the ratio of protein-bound 2H-Alaine to unlabeled alanine. 

The rate of protein synthesis was calculated as using the following equation: 

 

Protein Synthesis Rates = EA · [EBW X 3.7 X t]-1 X 100 

 

EA indicated the quantity of protein bound 2H-labeled alanine (mole % excess), EBW 

represented the quantity of 2H2O in body water from plasma (mole % excess), and t 
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represented time in hours or days. The constant number 3.7 was the average number 

of H on protein-bound alanine that was exchanged with 2H from 2H2O in body water. 

 

PPARδ Protein Analysis 

PPARδ protein content was analyzed via western blotting. Muscle tissue was weighted 

and pulverized at low temperature with liquid nitrogen and then homogenized in cold 

buffer (Norris Buffer (pH 7.4) + 10% TritonX100). The Norris buffer consisted of 5 mM β-

glycerophosphate, 200 μM ATP, 25 mM Hepes, 1.5 ml Protease Inhibitor cocktail, 25 

mM Benzamidine, 2 mM PMSF, 4 mM EDTA, 10 mM MgCl2 and water to 250 ml. The 

homogenate was centrifuged at 14000 RPM, 4°C for 30 minutes. The bicinchoninic acid 

protein assay (BCA) was then performed to determine the protein concentration of the 

supernatant.  

 

The amount of supernatant used in the Sodium dodecyl sulfate (SDS) gel 

electrophoresis was determined by its protein content obtained from BCA. An equal 

amount of protein in the supernatant was diluted in the buffer (125 mM Tris, 4% SDS, 

20% glycerol, 0.002% bromophenol blue, and 200 mM DTT, pH 6.8) at the ratio of 1 

buffer to 3 supernatant. Proteins were separated across a polyacrylamide gel by 

electrophoresis and then transferred to nitrocellulose membranes (Amersham 

Biosciences, Piscataway, NJ).  After transfer, membranes were incubated in blocking 

buffer (5% nonfat dried milk in Tris-buffered saline) at room temperature for one hour, 
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followed by incubation with rabbit anti-PPARδ solution (antibody : blocking buffer = 1 : 

500) (Santa Cruz Biotechnology, Santa Cruz, CA) for 8 hours at 4°C. After washing with 

Tris-buffered saline, the membranes were then incubated with goat anti-rabbit 1gG 

coupled to horseradish peroxidase (Santa Cruz Biotechnology, Santa Cruz, CA) for 1 

hour at room temperature and then developed and visualized via enhanced 

chemiluminescence (Alpha Innotech, FluorChem SP, San Leandro, CA). A protein 

standard (obtained from rat quadriceps) was loaded on each gel to normalize the 

absorbance. Absorbance units (AU) were used to express the normalized absorbance.  

 

Statistics 

The assumption of normal distribution was checked using Shapiro-Wilk test. Differences 

in soreness levels and baseline values (age, BMI, and body fat percentage) between 

groups and genders were tested with Student's t-test. Differences in muscle protein 

synthesis (FSR) between EX and CON legs were detected by Mixed-ANOVA with 

cholesterol intake group as the between-subject factor to detect the effects of dietary 

cholesterol on skeletal muscle FSR after the resistance exercise. The difference in 

PPARδ protein content between the EX and CON legs was analyzed by Mixed ANOVA 

with body fat percentage as the between subject factor. Simple main effect F test was 

then performed to detect the difference between CON and EX legs in HC and LC groups. 

Correlations of fatty acids to soreness levels were analyzed by Pearson Correlation and 

Linear Regression.  
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Data were expressed as means ± SEM. The comparison-wise error rate, α, was set to be 

0.05 for all statistical tests. All data were analyzed using Statistical Package for Social 

Science software (SPSS version 24; IBM, New York, NY).   

 

 

Results 

 

Baseline 

Table 6 shows the baseline measurements in LC and HC groups. There were no 

differences in age (P=0.444), body weight (P=0.467), lean mass (P=0.805), and body fat 

percentage (P=0.185) between HC and LC.  

 

 

Table 6. Baseline Measurements in LC and HC Groups. 

 LC HC 

Age (years) 22.96 ± 1.13 22.02 ± 7.48 

Body Weight (kg) 70.67 ± 7.48 77.16 ± 5.00 

Lean Mass (kg) 49.82 ± 5.00 51.35 ± 3.70 

Body Fat % 26.06 ± 2.42 30.66 ± 2.22 

No significant difference on the baseline measurements between groups. Data are Mean ± SEM. 
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Dietary Cholesterol and Skeletal Muscle Protein Synthesis 

In the LC group, the FSRs were 0.85±0.23 in the CON and 0.55±0.05 %/h in the EX leg 

(P=0.255). In the HC group, the FSRs were 0.46±0.05 in the CON and 0.74±0.17 %/h in 

the EX leg (P=0.182). Cholesterol intake had no significant effect on the thigh skeletal 

muscle FSR with the short-term high-intensity resistance exercise (p=0.057, adjusted to 

lean mass) (Figure 28).  

 

 

 
Figure 28. Dietary Cholesterol and FSR. Data are Mean ± SEM. 
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Dietary Cholesterol and Soreness 

Figure 29 shows the average of soreness in HC and LC groups. The overall soreness 

levels in LC was 91.6±3.6% higher than HC (LC: 3.25±0.35, HC: 2.41±0.24, P=0.044). Two 

days after the first RE (Day 2), soreness levels reached the highest level and were 

significantly higher in LC (7.20±0.48) than HC (5.38±0.54) (P=0.028). Before the second 

RE on Day 9, participants reported almost no soreness in both groups (LC: 0.69±0.37, 

HC: 0.49±0.38, P=0.708). One day after the second RE (Day 10), the soreness levels 

increased to 4.39±0.79 in LC and 3.16±0.58 in HC (P=0.216). The soreness in LC on Day 

10 was significantly lower than Day 2 (P=0.021), while there was no significant 

difference between the soreness on Day 2 and Day 10 in HC.  

 

 

 
Figure 29. Cholesterol and Soreness. B: Biopsy. * P<0.05, significant difference between HC and LC groups on the day. 
Data are Mean ± SEM. 
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Correlation between Dietary Fatty Acids and Skeletal Muscle Adaptation 

Overall soreness levels were positively correlated to dietary EPA (R2=0.310, P=0.031), 

DPA (R2=0.395, P=0.012), and DHA (R2=0.344, P=0.022) (Figure 30).  

 

 

(A) 

 

(B) 

 
(C) 

 

 

Figure 30. Correlation of Overall Soreness to Dietary (A) EPA, (B) DPA, and (C) DHA. EPA: Eicosapentaenoic acid, DPA: 
Docosapentaenoic acid, DHA: Docosahexaenoic acid. 
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The Effects of Short-tern High-intensity Resistance Exercise on PPARδ Contents 

Dietary cholesterol has effects on the acute PPARδ protein content with the short-tern 

high-intensity resistance exercise (p=0.047) (Figure 31). In the LC group, the PPARδ 

protein content was not different between CON (1.64±0.44 AU) and EX legs (1.36±0.31 

AU) (P=0.446). In the HC group, PPARδ protein content was significantly higher in the 

EX (1.81±0.44 AU) than the CON leg (1.04±0.15 AU) by 38.9±24.1% (P=0.029).  

 

 

 
Figure 31. PPARδ Protein Content in CON and EX Legs in LC and HC Groups. Data are Mean ± SEM. 
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Discussion 

 

The results of this study showed that while high cholesterol intake did not affect 

resistance exercise-induced muscle protein synthesis, it decreased soreness levels in 

the exercised leg. PPARδ protein content increased after the short-term high-intensity 

resistance exercise with high cholesterol intake. 

 

Deuterium oxide (2H2O, heavy water), a relatively non-invasive and safe procedure, was 

used to determine the FSR. This method of measuring muscle protein synthesis has 

been effectively implemented in several studies and is comparable to a 2H-

Phenylalanine tracer (45, 46, 47, 106). It was used in this study due to its ability to 

replicate a free-living state. With the present study, the cumulative muscle protein 

synthesis in the 22 hours after exercise was analyzed. There were no differences in FSR 

between CON and EX legs during 22 hours after the resistance exercise in both HC and 

LC groups. Although in the HC group, the absolute FSR value in EX leg (0.74±0.17 %/h) is 

higher when comparing to the CON leg (0.46±0.05 %/h), the difference is insignificant 

(P=0.182). Cholesterol intake levels did not affect the difference of FSR between the EX 

and CON legs (P=0.058, when adjusted to lean mass). Unlike other studies, the present 

study compared the FSRs between exercised (EX) and non-exercised (CON) legs instead 

of the pre- and post-exercised statuses on the same leg. Participants might contract 

their CON legs to hold their bodies in position during the exercise, causing the 
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undesired isometric contraction that stimulated muscle protein synthesis on the CON 

legs. A different design of testing protocol may be conducted to detect the change in 

FSR in response to resistance exercise with different levels of cholesterol intake in 

future studies.  

 

The soreness level peaked at two days after the first resistance exercise in both groups, 

which is consistent with the concept of delayed onset muscle soreness (DOMS). DOMS 

may be a sign of inflammation in skeletal muscle (26, 130). The overall soreness in the 

HC was lower than the LC group, suggesting a lower level of inflammation in the HC 

group. Cholesterol is essential at the inflammation site by regulating membrane 

fluidity, providing building blocks for muscle membrane, and facilitating cell signaling by 

forming lipid rafts (121). The higher level of dietary cholesterol might promote a more 

efficient tissue repair process to the damaged tissue via inflammation and thus lowered 

the soreness levels. However, whether the inflammation was higher or lower in the 

muscle of the HC group was uncertain by the observation of soreness levels. The 

analysis of the biomarkers such as creatine kinase (CK) and C-reactive protein (CRP) 

should be conducted in future studies to further investigate the effects of cholesterol 

on the exercise-induced inflammation. 

 

n-3 FAs have been shown to suppress inflammation (98). Therefore, we expected a 

negative correlation of soreness levels to n-3 FAs. However, the results of the present 
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study showed positive correlations between soreness levels and three n-3 FAs: DHA, 

DPA, and EPA. However, note that in Figure 30, most participants had zero level of EPA 

and DPA consumption and a significant higher DHA intake might serve as an outlier that 

drove the positive correlation.  

 

PPARδ expression in skeletal muscle has been shown to increase in response to 

endurance exercise training (37, 93, 157). However, the effect of resistance exercise 

and dietary cholesterol intake on PPARδ protein content has not been investigated in 

humans. In the present study, PPARδ protein content was higher in the RE than the 

CON legs in the HC but not in the LC group. A study conducted by Kannisto et al. (76) 

showed a significantly higher PPARδ mRNA expression in the high fat-fed exercised rats 

than the exercised-only and high fat-fed-only rats, implying a combined effects of fat 

intake and exercise on PPARδ expression. The data in the present study showed a 

combined effect of dietary cholesterol and resistance exercise. PPARδ has been shown 

to regulate serum cholesterol (105). Whether dietary cholesterol may affect PPARδ 

expression is still unknown. Our results showed a potential effect of dietary cholesterol 

and resistance exercise on skeletal muscle PPARδ protein content.  
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Conclusion 

 

The results in this study showed no effect of dietary cholesterol on skeletal muscle 

protein synthesis in response to a short-term high-intensity resistance exercise. 

However, the exercise induced-soreness levels were lower with high cholesterol intake, 

implying a potential effect of dietary cholesterol on the muscle recovery after exercise. 

Despite the expectation of negative correlations, our data showed positive correlations 

of muscle soreness to omega 3 fatty acids (DHA, DPA, and EPA). The majority of zero 

DPA and EPA consumption and an outlier of DHA intake might cause the unexpected 

results. The increase of PPARδ protein content 22 hours after the exercise in the HC 

group indicating a potential upregulation of lipid metabolism stimulated by resistance 

exercise and dietary cholesterol.  

 

These results showed that lipids might affect the skeletal muscle recovery after 

resistance exercise. To the best of our knowledge, the present study is the first to 

reveal the effects of resistance exercise and dietary cholesterol on PPARδ protein 

content in humans.  
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CHAPTER IV 

THE EFFECT OF RESISTANCE EXERCISE ON SKELETAL MUSCLE PPARΔ 

PROTEIN CONTENT 

 

 

Overview 

 

PPARδ is the key regulator of lipid metabolism in skeletal muscle. It may be activated by 

FAs and phosphorylation induced by muscle contraction. Exercise increases FFAs and 

mobilizes several kinases that activate PPARδ. However, unlike endurance exercise, the 

effects of resistance exercise on skeletal muscle PPARδ remain unclear. The purpose of 

this study was to investigate the acute and training effects of resistance exercise on 

PPARδ protein content. Fifteen healthy young men (n=8) and women (n=7) were 

recruited to perform a 10-week whole-body progressive resistance exercise training. 

Body composition was measured before, at the midpoint, and after the training. Muscle 

biopsies were obtained 24 hours before and after the first resistance exercise before 

the training and 24 hours after the last exercise after the training. The results showed 

that PPARδ increased acutely after one bout of resistance exercise when adjusted to 

body fat percentage, and the change was inversely proportional to the body fat 

percentage. Furthermore, PPARδ protein content increased after 10 weeks of 
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resistance exercise training independent of body fat percentage. In conclusion, our 

study showed acute and chronic increases in PPARδ protein content with resistance 

exercise training, implying a potential mechanism for the regulation of lipid metabolism 

in skeletal muscle induced by resistance exercise. 

 

 

Introduction 

 

Peroxisome proliferator-activated receptors (PPARs) are a family of transcription 

factors that regulate the transcription of genes involving in metabolic enzymes and FA 

transport proteins. They have been shown to increase insulin sensitivity and improve 

the lipid profile (109, 140). Three PPARs have been identified: PPARα, PPARδ (also 

known as PPARβ) and PPARγ. PPARγ is expressed mostly in adipose tissues and immune 

cells such as macrophages. PPARs -α and -δ are expressed mainly in high metabolic 

tissues. PPARα is primarily expressed in liver, kidneys, heart and skeletal muscle. While 

PPARδ is also seen in liver and kidney at relatively low levels, it is the most abundant 

isoform in skeletal muscle and is a key regulator of FA catabolism and metabolic 

adaptation in skeletal muscle (52). PPARδ increases the expression of several important 

lipid metabolism proteins, including SREBP1, ABCA1, LPL, FAT/CD36, FATP/FABP, ACS, 

CPT1, Acyl-CoA Dehydrogenase and Thiolase (8, 35, 37, 75, 119, 140, 136). It is also the 

regulator of the PGC-1α expression, the key modulator of muscle fiber type switching 
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(65, 126). Activation of PPARδ by a synthetic agonist (GW501516) has been shown to 

switch fuel preference from glucose to FA and increase FA oxidation in rat and human 

skeletal muscles (19, 136). Furthermore, PPARδ improves blood lipid profile by 

increasing HDL and decreasing TG and LDL levels (109). Therefore, PPARδ has been 

identified as a potential therapeutic target for the treatment of metabolic syndrome 

(52, 88, 119, 155).  

 

Skeletal muscle accounts for 40-50% of whole body mass and metabolism in non-obese 

individuals. Therefore, activities involved in muscle contraction significantly increases 

energy expenditure and result in the elevated usage of glucose and fat (121). While 

being the most abundant PPAR isoform that regulates metabolism and energy 

expenditure in skeletal muscle, PPARδ expression has been shown to increase with 

exercise (89, 93, 136). Exercise increases serum FA concentration and mobilizes several 

kinases that activate PPARδ (7, 20, 49, 154).  

 

Compared to endurance exercise, resistance exercise is generally considered to be less 

effective at altering lipid metabolism. Despite earlier studies that suggested negative 

effects of resistance exercise on oxidative capacity due to the decreased mitochondrial 

volume density and some oxidative enzyme activities, recent studies revealed that 

resistance exercise training enhanced skeletal muscle oxidative potential (3, 27, 50, 90, 

91, 142, 145). These resent studies showed the elevated activity of oxidative enzymes 
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and enhanced endurance performance after resistance exercise training. Increased 

blood glycerol and FFA were observed after a bout of resistance exercise and during 

recovery (50). The acute increase in blood glycerol, TG, and FFA after resistance 

exercise demonstrated the use of FA for the resistance exercise and the need for FA 

during recovery. These findings showed a potential role of resistance exercise in lipid 

metabolism. 

 

PPARδ plays a critical role in the skeletal muscle adaptation to exercise by increasing 

oxidative capacity through upregulating the gene expression of key enzymes and 

transporters involved in lipid metabolism (52, 89). While the effects of endurance 

exercise on PPARδ expression have been studied, the effects of resistance exercise on 

PPARδ protein content in humans remain unclear (89, 136). The purpose of this study is 

to investigate the effects of resistance exercise on PPARδ protein content and the 

association between PPARδ protein content and blood lipid profile in response to 

resistance exercise training in humans.  
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Methods 

 

 

Figure 32. Timeline of Study 3. 

 

 

Subjects 

Fifteen healthy young men (n=8) and women (n=7), 20 to 35 years old, were recruited 

via broad advertisements and flyers. Before selection, each potential candidate was 

given a physical activity questionnaire to assess compatibility with the research 

protocol. participants were chosen if they were non-smokers and not currently training 

(performing resistance exercise < 1 hour/week during the past year). Furthermore, 

participants were excluded if any of the following conditions was identified in their 

medical history or physical exam: blood pressure > 160/100, cardiac arrhythmias, 

cancer, hernia, aortic aneurysm, kidney disease, lung disease. Figure 32 shows the 
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general protocol of this study. This study was approved by Texas A&M University 

Institutional Review Board (IRB2012-0245F), and all the participants provided written 

informed consent before participating in the study. 

 

Orientation 

All participants attended a nutrition and an exercise orientation before the start of the 

study. During the 1-hour nutrition orientation, the participants learned about the 

operation of the Nutribase nutrition software (Nutribase; version 9; Client Intake 

Module; Cybersoft Inc., Phoenix, AZ). The Nutribase software was used to maintain diet 

logs by the participants throughout the study. The exercise orientation provided the 

participants with information and knowledge on the resistance exercise. Proper 

exercise techniques were demonstrated, and the participants became familiarized with 

the exercise by practicing the techniques with light weight. The intensity was gradually 

increased to 40% of their estimated maximum strength (4/10 on the Omnibus-RE Scale 

[OMNI-RES] ratings of perceived exertion [RPE]) (48). The purpose of the exercise 

orientation was to allow rapid motor learning while minimizing skeletal muscle 

adaptations to standardize strength measures, estimate maximum strength (1RM) 

before testing, and reduce the possibility of exercise-induced injury. 
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Testing 

Following the orientation and at least 72 hours before the first resistance exercise 

session, 1RM, peak power, and body composition were measured. 1RM was 

determined by gradually increasing exercise weights until the maximum resistance, at 

which only one repetition could be completed with proper form in full range of motion, 

was reached using the Keiser machines. Following a three-minute warm-up on a cycle 

ergometer (Schwinn Fitness, Inc., Denver, CO) and stretching, participants performed 

four warm-up repetitions with an exercise weight corresponding to 55% of an 

estimated 1RM obtained during the exercise orientation. The weight was then 

increased to 75% of a re-estimated 1RM (based on RPE) for only one repetition being 

performed. After 60 seconds of rest, the weight was increased again to 90% of a re-

estimated 1RM for one repetition being performed. Additional attempts for 1RM were 

made after 60 seconds of rest until the true 1RM value was obtained, in a manner that 

the total number of 1RM attempts was minimized. 

 

Body composition was assessed by a dual energy X-ray absorptiometry (DEXA) Lunar 

Prodigy machine (General Electric, Fairfield, CT) at 24 hours before the first resistance 

exercise session in the first week (wk 0), 24 hours after the 18th resistance exercise 

session in the sixth week (wk 6), and 24 hours after the last resistance exercise session 

in the last week (wk 10).  
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Fasted (12 hours, overnight) blood samples were collected from antecubital veins 

immediately before, immediately after, and 24 hours after the first and the last 

exercises. Blood serum samples were drawn from an antecubital vein into vacutainer 

tubes containing a serum clotting factor (Becton Dickinson and Company, Rutherford, 

NJ) with the participant seated at rest. The serum samples were immediately isolated 

by centrifugation at 1500x g for 30 minutes at 4°C and then stored at -80°C for later 

analysis. The blood lipid panels were obtained with standard methods at St. Joseph 

Regional Health Center’s CDC certified laboratory (Bryan, TX) to examine the effects of 

dietary cholesterol intake and RET on blood lipid profiles.  

 

Resistance Exercise Training 

Participants performed a 10-week whole-body progressive resistance exercise training 

program on 3 non-consecutive days per week for 10 weeks using the Keiser 300 series 

exercise machines. The program consists of 10 minutes of warm-up on a cycle 

ergometer (Schwinn Fitness, Inc., Denver, CO), five minutes of dynamic stretching, 

seated chest press, lat pull down, leg press, calf raises, seated leg curls, knee extension, 

biceps curls, and triceps extension exercises. Participants performed three sets of 8-12 

repetitions with resistance set at 75% of 1RM. They were instructed to perform as 

many repetitions as possible until they reached 12 repetitions or muscle failure on each 

set. When a participant was able to complete 12 repetitions on all three sets of an 

exercise, the weight was increased by 3-5% of 1RM in the next exercise session so that 
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only eight repetitions were possible. Rest periods between sets and exercises were 

restricted to 1 and 2 minutes, respectively. All exercise sessions were supervised by 

Exercise Physiology graduate students, and the participants were instructed to maintain 

their regular physical activities at the pre-study level and not to perform any additional 

resistance exercise. 

 

Supplement 

To minimize any potential effect that the variability of protein consumption might have, 

participants consumed protein supplements (MuscleTech Premium 100% Whey 

Protein, Iovate Health Sciences Inc, Oakville, ON, Canada) immediately following the 

resistance exercise and every 12 hours during the 10-week training period. Each 

supplementation protein was adjusted to 0.4 g of protein/kg lean mass.  

 

Muscle Biopsy 

Muscle biopsy samples were taken from the vastus lateralis under local anesthetic (1% 

Xylocaine HCl) using a 5-mm needle at 24 hours before (Pre-EX), 24 hours after the first 

resistance training (Post-EX) and 24 hours following the last resistance training after the 

10-week training (Post-Train) in the Human Countermeasures Laboratory at Texas A&M 

University. After removing visible fat, connective tissue, and blood, muscle samples 

were immediately frozen in liquid nitrogen (-190°C) and then stored at -80°C until 
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analysis. Participants were able to return to regular activities in a few hours after the 

procedure.  

 

PPARδ Protein Analysis 

PPARδ protein content was analyzed via western blotting. Muscle tissue was weighted 

and pulverized at low temperature with liquid nitrogen and then homogenized in cold 

buffer (Norris Buffer (pH 7.4) + 10% TritonX100). The Norris buffer consisted of 5 mM β-

glycerophosphate, 200 μM ATP, 25 mM Hepes, 1.5 ml Protease Inhibitor cocktail, 25 

mM Benzamidine, 2 mM PMSF, 4 mM EDTA, 10 mM MgCl2 and water to 250 ml. The 

homogenate was centrifuged at 14000 RPM, 4°C for 30 minutes. The bicinchoninic acid 

protein assay (BCA) was then performed to determine the protein concentration of the 

supernatant.  

 

The amount of supernatant used in the Sodium dodecyl sulfate (SDS) gel 

electrophoresis was determined by its protein content obtained from BCA. An equal 

amount of protein in the supernatant was diluted in the buffer (125 mM Tris, 4% SDS, 

20% glycerol, 0.002% bromophenol blue, and 200 mM DTT, pH 6.8) at the ratio of 1 

buffer to 3 supernatant. Proteins were separated across a polyacrylamide gel by 

electrophoresis and then transferred to nitrocellulose membranes (Amersham 

Biosciences, Piscataway, NJ).  After transfer, membranes were incubated in blocking 

buffer (5% nonfat dried milk in Tris-buffered saline) at room temperature for one hour, 
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followed by incubation with rabbit anti-PPARδ solution (antibody : blocking buffer = 1 : 

500) (Santa Cruz Biotechnology, Santa Cruz, CA) for 8 hours at 4°C. After washing with 

Tris-buffered saline, the membranes were then incubated with goat anti-rabbit 1gG 

coupled to horseradish peroxidase (Santa Cruz Biotechnology, Santa Cruz, CA) for 1 

hour at room temperature and then developed and visualized via enhanced 

chemiluminescence (Alpha Innotech, FluorChem SP, San Leandro, CA). A protein 

standard (obtained from rat quadriceps) was loaded on each gel to normalize the 

absorbance. Absorbance units (AU) were used to express the normalized absorbance.  

 

Statistics 

The assumption of normal distribution was checked using Shapiro-Wilk test. Differences 

in baseline values (age, BMI, initial body fat percentage, TG, TC, HLD, and LDL) between 

genders were tested with Student's t-test. Changes in body composition and lipid 

profile were analyzed by Repeated Measures ANOVA with Fisher's least significant 

difference (LSD) Post-Hoc test to detect differences among samples. The differences in 

PPARδ protein content between the muscle samples obtained at Pre-EX, Post-EX, and 

Post-Train were analyzed by Repeated Measures ANOVA. Two-way Repeated Measures 

ANCOVA was performed on muscle samples obtained at Pre-EX, Post-EX and Post-Train 

with body fat percentage as the within-subject factor and gender as the between-

subject factor to identify the effects of body fat percentage and gender on the change 

of PPARδ protein content, respectively. Correlation of body fat percentage to the 
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percentage change in PPARδ protein content was analyzed by Pearson Correlation and 

Linear Regression. Correlations of PPARδ protein content to serum lipid profile before 

and after resistance exercise training were analyzed by Pearson Correlation and Linear 

Regression. 

 

Data were expressed as means±SEM. The comparison-wise error rate, α, was set to be 

0.05 for all statistical tests. All data were analyzed using Statistical Package for Social 

Science software (SPSS version 24; IBM, New York, NY).   

 

 

Results 

 

Baseline and Changes in Body Composition with Resistance Exercise Training 

Table 7 shows the subject baseline and body composition before the training (wk 0), at 

the midpoint (wk 6) and after the training (wk 10). Age and BMI were not significantly 

different between men and women. With the resistance exercise training, lean mass 

increased at the 6th week in all subjects and increase further at the 10th week. Fat 

mass and body fat percentage decreased significant at the 6th week but did not change 

further at the 10th week.  
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Table 7. Subject Baseline and the Changes in Body Composition. 

 All Subjects Men Women 

N 15 8 7 

Age (year)  25.71 ± 1.38  25.43 ± 2.30  26.00 ± 1.70 

BMI (kg/m2)  26.91 ± 1.84  29.23 ± 2.70  24.59 ± 2.37 

Body Weight (Kg) 

wk 0  74.26 ± 5.64  89.09 ± 6.69  61.44 ± 5.40 

wk 6  75.46 ± 5.63  89.87 ± 6.52  61.04 ± 5.07 

wk 10  76.14 ± 5.76  91.10 ± 6.59  61.19 ± 5.07 

Lean Mass (Kg) 

wk 0  47.01 ± 3.36  58.24 ± 1.57  35.78 ± 2.10 

wk 6  48.04 ± 3.60 *  60.24 ± 1.53 *  35.84 ± 2.04 

wk 10  48.89 ± 3.59 * ‡  61.03 ± 1.27 *  36.75 ± 2.26 † 

Fat Mass (Kg) 

wk 0  25.37 ± 3.60  27.48 ± 6.35  23.26 ± 3.78 

wk 6  24.54 ± 3.52 *  26.33 ± 6.25  22.76 ± 3.68 

wk 10  24.41 ± 3.43  26.75 ± 6.25  22.07 ± 3.20 

Body Fat % 

wk 0  34.26 ± 2.74  30.07 ± 4.48  38.46 ± 2.57 

wk 6  33.23 ± 2.87 *  28.50 ± 4.48 *  37.96 ± 2.85 

wk 10  32.74 ± 2.59 *  28.61 ± 4.28 *  36.86 ± 2.24 

BMI = Body mass index; wk = Week. * P<0.05, significantly different when comparing to wk 0 value, ‡ P<0.05, 
significantly different between wk 6 and wk 10, † p = 0.05 between wk 0 and wk 10. Data are Mean ± SEM. 
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This study showed a difference in lean mass gain over the 10-week training between 

men and women (P=0.028). Men had a significant increase in lean mass and decrease in 

body fat percentage on the 10th week. While women showed a gain in lean mass 

(P=0.05), their fat mass and body fat percentage did not significantly decrease on week 

10. 

 

 

The Effects of Acute Resistance Exercise on Skeletal Muscle PPARδ Protein Content 

Muscle samples from 4 men and 6 women were successfully obtained and processed 

for the analysis of acute effects of resistance exercise on PPARδ protein content. 

Without accounting for covariates, PPARδ protein content did not significantly change 

after a bout of the whole-body resistance exercise (P=0.146). When incorporating body 

fat percentage as a covariate, the PPARδ protein content acutely increased by 

49.07±28.73% (P<0.001) after one bout of resistance exercise before training (Figure 

33). Furthermore, there was a negative correlation between the changes in PPARδ 

protein content and body fat percentage (R2=0.77, P=0.001) (Figure 34).  
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Figure 33. Acute Effect of Resistance Exercise on PPARδ Protein Content. Pre-EX: Pre Exercise/Pre Training; Post-EX: 
Post Exercise/Pre Training. *P<0.05 when adjusted to body fat percentage, n=10. Data are Mean ± SEM. 

 

 

  
Figure 34. The Relationship between Change in PPARδ Protein Content and Body Fat Percentage. R2=0.77, p=0.001. 
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Gender has an effect on the acute change in PPARδ protein content with resistance 

exercise (P=0.008). The data of the subjects analyzed for the acute effect of resistance 

exercise on PPARδ protein content showed that women had a significantly higher body 

fat percentage than men (women: 37.98±2.93%, men: 25.18±3.86%, p=0.028). To 

determine whether the effect of gender is dependent of body fat percentage, a Two-

way Repeated Measures ANCOVA was performed, in which body fat percentage was 

added as a within-subject covariate with gender as the between-subject factor. As a 

result, the data showed an independent effect of gender on the acute increase in 

PPARδ protein content with resistance exercise (P=0.046). The effect of body fat 

percentage remained independent (P=0.009). Men showed a significant increase in 

PPARδ protein content (P=0.035) while women’s PPARδ protein content stayed 

unchanged (P=0.427) (Figure 35). 
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Figure 35. Changes in PPARδ Protein Content between Men and Women. Pre-EX: Pre Exercise/Pre Training, Post-EX: 
Post Exercise/Pre Training, * P<0.05 between Pre-EX and Post-EX. ᵠ P<0.05 between men (n=4) and women (n=6). 
Data are Mean ± SEM. 

 

 

The Effects of Resistance Exercise Training on Skeletal Muscle PPARδ Protein Content 

Muscle samples from 6 men and 2 women were successfully obtained and processed 

for the analysis of training effects of resistance exercise on PPARδ protein contents.  

 

PPARδ protein content increased by 114.69±31.89% (P=0.015) after 10 weeks of 

resistance exercise training. Gender and body fat percentage did not have effects on 

the changes in PPARδ protein content with resistance exercise training (Figure 36). 
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Figure 36. Effect of Resistance Exercise Training on PPARδ Protein Content. Pre-EX: Pre Exercise/Pre-Training, Post-
Train: Post Exercise/Post Training, * p<0.05, n=8. Data are Mean ± SEM. 

 

 

Correlation of PPARδ Content to Serum Lipid Profile before and after Resistance 

Exercise Training 

Before the resistance exercise training, there was no correlation between PPARδ 

protein content and serum triglyceride, total cholesterol, HDL, and LDL (Table 8). After 

10 weeks of training, PPARδ protein content was negatively correlated to serum total 

cholesterol (P=0.040, Figure 37 (A)) and LDL (P=0.033, Figure 37 (B)) 
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Table 8. Coefficient of Determination of Skeletal Muscle PPARδ Protein Content to Serum Lipid Profile. 

 PPARδ Protein Content (AU) 

 Before Training After Training 

Triglyceride (mg/dL) 0.023 0.086 

Total Cholesterol (mg/dL) 0.027 0.534 * 

HDL (mg/dL) 0.025 0.033 

LDL (mg/dL) 0.012 0.557 * 

* P<0.05, significant correlation. Data are R-square (R2). 

 

 

 
(A) 

 

(B) 

 

Figure 37. Correlation of PPARδ Protein Content to (A) Total Cholesterol and (B) LDL after Resistance Exercise 
Training. 
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Changes in Lipid Profile before and after Resistance Exercise Training 

Table 9 presents lipid profile immediately before, after, and 24 hours after the 

resistance exercise before and after the resistance exercise training. Before the 

training, TG decreased at 24 hours after the exercise. Total cholesterol, HDL, and LDL 

increased immediately after exercise and returned to the pre-exercise levels 24 hours 

after the exercise. After training, TG, total cholesterol, HDL, and LDL levels stayed 

unchanged immediately and 24 hours after the exercise. 

 

 

Table 9. Lipid Profile before and after Resistance Exercise Training. 

 Before Training After Training 

 Immediately 
Before RE 

Immediately 
After RE 

24 hrs 
after RE 

Immediately 
Before RE 

Immediately 
After RE 

24 hrs 
after RE 

 T1 T2 T3 T4 T5 T6 

Triglyceride 
(mg/dL) 

106.30 ± 13.50 107.60 ± 13.99 91.40 ± 12.56† 99.20 ± 11.01 101.80 ± 12.76 110.40 ± 19.80 

Total 
Cholesterol 

(mg/dL) 
168.70 ± 12.89 179.70 ± 13.42* 166.50 ± 12.31‡ 174.10 ± 10.82 178.60 ± 12.53 178.90 ± 11.00 

HDL 
(mg/dL) 

49.50 ± 4.66 54.30 ± 4.71* 49.80 ± 4.37‡ 52.10 ± 4.11 54.20 ± 3.62 52.10 ± 4.19 

LDL 
(mg/dL) 

97.80 ± 11.17 104.10 ± 11.92* 98.40 ± 10.70 102.10 ± 10.41 104.00 ± 11.13 104.90 ± 9.32 

RE: Resistance Exercise. * P<0.05, significant difference between T1 and T2; ‡ P<0.05, significant difference between 
T2 and T3; † P<0.05, significant difference between T1 and T3. Data are Mean ± SEM. 
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Discussion 

 

To the best of our knowledge, this present study is the first to investigate the effects of 

resistance exercise training on skeletal muscle PPARδ protein content in humans. Acute 

resistance exercise increased PPARδ protein content when adjusted for body fat 

percentage and the change in PPARδ protein content was inversely proportional to 

body fat percentage. Ten weeks of resistance exercise training increased PPARδ protein 

content independent of body fat percentage and gender. The results showed that for 

untrained individuals, higher body fat percentage might blunt the effect of acute 

resistance exercise on PPARδ protein content. However, the negative effect of higher 

body fat on the exercise-induced increase in PPARδ protein content may not persist 

with 10 weeks of resistance exercise training.  

 

While men showed a significant increase in PPARδ protein content after a bout of 

resistance exercise, the change was not observed in women. In general, women have a 

higher body fat percentage than men. The present study showed a gender effect 

independent of body fat percentage, indicating the different response between gender 

was not caused solely by body composition. However, the small sample size and the 

significant difference in body fat percentage between gender warrant caution in this 

interpretation. 
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Six weeks of resistance exercise training was enough to increase lean mass and 

decrease fat mass and body fat percentage with additional increase in lean mass seen 

after 10 weeks. Although a lower body fat percentage was not observed in women 

after the 10-week training in this study, it was shown to decrease with a 14-week 

resistance exercise training in a study by Prabhakaran et al. (118). A longer training 

period might be needed for women to see the decrease in body fat percentage. 

 

PPARδ protein content were not correlated with blood lipid profile before the training. 

However, there were negative correlations of PPARδ protein content to total 

cholesterol and LDL after the training. The results imply that resistance exercise training 

may enhance the regulation of blood lipid profile via PPARδ.  

 

Before the training, total cholesterol, HDL, and LDL increased acutely and then returned 

to their original levels 24 hours after one bout of resistance exercise. Blood TG did not 

change acutely and decreased 24 hours after the exercise. The results indicated the 

need of cholesterol and the use of fat after the acute resistance exercise. However, 

after 10 weeks of resistance exercise training, the changes were not observed. The 

effects of acute resistance exercise on blood lipid profile were blunted after the 

training. Although the training did not alter the resting lipid profile, our participants 

were healthy young adults whose blood lipid profiles were within the AHA 

recommended levels (131). A study by Crouse et al. (32) showed that plasma volume 
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decreased immediately and increased 24 hours after a high intensity exercise (80% VO2 

max). In the present study, the serum lipid levels were not adjusted to plasma volume. 

Therefore, the interpretation on the changes in lipid profile in this study warranted 

caution.  

 

Earlier studies suggested that muscle hypertrophy induced by resistance exercise might 

reduce the oxidative capacity of skeletal muscle due to the dilution of mitochondria 

and decrease in some oxidative enzymes such as 3-OH-acyl-CoA dehydrogenase and 

SDH (3, 27, 91, 145). However, it is problematic to assume the cause of lower oxidative 

potential to be merely training-induced hypertrophy and the lower levels of some 

oxidative enzymes (142). For example, SDH is not considered to be a good indicator for 

the oxidative capacity in skeletal muscle, and the activities of citrate synthase (CS) and 

β-hydroxyacyl-CoA dehydrogenase (β-HAD) have been shown to increase after 

resistance exercise training (31, 142). Furthermore, VO2max either remained 

unchanged or increased after resistance exercise training, indicating a positive effect of 

resistance exercise training on the oxidative capacity (21, 44, 62, 90). PPARδ is a major 

regulator of lipid metabolism in skeletal muscle (52). It increases FA oxidation by 

upregulating the lipid transporter and oxidative enzymes such as FAT/CD36, 

FATP/FABP, ACS, CPT1, Acyl-CoA Dehydrogenase and Thiolase in skeletal muscle. 

Although these enzymes were not analyzed in the present study, the increase of PPARδ 

protein content suggested a potential for their expression. Further studies are 
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recommended to analyze these PPARδ target proteins to provide a better 

understanding of the regulation of lipid metabolism by resistance exercise training.   

 

 

Conclusion 

 

Recent studies showed that resistance exercise training improved oxidative capacity. 

While these studies revealed the increase in oxidative enzymes following resistance 

exercise training, the regulatory mechanism remained unclear. PPARδ is a key regulator 

of the lipid metabolism in skeletal muscle. The results of the present study showed that 

resistance exercise increased PPARδ protein content both acutely and chronically. The 

changes in body composition showed that resistance exercise exhibited the benefits 

similar to endurance exercise. The changes in lipid profile and the increases in PPARδ 

protein content provided evidence for the utilization of lipids and enhanced lipid 

metabolism when performing resistance exercise.  
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CHAPTER V 

CONCLUSION 

 

 

In debating the meaning of “healthy food”, general thought amongst the population 

emphasizes foods with low fat and cholesterol content, such as chicken breast, fat-free 

milk, and egg white. Dietary lipids are suggested to be avoided because they are high in 

calorie and elevated blood lipid levels have been observed in the individuals with 

metabolic syndrome and cardiovascular disease. However, lipids not only provide 

sufficient energy for physical activities, but they are essential for maintaining the 

normal physiological function.  

 

Beneficial results of combining dietary FAs and exercise have been revealed by studies 

investigating the interaction of exercise and dietary fats. Resistance exercise induces 

skeletal muscle mass and strength gains through cell signaling pathways activated by 

muscle contraction, hormones, and inflammation. Lipids regulate membrane 

permeability and fluidity for hormones, form lipid rafts for cell signaling molecules, and 

provide building blocks and energy for the regeneration of tissues. Mechanisms have 

been identified for the enhanced oxidative capacity and lipid metabolism by endurance 

exercise. However, not until recent decades has resistance exercise been revealed to 

improve lipid profile and enhance oxidative potential, while the mechanism remains 
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unclear. PPARδ has been identified as a key regulator of lipid metabolism in skeletal 

muscle. While endurance exercise increases PPARδ expression, the effects of resistance 

exercise on PPARδ protein content has not been investigated in humans. Therefore, we 

conducted three studies to test the hypotheses that lipids, including FAs and 

cholesterol, would enhance skeletal muscle adaptation to resistance exercise and that 

resistance exercise would stimulate the regulation of lipid metabolism as demonstrated 

by changes in the lipid metabolism regulator PPARδ. 

 

 

Dietary Lipids and Resistance Exercise 

 

In study 1 and 2 (Chapter II and III), the adaptation of skeletal muscle on short- and 

long-term resistance exercise training were investigated with different levels of 

cholesterol intake. While higher cholesterol intake did not affect the gains in muscle 

mass and strength, it attenuated muscle soreness induced by resistance exercise. With 

the training, the blood cholesterol levels were not chronically affected by the high 

cholesterol intake. Although our expectations for the effects of cholesterol on 

resistance exercise-induced muscle adaptations were not well reflected by the results, 

these studies provided a potential effect of dietary cholesterol on the inflammation 

induced by resistance exercise.  
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The analyses of the association between dietary FAs and the resistance exercise-

induced muscle adaptation showed potential effects of fat intake on the gains in 

muscle mass, strength, peak power, and quality. Although these exploratory analyses 

were not statistically significant, they might provide guidance regarding several FAs to 

be investigated in future studies.  

 

 

Resistance Exercise and PPARδ 

 

In study 2 and 3 (Chapter III and IV), PPARδ protein content was analyzed to examine 

the acute and training effects of resistance exercise on lipid regulation. In this 

dissertation, PPARδ was demonstrated to change in response to resistance exercise. 

PPARδ is a biomarker of enhanced lipid metabolism based on its roles in the 

upregulation of enzymes and proteins for FA oxidation and lipid transport in skeletal 

muscle. PPARδ increased acutely after resistance exercise in both studies under specific 

conditions. In study 2, in which participants performed unilateral high-intensity leg 

exercise, PPARδ protein content was compared between exercised and non-exercised 

legs. PPARδ protein content was higher in the exercised-legs with high cholesterol 

intake. In study 3, PPARδ protein content was compared before and after a bout of 

whole-body resistance exercise. The acute increase of PPARδ protein content was 

inversely proportional to body fat percentage.  
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Ten weeks of resistance exercise increased skeletal muscle PPARδ protein content. 

PPARδ has been shown to regulate other known regulators of lipid metabolism in 

skeletal muscle, including PGC-1α and AMPK. These results provided evidence that 

resistance exercise had effects on lipid metabolism, and the regulation might be driven 

by the increase of PPARδ.  

 

 

Final Conclusion 

 

Exercise is medicine. With resistant exercise, high cholesterol intake was not shown to 

alter resting blood lipid profile in healthy young and old individuals with resistance 

exercise training. This dissertation also provided the evidence that resistance exercise 

increased PPARδ protein content, the therapeutic target in metabolic diseases, 

indicating a therapeutic effect of resistance exercise on the diseases.  

 

While poor nutrition and physical inactivity are primary contributors to preventable 

death in the United States, an active lifestyle and regular exercise that may counteract 

the potential negative effects of excess lipid intake and improve lipid metabolism may 

be the solution.  
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