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ABSTRACT 

 

This dissertation proposes and develops novel features into the existing inverse 

algorithms for characterizing nonhomogeneous material properties of soft solids. Firstly, 

a new feature that material properties are defined as a piece-wise constant in each element 

has been implemented in the inverse program. Secondly, to reduce boundary sensitivity 

of the solution to the inverse problem in elasticity, we modify the objective function using 

a spatially weighted displacement correlation term. Compared to the conventional 

objective function, the new formulation performs well in preserving stiffness contrast 

between the inclusion and background. Then, we present an approach to estimate the 

nonhomogeneous elastic property distribution using only boundary displacement datasets. 

We further improve this approach by using force indentation measurements to 

quantitatively map the elastic properties and analyze the sensitivity of this approach to a 

variety of factors, e.g., the location and size of the inclusion. Furthermore, we present a 

method to quantitatively determine the shear modulus distribution using full-field 

displacements with partially known material properties on the boundary and without any 

traction or force information. We test its performance using two different types of 

regularization: total variation diminishing (TVD) and total contrast diminishing (TCD) 

regularizations. We observe that TCD regularization is capable of mapping the absolute 

shear modulus distribution, while TVD regularization fails to achieve this. Furthermore, 

we investigate the feasibility of using the linear elastic inverse solver to solve inverse 

problems for nonlinear elasticity for large deformations. We conclude that the linear 
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elastic approximation will overestimate the stiffness contrast between the inclusion and 

background. We also extend the inverse strategy to map the orthotropic linear elastic 

parameter distributions. The reconstructions reveal that this method performs well in the 

presence of low displacement noise levels, while performing poorly with 3% noise. 

Finally, a feature that maps the viscoelastic behavior of solids using harmonic 

displacement data has been implemented and tested.  

In summary, these new features not only strengthen our understanding in solving 

the inverse problem for inhomogeneous material property characterization, but also 

provide a potential technique to characterize nonhomogeneous material properties of soft 

tissues nondestructively that could be useful in clinical practice. 
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1. INTRODUCTION 

 

Material characterization of nonhomogeneous soft solids has great application in 

biomechanical engineering and clinical practice, e.g., breast tumor detection. To estimate 

heterogeneous material property distributions, one approach is to solve an inverse problem 

using measured displacement fields. In this dissertation, we focus on improving the 

existing inverse algorithms to assess the heterogeneous isotropic linear elastic and 

hyperelastic property distributions. We also propose and implement novel inverse 

algorithms to characterize anisotropic linear elastic paramter distribution and linear 

viscoelastic parameter distribution of soft solids using measured displacement fields.  

1.1 Mechanical testing methods in engineering 

Mechanical testing is of great importance to understand the mechanical properties 

of materials and is essential to assess whether a material is suitable for its intended 

application.  For instance, Young’s modulus is a measure of the stiffness of a linear elastic 

solid. A solid material with a higher Young’s modulus will deform less than that having a 

lower Young’s modulus when the same loading and boundary conditions are prescribed. 

Thus, in structural engineering, the Young’s modulus is an important factor in selecting 

construction and building materials. Mechanical testing to characterize material properties 

is extremely crucial not only in traditional engineering fields including civil engineering, 

mechanical engineering, etc., but also in emerging engineering areas such as biomedical 

engineering. In Sections 1.1.1 and 1.1.2, a number of widely-used techniques to 
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characterize the mechanical properties for homogeneous and nonhomogeneous samples 

will be discussed, respectively.  

1.1.1 Homogeneous material sample testing techniques 

Uniaxial tensile and compression testing is one of the most fundamental 

mechanical testing approaches for homogeneous materials.  In this method, a sample with 

predefined geometry is subject to a controlled uniaxial stretch or contraction, and the 

testing system records the total uniaxial force, the elongation or shortening in both loading 

and the lateral directions [1]. With the measured force and deformation, the stress-strain 

relation can be determined, from which material characteristics can be deduced [2]. 

Beyond linear elastic properties, these may include nonlinear elastic properties, 

viscoelastic parameters, or plastic properties via curve fitting using an appropriate 

constitutive model. Uniaxial tensile testing provides a fairly simple and effective method 

to characterize the mechanical behavior of solids and has been utilized to measure a wide 

range of mechanical properties of stiff solids such as alloys [3, 4], concretes [5, 6], and 

ceramics [7].   

Uniaxial testing has also been applied to identify the biomechanical behavior of 

biological tissues, and considerable effort has been devoted to this area. In 1847, Wertheim 

performed uniaxial tension experiments to investigate the mechanical behavior of animal 

tissues and first observed nonlinear stiffening effect of animal tissues (stress increases 

much faster with increasing strain) from stress-strain curves [8]. The nonlinear stiffening 

effect has also been observed in other uniaxial testing experiments for different types of 

soft tissues [9-12] and motivated the advancement of novel hyperelastic constitutive 
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models specialized for the study of soft tissues such as Humphrey [13], Martins [14] and 

Veronda–Westmann models [15]. Uniaxial tension testing has also been used to 

investigate the viscoelastic behavior of soft tissues by recording the prescribed loading 

and stretch histories. For instance, in Fung’s tension experiments,  the stress relaxation 

and creep phenomena were observed for different types of soft tissues including rabbit 

mesemery [16]. Additionally, Woo et al. performed quasi-static and cyclical extension 

experiments to study the nonlinear viscoelastic characteristic of ligaments and tendons and 

developed a general continuum approach to describe the nonlinear viscoelastic behavior 

using the single integral finite strain model [17]. Experimental observations from uniaxial 

testing improved constitutive models of soft tissues and promoted the understanding of 

the mechanics of the human body.  

In-plane biaxial testing is also very important in studying the mechanical response 

of solids. In in-plane biaxial testing, all four edges of the specimen are subjected to 

loadings. Although biaxial tests are unable to establish the stress-strain relation in three 

dimensions, they are sufficient to yield stress-strain relation in a 2-D plane for 

membranous structures such as animal skins. Feng et al. introduced and carried out biaxial 

in vitro experiments for biological tissues and first verified that animal skins are 

orthotropic [18, 19].  In addition to the nonlinear and anisotropic nature of human tissue, 

Feng et al. also observed the strain limiting phenomena of soft tissues in biaxial tests [20]. 

To study the effect of in-plane shear, Sacks’ group developed an experimental method 

where the material axes of the sample are rotated 45 degrees from the biaxial testing device 

axes, thus making it possible to produce both shear and normal strains [21]. This method 
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has been used to study the mechanical behavior of thin tissues, e.g., heart valves [22, 23] 

and pericardium [21]. However, the authors neglected the shear tractions when mapping 

stresses from tractions. This leads to the violation of the conservation of angular 

momentum since the resulting 2nd Piola Kirchhoff stress tensor is not symmetric. This 

issue was resolved by Freed et al. using a general mapping to obtain the stress components 

from both normal and shear tractions [24].  

Bending testing is another frequently used mechanical testing technique to 

measure elastic properties and has potential application to characterize the mechanical 

response of soft tissues. Compared to extension and compression testing of soft tissues, 

bending testing is capable of providing more accurate evaluation at low stress or strain 

levels [25]. This statement was also verified  in [26] conducting three point bending tests 

on tissues.  

 Indentation is a mechanical testing method to measure the mechanical properties 

of materials by pressing a stiff tip to the surface of the specimen. In this method, measuring 

the force and depth of the indenter, the mechanical properties can be estimated for given 

geometry of the indenter. For a non-conforming indenter/sample contact, e.g., the 

spherical indenter tip is pressed into a flat surface.  The Hertzian contact model has been 

applied to study contact mechanics in the vicinity of the contact region and to estimate the 

material properties from experimental data. A number of assumptions are made in the 

Hertzian contact model: The applied strain is very small; the contact area is very small 

compared to the size of the sample; the contact surface should be frictionless and smooth 

[27], the sample is homogeneous. These assumptions are often satisfied for stiff materials. 
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Therefore, the Hertzian contact model performs well in assessing stiffness of stiff 

engineering materials, e.g., metals.  

In biomedical engineering and clinical medicine, indentation testing plays an 

important role in evaluating biomechanical parameters of bio-solids as well. The 

application of indentation testing for soft tissues dates back to the 1910s. In 1912, Schade 

was the first to apply indentations to soft tissues and estimated the elastic properties of 

skin and associated underlying soft tissues [28].  With the great progress of testing and 

recording techniques, the accuracy and reliability of the indentation tests for soft tissues 

vastly improved. Hitherto, the indentation testing technique has been used to quantify 

purely elastic, viscoelastic, and plastic properties of various tissues including skins at 

different body sites [29], muscles [30, 31], articular cartilages [32], etc.  

In summary, we have discussed a number of commonly used material property 

testing methods, their applications and limitations in characterizing the mechanical 

behavior of engineering materials and biological tissues. In general, these methods assume 

that the material is homogenous, which does not hold for most biological tissues. Thus, 

mechanical testing approaches for heterogeneous material properties are required. In the 

next section, several nonhomogeneous sample testing approaches will be discussed.  

1.1.2 Nonhomogeneous material sample testing techniques 

Indentation testing is also used in mapping heterogeneous material properties. For 

instance, Kalei developed the depth-sensing micro/nano indentation techniques, in which 

force and displacement are measured at the micro/nano scale, making it possible to study 

the local mechanical response of materials in a very small region of the sample [33]. To 
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this end, material properties throughout the near-surface region can be quantified by 

changing the location of the indentation. This method has been improved in recent decades 

and widely used to assess the material properties of various inhomogeneous materials 

including layered structures [34], rocks [35], coals [36], etc. In biomechanical engineering, 

nanoindentation has been applied to understand the biomechanical response of 

nonhomogeneous biological tissues. Lin et al. used atomic force microscopy (AFM) based 

indentation approach to assess the elastic properties of inhomogeneous tissue phantoms 

[37, 38].  Hossein K. Heris also utilized AFM based indentation to map the elastic moduli, 

diffusivity coefficients, along with permeability coefficients at different locations of vocal 

fold tissue samples [39].  

Indentation based mapping of material properties has several drawbacks. First, soft 

tissue/stiff indenter contact is of very complex interfacial behavior that makes it hard to 

model the contact area accurately, affecting accurate estimation of material properties. 

Second, the indentation can merely be applied to the surface area, thus, it is not possible 

to infer the mechanical property distribution throughout the volume. Third, indentation is 

a point-wise method, thus, it is time-consuming to map material properties on the surface 

for a relatively large sample. In addition, indentation testing assumes some regional 

homogeneity of the sample, while this approximation may not be true for some 

heterogeneous materials.   

One approach to obtain the material property distribution non-destructively in the 

inner sample regions away from its surface is by done the strain imaging method, which 

is often referred to as “elastography” [40]. This method assesses the elastic properties 
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throughout the domain of interest using strain fields, assuming that the Young’s modulus 

can be interpreted to be inversely proportional to the axial strain. The strain fields are 

computed using full-field displacement fields acquired non-destructively by a variety of 

imaging modalities such as ultrasound [41, 42], magnetic resonance imaging (MRI) [43, 

44], computerized tomography (CT) scan [45, 46], etc. To date, strain imaging has been 

used in assessing nonhomogeneous elastic properties of soft tissues in clinical practice, 

e.g., detecting breast tumors from normal tissue. Studies have shown that strain imaging 

performed better than conventional ultrasound-based imaging techniques and 

mammography in clinical specificity tests (measuring the proportion of healthy people 

who are correctly identified as not having breast tumors) [47].  

However, strain imaging is merely a qualitative approach to estimate the 

heterogeneous elastic property distribution and does not rigorously consider the physics, 

where the stress is not constant for a nonhomogeneous material. Accordingly, the induced 

artifacts will dominate in the strain images. To illustrate on a simple case, strain imaging 

will not work for the target problem domain shown in  Figure 1-1. In this case, though the 

elastic property distribution is inhomogeneous, the corresponding strain field is 

homogeneous everywhere for a uniform displacement boundary applied on the top edge. 

Thus, strain imaging cannot even qualitatively be used to recover the layered elastic 

property distribution.   
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Figure 1-1: A schematic diagram of a layered problem domain ( 1 2   ) subject to 

uniform compression on the top edge 

 

 

Another promising technique to map nonhomogeneous material properties is by 

solving an inverse problem to obtain the spatially varying modulus reconstruction using 

quasi-static or dynamic deformations.  In the quasi-static case of elasticity, solving the 

inverse problem has been used to determine shear modulus [48], or hyperelastic property 

[49] distributions using measured displacement fields. Typically, quasi-static 

displacement fields can be obtained from imaging modalities, while non-zero traction and 

force measurements cannot be acquired from images [50], e.g., in ultrasound-based 

imaging. Without any forces, non-zero traction measurements,  or known elastic properties 

in the partial region of the problem domain, only qualitative solutions can be obtained due 

to the homogeneity of the governing equations [51].   
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Dynamic signals such as time harmonic or transient displacements can be used to 

solve the inverse problem as well. In this scenario, material property distribution can be 

obtained quantitatively using only displacement measurements as the introduction of the 

inertia term leads to the inhomogeneity of the governing equations. Another advantage of 

this approach is that dynamic signals such as shear wave are capable of propagating to the 

innermost part of the human body, thus providing an optimal non-invasive approach to 

characterize the biomechanical behavior of biological tissues including brain tissues [52], 

liver tissues [53], etc.  Moreover, as many types of soft tissues are highly viscous and 

dynamic signals will experience phase lag due to viscosity, it is feasible to recover the 

viscoelastic properties by solving the inverse problem utilizing dynamic signals.  

In general, there are two kinds of methods to solve the inverse problem: direct and 

iterative inversion methods. In direct inversion methods, we solve for the modulus 

distribution directly from the equilibrium equations [54, 55]. Direct inversion is 

computationally less costly than iterative inversion approaches. However, the direct 

inversion requires computing the derivative of measured displacement fields, which will 

amplify the noise of measured displacements as discussed previously. Another limitation 

of the direct inversion is that all displacement components must be known to solve the 

inverse problem. To circumvent these limitations, the inverse problem can be posed as a 

constrained minimization problem to seek the optimal material property distribution that 

fits the data. In this thesis, we will employ an iterative approach to estimate heterogeneous 

material properties and details related to the inverse algorithms will be presented in 

Chapter 2. 
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1.2 Application of nonhomogeneous sample testing 

Mapping the nonhomogeneous material property distribution has potential 

application in biomechanical engineering and clinical practice, e.g. cancerous tumor 

detection, assessment of atherosclerosis, understanding neurodegeneration, etc. The 

following sections will elaborate on several clinical applications of the nonhomogeneous 

material property characterization of biological tissues.  

(1) Breast cancer detection 

Breast cancer develops due to the abnormal growth and proliferation of breast 

cells, these cells accumulate to form a lump or so-called breast tumor. Typically, 

cancerous tumors are much stiffer than normal tissues. According to [56], for 5% 

compression applied to a diseased breast tissue sample, the stiffness ratio between 

cancerous tumor and fatty tissue is roughly 5, while the stiffness ratio increases to 25 for 

a large compression of 20%. thus it may be feasible to identify cancerous tumors from 

normal tissues based on nonlinear material property maps.    

(2) Assessment of atherosclerosis 

According to the report from WHO, Ischemic heart disease (IHD), also known as 

coronary artery disease (CAD) is the top cause of death from 2002 to 2012 as shown in 

Figure 1-2. This disease is mainly due to atherosclerosis which is characterized by a soft 

plaque surrounded by a stiff cap [41, 57] and often referred to as “hardening of the 

arteries”. During this process cholesterol plaques will form, composed of fat, cholesterol, 

calcium, among other constituents [58]. For a clinician, it is crucial to know if the cap is 

stable in that an unstable cap can detach from the vessel wall, causing a potential heart 
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attack or stroke. The assessment of plaque stability requires patient specific knowledge of 

biomechanical vessel wall properties. 

 

 

 

Figure 1-2: (a) Top ten killers in the world 2012; (b) comparison of leading causes of 

death over the past decade, 2002 and 2012. [59] 

 

 

(3) Investigation of brain development and neuro-system diseases 

The human brain is a very complex organ that is mainly composed of an outer 

layer of grey matter and an inner core of white matter. Recent evidence shows that the 

elastic and viscous behavior of these two matters is different [60]. As a result, it is likely 

for us to identify the region of the grey and white matter by analyzing the recovered 

nonhomogeneous biomechanical property distribution of brain tissues. Also, it has been 

shown that the distinction of microstructures of grey and white matters play a crucial part 

of brain development [60]. Studies have also shown that the elastic and viscous response 

of brain tissue alters due to the influence of age [52]. Thus, nonhomogeneous material 
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property testing is likely to help us to understand the underlying mechanism of age-related 

neurodegeneration. 

(4) Assessment of osteoporosis 

Bone tissue is highly porous and its mechanical properties such as porosity and 

density will frequently alter in a person’s lifetime.  Bone-related diseases will also change 

the mechanical response of bones. For instance, osteoporosis is a medical disease in which 

bones become less dense and more inclined to break and brittle [61]. During the process 

of osteoporosis, the cavity area increases in the diseased bone, and the increased cavity 

area will reduce the strength and stiffness of the bone. Thus, mapping the heterogeneous 

biomechanical properties non-destructively, it may be feasible to detect the precise 

localization of osteoporosis and distinguish from healthy bone tissue, leading to a targeted 

treatment plan.   

1.3 Organization of the dissertation 

This work is based on inverse algorithms implemented by Goenezen et al. [62], 

and a number of new models, features, and algorithms have been implemented and tested. 

The organization of this dissertation is as follows: 

Chapter 1 is the introduction of the work. It reviews a number of material 

characterization methods for homogeneous and heterogeneous solids and discusses the 

potential application of heterogeneous material characterization in biomechanical 

engineering and clinical medicine.  

Chapter 2 reviews the theoretical foundation and numerical formulation of the 

nonlinear elasticity forward and inverse problems for incompressible materials. In 
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addition, the element-wise defined material property is introduced into the existing inverse 

algorithms and tested by numerical examples. 

Chapter 3 introduces a spatially weighted objective function to address the issue 

that the reconstructed shear modulus distribution is sensitive to the boundary. The 

feasibility of this approach is tested by simulated data.  

Chapter 4 presents a state-of-the-art approach to recover the elastic property 

distribution qualitatively by using only boundary displacement datasets.  

Chapter 5 further improves the approach proposed in Chapter 4 by using 

boundary displacements and force indentation measurements to quantitatively map the 

elastic property distribution.  

Chapter 6 introduces a quantitative methodology to map the linear elastic property 

distribution of soft solids from displacements and partially known shear moduli. This new 

method enables us to obtain a unique solution to the inverse problem.   

Chapter 7 investigates the feasibility of using the linear elastic inverse solver in 

solving the inverse problem in nonlinear elasticity. Reconstructed results using linear and 

nonlinear elastic inverse solvers are compared.  

Chapter 8 discusses the feasibility of using iterative algorithms to solve for 

anisotropic linear elastic parameter distributions.   

Chapter 9 proposes an innovative method to reconstruct the linear viscoelastic 

material property quantitatively utilizing time harmonic displacement fields. 

Chapter 10 concludes this work with a summary and the discussion of future 

work.  
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2. ITERATIVE INVERSE PROBLEM IN ELASTICITY 

         

In this chapter, an iterative strategy to solve the nonlinear inverse elasticity 

problems in the states of plane strain and plane stress will be reviewed. The soft tissues 

are modeled as an incompressible material using a modified Veronda-Westmann model 

[15], as this model is frequently used to approximate the nonlinear elastic behavior of the 

soft tissues [50, 63]. Furthermore, this model has only two material properties that have 

strong physical interpretations. The inverse problem is posed as a constrained 

minimization problem where the difference between the measured and computed 

displacements is minimized in L2 norm. The computed displacement field is obtained 

solving a forward problem under the current updated material properties. The 

minimization problem is solved by the limited BFGS method that is a gradient-based 

scheme and requires evaluating an objective function and its gradient with respect to 

material properties. As the evaluation of the gradients is a computationally intensive 

process, we introduce the adjoint method to address this issue [48, 49]. The feasibility of 

the inverse strategy is tested by simulated data in this chapter.  

            In the previous work [62], the material property is nodally defined and 

continuously distributed throughout the problem domain. In Section 2.3.2, the feature that 

the material property constantly defined piecewise in each element will be discussed and 

tested numerically in the 2-D plane stress case.   
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2.1 Forward nonlinear elasticity problem in 2D 

In the 2D elasticity problem, there are generally two types of problems: plane strain 

and plane stress problems. The state of plane strain assumes that the out-of-plane strain is 

zero while the state of plane stress assumes that out-of-plane stress is zero. The governing 

equations for an incompressible elastic solid in these two cases are very similar. The major 

difference is that the hydrostatic pressure can be expressed explicitly in terms of the in-

plane strain components in plane stress cases. However, in the state of plane strain, the 

hydrostatic pressure is unknown, thus should be treated as an unknown primary variable 

in the forward problem. In the following subsections, we will discuss the strong and weak 

forms of the elasticity forward problem.  

2.1.1 Strong form  

 Let’s consider a continuum body moved from the reference (undeformed) 

configuration 0   at time t=0 to the current configuration   at time t. The boundaries in 

the reference and current frames are denoted by 0  and  , respectively. We also 

assume that a point with the position vector X in 0  occupies another position vector x 

in  , thus the motion of this body can be expressed as  , tx x X . In Lagrange frame, 

the governing equations in two dimensions can be written as follows: 

  div P 0  in  0   (2.1) 

 u g  in  g   (2.2) 

 P N = h  in h   (2.3) 
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where P  is the first Piola-Kirchhoff stress tensor, and  , t u = x X X  is the 

displacement vector. 
g  and h  represent the displacement and traction boundaries, 

respectively.  
g  and h  constitute the entire boundary of this problem domain without 

overlapping, that is, 
0g h     and 

g h   . g and h are the enforced 

displacement and boundary vectors, respectively. N is the unit outward vector on the 

reference frame. Since most tissues are incompressible, the incompressible condition 

should be satisfied: 

  det 1F   (2.4) 

where   F x X is the deformation gradient. To solve the set of equations from 

Equations (2.1) to (2.4), the stress-strain relation should be specified. For an 

incompressible elasticity, the second Piola-Kirchhoff stress tensor S can be expressed as: 

 1 2
W

pJ  
  


S C

C
  (2.5) 

Note that the relation between the first and second Piola Kirchoff stress tensors is 

P FS . In Equation (2.5)  TC F F   is the right Cauchy Green tensor and  detJ  F  

is the Jacobian. W denotes the strain energy density function depending on the invariants 

of the right Cauchy Green tensor C. The hydrostatic pressure p is unknown and must be 

determined in 2D incompressible plane strain or 3D incompressible cases. In the 

incompressible plane stress case, the hydrostatic pressure can be expressed in terms of in-

plane right Cauchy Green tensor components [64], that is 
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33 33

2 W
p

C C





  (2.6) 

where  
1

33 11 22 12 12C C C C C


   . Therefore, it is unnecessary to solve for the hydrostatic 

pressure in the state of plane stress for an isotropic incompressible solid.  

As mentioned at the beginning of this chapter, the incompressible hyperelastic 

strain energy function we will utilize is the modified Veronda-Westmann model proposed 

in [62]: 

 
 2/3

1 3
1

2

J I
W e





    
 

  (2.7) 

Here,  1 traceI  C  is the first principle invariant of the right Green strain tensor. Two 

material parameters   and   have different physical interpretations. More specifically, 

  is the shear modulus at the infinitesimal strain that controls linear behavior, while    is 

the nonlinear parameter that controls the exponentially nonlinear behavior. The advantage 

of this material model is that each linear and nonlinear behavior is governed by only one 

material property, respectively. Thus, we could reconstruct shear modulus distribution at 

a relatively small strain level, and then recover nonlinear parameter distribution using data 

obtained from a large deformation. This sequential method to characterize linear and 

nonlinear elastic property was first proposed in [49, 62], and the numerical examples using 

this approach will be shown in Section 2.3.1. The constitutive model can be further 

reduced to the linear elastic model when the deformation is infinitesimal and the nonlinear 

parameter is set to zero. 
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2.1.2 Weak form 

In this section, the weak formulation of the equilibrium equations can be easily 

derived by the following steps: (1) multiplying Equation (2.1) with a test function vector 

and integrating over the reference domain; (2) integrating by parts in order to reduce the 

order of the governing equations; and (3) enforcing the traction boundary conditions. For 

instance, in the plane strain case, the statement of weak form is to find  , p U u  

such that  

      , ; , 0   ,
h

A q K N


     W U w h W w   (2.8) 

where  

    
0 0

, 0 0, ; 1i j ijA w P d q J d
 

     W U    (2.9) 

  ,
h h

hd
 
  h hw w   (2.10) 

In Equation (2.9), W is the test function vector and   is the vector of material 

parameters for a given constitutive model. In addition, the incompressible condition is 

enforced, and q is acted as a Lagrangian multiplier. The function spaces are defined as 

follows: 

   1

0 ;  on i i i gM u H u g    u   (2.11) 

  2 0N L    (2.12) 

   1

0 ; 0 on i i gK w H w    w   (2.13) 

Note that the derivation in the plane stress case is very similar, thus we will not 

discuss herein. 
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2.1.3 Stabilization of the mixed finite element formulation 

As discussed in Section 2.1.1, both displacement and pressure are required to be 

solved for in the incompressible 2-D plane strain or incompressible 3-D cases, thus a 

mixed finite element formulation will be established after discretizing the weak form and 

utilizing the Ritz finite element approach. However, when the equal order interpolating 

function is utilized to approximate both the displacement and pressure fields, the resulting 

linearized system does not satisfy the Ladyzenskaja-Babuska-Brezzi (LBB) condition [65, 

66] and leads to several numerical issues [67]. To satisfy the LBB condition, we can use 

different orders of interpolation functions for the displacement and pressure, respectively, 

but this choice is inconvenient in writing program code. To adopt interpolation functions 

with the same order in the finite element formulation, we could utilize the stabilized finite 

element method where an additional stabilization term is introduced, thus the weak 

formulation is modified. The modified discretized weak form is to find 

,h h h h hp    U u  : 

 
     , ; , ; , 0   

,

h

h h h h h

h h h h

A D

q K N


  

     

W U W U w h

W w

 
  (2.14) 

where the stabilization term is given by: 

     
0

1

, ; ,    
i

N
h h T h

i

D q 

 

   W U P F   (2.15) 

Here i denotes the i-th element and 0

i  indicates the domain of the i-th element. N is the 

total number of elements, and   is the stabilization term and chosen following Hughes et 

al. [67]: 
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2

2

h



   (2.16) 

In Equation (2.16), we observe that   is inversely proportional to  , and 

proportional to both a factor    and the characteristic element length h. The factor   can 

be chosen between 0 and 1, while the characteristic element length depends on the element 

type and size. For instance, h is the longest edge for a triangular element or the longest 

diagonal for a bilinear element. With the assistance of Equation (2.5), the stabilization 

term can be further simplified: 

 

 

  

 

00

00

1 T

1 1

T T T

1 1

, ;

2 , ,   

= 2 , ,

ii

ii

h h

n n
T h h h

i i

n n
h h h

i i

D

W
q p J q

W
q J p q

 

 

  

  

  

  

   
         

  

   
        

  

 

 

W U

F F FC F
C

F F F F
C



  (2.17) 

Note that the simplification of the first term of the right-hand side in Equation 

(2.17) assumes that the problem domain is discretized by linear triangular elements. The 

detailed derivation procedure is shown in Appendix A.  

 The modified weak form with stabilization term (2.14) should be linearized and 

solved by Newton’s method, and the detailed procedure is shown in Appendix B. The 

stabilized weak form can be discretized and successfully solved by the finite element 

method with the same order interpolation function for all degrees of freedom [68]. We 

will utilize the stabilized finite element method to solve the forward problem throughout 

this dissertation.  
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2.2 Inverse problem in elasticity 

In this work, the inverse elasticity problem is posed to be a constrained 

optimization problem where the mismatch between measured displacement and the 

computed displacement fields are minimized. The computed displacement should satisfy 

the forward elasticity problem under the current estimate of the material property 

distribution. The optimization problem is solved by a gradient-based method called the 

limited BFGS algorithm [69-71] where the objective function value and the first order 

derivative with respect to material properties are required.   

2.2.1 The objective function of the inverse problem 

The inverse problem is stated as: Given the displacement fields 1 2, ,..., n

meas meas measu u u  

, find the material properties vector  1 2= , , , m     such that the objective function: 

  2

0

1 1

1 1
|| ( ) || Reg

2 2

n m
i i

i meas j j

i j

F w  
 

   T u u   (2.18) 

is minimized where the constraint is that the computed displacement field i
u  satisfies the 

forward problem in elasticity. The first term on the right-hand side of Equation (2.18) is 

referred to as the displacement correlation term that minimizes the difference between the 

computed and measured displacement fields in L2 norm. The tensor T is a diagonal tensor 

that weights different displacement components differently and each component of this 

tensor is chosen based on the noise level, e.g., the displacement components with higher 

noise level contribute less to the objective function. For instance, in ultrasound-based 

imaging, the displacement component parallel to the transducer axis is much more 

accurate than the component perpendicular to the axis. Hence, the former displacement 
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component should be weighed more in the objective function. iw  is a vector to weight for 

different displacement measurements. The second term in Equation (2.18) is called 

regularization term. The role of this term is to penalize the oscillations in the 

reconstruction and smooth the final reconstructed modulus distributions. There are 

numerous regularization types, and the total variation diminishing regularization (TVD 

regularization) will be frequently used in this dissertation, which is given by: 

   2 2Reg | |i i c d 


      (2.19) 

where c is a small constant to avoid singularity when computing the gradient of the 

regularization term. TVD regularization is capable of preserving the sharp change of 

material properties. The regularization factor i   is used to control the significance of the 

regularization. If the factor is very small, the final solution will oscillate intensely. On the 

contrary, the reconstructed results will be oversmoothed with a large regularization factor.  

How to choose an optimal regularization factor has been studied, and a number of methods 

have been proposed, e.g., L-curve method [72-75] or smooth criteria [62]. In this work, 

the regularization factor will be selected based on visual observation such that the overall 

reconstruction in the problem domain is neither too smooth nor too oscillating. More 

specifically, we will start with a very high regularization factor and solve the inverse 

problem, and then keep decreasing the regularization factor until some region of the 

reconstruction images does not look overly smooth and should start oscillating.  
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2.2.2 Adjoint method for gradient evaluation 

The optimization problem is solved utilizing the gradient-based quasi-Newton 

method that requires the gradient of the objective function with respect to material 

properties  . In a discretization problem, the gradient will also be evaluated in discretized 

level, and a gradient vector for a specific material property i  will be constructed. The 

dimension of the gradient vector depends on the mesh.  In most cases, the gradient will be 

evaluated at every element or node in the discretized problem domain, and this requires 

solving a forward problem for every nodal or element-wise gradient evaluation. Thereby, 

the gradient evaluation process is computationally costly. To address this deficiency the 

adjoint method is introduced [64, 76] and the specific procedure is shown below:  

Let’s change   by an infinitesimal increment to   , and the displacement 

and pressure will change accordingly from i
u   and pi to i iu u+  and i ip p  for i-th 

measurement, respectively. Then we can obtain the relation between iu  and ip  by 

differentiating the stabilized weak form (2.14).  

    , ; , , ; 0i i iB C  W U U W U     (2.20) 

Similarly, differentiating the objective function (2.18) yields 

    
1 1

1
, ( ) D Reg ,

2

n m
i i i

i meas j j j

i j

D F w    
 

   T u T u u    (2.21) 

Where  

    
0

D Reg lim Regj j j

d

d
  


    (2.22) 

Let’s define another boundary value problem that finds i h hK N W   such that  
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   

1

, (, ; 0),
n

i i

i meas

i i

h h

i

wB

K N



 

  

 T T u uW V U

V

v
  (2.23) 

Replacing V  with iU  in Equation (2.23) leads to the adjoint equation: 

    
1

, (, ); , 0i i i
n

i i

i e s

i

i

m awB  


  T T u uW U U u   (2.24) 

We also replace W in Equation (2.20) with i
W  , which gives  

    , ; , , ; , 0i i i i iB C  W U U W U     (2.25) 

Combing Equations (2.24) and (2.25) yields  

    
1

, ( ) , ; 0
n

i i

i meas

i

i i iCw  


   u WT u UT u     (2.26) 

Substituting Equation (2.26) into (2.21), one can obtain the final expression for 

the gradient  

    
1 1

1
D Reg ,

2
, ; ,

j

n m

j j j

i

i

j

hD F C     
 

  W U   (2.27) 

Hence, the procedure to solve the inverse problem utilizing the adjoint method is 

summarized as follows: 

1) Solving a forward problem with a current estimate of material property distribution 

to obtain the computed displacement. 

2) Using the computed displacement field to solve for i
W  by Equation (2.24).  

3) Taking i
W  into Equation (2.27) to evaluate the gradient of the objective function 

with respect to material properties. 
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4) Using the objective function and its gradients to evaluate the updated material 

property distribution by the limited BFGS method.  

5) Repeating Step 1) to 4) until the objective function is minimized. 

The adjoint method only requires solving one forward problem to evaluate the 

gradient of the objective function with respect to material properties for each measurement 

in every minimization iteration, which significantly reduces computational time. 

2.2.3 The element-wise TVD regularization  

The material properties can also be defined constantly in each element. This choice 

has potential significance in simulating the mechanical behavior of functional gradient 

materials (FGM) [77-79] in that for an FGM structure, different materials are bonded 

together and there is no continuous transition from one material to the other. Hence, we 

should include the feature of element-wise defined material properties into the inverse 

algorithms. As the elastic property distribution is spatially discontinuous in the discretized 

problem domain, the TVD regularization (2.19) should be revised and the mathematical 

derivation for the element-wise TVD regularization are shown below. 

  Let’s consider any two arbitrary neighboring elements A and B as shown in Figure 

2-1 (a).  The corresponding values of the material property for A and B are A and B  , 

respectively. To better analyze this problem, a local coordinate system is introduced where 

the directions of the two coordinate axes s and t are along and perpendicular to the 

interface between these two neighboring elements, respectively. The local coordinate 

system are defined by rotating the Cartesian coordinate axes by an angle of θ as shown in 

Figure 2-1 (b). As the material property distribution is discontinuous in the domain of 
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interest, the material properties are assumed to be constant at every element to preserve 

the discontinuous transition. In this case, the material properties do not vary along the 

interface, i.e. / 0s   . In other words, the material properties only depend on the 

variable t. Recall the continuous form of TVD regularization formulation neglecting the 

constant c for elements A and B: 

   2Reg | |
A B

AB

i i d 
 

     (2.28) 

According to the rules of coordinate transformation, Equation (2.28) can be 

rewritten in terms of s and t, that is: 

  Reg
A B

AB i i
i dtds l

t t

 


 

 
 

    (2.29) 

To achieve Equation (2.29), the condition, / 0i s   , is utilized. Based on the 

jump condition, the TVD formulation can be further reduced to: 

  RegAB AB A B

i i il      (2.30) 

where  lAB is the length of the interface between the elements A and B, and the discretized 

TVD regularization is also linearly proportional to the shear modulus difference between 

the neighboring elements. To avoid the singularity issue when taking the gradient of the 

discretized regularization, a constant c is also introduced as : 

    
2

2RegAB AB A B

i i il c       (2.31) 

  This new formulation has been successfully implemented into our iterative inverse 

solver, and we will test the new feature with a numerical example in Section 2.3.2.   
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Figure 2-1: (a) The schematic diagram of two neighboring elements A and B in the 

discretized problem domain; (b) the coordinate transformation from the global coordinate 

system and the local coordinate system.  

 

 

2.3 Numerical results  

In this Section, the inverse algorithms discussed previously will be tested 

numerically. The measured displacement field is acquired by solving a forward problem 

in elasticity using the finite element approach. To mimic the experimental data, 3% white 

Gaussian noise is introduced to the full-field displacement field. Both the displacement 

and pressure are interpolated by linear interpolation functions in each element in the 2-D 

plane strain case for the incompressible material, and the material properties are defined 

in each node in Section 2.3.1 or each element in Section 2.3.2. In Section 2.3.1, we will 

adopt the linear function to interpolate material properties and use the modified Veronda-

Westmann model (2.7) in the state of plane strain to model the mechanical response of 

soft solids. In Section 2.3.2, the problem domain is assumed in the state of incompressible 
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plane stress, and the shear modulus is interpolated constantly in each element, thus the 

shear modulus is distributed discontinuously throughout the domain.  

2.3.1 Numerical results for nodally defined material properties  

The simulated tissue in this section is modeled using the modified Veronda-

Westmann law (2.7). To reconstruct the shear modulus and nonlinear parameter 

distributions of the problem domain, we could employ two approaches. A common way 

is to assess them simultaneously, but the quality of reconstructions is inferior [62]. An 

alternative idea is to reconstruct shear modulus and nonlinear parameter distributions 

sequentially. As discussed in Section 2.1.1, the shear modulus and nonlinear parameter 

govern the linear and nonlinear behaviors, respectively. Thus we are able to reconstruct 

shear modulus by applying an infinitesimal deformation first and then reconstruct the 

nonlinear modulus by applying a large deformation. This approach takes advantage of the 

physical meaning of each material parameter, and its proof of concept has been 

successfully shown by simulations and experiments [49, 62]. In this section, we will 

present a numerical example of the sequential method. The problem domain is a unit 

square as depicted in Figure 2-2 which mimics a diseased breast tissue. The inclusion 

inside represents a tumor with a radius of 0.2, the rest part represents the normal tissue. 

The shear modulus and nonlinear parameter ratios of the inclusion to the background are 

5:1 and 10:1, respectively. We apply compression on the top edge and restrict the vertical 

motion of the bottom edge. To avoid the rigid body motion, we fix the center node of the 

bottom. The other two sides are traction free.   
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Figure 2-2: Problem domain of a diseased tissue model: (a) target shear modulus 

distribution; (b) target nonlinear parameter distribution.   

 

 

We first apply 0.2% compression on the top. In this case, the nonlinear behavior 

of the simulated phantom can be neglected, thus the shear moduli can be recovered 

independently. We then apply 20% compression on the top side, and the nonlinear effect 

will become significant. In this case, given the reconstructed shear modulus acquired 

earlier, the nonlinear parameter can be determined. The target problem domain and 

reconstructed results are presented in Figure 2-2 and Figure 2-3, respectively. 
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Figure 2-3: Reconstruction results for the target distribution shown in Figure 2-2. (a) 

reconstructed shear modulus distribution; (b) reconstructed nonlinear parameter 

distribution. 

 

 

In Figure 2-3, the regularization factors are selected as 5.0×10-11 for the shear 

modulus and 3.5×10-8 for the nonlinear parameter, respectively. It is clear to see that both 

the shear modulus and nonlinear parameters of this large inclusion are well recovered. 

However, the shape of the inclusion of the shear modulus reconstruction is recovered 

better than in the nonlinear parameter reconstruction. Similar trends are also observed in 

[49, 62]. 

2.3.2 Numerical results for element-wise material properties  

The numerical example presented in this section is very similar to the case shown 

in Section 2.3.1, and the problem domain is shown in Figure 2-4 (a). In this scenario, we 

set the nonlinear parameter to zero, and the shear modulus value in the inclusion is 10 

times larger than that of the background. We apply a uniformly distributed vertical 

displacement of 0.01 on the top edge, and the boundary conditions in other three sides are 
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the same as those used in Section 2.3.1.  The elastic solid is assumed in the state of plane 

stress, and we utilize 3600 bilinear elements to discretize the problem domain. Note that 

the piece-wise constant material property is utilized in the FEM model to preserve the 

discontinuity of shear moduli crossing the interface between the inclusion and background 

in this numerical example.  

 

 

 

Figure 2-4: (a) Target shear modulus distribution; (b)-(d) shear modulus reconstruction 

when the constant c is selected to be 10-1,10-1.5 and 10-2, respectively.  
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 Figure 2-4 (b) to (d) exhibit the reconstructions of shear modulus distribution with 

respect to the different constants c (c=10-1, 10-1.5 and 10-2, respectively) in the presence of 

3% noise. The regularization factors for all cases are chosen as 3.0×10-10. According to 

these results, subtle differences in the shear modulus value as well as the shape of the 

inclusion are observed in the reconstructions using different constants c. Moreover, we 

also observe that there is no continuous transition of shear modulus between two 

neighboring elements. Thus, this method may have some potential in reconstructing FGM 

structures having discontinuous interfaces between different materials.  

2.4 Conclusions  

In this chapter, we elaborate on the mathematical foundation of the iterative 

inverse problem in finite deformations and exhibits several numerical examples to test the 

feasibility of the inverse scheme.  To test the inverse algorithms, we firstly solve a forward 

problem to obtain the simulated data, and the simulated data is used as the measured field 

in solving the inverse problem. In the inverse problem, 3% white Gaussian noise is added 

throughout the problem domain to mimic the experimental data. The inverse problem is 

posed to be an optimization problem and solved by the limited BFGS method. We 

observed that the stiff inclusion in the problem domain is mapped well in both the stiffness 

value and the shape.  The reconstructed results demonstrate the robustness of the in-house 

inverse algorithms.   
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3. REDUCED BOUNDARY SENSITIVITY AND IMPROVED CONTRAST OF 

THE REGULARIZED INVERSE PROBLEM SOLUTION IN ELASTICITY* 

 

Recently, we realized that this inverse strategy to solve for the shear modulus 

distribution depends on the deformation field. In other words, the shear modulus 

reconstruction is sensitive to changing boundary conditions for a given problem domain. 

In this chapter, we demonstrate that this issue occurs when two inclusions, e.g., 

representing two tumors, in a homogeneous background are presented. We illustrate that 

the strain field and the total variation (TV) regularization play a key role in the elastic 

parameter reconstruction. We address this issue utilizing a spatially weighted 

displacement correlation term as a function of the strain field. We thoroughly discuss these 

observations in Section 3.4 and derive a coupled 1-D analytical expression to analyze our 

findings. We observe that boundary sensitivity 1) occurs independent of noise, and 2) can 

be reduced by modifying the displacement correlation term by a strain dependent term. 

The 1-D results closely resemble the results obtained from the 2-D continuum model. Our 

analysis shows that the modified objective function works for any number of similar sized 

inclusions embedded in a soft background with distinct inclusion stiffness values. This 

analysis however is constrained by the fact that the inclusions may not share the same 

horizontal position, while the vertical position of each inclusion may be arbitrary. 

                                                 

*Reprinted with permission from” Reduced Boundary Sensitivity and Improved Contrast of the Regularized 

Inverse Problem Solution in Elasticity” by Mei, Y., Kuznetsov, S., & Goenezen, S., 2016. Journal of Applied 

Mechanics, 83(3), 031001. Copyright [2016] The American Society of Mechanical Engineers.  
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Furthermore, we improve the contrast of the elastic parameter reconstructions utilizing a 

spatially varying regularization factor in a posterior step, while at the same time yielding 

a smoother elastic parameter reconstruction. 

3.1 Spatially weighted displacement correlation method 

The proposed inverse formulation involves a modification of the objective function 

given as 

 
2 2 2

2

1 1
|| ( ) || | |

2 2

n
i i i

meas

i

F c d 


      W u u   (3.1) 

where i
W  is a weighting function of the measured normal strain components i

xxε  , i

yyε  , 

and i

zzε   corresponding to the i-th deformation field: 
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         The contribution of shear strain components is neglected in the weighting function 

as the shear strain is small compared to the normal strain for the uniaxial compression 

simulation performed in this chapter. As discussed earlier, we assume that the deformation 

field is in two-dimensional space, thus we omit the displacement and strain components 

in the z-direction. Furthermore, assuming that we have only one “measured” displacement 

field, and that the displacement component in the x direction is highly noisy and does not 

contribute to the objective function, Equation (3.1) reduces to: 
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         Note that we do not utilize the measured strain field directly in Equations (3.2) 

and (3.3) to spatially weight the displacement correlation term, as it contains highly 

amplified noise levels. We have decided to utilize the strain field from the final computed 

displacement field after solving the inverse problem according to the method presented in 

Section  3.2. An alternative approach would be to filter the noisy “measured” strain field, 

but from our experience the computed strain field yields superior quality in the 

reconstructed shear modulus distribution. We will investigate the modified objective 

function further in the Discussion section (Section 3.4) and compare this to the 

conventional inverse formulation. 

3.2 Spatially varying regularization factor 

We solve the inverse problem in a posterior step utilizing the shear modulus 

distribution from the solution of the inverse problem with the spatially weighted 

displacement correlation term according to Section 3.1. To this end, we express the 

regularization factor in terms of the shear modulus distribution obtained utilizing 

Equation (3.3).  The new regularization factor is given by 
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Thus the new regularization factor is a function of the spatial coordinates. 
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We denote the unknown shear modulus distribution in Equation (3.5) by   to 

distinguish it from the known shear modulus in Equation (3.4). In [57] a spatially treated 

regularization term has been presented for atherosclerotic plaques with known non-

homogeneous morphology of the plaque in the artery from spatial priors. 

3.3 Results 

The limited BFGS method is utilized to solve the constrained optimization 

problem, which requires the computation of the gradient of the objective function with 

respect to the unknown elastic parameter distribution at each minimization call. We will 

stop the minimization procedure when fully converged, thus the total number of iterations 

is about 3000 to 6000 in the proceeding results. All reconstructions in Section 3.3 utilize 

the displacement field, determined from the forward problem for the boundary conditions 

given in after adding about 3% of white Gaussian noise. The regularization constant c for 

all these reconstructions is chosen to be 0.01. The initial guess of the shear modulus is 1 

over the whole domain, and the lower and upper bounds for the search region of the 

unknown shear modulus distribution are between 1 and 30, respectively. 
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Figure 3-1: Given are the following target shear modulus distributions: (a) Two 

horizontally positioned inclusions with 5   in a homogeneous background of 1  . (b) 

Two horizontally positioned inclusions with 5   in the left inclusion, 10   in the 

right inclusion and 1  in the background. (c) Two inclusions positioned on the diagonal 

of the unit square, with  5    in both inclusions, and  1    in the background. 

 

 

3.3.1 Results for the iterative, regularized inverse problem 

In this section we present results of the regularized inverse problem using the 

methodology reviewed in Section 2.2 and the examples from Figure 3-1. Figure 3-2 

represents the shear modulus reconstructions for the target shear modulus distribution 

given in Figure 3-1 (a) for the case with a uniform compression. In Figure 3-2, the left 

reconstruction corresponds to a regularization factor of 8.0E-10 and the right 
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reconstruction corresponds to a regularization factor of 2.5E-10. Clearly, both inclusions 

are well recovered as well as their shear modulus values. The plots on the bottom of  

Figure 3-2  represent the shear modulus values along a horizontal line through the center 

of both inclusions for each shear modulus reconstruction. The horizontal centerline plot 

for the target shear modulus distribution is included in these plots as comparison. 

 

 

 

Figure 3-2: (Top) Shear modulus reconstructions for the problem domain in Figure 3-1 

(a) with uniform compression for two regularization factors. (Bottom) Plot of shear 

modulus values along the horizontal centerline through both inclusions. 
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Now, we demonstrate that the conventional solution of the regularized inverse 

problem, posed as a constrained minimization problem, leads to undesired shear modulus 

reconstructions when boundary conditions are altered to a linear displacement 

compression. The shear modulus reconstruction is given in Figure 3-3 for a regularization 

factor of 5.0E-10 (left column) and 1.2E-10 (right column). We observe that the shape of 

the inclusions are well recovered, however, the shear modulus values within each 

inclusion differ significantly from each other. Clearly, the current solution of the inverse 

problem appears to be dependent on the choice of boundary conditions or similarly related, 

the displacement field. We will elaborate on this further in  Section 3.4 and show for a set 

of shear modulus distributions that the solution of the inverse problem is in fact sensitive 

to the strain distribution. 
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Figure 3-3: (Top) Shear modulus reconstructions for the problem domain in Figure 3-1 

(a) with linear compression for two regularization factors. (Bottom) Plot of shear modulus 

values along the horizontal centerline through both inclusions. 

 

 

In Figure 3-4 we reconstruct the target shear modulus distribution given in Figure 

3-1 (b) for a displacement field determined under a uniform compression. The location of 

the inclusions is the same as before, but the right inclusion is by a factor of 2 stiffer than 

the left inclusion. The reconstructed shear modulus distribution in Figure 3-4 is given for 

a regularization factor of 1.0E-10 (left plot) and a regularization factor of 5.0E-11 (right 

plot). We observe that the shape of the inclusions are well recovered, while the 

reconstructed shear modulus values between the left and right inclusion differ significantly 

with respect to their contrast loss. For example, comparing the horizontal centerline plots 

between the target and reconstructed shear modulus distribution, we observe that the shear 

modulus value in the left inclusion is well recovered, while the shear modulus value in the 
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right inclusion is significantly underestimated (Figure 3-4, left column). In other words, 

the relative loss in contrast of left inclusion to background versus right inclusion to 

background is different, despite the fact that a uniform compression is utilized. This leads 

to a discussion on the effect of strain rather than the displacement field causing these 

undesired artifacts (see Section 3.4). 

 

Figure 3-4: (Top) Shear modulus reconstructions for the problem domain given in Figure 

3-1(b) with uniform compression for two regularization factors. We note that the target 

shear modulus in the left inclusion is 5 and the right inclusion is 10. (Bottom) Plot of the 

shear modulus values along the horizontal centerline through both inclusions. 

 

 

In Figure 3-5, we demonstrate that the conventional solution of the regularized 

inverse problem, posed as a constrained minimization problem, also fails to yield proper 

reconstructions of the shear modulus values, when the inclusions are positioned diagonally 
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as given in Figure 3-1 (c). On the other hand, the shape of the inclusions are well 

recovered as observed before. The compression on the top edge varies linearly as 

described at the beginning of this section, thus the strain in the left inclusion will be much 

smaller than in the right inclusion. The shear modulus reconstructions of the left and right 

images in Figure 3-5 are computed for a regularization factor of 4.0E-10 and 1.0E-10. 

The left inclusion is clearly underestimated as can be seen in the shear modulus curves 

plotted over the centerline passing through the center of both inclusions. 

 

 

 

Figure 3-5: (Top) Shear modulus reconstructions for the problem domain given in Figure 

3-1 (c) with linear compression for two regularization factors. The inclusions are located 

along the diagonal. (Bottom) Plot of the shear modulus values along the diagonal line 

through the center of both inclusions. 
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3.3.2 Results for the iterative, regularized inverse problem utilizing a spatially weighted 

displacement correlation 

The modified inverse problem statement, weighing the displacement correlation 

term with the reciprocal strain distribution has been introduced in Sections 3.1 and 3.2. 

We will show that this formulation reduces the sensitivity of the reconstructions presented 

earlier. 

Figure 3-6 shows the shear modulus reconstruction obtained for the target shear 

modulus distribution given in Figure 3-1 (a) and the measured displacement data from the 

linear compression boundary. The shape of the inclusion is well recovered and the 

difference in the shear modulus values between both inclusions reduced significantly. The 

regularization factor has been chosen to be 3E-5. 

Figure 3-6: (Left) Shear modulus reconstruction for the target shear modulus distribution 

from Figure 3-1(a) with varying compression boundary. (Right) Shear modulus plot 

versus the horizontal line through the center of both inclusions for the reconstructed and 

target shear modulus distribution. 
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Figure 3-7 represents the shear modulus reconstruction for the target shear 

modulus distribution defined in Figure 3-1 (b) with two inclusions having distinct 

stiffness values. A regularization factor of 7.0E-6 is chosen, leading to a smooth shear 

modulus distribution. The inclusions are well recovered, and the relative contrast loss in 

each inclusion is more consistent as further discussed later. 

Figure 3-7: (Left) Shear modulus reconstruction for the target shear modulus distribution 

from Figure 3-1(b) with uniform compression boundary. (Right) Shear modulus plot 

versus the horizontal line through the center of both inclusions for the reconstructed and 

target shear modulus distribution. 

The proposed method also works well for the diagonally positioned inclusion 

model with linear boundary compression (see Figure 3-8). The difference in the shear 

modulus values between both inclusions is very small as can be clearly seen in the curve 

plot of the shear modulus values along the diagonal line passing through the center of both 

inclusions. A regularization factor of 2.5E-5 has been chosen in the inverse problem 

solution. 
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Figure 3-8: (Left) Shear modulus reconstruction for the target shear modulus distribution 

from Figure 3-1 (c) with linear compression boundary. (Right) Shear modulus plot versus 

the diagonal line through the center of both inclusions for the reconstructed and target 

shear modulus distribution. 

 

 

3.3.3 Results for the iterative, regularized inverse problem utilizing a spatially varying 

regularization factor 

The regularization factor in the previous results in Section 3.3.2 were intentionally 

chosen to be large. While a large regularization factor leads to very smooth and well 

recovered inclusion shapes, it compromises the overall contrast of the shear modulus 

values. In this section, we will utilize the results from Section 3.3.2 and perform a 

posterior inverse solution step to improve the contrast, while retaining the smoothness 

quality of the reconstructions. For this, we update the regularization factor such that it 

becomes a spatial function defined in Section 3.2. 

Applying this methodology to the target shear modulus distribution given in 

Figure 3-1 (a) with linear compression boundary results in a significant increase in shear 

modulus contrast in the inclusions as shown in Figure 3-9. We observe that the 
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background is very smooth overall. We have selected a regularization factor of 3.5E-5 for 

this case. 

 

 

 

Figure 3-9: (Left) Shear modulus reconstruction utilizing the methodology introduced in 

Section 3.2. The target shear modulus distribution is given in Figure 3-1 (a). (Right) Shear 

modulus values along the horizontal centerline passing through the center of both 

inclusions for the target and reconstructed values. 

 

 

The shear modulus reconstruction corresponding to the target distribution in 

Figure 3-1 (b) is given in Figure 3-10. We observe that the shear modulus contrast in 

both inclusions improves significantly, while the background remains smooth and the 

inclusion shapes are well recovered. 
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Figure 3-10: (Left) Shear modulus reconstruction utilizing the methodology introduced 

in Section 3.2. The target shear modulus distribution is given in Figure 3-1 (b). (Right) 

Plot of the shear modulus values along the horizontal centerline passing through the center 

of both inclusions for the target and reconstructed values. 

 

 

Finally, the shear modulus reconstruction for the target shear modulus distribution 

in Figure 3-1 (c) with diagonal positioned inclusions is given in Figure 3-11, utilizing the 

inverse solution introduced in Section 3.2. Again, the shear modulus contrast improves 

significantly without compromising the quality of the recovered inclusion shape and the 

overall smoothness of the shear modulus distribution. 
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Figure 3-11: (Left) Shear modulus reconstruction utilizing the methodology introduced 

in Section 3.2. The target shear modulus distribution is given in Figure 3-1 (a). (Right) 

Plot of the shear modulus along the diagonal centerline passing through the center of both 

inclusions for the target and reconstructed values. 

 

 

3.4 Discussion 

In this Chapter, we have presented a novel formulation to solve the regularized 

inverse problem, posed as a constrained minimization problem subject to the constrained 

of the equilibrium equations. In a first step, we have modified the displacement correlation 

term, introducing a weighting function in terms of the strain components. We have tested 

this new methodology successfully with hypothetical data determined from three target 

shear modulus distributions given in Figure 3-1. All these examples have in common that 

they comprise of two inclusions in a homogeneous background. In the first example (see 

Figure 3-1(a)) with two horizontal positioned inclusions of same stiffness value, we have 

shown that the conventional inverse method recovers the shear modulus distribution well 

(see Figure 3-2) when a uniform displacement compression is applied. However, 
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changing the boundary to a linear displacement compression, e.g. collecting ultrasound 

data while the ultrasound transducer is tilted, the recovered shear modulus values in both 

inclusions are significantly different. One could now conclude that the linear displacement 

compression results in small displacements in the left inclusion and large displacements 

in the right inclusion, thus are treated unequally in the displacement correlation term [80]. 

However, in the second example, the inclusions are horizontally positioned and have 

distinct stiffness values, while a uniform displacement compression is applied on the top 

boundary, and the inverse problem is solved utilizing the conventional approach. We note 

that in this example, the displacements in both inclusions are similar, while the strain is 

smaller in the stiffer right inclusion. We expect that the reconstructed shear modulus 

values in both inclusions are underestimated consistently. In other words, the relative 

difference of target and reconstructed shear modulus in each inclusion should be about 

same. This requirement is clearly not satisfied in the shear modulus reconstructions in 

Figure 3-4 determined with the conventional inverse method. We note that it is not correct 

to say that the left inclusion is “better” recovered than the right inclusion. This is because 

in practical applications, we do not know the actual target modulus distribution, thus the 

reconstructions can only be properly interpreted if they are consistently underestimated. 

The novel proposed formulation addresses this issue successfully as shown in Figure 3-

7. In the last example (see Figure 3-1 (c)), we position the target inclusions with same 

stiffness values diagonally and apply a linear displacement compression on the top 

boundary. We note that this causes strains similar to the example in Figure 3-1 (a), but 

the displacements in the inclusions are significantly different. Again, the conventional 
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method yields significant differences in the reconstructed shear modulus values in both 

inclusions. In particular, the inclusion with the lower strain has the lower reconstructed 

shear modulus value (see Figure 3-5). This difference in the reconstructed shear modulus 

is significantly reduced utilizing the novel inverse formulation (see Figure 3-8).  

The examples utilized in this paper, clearly demonstrate that the strain field is a 

potential candidate that is likely to influence the reconstruction of  . To gain confidence 

in our shear modulus reconstructions and further investigate key variables in the new 

formulation, we derive a 1-D analogue given in Figure 3-12. Two non-homogeneous bars 

in parallel are connected by two rigid plates, where the bottom plate is fixed and the top 

plate can be tilted to apply different compression levels on each bar, denoted by iu   . The 

length ia  (i=1,2) is analogue to the stiff inclusion diameter. The stiffness value in the 

inclusions will be chosen according to the cases discussed earlier, and the remaining 

region of the bar will have a stiffness value of 1. The objective function to be minimized 

is 
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where  
1F   and 

2F   are contributions to the objective function from the left  (i=1) and 

right (i=2) bar, respectively. In Equation (3.6) i

comu   and i

exactu  denote the computed and 

exact displacement field, respectively, and n is a factor to test our analysis for sensitivity 

(similar to noise). The second term is TVD regularization analytically expressed in 1-D 

for the non-homogeneous bar, where i

in   is the inclusion stiffness and i

b  is the 

background stiffness. We may set 1i

b    as the reconstructions are purely relative, i.e., 
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off by a multiplicative factor. Next, we express the displacement field given that the strain 

is piecewise constant in the background and inclusion. 
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where  i

b   and i

in   are the computed strains in the background and the inclusion, 

respectively, and the index i=1, 2 denotes the left and right inclusion. Similarly, the exact 

displacement field i

exactu  can be expressed by replacing the strains in Equation (3.7) by 

the exact strains i

b   and i

in  . As the stress in each bar is constant, we have the relationship  

i i i

b in in      and i i i

b in in     where the bars denote the exact (target) variables. From this 

relationship and kinematics, we obtain  

   / 1 /i i i i i

b inu a a     and   / 1 /i i i i i

b inu a a      (3.8) 

where iu  and iu  are the noisy and exact displacement loadings applied on the top of the 

bars. From Equations (3.7) to (3.8) the objective function in Equation (3.6) can be 

expressed in terms of the unknown i

in , thus, allows to determine the gradient 
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where  
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  (3.10) 

The regularization factor in the left and right bar are the same, and therefore we 

can relate the left and right bar from Equation (3.9) by 
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  (3.11) 

As with Equation (3.11) one can obtain the expression for the spatially weighted 

displacement correlation term (not shown here). Next, we know that the shear modulus 

reconstructions in the inclusions will be underestimated, thus, we will proceed as follows: 

Fix the right stiffness value to the reconstructed value observed in the 2-D for the cases 

discussed in the Section 3.3 and solve for the stiffness modulus in the left inclusion. The 

results in Table 3-1 and Table 3-2 clearly show that our 1-D analogue, while simple, can 

closely reproduce the trends observed in the 2-D inverse solution, thus confirms that the 

observations in the 2-D model are not due to convergence related issues. Furthermore, we 

note that the observed trends are independent of the perturbation (noise) applied to the 

displacement field. We have made this same observation in our 2-D models (not shown 
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here). Thus we conclude that the regularization term drives these ambiguous 

reconstructions and not the inherent noise level. 

 

 

 

Figure 3-12: 1-D analogue of previous shear modulus inclusions, represented by two non-

homogeneous bars. 

 

 

Table 3-1: Comparison of reconstructions for left inclusion with 2-D model, 1-D model, 

and 1-D model with noise. The conventional objective function is used. 

 

 

 

left inclusion right inclusion left inclusion right inclusion left inclusion right incluison

case1 2.2 2.98 2.06 2.98 2.07 2.98

case2 4.86 6.44 4.39 6.44 4.37 6.44

case3 2.15 3.01 2.08 3.01 2.21 3.01

2D continuum model 1D bar model (n=1) 1D bar model (|n-1|=1.5%)
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Table 3-2: Comparison of reconstructions for left inclusion with 2-D model, 1-D model, 

and 1-D model with noise. The spatially weighted objective function is used. 

   

 

 

 To motivate the spatial weighted factor as a function of strain, we will discard the 

noise as it has limited influence on the observed results, and to simplify the following 

analysis. Furthermore, we will assume that the left and right inclusion have the same 

diameter of 0.2 and the inclusions can be positioned such that the relationship 1 20.8b b    

holds, which will cancel out terms dependent on 1b  and 2b . Thus, Equation (3.11)

simplifies to 
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where a   is the left and right inclusion size with 0.2a   for the proceeding analysis. The 

right hand side of Equation(3.12) follows from kinematics and equilibrium. We fix  

2 20.8in in   assuming a 20% contrast loss in the right inclusion, and solve the shear 

modulus variable 1

in   in the left inclusion. It is important to acknowledge that 1u   can be 

applied independently of 2u , thus solving for 1

in will strongly depend on this 

displacement boundary. The expression for the spatially weighted regularization case is 

given by 

left inclusion right inclusion left inclusion right inclusion left inclusion right incluison

case1 2.69 2.95 2.95 2.95 2.96 2.95

case2 4.11 6.34 3.66 6.44 3.64 6.44

case3 2.69 2.95 2.95 2.95 3.06 2.95

2D continuum model 1D bar model (n=1) 1D bar model (|n-1|=1.5%)
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  (3.13) 

Equation (3.13) clearly shows that the solution for 1

in  does not depend on the 

applied boundary condition using the spatially weighted formulation. As the contrast in 

the right inclusion has been assumed to be underestimated by 20%, we expect the left 

inclusion to be underestimated by 20% as well. Keeping this in mind, we plot the error 

defined by    1 1 10.8 / 0.8 100%in in in   
 

 over 2

in   for different  1

in  (=3, 4, 5, 6, 7, 8, 9, 

10 from top curve to bottom curve) for the conventional method in Figure 3-13 and the 

spatially weighted displacement correlation in Figure 3-14. The displacement boundary 

ratio between right and left boundary is set to 2. We observe that the error for the 

conventional method reaches about 70%, while the reconstruction error in the new method 

is about 22%. The plots also reveal that the error in the new method is zero when the 

stiffness values in left and right inclusion are same, while for the conventional method it 

is about 25%. We note that the error plot will change for different displacement boundaries 

using the conventional method, but will remain the same for the spatially weighted 

displacement correlation term. Finally, this approach can be generalized for more than two 

bars, i.e., multiple bars with inclusions in parallel, and the above analysis will hold as each 

bar will can be decoupled in the minimization analysis. 
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Figure 3-13: Error plot of the reconstructed shear modulus in the left inclusion over the 

exact shear modulus in the right inclusion 2

in  for different shear modulus values in the 

left inclusion 1

in  (=3, 4, 5, 6, 7, 8, 9, 10). The conventional method has been used. 

Figure 3-14: Error plot of the reconstructed shear modulus in the left inclusion over the 

exact shear modulus in the right inclusion  2

in  for different shear modulus values in the 

left inclusion 1

in  (=3, 4, 5, 6, 7, 8, 9, 10). The new spatially weighted method has been 

used. 
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We have shown that the conventional regularized inverse problem formulation 

posed as a minimization problem results in ambiguous shear modulus reconstructions and 

depends on the choice of boundary conditions. We have observed this on simulated data 

created from solving the forward problem for a predefined target shear modulus 

distribution. We have reduced the boundary sensitivity of the regularized inverse solution 

by weighting the displacement correlation term with the inverse strain tensor having only 

normal strain components. We have derived a 1-D analogue and shown analytically that 

our inverse strategy will work for an arbitrary number of same sized inclusions with 

different stiffness values. The 1-D model analysis has the limitation that it does not 

account for inclusions sharing the same horizontal coordinate (i.e., vertically shifted), 

though it can be expanded to include these cases as well. While our reconstructions clearly 

show the limitations of the conventional approach, the spatially weighted method needs 

to be investigated further. We also note that these observations were analyzed for the total 

variation regularization and may not be held for other types of regularizations. However, 

the results and analysis in this chapter provide a better understanding in the solution of the 

regularized inverse problem, and may help to analyze other regularization types in a 

similar fashion. Finally, we have drastically improved the contrast of the shear modulus 

reconstructions without compromising the overall quality. This has been achieved in a 

posterior inverse solution step, expressing the regularization factor as a spatial function of 

the coordinates rather than as a constant. 

3.5 Conclusions 
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4. ESTIMATING THE ELASTIC DISTRIBUTION FROM SURFACE 

DEFORMATIONS* 

 

     In this chapter, we will solve the inverse problem in elasticity in a hypothetical 

study for the shear modulus distribution using only surface deformations. This 

methodology does not require any priori information about the problem domain. It is based 

on finite element techniques, and the shear modulus distribution is represented as 

unknowns on the mesh nodes and interpolated with finite element shape functions. Thus, 

the number of unknown shear modulus values are equal to the total number of finite 

element nodes. We will test this method on a problem domain consisting of an inclusion 

embedded in a homogeneous background, and recover the shear modulus distribution 

using simulated surface displacement fields. Additionally, we add noise to the data to 

mimic measured surface deformations from recorded digital camera images. 

4.1 Inverse problem formulation utilizing measured surface displacement 

One “natural” way to formulate the inverse problem statement is as follows: Find 

the shear modulus distribution     such that the objective function: 

 2

1

( ) Reg( )

i

n
i i

meas

i

F d  
 

   u u   (4.1) 

                                                 

* Reprinted with permission from” Estimating the non-homogeneous elastic modulus distribution from 

surface deformations” by Mei, Y., Fulmer, R., Raja, V., Wang, S., & Goenezen, S., 2016. International 

Journal of Solids and Structures, 83, 73-80. Copyright [2016] Elsevier.  
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is minimized under the constraint of the forward elasticity problem. The first term is the 

displacement correlation term, minimizing the square of the misfit between the computed  

i
u  and measured i

measu  surface deformations on the problem boundary. The summation 

indicates that this formulation can accommodate multiple surface displacement fields, 

where n denotes the total number of observations. It is emphasized that the boundary 

integral i  is intentionally augmented with the index i to accommodate surface 

displacement data on varying boundaries. This is because it may not be feasible to observe 

data on the same sub-boundary domain for each experiment. The second term is the so-

called regularization term to penalize oscillations in the final solution of the shear modulus 

distribution. We will define the particular regularization type later on. 

The inverse problem formulation in Equation (4.1) is expressed analogous to [48, 

49, 62, 64, 80-85], but differs in that the predicted and measured displacements are 

correlated on the surface while the referenced approaches correlate the displacements in 

the entire interior of the problem domain. Discretizing Equation (4.1) with finite element 

techniques is straightforward. This will be demonstrated for one displacement field to 

reduce notations, this is 

 
2( ) Reg( )F d  



    u   (4.2) 

Where meas  u u u . The finite element interpolation yields 

 
2

1 1 1

[ ( ) ] Re ( ( ))
e n

e

N NN
e e

j j j j

e j k

F N d g N 
  

      u x x   (4.3) 
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where N ,
gN , and nN  denote the total number of finite elements on the boundary, the 

number of nodes on each element, and the total number of mesh nodes in the problem 

domain, respectively. Further, ( )e

jN x  denotes the shape function for the j-th node 

corresponding to the e-th linear triangular element. While this approach appears to be 

reasonable, we employed an alternative formulation to facilitate implementation. More 

precisely, we have used domain integrals over finite elements at the boundary, given by 

 
2

1 1 1

[ ( ) ] Re ( ( ))
e n

e

N NN
e e

j j j j

e j k

F N d g N 
  

     u x x   (4.4) 

where N denotes the total number of domain elements at the boundary and  gN  denotes 

the number of element nodes on the boundary of the corresponding elements. It is noted 

that only displacement information on the boundaries are assumed to be known, despite 

the integration over element domains. This more “unnatural” approach has been 

performed to use the current framework of the existing inverse solver written for 

minimizing the misfit in displacements over the volume integral. In the following we will 

analyze the implications of using Equation (4.3) versus Equation (4.4) on a uniform 

mesh given in Figure 4-1. 
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Figure 4-1: Finite elements are shown for a mesh along one boundary of a rectangular 

problem domain with uniform mesh (see bold region). The coordinate axis s is aligned 

with the left boundary. The boundary elements have a width a and height b. This 

configuration is utilized to analyze the effect of the weights in the objective function 

arising from a domain integral formulation. 

 

 

The coordinates span along one boundary edge of a problem domain in two-

dimensional space, and we discard the other boundary edges to simplify the analysis (see 

bold elements in Figure 4-1). The width of the elements along the t coordinate is denoted 

by a, and the height along the s coordinate of the elements is denoted by b. Evaluating 

Equation (4.4)for the boundary elements given in Figure 4-1 yields: 

1
2 2 2

1 1

2 1

Re ( ( ))
6 4 12 12

nNN

i i i N j j

i k

ab ab ab ab
F u u u u u g N 





 

 
          

 
  x   (4.5) 
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and evaluating  Equation (4.3) for the boundary integral yields: 

 
1

2 2 2

1 1

2 1

2
Re ( ( ))

3 3 3 3

nNN

i i i N j j

i k

b b b b
F u u u u u g N 





 

 
          

 
  x   (4.6) 

It is apparent that the displacement correlation term in Equation (4.5) contains the 

element width a and element height b in every term, thus can be factorized. Further, 

dividing Equation (4.5) by a factor of ab will not change the final solution, i.e., the 

location of the minimum does not change. Thus we can rewrite Equation (4.5) as 

 
1

2 2 2

1 1

2 1

1 1 1 1
Re ( ( ))

6 4 12 12

nNN

i i i N j j

i k

F u u u u u g N 




 

 
          

 
  x   (4.7) 

In Equation (4.7), we have substituted    for 
ab


 . Similarly, in Equation (4.7) 

we can factorize b  from the displacement correlation term and divide the entire expression 

by 4b , resulting in 

 
1

2 2 2

1 1

2 1

1 1 1 1
Re ( ( ))

12 6 12 12

nNN

i i i N j j

i k

F u u u u u g N 




 

 
          

 
  x   (4.8) 

where we have substituted   for / b . Now we observe that for a uniform mesh the 

objective function for the domain integral in Equation (4.7) and the boundary integral in 

Equation (4.8) differ by their weights. It is noted that these weights are independent of 

the element size for a uniform mesh. 

In this chapter, the feasibility to solve the inverse problem in elasticity with the 

formulation introduced in Equation (4.4) will be tested with hypothetical displacement 

data, representing “measured” displacement data on the surface of the problem domain. 

The hypothetical displacement data will be created by solving the finite element forward 
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problem for a given non-homogeneous shear modulus distribution and boundary 

conditions. The problem domain is given in Figure 4-2 with a square domain of unit length 

on each side. The shear modulus distribution is given with a stiff inclusion having a value 

of 5 and a soft homogeneous background having a value of 1. The inclusion diameter is 

given with 0.4 units. The arrows on the boundary represent the indentation at various 

locations to deform the problem domain. From Figure 4-2 (a) to (c), we applied the 

indentation on the top, left, and right edges, respectively. The motion of the corresponding 

opposite side is restricted in the direction of the indentation, and the center node on that 

edge is fixed in all directions to avoid rigid body. 

 

Figure 4-2: Target shear modulus distribution consists of a stiff inclusion ( 5  ) in a soft 

back-ground ( 1  ). The arrows indicate the indentation locations and directions for 

different boundary conditions. 

 

Each indentation induces a displacement of 0.05 units on the corresponding node 

and perpendicular to the corresponding boundary. We note that only 15 arrows are shown 

in Figure 4-2, while a total of 27 displacement fields are actually created for this study. 

We model the material in two-dimensional space, in particular in-plane strain for 

an incompressible material. The finite element mesh consists of 7200 linear triangular 
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elements, and the displacement as well as the pressure variables are interpolated with 

linear shape functions. Numerical instability in the pressure variable due to the 

incompressibility constraint and the violation of the LBB conditions has been addressed 

according to [49, 68, 86], using stabilized finite element methods. This has been discussed 

in detail in Chapter 2.   

In order to mimic displacement data obtained from digital camera images, we add 

1% and 2.5% white Gaussian noise to the surface displacement field obtained from the 

solution of the forward problem. The noise level is defined by 

2 2

1 1

100% (( ) ( ) ) / ( )
N N

surf

meas i surf i surf i

i i 

 u u u , where ( )surf

meas iu  and ( )surf iu  denote the 

measured and computed displacement (for given target shear modulus distribution) at 

node i, respectively. 

4.2 Results 

We will test the feasibility of solving the inverse problem with the formulation 

presented in Section 4.2. To this end, we will utilize a varying number of surface 

displacement fields at varying noise levels to reconstruct the shear modulus distribution. 

  Figure 4-3 (b) to (d) represent the shear modulus reconstructions from 9, 15, and 

27 surface displacement fields without noise, induced by indentations of 0.05 

displacement units. A regularization factor of  1110   has been selected for all shear 

modulus reconstructions without noise. The indentations are evenly distributed on the 

three “visible” sides of the specimen, i.e. for the case with 9, 15, and 27 displacement 

fields we have 3, 5, and 9 indentations on each edge, respectively. The target shear 
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modulus distribution is given in Figure 4-2 (a) to facilitate comparison with the shear 

modulus reconstructions. The shear modulus is well recovered using only 9 surface 

displacement fields. The shear modulus ratio of inclusion to background is well recovered 

with about 4.3. With increasing number of displacement fields (see Figure 4-3 (c) and 

(d)) the circular shape of the inclusion improves as well as the shear modulus values 

overall. In Figure 4-4 the shear modulus distribution corresponding to Figure 4-3 (a) to 

(d) is plotted along a horizontal line through the center of the inclusion. 

 

 

 

Figure 4-3: Target shear modulus distribution given in (a) for the problem domain defined 

in Figure 4-2 for comparison with the shear modulus reconstructions utilizing various 

number of displacement fields (b)–(d).The displacement data used in these reconstructions 

contains no noise. 
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Figure 4-4: Shear modulus plot over the horizontal line through the center of the inclusion 

for the target (exact) and reconstructed shear modulus distribution. 

 

 

In Figure 4-5 (b) to (d) the shear modulus reconstructions are given for 9, 15, and 

27 displacement fields, respectively, where each displacement field contains about 1% 

noise. Figure 4-5 (a) represents the actual target shear modulus distribution and is 

provided for comparison. A regularization factor of 116 10    has been selected for all 

shear modulus reconstructions with 1% noise. The shear modulus ratio of inclusion to 

background is about 3.54 with 9 surface displacement fields and increases to about 3.8 

using 27 surface displacement fields. Furthermore, the shape of the inclusion becomes 

more circular with an increasing number of surface displacement fields. In Figure 4-6 we 

plot the shear modulus values over the horizontal line passing through the center of the 

inclusion for the reconstructions given in Figure 4-6. 
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Figure 4-5: Target shear modulus distribution given in (a) for the problem domain defined 

in Figure 4-2 for comparison with the shear modulus reconstructions utilizing various 

number of displacement fields (b) to (d). The displacement data used in these 

reconstructions contains 1% noise. 
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Figure 4-6: Shear modulus plot over the horizontal line through the center of the inclusion 

for the target (exact) and reconstructed shear modulus distribution. 

 

 

The shear modulus reconstruction for 2.5% noise in the surface displacement data 

is given in Figure 4-7 (b) to (d) for 9, 15, and 27 displacement fields together with the 

target shear modulus distribution in Figure 4-7 (a). The corresponding shear modulus plot 

over the horizontal line through the center of the inclusion is given in Figure 4-8. A 

regularization factor of  1010    has been selected for all shear modulus reconstructions 

with 2.5% noise. The shear modulus ratio of inclusion to background is about 3.25 

utilizing 9 surface displacement fields and increases to 3.6 utilizing 27 surface 

displacement fields. The shape of the circular inclusion improves with an increasing 

number of surface displacement fields. We note that the shear modulus ratio of inclusion 

to background does not improve when increasing the total number of surface displacement 

fields from 9 to 15 (see Figure 4-7 (b) to (d), respectively), while the shape of the inclusion 

clearly improves and becomes more circular. 
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Figure 4-7: Target shear modulus distribution given in (a) for the problem domain defined 

in Figure 4-2 for comparison with the shear modulus reconstructions utilizing various 

number of displacement fields (b) to (d). The displacement data utilized in these 

reconstructions contains 2.5% noise. 
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Figure 4-8: Shear modulus plot over the horizontal line through the center of the inclusion 

for the target (exact) and reconstructed shear modulus distribution. 

 

 

In practical applications digital cameras may have only a limited view on the 

specimen’s surface. Thus, the displacement data may only be known in partial boundary 

regions. Thus, we have tested two scenarios. In the first case, we apply 5 indentations on 

the top edge, evenly distributed. In the second case, 5 indentations are applied on the top 

and left edge each. In both cases, we will use the displacement data only on the edge where 

the indentation is applied and introduce 2.5% noise into the surface displacement field. 

The reconstructed shear modulus distribution for case one is shown in Figure 4-9 (a) and 

for case two is shown in Figure 4-9 (b) for a regularization factor of  1110    . 
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Figure 4-9: (a) Reconstructed shear modulus distribution when 5 indentations are applied 

on the top edge. (b) Reconstructed shear modulus distribution when 5 indentations are 

applied on the top and left edges. In (a) and (b) surface displacement fields are used only 

on the edge where the indentation is applied. 

 

 

To analyze the sensitivity of this method to the size of the inclusion, we tested this 

with the target shear modulus distribution given in Figure 4-10 (a), where we reduce the 

diameter of the inclusion to 0.2, and 3 displacement fields are evenly distributed on the 

top, left, and right edges each. The reconstructed shear modulus distribution is given in 

Figure 4-10 (b) for 1% noise in the surface displacements. Compared with the target shear 

modulus distribution as shown in Figure 4-10 (a), the new method is capable of detecting 

the location of the inclusion. However, the shear modulus value in the inclusion is 

significantly off. In addition, the size of the inclusion becomes larger. We also decreased 

the noise level to 0.1% which improves the reconstructed inclusion value and shape (see 

Figure 4-10 (c)). However, it is still significantly off from the target shear modulus 

distribution. This does not necessarily imply the limitation of this method as elaborated in 

Section 4.3. 
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Figure 4-10: Target shear modulus distribution given in (a), and reconstructed shear 

modulus with 1% noise in (b) and reconstructed shear modulus with 0.1% noise in (c). 

 

 

4.3 Discussions  

In this chapter we have presented a novel approach to solve the inverse problem in 

elasticity for the shear modulus distribution from displacement data that is measured only 

on the exterior of the specimen. This can be done using two digital cameras positioned at 

distinct locations and recording digital cameras before and after inducing the deformation 

field. These digital camera images can be processed to infer the three-dimensional surface 

deformation. We have tested this method with simulated surface displacement data, 
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created by solving the forward problem for a problem domain defined with a stiff inclusion 

embedded in a softer background. We have intentionally placed the inclusion off centered 

to avoid displacement fields being symmetric in the problem domain, which could be 

interpreted as some kind of inverse crime. The surface displacements were a direct result 

of the indentations applied at distinct location on the specimen’s boundary. We have 

solved the inverse problem with 9, 15, and 27 surface displacement fields and added 1% 

and 2.5% noise to the surface displacement data. This noise level is reasonable as shown 

in [87] where the surface displacement error obtained with digital camera images had a 

noise level of about 1%.  

We have made the following observations in our reconstructions: 1) The shear 

modulus ratio of the inclusion to the background improves with increasing number of 

surface displacement fields, 2) The shape of the reconstructed inclusion improves with an 

increasing number of surface displacement fields, 3) The shear modulus ratio of inclusion 

to background reduces significantly with increasing noise level, 4) The shape of the 

reconstructed inclusion deteriorates slightly with increasing noise level. In fact, the shape 

of the inclusion is well preserved despite the high noise level which is mainly due to the 

proper choice of the regularization type. The inclusion size in the target domain had a 

large diameter. Smaller diameters will be harder to recover as their absence will not change 

the resulting surface displacement field significantly. However, with decreasing noise 

level and increasing the “richness” of the data set, this issue can be addressed. Thus, future 

work will focus on the investigation of inclusion size detectability to the noise level with 

a rich data set. 
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In Figure 4-9 (a) and (b) we also tested two cases where only limited surface 

displacement data was available. We observe that it is feasible to recover the shear 

modulus distribution with limited surface data. However, the shape of the inclusion 

becomes worse, and the shear modulus value decreases. This is because using partial 

surface deformations will reduce the “richness” of the data set, and could be addressed by 

including additional surface displacements induced by shear forces and indentations that 

are not perpendicular to the boundary edge. 

All shear modulus reconstructions presented in this paper are only correct up to a 

multiplicative factor. In other words, multiplying the shear modulus distributions by an 

arbitrary constant would result in the same displacement field. This is due to the fact that 

no Neumann boundary conditions were utilized in the boundary data. We note that an 

absolute shear modulus reconstruction can be obtained if the indentation force is known 

or if the shear modulus value is known somewhere in the problem domain, e.g. through 

measurements on the surface of the specimen. 

Alternative and successful techniques to solve the inverse problem in finite 

elasticity rely mainly on displacement measurements from magnetic resonance imaging 

and ultrasound techniques. These techniques have the advantage that they can image the 

interior of the specimen, thus provide displacement data in the entire interior of the 

specimen. This rich data set reduces the need of utilizing a large number of displacement 

fields. For example, in [49, 80] the target shear modulus distribution could be 

reconstructed utilizing only 1 to 2 displacement fields. This implies that the computational 

cost reduces significantly as the forward problem and adjoint problem are solved for each 
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displacement field separately [48, 49, 62, 80, 82]. On the other hand, measuring surface 

deformations requires only a set of digital cameras (about 2-4) to image the surface of the 

specimen before and after the indentation. Thus the experimental set up is significantly 

cheaper as compared to ultrasound or magnetic resonance techniques.  An advantage of 

using surface displacement data to solve the inverse problem lies in the fact that force 

indentations can be measured with simple force sensors. This results in absolute 

reconstructions of the shear modulus distribution and increases in general the information 

content, thus making the overall solution of the inverse problem “more unique”.  

4.4 Conclusions 

We have tested the feasibility to solve the inverse problem in finite elasticity for 

the shear modulus distribution utilizing “hypothetical” measured surface displacement 

fields. We have successfully recovered the shear modulus distribution for a stiff inclusion 

in a homogeneous background, assuming that the shear modulus is unknown on the finite 

element nodes of the problem domain. This method has potential as a novel diagnostic 

imaging modality to detect tumors surrounded by healthy tissue from their stiffness 

contrast. We observed that the quality of the shear modulus reconstructions depend on the 

noise level inherent in measured surface displacement data. Furthermore, the 

reconstruction quality depends on the number of surface displacement fields utilized to 

solve the inverse problem. 

We note that displacement indentations were prescribed rather than force 

indentations. This results in shear modulus reconstructions being true only up to a 

multiplicative factor. Thus, future work involves the use of force indentation, which will 
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clearly yield absolute shear modulus reconstructions. Applying force boundary conditions 

may also result in improved reconstructions as they provide more “information” for the 

inversion process in general. In the next chapter, we will test this methodology with 

domains having multiple objectives with different sizes. In particular, we will investigate 

the feasibility to detect small objects positioned far from the boundary.  
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5. MAPPING THE ELASTIC BEHAVIOR OF SOLIDS QUANTITATIVELY 

FROM LIMITED KNOWN DISPLACEMENTS ON SPECIMEN 

BOUNDARIES* 

 

In Chapter 4, the deformations were induced by applying a displacement 

indentation, and no force or traction was assumed to be known, resulting in a shear 

modulus reconstruction being off by a multiplicative factor [51]. Furthermore, only one 

inclusion in a homogeneous background was simulated. Even though we did not assume 

any particular form of inhomogeneity, the question may still arise if this approach has the 

capability to recover more than one inclusion. 

In this chapter, we will test the feasibility to recover the shear modulus distribution 

(1) of one or two inclusions; (2) absolutely (i.e., quantitatively) by including known 

(measured) force indentations; (3) utilizing boundary displacements from partial 

boundaries of the specimen for convenient data collection; and (4) utilizing a curved 

boundary domain. The paper is organized as follows: In Section 5.1, we review the 

mathematical foundation along with the computational procedure for the inverse 

algorithms; in Section 5.2, we test the inverse algorithms with simulated experiments for 

various geometric domains and shear modulus distributions; in Section 5.3, we discuss 

the numerical results and end with conclusions in Section 5.4. 

                                                 

*Reprinted with permission from”Mechanics Based Tomography: A Preliminary Feasibility Study.” by Mei, 

Y., Wang, S., Shen, X., Rabke, S., & Goenezen, S., 2017. Sensors, 17(5), 1075. Copyright [2017] Molecular 

Diversity Preservation International and Multidisciplinary Digital Publishing Institute.  
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5.1 Review of inverse algorithms using limited boundary displacements 

In this paper, the material is still assumed to be isotropic, heterogeneous, linear 

elastic, and in the state of incompressible plane strain. The inverse algorithms utilized in 

this chapter is very similar to that used in Chapter 4, thus we will not thoroughly discuss 

herein. Comparing this work to the previous chapter, we also assume that the applied force 

is known together with the induced displacement at that point. As such, the resulting shear 

modulus distribution will be recovered quantitatively. Finally, we add the same noise level 

to the simulated boundary displacements (random noise), force and corresponding 

displacement indentation to study the sensitivity of the mapped shear moduli to noisy data. 

5.2 Numerical results with simulated experiments 

5.2.1 Case 1: A square model with a small inclusion 

First, we consider a 1 cm × 1 cm square with a small inclusion with a radius of 0.1 

cm surrounded by a softer homogeneous background material as shown in Figure 5-1. 

The coordinate of the center of the inclusion is (0.4 cm, 0.5 cm), the target shear modulus 

value of the background is 10 kPa, and the stiffness in the inclusion is 50 kPa. With regards 

to boundary conditions, we fix the bottom edge in both directions for all simulations. In 

Figure 5-1 (a), forces are applied pairwise on the left and right side simultaneously and 

are aligned horizontally but in the opposite direction (net force is zero). Each pairwise 

applied force induces a displacement on the top boundary (see the green line in Figure 5-

1 (a)). Varying the location of the pairwise applied forces vertically and sequentially 

provides a rich number of boundary displacement data sets on the top face (green line). In 

Figure 5-1 (b), single force indentations are applied on the top boundary edge 
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sequentially, in order to induce boundary displacements (for each single force indentation) 

on the left boundary edge (see green vertical line in Figure 5-1 (a)). In Figure 5-1 (c), 

single force indentations are applied on the top boundary edge sequentially, in order to 

induce boundary displacements (for each single force indentation) on the right boundary 

edge (see green vertical line in Figure 5-1 (c). Varying the location of applied force 

indentation as shown in Figure 5-1 (b), (c), we obtain a rich boundary displacement data 

set. Simulated displacement measurements are highlighted on the boundary edge with a 

green line as shown in Figure 5-1(a)–(c). Furthermore, each indentation induces a force 

of 0.05 N on the corresponding node in the problem domain. This force will induce small 

deformations that are suitable for displacement measurements using a digital image 

correlation system. The problem domain is discretized with 7200 linear triangular 

elements (61 nodes are uniformly distributed in each direction). The boundary 

displacement is assumed to be measured on the edge with no applied force indentation. In 

standard indentation tests, the displacement at the indentation can be measured with high 

accuracy; therefore, this information will also be included in the inverse solution process. 
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Figure 5-1: The problem domain with a stiff inclusion surrounded by a soft background. 

The arrows indicate the indentation locations, and the green line represents the side of 

known or measured displacements. (a) the indentations are sequentially applied pairwise 

at both lateral sides (net force is zero), and we utilize boundary displacements on the top 

edge as measured data; (b) the indentation is applied on the top edge, and we utilize 

boundary displacements on the left edge as measured data; (c) the indentation is applied 

on the top edge, and we utilize boundary displacements on the right edge as measured data 

(unit in the scale bar: 10 kPa). Note: “SM” stands for shear modulus. 

 

 

Figure 5-2 and Figure 5-3 show the reconstructed shear modulus distribution with 

respect to the noise levels of 0.1%, and 1%, respectively. In both figures, (b), (c) represent 

the results for 7 and 13 boundary displacement data sets, respectively. 7 displacement 

boundary data sets are obtained according to Figure 5-1 (a), 3 boundary displacement data 

sets are obtained according to Figure 5-1 (b), and 3 boundary displacement data sets are 

obtained according to Figure 5-1 (c). 
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Figure 5-2: Shear modulus reconstructions for 0.1% noise. (a) target shear modulus 

distribution for comparison; (b), (c) reconstructed shear modulus distribution using 7 and 

13 boundary displacement data sets, respectively; (d) shear modulus plot over the 

horizontal line through the center of the inclusion for the target and reconstructed shear 

modulus distribution (unit in the scale bar: 10 kPa). Note: “SM” stands for shear modulus. 

 

 

The shear modulus values are plotted over the horizontal line passing through the 

center of the small inclusion in Figure 5-2 (d) and Figure 5-3 (d). The regularization 

factors for Figure 5-2 and Figure 5-3 were chosen to be 10−11 and 10−10, respectively. In 

Figure 5-2, the reconstructions reveal that the location of the inclusion can be detected 

and the shape of the inclusion is well preserved. However, the inclusion seems to be larger 

than the target and the reconstructed shear modulus value of the inclusion is 

underestimated. Furthermore, with increasing number of displacement data sets, both the 

shape and the shear modulus value of the inclusion slightly improve, as shown in Figure 

5-2 (b),(c). More precisely, the reconstructed shear modulus value in the inclusion 
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increases slightly from 2.07 to 2.17, and the recovered inclusion becomes more circular 

as shown in Figure 5-2 (c). We have also performed the reconstruction without noise and 

observed that the shear modulus distribution is very similar to the reconstructions in 

Figure 5-2 (not shown here). 

 

 

 

Figure 5-3: Shear modulus reconstructions for 1.0% noise. (a) target shear modulus 

distribution for comparison; (b), (c) reconstructed shear modulus distribution using 7 and 

13 boundary displacement data sets, respectively; (d) shear modulus plot over the 

horizontal line through the center of the inclusion for the target and reconstructed shear 

modulus distribution (unit in the scale bar: 10 kPa). Note: “SM” stands for shear modulus. 

 

 

In Figure 5-3 (b), we observe that with 1% noise level the recovered inclusion is 

larger than in the previous example with 0.1% noise level. Furthermore, the background 

has stronger oscillations due to the higher noise level. The reconstructions with 1% noise 
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do not improve much with increasing number of displacement data sets used in Figure 5-

3 (c). Nevertheless, we are able to detect the location of the inclusion center. 

To better analyze the accuracy of the reconstructions in Figure 5-2 and Figure 5-

3, we define a relative error to quantitatively evaluate the error between the recovered and 

target shear modulus distributions that is,    
2 2

1 1

100%
n nN N

i i i

i i

e   
 

     , where 

nN  ,  i     and  
i    are the total number of nodes throughout the problem domain, nodal 

recovered shear modulus and nodal target shear modulus, receptively. The relative error 

for each case presented in Figure 5-2 and Figure 5-3 are shown in Table 5-1. Table 5-1 

illustrates that increasing the number of boundary displacement datasets and decreasing 

the noise level improves the mapped shear modulus only slightly for Case 1. 

 

 

Table 5-1: Error between the recovered and target shear modulus distributions for each 

case presented in Figure 5-2 and Figure 5-3 

Noise Level 

L2 Error 

7 Displacement Datasets 13 Displacement Datasets 

0.1% 41.51% 40.39% 

1% 43.89% 43.48% 
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5.2.2 Case 2: A semi-Circle model with one or two inclusions 

The second example in Figure 5-4 is a semi-circle with an inclusion that can be 

thought of as an idealized breast with an idealized tumor mimicking inclusion. The radii 

of the semi-circle and the inclusion are 7.5 cm and 1 cm, respectively. This problem 

domain is discretized with 7632 linear triangular elements. The exact shear moduli of the 

background and inclusion are 5 kPa and 25 kPa, respectively. To solve the forward 

problem in elasticity, we fix the bottom edge and apply indentations with a nodal force of 

0.27 N on the top curved edge sequentially (the location and direction of each indentation 

are indicated by a yellow arrow in Figure 5-4 (a)–(c)). Similar to Case 1, the force will 

induce a small deformation of the simulated phantom. In this case, we assume that 

boundary displacements can be measured on the entire top curved edge. Figure 5-5 (b)– 

(d) represent the recovered shear modulus distributions with 5, 10, and 15 boundary 

displacement data sets, respectively. In this case, no noise is introduced, and the 

regularization factor is chosen to be 10−11. In general, we observe that the inclusion shape 

can be visualized well, while its shear modulus value is significantly underestimated by 

about 20%. Additionally, increasing the total number of displacement fields slightly 

improves both the reconstructed shear modulus value and the shape of the inclusions. The 

mapped shear modulus value in the inclusion increases from about 16.5 kPa to 19.1 kPa 

using 15 boundary displacement data sets as shown in Figure 5-5. It is also notable that 

the reconstructed shear modulus value in the inclusion reaches approximately 80% of the 

target value. 
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Figure 5-4: The problem domain for a semi-circle with a stiff inclusion surrounded by a 

soft background. The yellow arrows indicate the indentation locations, and measured 

boundary displacements are simulated on the top curve. (a) 5 arrows representing 5 

sequentially applied forces to obtain boundary displacement data sets; (b) 10 arrows 

representing 10 sequentially applied forces to obtain boundary displacement data sets; and 

(c) 15 arrows representing 15 sequentially applied forces to obtain boundary displacement 

data sets (unit in the scale bar: kPa). Note: “SM” stands for shear modulus. 

 

 

 

Figure 5-5: Shear modulus reconstructions without noise in boundary displacements. (a) 

target shear modulus distribution for comparison; (b)–(d) reconstructed shear modulus 
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distribution using 5, 10 and 15 boundary displacement data sets, respectively (unit in the 

scale bar: kPa). Note: “SM” stands for shear modulus. 

 

 

 

Figure 5-6 (b)–(d) represents the recovered shear modulus distributions for a noise 

level of 1% with 5, 10, and 15 displacement data sets, respectively, for a regularization 

factor of 10−10. Compared to the case without noise, the recovered shear modulus 

distribution degrades significantly. The shear modulus value in the inclusion is roughly 15 

kPa and does not change much with varying number of boundary displacement data sets. 

We also observe strong oscillations occurring throughout the problem domain, in 

particular, close to the curved edge. 

 

 

 

Figure 5-6: Shear modulus reconstructions with 1% noise. (a) target shear modulus 

distribution for comparison; (b)–(d) reconstructed shear modulus distribution using 5, 10, 
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and 15 boundary displacement data sets, respectively (unit in the scale bar: kPa). Note: 

“SM” stands for shear modulus. 

 

 

Figure 5-7 (b)–(d) represent shear modulus reconstructions for a very high noise 

level of 5% with 5, 10 and 15 boundary displacement datasets, respectively. A 

regularization factor of 10−9 was selected in this case. In comparison with the 

reconstruction with 1% noise level in Figure 5-6, we observe that the noise artifacts are 

significantly amplified, with peaks closer to the boundary. We also computed the relative 

error for all cases presented in Figure 5-5–5-7 as shown in Table 5-2. As expected, the 

accuracy in reconstruction results improves with a lower noise level as well as more 

displacement datasets. 

 

 

 

Figure 5-7: Shear modulus reconstructions with 5% noise. (a) target shear modulus 

distribution for comparison; (b)–(d) reconstructed shear modulus distribution using 5, 10, 
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and 15 boundary displacement data sets, respectively (unit in the scale bar: kPa). Note: 

“SM” stands for shear modulus. 

 

 

Table 5-2: Error between the recovered and target shear modulus distributions for the 

cases presented in Figure 5-5–5-7 

Noise Level 

L2 Error 

5 Displacement 

Datasets 

10 Displacement 

Datasets 

15 Displacement 

Datasets 

0% 28.68% 23.91% 22.52% 

1% 45.40% 40.66% 38.30% 

5% 69.26% 56.25% 50.78% 

 

 

In Figure 5-8 (a), we test a slightly different target problem domain from the 

previous one in Figure 5-4 (a), (b), where the location of the stiff inclusion is positioned 

further away from the boundary. The boundary conditions, i.e., the applied force 

boundaries are the same as in the previous examples as well. The reconstructed shear 

modulus distribution is given in Figure 5-8 (b), (c) for 5 and 10 boundary displacement 

data sets, respectively, with a noise level of 0.1%. The regularization factor was chosen to 

be 10−10. We observe that the inclusion can be recovered despite its deeper location and 

being further away from the top boundary. In Figure 5-9, we increase the noise level to 

1% using the same number of boundary displacement data sets, but increase the 

regularization factor to 5 × 10−10. The reconstructed shear modulus values deteriorate 
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together with the shape of the inclusion compared to the previously lower noise level. 

Nevertheless, the inclusion shape and location are detectable. 

To test the sensitivity to detect smaller inclusions, we have reduced the size of the 

inclusion to a radius of 0.5 cm in Figure 5-10 (a). The applied forces were the same as in 

Figure 5-4 (a), (b). The reconstructed shear modulus distributions are shown in Figure 5-

10 (b), (c) for 5 and 10 boundary displacement data sets, respectively, with a noise level 

of 0.1% and a regularization factor of 3 × 10−10. In Figure 5-11, we increase the noise 

level to 1% for the same displacement boundary data sets using a regularization factor of 

7 × 10−10. Overall, we observe that the location and shape of the inclusion is preserved, 

while the size is overestimated and the shear modulus value in the inclusion is 

underestimated. 
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Figure 5-8: Shear modulus reconstructions with 0.1% noise. (a) target shear modulus 

distribution with varied inclusion depth in comparison to previous target problem domain 

in Figure 4(a), (b); (b), (c) reconstructed shear modulus distribution using 5 and 10 

boundary displacement data sets, respectively (unit in the scale bar: kPa). Note: “SM” 

stands for shear modulus. 

 

 

Figure 5-9: Shear modulus reconstructions with 1% noise. (a) target shear modulus 

distribution with varied inclusion depth in comparison to previous target problem domain 

in Figure 4(a), (b); (b), (c) reconstructed shear modulus distribution using 5 and 10 
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boundary displacement data sets, respectively (unit in the scale bar: kPa). Note: “SM” 

stands for shear modulus. 

 

 

  

Figure 5-10: Shear modulus reconstruction with 0.1% noise. (a) target shear modulus 

distribution with a smaller inclusion radius of 0.5 cm is defined to study detectability of 

the inclusion to its size; (b), (c) reconstructed shear modulus distribution using 5 and 10 

boundary displacement data sets, respectively (unit in the scale bar: kPa). Note: “SM” 

stands for shear modulus. 
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Figure 5-11: Shear modulus reconstruction with 1% noise. (a) target shear modulus 

distribution with a smaller inclusion radius of 0.5 cm is defined to study detectability of 

the inclusion to its size; (b), (c) reconstructed shear modulus distribution using 5 and 10 

boundary displacement data sets, respectively (unit in the scale bar: kPa). Note: “SM” 

stands for shear modulus. 

 

 

To test shape detectability of this approach, we define the target problem domain 

given in Figure 5-12 (a) with an elliptic shaped inclusion. We apply the same boundary 

conditions as in Figure 5-4 (a), (b) and add 0.1% noise to boundary displacements. The 

reconstructed shear modulus distributions are shown in Figure 5-12 (b), (c) for 5 and 10 

boundary displacement data sets, respectively, for a regularization factor of 5 × 10−11. We 

observe that the reconstructed inclusion shape follows the trend of an ellipse. In Figure 5-

13, the noise level is increased to 1%, the regularization factor is chosen to be 5 × 10−10 

and the shape deteriorates as anticipated, but an elliptic shape-like trend appears to be 

present. 
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Figure 5-12: Shear modulus reconstructions with 0.1% noise. (a) target shear modulus 

distribution with an elliptic shaped inclusion is defined to study detectability of the 

inclusion shape; (b), (c) reconstructed shear modulus distribution using 5 and 10 boundary 

displacement data sets, respectively (unit in the scale bar: kPa). Note: “SM” stands for 

shear modulus. 

 

 

 

Figure 5-13: Shear modulus reconstructions with 1% noise. (a) target shear modulus 

distribution with an elliptic shaped inclusion is defined to study detectability of the 

inclusion shape; (b), (c) reconstructed shear modulus distribution using 5 and 10 boundary 
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displacement data sets, respectively (unit in the scale bar: kPa). Note: “SM” stands for 

shear modulus. 

 

 

Next, we investigate the detectability of inclusions to varying stiffness contrasts. 

To this end, we specify target problem domains on the left column in Figure 5-14 with 

varying shear modulus values in the inclusion from 7.5 kPa to 100 kPa from the top to 

bottom row, respectively, while the background shear modulus value remains the same 

with 5 kPa. We utilize 5 and 10 boundary displacement data sets from solving the forward 

problem using force indentations according to Figure 5-4 (a), (b) and adding 0.1% noise. 

The reconstructions with 5 and 10 boundary displacement data sets are shown in columns 

2 and 3, respectively. It appears that the stiffness contrast ratio of 2 according to row 2 in 

Figure 5-14 yields the best reconstructions. Decreasing or increasing the stiffness contrast 

ratio will compromise the accuracy of the shear modulus reconstructions. For the target 

shear modulus inclusion values of 50 and 100 (see last two rows in Figure 5-14), the 

reconstructed shear modulus values are very similar. The regularization factors were 

selected to be the same for each row in Figure 5-14 with 10−10, 10−10, 5 × 10−11, 5 × 10−11 

and 5 × 10−11 starting from the top row down to the bottom row. Similarly, in Figure 5-

15, the sensitivity of the reconstructions to the stiffness inclusion to the background ratio 

was analyzed for a noise level of 1%. The regularization factors from the top row to the 

bottom row were 5 × 10−9, 2 × 10−9, 1 × 10−10, 3 × 10−10 and 3 × 10−10, respectively. 

Increasing the noise level to 1% appears to yield the best reconstructions for a stiffness 

contrast of 1.5, shown in the first row of Figure 5-15. 
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In Figure 5-16 (a), we have two stiff inclusions with shear modulus values of 25 

kPa. In this case, we also apply radial indentations of 0.27 N and simulate displacement 

measurements on the top boundary edge. We utilize 5 and 10 displacement data sets in the 

presence of 0.1% noise to solve the inverse problem, and the mapped shear modulus 

distributions are shown in Figure 5-16 (b), (c), respectively. The regularization factor was 

chosen to be 10−10. The reconstructions reveal that both inclusions can be visualized and 

detected, while the shear modulus values are significantly underestimated. Furthermore, 

we note that the stiffness contrast of the left inclusion is more underestimated than that of 

the right inclusion. This is likely due to boundary sensitivity thoroughly discussed by the 

authors in [80, 88]. In Figure 5-17 and Figure 5-18, we increase the noise level to 1% and 

5%, respectively. The regularization factor for 1% noise level is chosen to be 3 × 10−10 

and for 5% is chosen to be 5 × 10−10. While the shear modulus reconstruction with the 

high noise level of 5% is dominated by noise artifacts, the inclusions can be visualized to 

some extent. In Table 5-3, we compute the relative error for every case with two inclusions 

presented in Figure 5-16–5-18 and observe a similar trend that the accuracy in 

reconstruction results improves with a lower noise level as well as more displacement 

datasets observed in Table 5-2. 
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Figure 5-14: Problem domain with target shear modulus distribution is defined in the first 

column with varying shear modulus values in the inclusion from 7.5 kPa (top row) to 100 

kPa (bottom row) to test the feasibility range of stiffness detection. Column 2 and column 

3 represent the shear modulus reconstructions with 5 and 10 boundary displacement data 

sets, respectively, using 0.1% noise. 
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Figure 5-15: Problem domain with target shear modulus distribution is defined in the first 

column with varying shear modulus values in the inclusion from 7.5 kPa (top row) to 100 

kPa (bottom row) to test the feasibility range of stiffness detection. Column 2 and column 

3 represent the shear modulus reconstructions with 5 and 10 boundary displacement data 

sets, respectively, using 1% noise. 
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Figure 5-16: Shear modulus reconstructions with 0.1% noise. (a) target shear modulus 

distribution for comparison; (b), (c) reconstructed shear modulus distribution using 5 and 

10 boundary displacement data sets, respectively (unit in the scale bar: kPa). Note: “SM” 

stands for shear modulus. 

 

 

 

Figure 5-17: Shear modulus reconstructions with 1% noise. (a) target shear modulus 

distribution for comparison; (b), (c) reconstructed shear modulus distribution using 5 and 
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10 boundary displacement data sets, respectively (unit in the scale bar: kPa). Note: “SM” 

stands for shear modulus. 

 

 

 

Figure 5-18: Shear modulus reconstructions with 5% noise. (a) target shear modulus 

distribution for comparison; (b), (c) reconstructed shear modulus distribution using 5 and 

10 boundary displacement data sets, respectively (unit in the scale bar: kPa). Note: “SM” 

stands for shear modulus. 

 

 

Table 5-3: Error between the recovered and target shear modulus distributions for the 

cases presented in Figure 5-16–5-18. 

Noise Level 
L2  Error 

5 Displacement Datasets 10 Displacement Datasets 

0.1% 42.12% 39.83% 

1% 48.24% 45.92% 

5% 68.01% 61.29% 
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5.3 Discussion 

In this work, a quantitative approach was introduced to characterize the shear 

modulus distribution using solely boundary displacements together with force 

information, and its feasibility has been tested using various simulated experiments. The 

inverse problem is posed as a minimization problem subject to the constraint of the 

equilibrium equations in elasticity. Unlike most inverse algorithms requiring measured 

displacements throughout the entire domain, i.e., full-field displacements, the method 

presented in this paper merely requires measurements on the boundaries. This facilitates 

data collection for engineering materials by using digital cameras and a digital image 

correlation system, yielding a low-cost imaging modality. In addition, displacements on 

the boundary can be conveniently measured with high resolution [89]. 

In our previous publication [90], we utilized displacement indentations as 

boundary conditions. Thus, the resulting shear modulus distribution was only recovered 

up to a multiplicative factor. In this paper, we assumed that the applied force is known, 

leading to quantitatively/absolutely reconstructed shear modulus values. One of the 

challenges we faced here was the sensitivity of the optimization method to the initial guess, 

while, for the relative shear modulus reconstructions, the optimization method converged 

for a wide range of initial guesses. 

The first case could represent a tissue engineered material, where growth and 

remodeling of tissue scaffold by cells has progressed spatially. Thus, the inclusion could 

represent a hypothetical overproduction of collagen fibers, while the background could 

represent lower density of collagen fiber accumulation. This simulated case represents a 
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challenging problem domain, since the inclusion is small and significantly away from the 

boundary edges (see Figure 5-1–5-3). We note that we do not make any assumptions 

about any presence of inclusions for all examples in this paper, but assume that the shear 

modulus is unknown on the finite element mesh nodes. Furthermore, for Case 1, we only 

measure one side for each indentation, which carries very little information pertaining to 

its interior shear modulus distribution. Nevertheless, the inverse scheme presented in this 

paper is capable of characterizing the non-homogenous shear modulus distribution well in 

the presence of noise levels (0.1%) that are inherent in actual measurements using digital 

image correlation systems. The reconstruction results reveal that the inverse algorithms 

are sufficiently robust to detect the location as well as the shape of the inclusion, while 

they fail to accurately reconstruct the target shear modulus value. For the case with 1% 

noise (see Figure 5-3 (b), (c)), the reconstructed inclusion becomes much larger, and the 

shear modulus value in the inclusion is further underestimated. It is notable that the target 

inclusion area times the target inclusion value is preserved in that it is equal to the area of 

the reconstructed inclusion times the area of the reconstructed shear modulus value in the 

inclusion. This may be due to a lack of known boundary displacements (only used on 

partial boundaries) leading to uniqueness issues. Adding additional boundary 

displacement data sets does not significantly improve the reconstructions. Thus, to ensure 

an accurate and unique solution, displacements from the entire boundary should be used 

as discussed in the next case or deformations induced that could lead to a unique 

reconstruction. 
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For the second case, we have modeled a semi-circle with a shear modulus of 5 kPa 

according to measured fatty tissues and representing an idealized breast. The semi-circle 

consists of a stiff inclusion with a shear modulus value of 25 kPa, representing an idealized 

cancerous tumor (see Figure 5-4–5-6). Here, the deformation of the curved top boundary 

edge is assumed to be measured and used to solve the inverse problem. Since the bottom 

edge is fixed in both directions, we actually have used the entire displacement information 

on the boundary to solve the inverse problem. We conclude that this leads to a much better 

reconstructed inclusion compared to the previous case. 

To show that this novel approach is not confined to one inclusion only, we have also 

tested the inverse algorithms for simulated experiments with two inclusions as shown in 

Figure 5-16-5-18. Clearly, the inverse algorithms are still capable of mapping the 

inclusion shapes, but underestimate the shear modulus values as in the one inclusion case. 

We observe that the left inclusion in Figure 5-16 is more underestimated than the right 

inclusion. The reason for this is that the solution of the inverse problem is sensitive to 

boundary conditions when regularizing the problem as discussed in [80, 88]. 

In addition, we have added various noise levels into the boundary displacements 

to test the robustness of the novel inverse scheme herein. For experimentally relevant noise 

levels of about 0.1%, we observe that (1) the shape and size of the inclusion can be well 

recovered if the inclusion is medium sized; (2) the shear modulus value in the inclusion is 

underestimated; (3) the shape of the inclusion is preserved; (4) the size of the reconstructed 

inclusion is significantly overestimated for very small inclusions; (5) the stiffness contrast 

improves for a target stiffness contrast of about 1.5 to 2 and dramatically deteriorates for 
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stiffness contrasts beyond 10. The shear modulus reconstructions deteriorate significantly 

for higher noise levels, tested in this paper at up to about 5%. 

We also performed a simple experiment to estimate the noise level in boundary 

displacement measurements utilizing a digital image correlation system using digital 

cameras. In the experimental setup shown in Figure 5-19, the ramp is subject to rigid body 

rotation along the left end of the ramp. The height on the right end of the ramp was altered 

using the columns shown in Figure 5-19 (b). This will result in linear deflection of the top 

surface along the axial direction, used to validate the accuracy of the measurements 

obtained with the digital image correlation system. We defined a relative error   

   
2 2

1 1

100%
T T

i i i
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z z z
 

    along the major axis of the ramp, where T, iz  and 
iz    are 

the total number of data points along the line, the measured deflection at those points and 

the curve fitting data from a linear function, respectively. We observe that the relative 

error is about 0.06% which is significantly lower than the noise levels significantly used 

in the simulations presented in this chapter. 
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Figure 5-19: The experimental setup to perform noise analysis of the boundary 

displacement measurements utilizing a digital image correlation system. (a) top view of 

the experimental setup with digital cameras focusing on the ramp’s top face; (b) side view 

of the ramp with three columns having different height. 

 

 

The inclusion to background stiffness contrast plays an important role in 

recovering the shear modulus distribution. We observe in Figure 5-14 and Figure 5-15 

that the quality of the shear modulus reconstructions depends on the target stiffness ratio 

of inclusion to background. It is important to note that small stiffness contrasts of 7.5/5 

(inclusion/background) can be well recovered. With increasing stiffness contrast ratio, the 

shear modulus reconstructions perform poorly; however, the shape of the inclusions is 

well-preserved in all cases for a noise level of 0.1%. Beyond a stiffness contrast ratio of 

50 to 5, the shear modulus reconstructions do not differ much. This can be explained by 

the fact that the boundary displacements will not differ much either since the stiff inclusion 

behaves like a “rigid” object, i.e., the inclusion does not change its deformation field 

significantly beyond this stiffness ratio. 
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In all of the reconstructions presented in this paper, we added the same noise level 

for the displacement boundary, force and corresponding displacement indentation (i.e., 

displacement at force location), though they are not necessarily the same. However, from 

our experience, the reconstructions will not be sensitive to deviations in the noise level in 

force and corresponding displacement indentation. Furthermore, uncertainties in the 

location of force indentation are acknowledged and not investigated in this chapter. 

Conducting the experiments carefully by marking the locations of force indentation, these 

uncertainties can be well controlled. To further elaborate on this, we pursue the following 

thought process: applying a force indentation at some predefined location will induce 

boundary displacements. Now, applying that same force indentation by some small 

incremental offset from the original location will result in a second set of boundary 

displacements. These two sets of boundary displacements will be very close, thus the 

resulting reconstructions would be anticipated to be close as well. As the offset of force 

location increases, the discrepancy between the boundary displacement sets will increase. 

This discrepancy can be understood as some kind of noise level in the boundary 

displacements as analyzed in this paper, and the reconstructions will depend on this 

discrepancy. We note, however, that this “noise” level from the discrepancy of boundary 

displacements is not random as utilized in this chapter. A future analysis of this uncertainty 

will provide insight for experimental design. 

In this work, we assumed that the simulated solids are in two-dimensional space 

and in the state of plane strain. Real world applications are in three-dimensional space and 

their reduction to plane strain may not always be feasible. Thus, future efforts will focus 
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on extending this approach to three dimensions. Since many boundary displacements are 

needed, this is computationally intensive and may require further optimization of the in-

house written program. However, collecting boundary displacement data in three-

dimensional space using digital cameras is relatively convenient. Furthermore, recording 

digital camera images on boundary displacements of shapes that are more complex than a 

block or a hemisphere may be conveniently conducted. 

5.4 Conclusions 

In this chapter, we have presented a novel and quantitative approach to determine 

the shear modulus distribution using boundary displacements together with applied force 

information. The feasibility of this approach has been tested with various simulated 

experiments. We observe that we can detect the location of the inclusion with various 

noise levels and preserve the shape of the inclusion well in the presence of 0.1% white 

Gaussian noise level in the boundary displacements. The results also illustrate that the 

shear modulus value is underestimated, and its inclusion size is larger than the target 

inclusion when incomplete displacement boundary information is utilized in the inverse 

problem. When complete boundary data is utilized as displayed in Case 2, the overall 

solution to the inverse problem becomes more unique. In fact, we observe that for the first 

case with a square domain, knowing displacements on a small boundary region does not 

yield a unique solution, despite the low noise level and a large number of boundary 

displacement data sets. More studies are required to enforce uniqueness with limited 

boundary region measurements. We have also observed that, with an increasing number 

of displacement datasets utilized, the reconstruction results will improve at lower noise 
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levels when boundary displacements are known everywhere, while no significant 

improvements are observed for higher noise levels and displacement measurements at 

partial boundaries. In summary, this novel approach has the potential to nondestructively 

and quantitatively map the heterogeneous elastic property distribution by utilizing 

displacements measured only on the specimen’s boundary together with the force 

indentation measurements. 
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6. REGULARIZING THE INVERSE PROBLEM FOR PARTIALLY KNOWN 

ELASTIC MODULUS VALUES* 

 

The biomechanical behavior of tissues can be determined from observed 

displacement fields using imaging modalities such as magnetic resonance imaging (MRI) 

[91-95], ultrasound [40, 82, 96-98], and optical coherence tomography (OCT) [99, 100]. 

Initially, axial strain images were computed from the gradient of the displacement field 

and interpreted as the inverse stiffness of the tissue. This approach has the advantage to 

be quasi-real time and has shown potential in detecting diseased tissues. Alternative 

approaches followed that took into account constitutive models to infer the heterogeneous 

model parameters of the tissue from displacement fields. These methods can be 

categorized into 2 groups, i.e., solving model parameters from 1) dynamic displacement 

data [93, 94, 101, 102], and 2) quasi static displacement data [49, 54, 62, 80-85]. In 1) 

shear wave displacements are induced and measured with OCT, MR techniques, or 

ultrasound. The solution to this inverse problem does not require the knowledge of traction 

boundary conditions, and the resulting model parameters are in general quantitative or 

absolute. In general, the storage and loss modulus can be determined for a range of 

frequencies, from which the viscoelastic model parameters can be determined. In 2) quasi-

static displacement fields are mainly observed from ultrasound techniques, more precisely, 

                                                 

* Reprinted with permission from” Regularizing biomechanical maps for partially known material 

properties” by Mei, Y., Tajderi, M. & Goenezen, S., 2017. International Journal of Applied Mechanics, 9(2) 

1750020.Copyright [2017] World Scientific Publishing. 
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by recording a sequence of radio frequency signals while the tissue’s region of interest is 

gently compressed with the ultrasound transducer. Well established cross-correlation and 

block matching techniques are then employed to compute the displacement field [40, 84, 

97, 103]. This method has the advantage that large displacements can be acquired to 

characterize the tissue’s nonlinear response [49, 50, 62, 82, 83, 104]. However, this 

approach does not provide any information on traction or forces, as these cannot be 

measured with currently available ultrasound transducers. Thus, the elastic modulus 

distribution can at best only be reconstructed relatively, i.e. up to a multiplicative factor.  

In this chapter, we will determine the biomechanical behavior of a theoretical 

atherosclerotic plaque and a stiff tumor embedded in soft background tissue from 

simulated quasi-static displacement fields and assuming that the elastic modulus is 

quantitatively known at certain regions on the boundary. The elastic modulus on these 

known regions could for example be measured using atomic force microscopy (AFM) 

[105-108] or Brillouin spectroscopy [109-112]. We will treat tissue as a linear elastic 

material assuming that the deformations overall are small, but this approach can be 

expanded to nonlinear material models.  We pose the inverse problem as a constrained 

minimization problem with regularization and show that the regularization type plays a 

key role to successfully incorporate the known elastic modulus values into the solution 

procedure. More precisely, we test the total variation diminishing regularization (TVD) 

[49, 80, 82, 84] and a recently introduced new regularization type that we refer to as total 

contrast diminishing (TCD) [62, 113]. We show that the elastic modulus reconstructions 

with TVD regularization perform poorly while TCD regularization results in stable 
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absolute elastic modulus reconstruction in the presence of high noise levels. To the best 

of our knowledge, heterogeneous elastic modulus distribution has not been determined 

quantitatively using quasi-static displacement fields and partially known elastic modulus 

values from the solution of the regularized and constrained minimization problem. This 

formulation is designed to incorporate partially known elastic modulus values such that 

the elastic modulus distribution is driven to a unique solution.  

6.1 Methods 

We create simulated data to test the inverse solution procedure for a theoretical 

atherosclerotic plaque and a breast tumor with predefined target shear modulus 

distributions by solving the equations of equilibrium using finite element techniques. The 

displacement field from the solution of the forward problem in Section 6.1.1 will be 

augmented with white Gaussian noise and represents the “measured” displacement field, 

in practice obtained using ultrasound imaging techniques. In Section 6.1.2 we briefly 

review the inverse problem formulation and introduce two specific types of regularization, 

TVD and TCD regularization. 

6.1.1 Forward problem in 2D plane stress linear elasticity  

The strong form is as follows: Find the displacement u such that the equations of 

equilibrium in Equation (6.1) and Dirichlet boundary conditions in Equation (6.2) and 

Neumann boundary conditions in Equation (6.3) given by: 

  div  0  in   (6.1) 

 u u  in u   (6.2) 

  n   in    (6.3) 
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are satisfied. Here,   is the Cauchy stress in the region of interest   , u and   denote 

the Neumann and Dirichlet boundaries, and u     represents the complete boundary 

for the problem domain and u    . Furthermore, u and   are the prescribed 

displacement and traction on the boundary, respectively, and n is the outward unit normal 

vector on the traction boundary. It is straight forward to derive the weak form and 

discretize it using Galerkin’s method. To reduce computational complexity, the models in 

this paper are modeled in plane stress, while the material in three dimensional space is 

constrained to be incompressible. Thus, the stress strain relationship in two dimensional 

space simplifies to only one unknown elastic modulus parameter: 

 2 2ij ij kk ij       (6.4) 

where , , 1 or 2i j k   and   denotes the unknown shear modulus.  , ,

1

2
ij i j j iu u    is the 

small strain tensor.  

6.1.2 TVD and TCD regularization in regularized inverse problem 

Throughout this chapter, we will adopt two types of regularization: the total 

diminishing variation (TVD) and the total contrast diminishing (TCD) regularization [62, 

113] given by:    

    
2 21

 Reg
2

c d 


     TVD (6.5) 

  
 

2 2
1

 Reg  
2

c
d







 
   TCD (6.6) 
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In Equation (6.5) and (6.6), c is a small constant to avoid singularity when taking 

the gradient with respect to the shear modulus. The main distinction between these two 

types is that TVD will penalize the difference in shear modulus contrast, while TCD will 

penalize the logarithmic ratio in shear modulus contrast [62, 113]. In Equation (6.6) the 

regularization factor   controls the weight of the regularization term. The regularization 

factor has been chosen based on Morozov’s discrepancy principle, which states that the 

difference between the computed and measured displacement field should not be smaller 

than the order of the noise level. The equations are discretized using finite element 

techniques, and the shear modulus are defined as unknowns on the finite element nodes 

and interpolated with finite element shape functions. This implies that the total number of 

unknowns is equal to the total number of nodes in the finite element mesh. 

6.1.3 Uniqueness issue of inverse problem 

If only quasi-static displacement information boundary conditions and traction free 

boundary conditions are utilized to solve the inverse problem, we can solely obtain the 

relative shear modulus distribution, which can be easily shown mathematically. Assume 

that a relative shear modulus distribution  r x  satisfies the equilibrium with enforced 

displacement and zero traction boundary conditions: 

 

     div 2 0       on 

                                           on 

      on 

r

g

h

tr   



 

x I

u = u

t 0                                      

 

  (6.7) 
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Multiplying r with any multiplicative factor   yields anther shear modulus 

distribution    rx x    that satisfies all the required equations for the same 

displacement fields.  

 

     div 2 0       on 

                                          on 

     on 

g

h

tr   



 

x I

u = u

t 0                                      

 

  (6.8) 

will be satisfied for any  . Thus, we are not able to obtain the absolute shear modulus 

distribution from the governing equations together with these boundary conditions. Non-

zero traction boundary condition or total force measurements would result in an absolute 

shear modulus distribution, i.e.,   would not be arbitrary. However, in this work, we 

assume that shear moduli on some part of the specimen’s boundary are known from 

measurements. To illustrate this for a special case in one dimension, let us consider a 

nonhomogeneous elastic rod with a fixed end as shown in Figure 6-1. 1  and 2  are the 

target elastic modulus values on the black and white parts, respectively. As the stress is 

the same in the two parts, the following relation is obtained: 

 2 1

1 2

 

 
   (6.9) 

where  1  and 2  are measured strain of the black and white parts, respectively. Equation 

(6.9) will be satisfied for any multiplicative factor of 1  and 2 . Let us now assume that 

the shear modulus of the black part is known through measurements and denoted with 1

m

. Then we can solve for  2 1 2 1/ m      absolutely. 
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Figure 6-1: Diagram on a non-homogenous bar subjected to axial compression. 

 

 

6.2 Numerical results 

In the first example, we consider a unit square with two inclusions positioned in 

horizontal direction as shown in Figure 6-2 (a). The shear modulus contrast of inclusion 

to background (5;1) is akin to an actual breast tumor surrounded by healthy tissue [56, 

114]. We create two displacement fields and these two displacement fields are utilized to 

solve the inverse problem together, the first one by applying a 5% uniform displacement 

compression on the top edge and restricting the vertical motion of the bottom edge as 

shown in Figure 6-2 (a). To avoid rigid body motion, the center node on the bottom edge 

is fixed in all directions. All remaining unspecified boundaries are traction free. The 

second displacement field is created by applying a 5% displacement compression on the 

left edge and restricting the horizontal motion of the right edge as shown in Figure 6-2 

(b). In this case, the center node on the right edge is fixed in all directions, and the other 

two edges are traction free. The finite element mesh consists of 3600 bilinear elements. 

The simulated displacement data is computed by solving the forward problem, and 3% 

random noise is introduced into the displacement field to represent measured noisy data. 

Furthermore, we consider two scenarios where the shear modulus is partially known on 

the boundary at 1) one point (see arrow in Figure 6-2 (c) and (d)), and 2) on the entire top 
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edge. We confine the search region for the unknown shear modulus variables between 0.1 

and 30.0, and solve the inverse problem with TCD and TVD regularization. Figure 6-2 

(c) and (d) show the shear modulus reconstruction with TVD regularization and TCD 

regularization for the case that the shear modulus value is imposed on the upper left corner. 

Furthermore, the horizontal centerline plots for the shear modulus values through the 

center of both inclusions is given in Figure 6-2 (e) for the exact distribution and the 

reconstructions using TCD and TVD regularization. The regularization factor for the 

reconstruction with TVD and TCD regularization are chosen to be 1.0e-7 and 2.0e-8, 

respectively. We observe that with TCD regularization the shape of the inclusions is well 

recovered and the shear modulus values are close to the target values. TVD regularization, 

however, results in a shear modulus distribution about 4-5 times less than the target shear 

modulus distribution. Thus, it appears that TVD regularization drives the solution to the 

lowest possible value while preserving its relative contrast. The shear modulus 

reconstruction for case 2) where   is imposed on the top boundary edge is given in 

Figure 6-3 (c) and (d) using TVD and TCD regularization. We observe a similar trend to 

case 1) in that TCD regularization yields a well recovered shear modulus distribution, 

while TVD regularization is off by a multiplicative factor of about 4-5 (excluding the shear 

modulus values imposed on the top edge). The horizontal centerline plot through both 

inclusions is given for both regularizations together with the exact reconstruction for 

comparison. The regularization factors for TVD and TCD regularization were chosen to 

be 1.0e-7 and 2.0e-8, respectively. 
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Figure 6-2: (a) Theoretical model: two horizontally positioned inclusions with shear 

modulus value of 5 in a homogenous background with shear modulus value of 1. The 

displacement boundary conditions are applied in y direction; (b) theoretical model: two 

horizontally positioned inclusions with shear modulus value of 5 in a homogenous 

background with shear modulus value of 1. The displacement boundary conditions are 

applied in x direction; (c) reconstructed shear modulus distribution over the domain when 

TVD regularization is utilized. In this case, the shear modulus of the upper left node is 

fixed; (d) reconstructed shear modulus distribution over the domain when TCD 

regularization is utilized. In this case, the shear modulus of the upper left node is fixed; 

(e) comparison of shear modulus variation along the horizontal center line. The dashed 

line, solid line and empty circles represent exact distribution, reconstruction results by 

TVD and TCD method, respectively.   
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Figure 6-3: (a) Theoretical model: two horizontally positioned inclusions with shear 

modulus value of 5 in a homogenous background with shear modulus value of 1. The 

displacement boundary conditions are applied in y direction; (b) theoretical model: two 

horizontally positioned inclusions with shear modulus value of 5 in a homogenous 

background with shear modulus value of 1. The displacement boundary conditions are 

applied in x direction; (c) reconstructed shear modulus distribution with TVD 

regularization. In this case, the shear modulus of the entire top edge is fixed; (d) 

reconstructed shear modulus distribution over the domain when TCD regularization is 

utilized. In this case, the shear modulus of the entire top edge is fixed; (e) comparison of 
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shear modulus variation along the horizontal center line. The dashed line, solid line and 

empty circles represent exact distribution, reconstruction results by TVD method and TCD 

method, respectively.   

 

 

To analyze the sensitivity to various noise levels, we also add 10% noise into the 

displacement fields which corresponds to a displacement SNR of 10 dB. Figure 6-4 (c) 

and (d) show the recovered shear modulus distributions with TVD and TCD regularization 

for the case that the shear modulus is known and prescribed on the upper left corner. In 

this case, the regularization factor for the reconstruction with TVD and TCD method are 

chosen to be 1.5e-7 and 6.5e-8, respectively. We observe that the absolute shear modulus 

distribution is mapped well using TCD regularization despite the high displacement noise 

level, while the TVD regularization still fails to map the shear modulus distribution 

absolutely. Additionally, compared to Figure 6-2 (d), the shear modulus of the right 

inclusion is more underestimated than the left inclusion. Figure 6-5 (c) and (d) exhibit the 

shear modulus reconstruction for the case that the shear moduli are imposed on the entire 

top boundary edge utilizing TVD and TCD regularization, respectively. In this case, the 

regularization factors are selected to be 2.0e-7 and 6.0e-8, respectively. Similar trends are 

observed in this case. 

In all numerical cases presented above, the shear modulus distributions using TVD 

regularization are off by a multiplicative factor of about 10, while the shear modulus 

distributions using TCD regularization are quantitatively recovered. 

For the case that the shear moduli on the entire top edge are fixed, it is unrealistic 

to utilize the exact shear modulus value, thus, in the following we will add 10% noise into 
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the “measured” shear moduli. Figure 6-6 (c) and (d) represent the shear modulus 

reconstructions using TVD and TCD regularization when 10% noise is introduced to both 

the displacements and shear moduli measurements. In this case, the regularization factors 

are 2e-7 and 6e-8 for the TVD and TCD regularization cases, respectively. As shown in 

Figure 6-6 (d), TCD regularization still performs well for this challenging case with a 

noise level well beyond expected in experiments. 
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Figure 6-4: (a) Theoretical model: two horizontally positioned inclusions with shear 

modulus value of 5 in a homogenous background with shear modulus value of 1. The 

displacement boundary conditions are applied in y direction; (b) theoretical model: two 

horizontally positioned inclusions with shear modulus value of 5 in a homogenous 

background with shear modulus value of 1. The displacement boundary conditions are 

applied in x direction; (c) reconstructed shear modulus distribution over the domain when 

TVD regularization is utilized. In this case, the shear modulus of the upper left node is 

fixed; (d) reconstructed shear modulus distribution over the domain when TCD 

regularization is utilized. In this case, the shear modulus of the upper left node is fixed; 

(e) comparison of shear modulus variation along the horizontal center line. The dashed 

line, solid line and empty circles represent exact distribution, reconstructions with TVD 

method, and TCD method, respectively.   
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Figure 6-5: (a) Theoretical model: two horizontally positioned inclusions with shear 

modulus value of 5 in a homogenous background with shear modulus value of 1. The 

displacement boundary conditions are applied in y direction; (b) theoretical model: two 

horizontally positioned inclusions with shear modulus value of 5 in a homogenous 

background with shear modulus value of 1. The displacement boundary conditions are 

applied in x direction; (c) reconstructed shear modulus distribution over the domain when 

TVD regularization is utilized. In this case, the shear modulus of the entire top edge is 

fixed; (d) reconstructed shear modulus distribution over the domain when TCD 

regularization is utilized. In this case, the shear modulus of the entire top edge is fixed; (e) 

comparison of shear modulus variation along the horizontal center line. The dashed line, 

solid line and empty circles represent exact distribution, reconstruction results by TVD 

and TCD method, respectively.   
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Figure 6-6: Problem domain is given in (a) and (b) with different boundary conditions. 

The shear modulus in the homogeneous background is set to 1 and the shear modulus in 

the inclusions is set to 5. (c) reconstructed shear modulus distribution with TVD 

regularization. In this case, the shear modulus of the entire top edge is fixed; (d) 

reconstructed shear modulus distribution with TCD regularization. In this case, the shear 

modulus of the entire top edge is fixed; (e) comparison of shear modulus variation along 

the horizontal center line. The dashed line, solid line and empty circles represent the exact 

distribution, reconstruction results by TVD and TCD method, respectively.   
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We have also tested the inverse algorithms with a theoretical atherosclerotic plaque 

shown in Figure 6-7 (a), consisting of a soft lipid inclusion with 0.33MPa  , surrounded 

by a stiff cap with 0.5MPa  , and a healthy arterial wall with 0.00833MPa  . The 

arterial geometry and the shear modulus distribution were reported in [115, 116] for an 

atherosclerotic coronary artery. To solve the forward elasticity problem and create 

simulated displacement data, we mesh the arterial domain with 1425 bilinear elements and 

impose boundary conditions as follows. Neumann boundary conditions are prescribed at 

the inner and outer arterial wall, with a uniform intraluminal pressure of 15.9 kPa, and 

traction free boundary conditions at the outer wall. To avoid rigid body motion, we fix 

one node on the outer wall in both direction and restrict the horizontal motion on the node 

opposite to the symmetry axis of the plaque. Then, we add 1% noise to the displacement 

field to simulate actual noisy “measured” displacement data. This displacement field is 

used to solve for the target shear modulus distribution, where the boundary conditions for 

the forward elasticity problem is chosen to be Dirichlet at the intraluminal wall and 

traction free at the outer wall. This represents the scenario that the intraluminal pressure 

measurement is not available. We will reconstruct the shear modulus distribution 

quantitatively by prescribing only one point on the outer wall. Finally, the search domain 

for the shear modulus distribution is confined to [0.00833 MPa, 3.0 MPa], and the 

regularization factor for TVD is set to 5.0 7e     and for TCD is set to 1.0 7e    . 

The shear modulus reconstruction is given in Figure 6-7 (b) and (c) for TVD and TCD 

regularization, respectively, and both figures are rescaled to better visualize the results. 

We observe similarly to the previous example that TCD regularization results in absolute 
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shear modulus reconstructions, while TVD regularization yields a shear modulus 

reconstruction off by a multiplicative factor. Furthermore, in both reconstructions, the 

lipid region is much better recovered than the cap region. 

 

 

 

Figure 6-7: (a) Theoretical model of the cross section of an atherosclerotic artery and 

shear modulus distribution of this problem domain; (b) rescaled reconstructed shear 

modulus distribution over the domain when TVD regularization is utilized (set the 

maximum shear modulus value of the scale bar to 0.5). In this case, the shear modulus of 

the top node is fixed (see arrow); (c) rescaled reconstructed shear modulus distribution 

when TCD regularization is utilized (set the maximum shear modulus value of the scale 

bar to 0.5). In this case, the shear modulus of the top node is fixed (see arrow). 

 

We also add 10% noise into the displacement data for the second numerical 

example. Figure 6-8 (b) and (c) are the mapped shear modulus distributions when TVD 
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and TCD regularization are utilized, respectively.  In this case, the regularization factor 

for TVD and TCD are set to 2e-5 and 5e-7, respectively. We observe that the shape and 

the shear modulus values of the simulated lipid are well preserved using TCD 

regularization. Compared to the results with 1% noise, higher noise levels lead to stronger 

oscillations. Additionally, the cap seems to be mapped badly and cannot be distinguished 

from the background.  

Figure 6-8: (a) Target shear modulus distribution of an idealized cross-section with an 

atherosclerotic plaque and shear modulus distribution of this problem domain; (b) 

reconstructed shear modulus distribution with TVD regularization (set the maximum shear 

modulus value of the scale bar to 0.5). In this case, the shear modulus of the top node is 

assumed to be known (see arrow); (c) reconstructed shear modulus distribution with 

TCD regularization (set the maximum shear modulus value of the scale bar to 0.5). In 
this case, the shear modulus of the top node is assumed to be known (see arrow).  
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6.3 Discussion 

In this chapter, we have investigated the effect of regularization on the solution of 

the inverse elasticity problem with partially known measured shear modulus values on 

some boundary. The inverse problem is posed as a constrained minimization problem, and 

two types of regularization have been considered, TVD and TCD regularization. In 

previous works [80, 82] TVD regularization worked well for problems where the shear 

modulus was reconstructed relatively, i.e., up to a multiplicative factor. TCD 

regularization has been introduced in [62, 113] to address distortions in the shear modulus 

reconstructions with TVD regularization, when measured total force data is incorporated 

in the objective function. In the present work, we assumed that solely displacement data 

is known in the entire problem domain (e.g. from ultrasound imaging), and no non-trivial 

traction boundary condition or force measurement is available. 

To steer the shear modulus reconstruction to a unique solution, we assume that 



 

is known on some region of the boundary. The shear moduli on the boundary might be 

obtained from, for example from AFM [105-108] or Brillouin spectroscopy [109-112] 

measurements. Though the proof of concept for AFM and Brilliouin spectroscopy 

measurements has been shown theoretically and experimentally, their clinical feasibility 

still needs more investigation.  
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The inversion technique proposed herein is highly robust. We have investigated 

the sensitivity of this inverse solution approach to various noise levels. To this end, we 

tested the inverse solution with as high as 10% noise in the displacement field and 

observed that while the shear modulus contrast decreased, the overall shear modulus 

reconstruction was yet well recovered and the inclusions were detectable. We have also 

tested our inverse scheme for robustness by changing the initial guess and observed that 

the inverse problem converged to the correct shear modulus distribution for a wide range 

of initial guesses (not shown here). 

We have considered two theoretical examples with clinical relevance, an 

atherosclerotic plaque and two breast tumors embedded in a normal tissue. Visualizing the 

stiffness property distribution of tissues provides an alternative disease detection approach 

in medical imaging. This can be done as the disease alters the micro-structure of the 

tissue’s constituents, resulting in alterations of the biomechanical properties at the 

macroscopic structure. For example, normal arterial tissue is made up of endothelia cell, 

elastic connective tissue and smooth muscles. Atherosclerosis is sometimes also referred 

to as “hardening of the arteries”, and during this process cholesterol plaques will form, 

composed of fat, cholesterol, calcium, among other constituents [58]. More specifically, 

the damaged endothelial cells lining the inner wall of blood vessels leads to LDL 

cholesterol deposition in the artery wall between the endothelial cells and connective 

tissue. To prevent further invasion of cholesterol, macrophages are mobilized to absorb 

LDL cholesterol which results in the formation of foam cells, the start of plaque formation 

[117]. Typically, a stiff cap forms and surrounds a soft inclusion. For a clinician, it is 
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crucial to know if the cap is stable and this requires patient specific knowledge of the 

biomechanical response. Similarly, breast cancer tissues change their biomechanical 

properties due to collagen fiber accumulation and changes in their crimp [118]. Thus, the 

biomechanical properties of breast tissues can potentially be used to screen for tumors 

and/or as a diagnostic imaging tool. In this work, we have provided a quantitative approach 

to determine the heterogeneous linear biomechanical properties of these two theoretical 

examples from known displacement fields and partially known biomechanical properties 

on some small boundary. We emphasize that the linear material model does not represent 

actual tissue response, as the tissue’s biomechanical response is known to be nonlinear, 

viscoelastic, and anisotropic. The work presented in this paper is based on a simple linear 

elastic model to acknowledge the inherent problems in parameter identification and 

providing solutions based on a proper choice of regularization type. To map model 

parameters from other constitutive models (e.g. nonlinear hyperelastic models) may 

require different forms of regularization.  

We utilized two regularization types, TVD and TCD regularization. We observed 

that for TVD regularization the shear modulus reconstruction is not reconstructed 

quantitatively, but rather relatively. More precisely, the reconstructions settle down to the 

lowest possible value given by the lower bound in the search algorithms, in spite of the 

prescribed shear modulus values on the problem boundary. TCD regularization on the 

other hand makes full use of the prescribed shear modulus values and steers the 

reconstructions of the shear modulus to a unique solution. To understand why TCD 

regularization outperforms TVD regularization when data is prescribed, we need to 
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understand how they penalize oscillations in the shear modulus distribution. It can be 

shown that TVD regularization penalizes the difference in oscillations, while TCD 

penalizes the logarithmic ratio. This difference leads to the observation that the shear 

modulus distributions using TVD regularization are off by a multiplicative factor, while 

the shear modulus distributions using TCD regularization are quantitatively recovered. 

To elaborate on this further, let us first consider the case without imposing the 

shear modulus value anywhere. In this case, as shown in Equations (6.7) and (6.8) , only 

relative shear modulus distribution r  can be acquired while the multiplicative factor   

will not affect the displacement solution and with that will also not affect the displacement 

correlation term. Thus,  will drop down to the lowest possible value (depending on the 

lower bound imposed by the optimization algorithm) to minimize the regularization term 

when TVD regularization is used. This can be illustrated for the one-dimensional case 

shown in Figure 6-1, where the TVD regularization term can be simplified to 1 1r     

after setting the small constant c to zero. Further, the displacement field depends only on 

the relative shear modulus ratio of 2 1/r    when only displacement boundaries are 

imposed. The multiplicative factor   will then drive down to the lowest value possible. 

Once we impose the shear moduli on some region of the problem domain, the 

displacement field and with that the displacement correlation term depends on the absolute 

shear modulus distribution. On the other hand, the TVD regularization term will try to 

strive to a minimum value by reducing the “multiplicative factor”. Thus there is some 

compromise between the displacement correlation term and the regularization term. Since 
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we have noisy data and utilize relatively large regularization factors, the regularization 

term might play a dominating role in determining the shear modulus distribution, and 

therefore the “multiplicative factor” will settle down to the lowest possible value. Here the 

lower bound of the search domain is 0.1 resulting in a shear modulus distribution that is 

10 times less than the exact shear modulus in the first numerical example. 

TCD regularization in one-dimensional case having two shear modulus values, 

simplifies to  2

1

log log r

 


 

 
 

 
 after neglecting the small constant c. It is observed 

from this equation that the multiplicative factor appears in the nominator and denominator 

and therefore cancels out. Thus, TCD regularization does not depend on any multiplicative 

factor, and therefore the shear modulus distribution is absolutely determined after 

prescribing a shear modulus value in one point. 

The breast tumor example has been tested with prescribed shear modulus at one 

node (Figure 6-2 and Figure 6-4) and with a prescribed shear modulus along the entire 

top boundary edge (Figure 6-3, Figure 6-5, Figure 6-6). We observe that prescribing 

more known shear modulus values does not fix the issues observed with TVD 

regularization. Additionally, the shear modulus reconstruction with TCD regularization 

does not improve when prescribing more data points with 3% or higher noise levels. For 

the case of plane stress for an incompressible material in three-dimensional space, one 

displacement field along with one known shear modulus value at one point ensure a unique 

solution. However, in general prescribing the shear modulus value only at one point will 

not necessarily result in a unique shear modulus reconstruction. In fact, according to [119] 
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the shear modulus values must be known at four locations to ensure uniqueness if two 

independent measured displacement fields are given for the incompressible plain strain 

case.  

For the second numerical example, we observe a similar trend that prescribing 

shear modulus on one node, TCD regularization results in an absolute shear modulus 

distribution, while TVD fails in doing so. Nevertheless, we should note that the cap does 

not recover well and cannot be distinguished from the background when the noise level is 

higher (see Figure 6-8). There are two factors likely contributing to this phenomenon. The 

target shear modulus value of normal tissue is approximately 40 times larger than that of 

the lipid, while the target shear modulus of the cap is merely 1.5 times larger than normal 

vessel tissue. For this reason, it may be harder to reconstruct the cap and distinguish it 

from normal tissue. More likely however is the fact that uniqueness issues occur since the 

vessel wall and the cap without the lipid plaque represent a structure close to be 

axisymmetric as discussed in [41]. Since the cap consists of a uniform layer, it is very 

challenging to recover its shear modulus value, and this becomes more challenging with 

increasing noise levels. 

6.4 Conclusion 

We solved the inverse problem in elasticity, posed as a regularized and constrained 

minimization problem for a known displacement field and partially known shear modulus 

values on the boundary. We investigated the effect of regularization and observed that 

TCD regularization successfully reconstructs the quantitative shear modulus distribution 

with prescribed shear modulus values on a boundary node and boundary edge in the 
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absence of traction boundary data. TVD regularization on the other hand fails to recover 

the shear modulus distribution quantitatively. We have utilized two theoretical examples 

to test these methods, an atherosclerotic plaque and breast tumor inclusions embedded in 

a soft background. These examples were chosen due to their high clinical relevance, and 

quantifying their patient specific biomechanical properties could potentially advance 

screening, prognostic methods, and surgical planning.  
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7. FEASIBILITY AND RELIABILITY OF A LINEAR ELASTIC SOLVER IN 

SOLVING INVERSE PROBLEMS IN NONLINEAR ELASTICITY  

 

In Chapter 2, we have presented a general framework of recovering the 

inhomogeneous linear and hyperelastic property distributions using nonlinear elastic 

inverse algorithms. The current in-house inverse solver is also capable of solving the 

inverse problem to recover shear modulus distribution using linear elastic inverse 

algorithms. The essential difference between inverse problems in linear and nonlinear 

elasticity is that the latter takes account of the nonlinear elastic stress-strain relationship, 

i.e., the modified Veronda-Westmann model, and the geometric nonlinearity. In the latter 

case, if the material nonlinearity is minor, e.g., the nonlinear parameter 0    in modified 

Veronda-Westmann model, the stress-strain relation will approach the linear relation even 

for large deformations.   

Now, we might raise the following question: Can we make a proper estimation of 

the elastic property distribution of a soft solid subject to large deformations using a linear 

elastic inverse approach?  In this chapter, we will characterize the inhomogeneous shear 

modulus distributions of soft materials using both linear and nonlinear elastic inverse 

algorithms. We perform this feasibility study utilizing both experimental and simulated 

data. In Section 7.1, the experimental set-up to measure full-field phantom data and the 

theoretical background of the linear and nonlinear elastic inverse algorithms will be 

discussed.  In Section 7.2, the reconstruction results obtained by these two approaches are 

presented and compared. In Section 7.3, we will discuss the reconstructions presented in 
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Section 7.2 and use a simple 1-D analytical approach to explain what we have observed 

in reconstructions. We will conclude the work in Section 7.4.   

7.1 Methods 

7.1.1 Composite sample and digital imaging data acquisition 

A soft and composite sample consisting of two cylindrical inclusions with 2.8 cm 

and 2.1 cm diameters is manufactured and the dimension is shown in Figure 7-1 (a). The 

thickness of the sample is 0.6 cm. The inclusions and background are each made up of a 

different silicon material, leading to distinct mechanical behaviors. As indicated in the 

uniaxial tensile tests with INSTRON machine (see Figure 7-1 (b)), the stiffness of the 

inclusions is approximately 2.5 times larger than that of the background. We also observe 

that the material nonlinearity in the stress-strain curves of both materials is insignificant, 

i.e., the stress-strain relation is almost linear for large deformations less than 30% stretch. 
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Figure 7-1: (a) The dimensions of the composite phantom; (b) plots of the uniaxial Cauchy 

stress versus the stretch of background and inclusion materials.   

 

 

To deform the soft phantoms, we fix the top edge and pull down the bottom edge 

of the sample. By taking images of the sample in the undeformed and deformed states, we 

are able to calculate the displacement data accordingly.  
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Figure 7-2: The domain of interest delineated from images taken by two digital cameras. 

 

7.1.2 Modulus reconstruction  

With the acquired full field displacement field throughout the region of interest of 

the sample, the recovered shear modulus distribution can be obtained utilizing the 

regularized inverse algorithms discussed in the previous chapters. As the inverse 

algorithms have been thoroughly discussed in previous chapters, I will not elaborate 

herein. In this chapter, we adopt a hyperelastic model to study the mechanical behavior of 

the silicon sample undergoing finite deformations. As the stress-strain relations of both 

the background and the inclusion materials are nearly linear even for larger deformations 

as shown in Figure 7-1 (b), we utilize the simplest hyperelastic model, the neo-Hookean 

model, to study the nonlinear elastic behavior of the phantom, and the strain energy density 

function for an incompressible neo-Hookean solid is given as  

  2/3

1 3
2

W J I
     (7.1) 
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Utilizing Equation (7.1), we could derive the associated Cauchy stress and 2nd 

Piola-Kirchhoff stress tensors.  Note that the modified Veronda-Westmann model will 

reduce to the neo-Hookean model if we set the nonlinear parameter to zero. This 

interesting observation reveals that the level of the material nonlinearity of the neo-

Hookean model is fairly low. For small strains and rotations, the neo-Hookean model will 

further reduce to the linear elastic model where the stress-strain relation is written as  

 2ij ij ijp      (7.2) 

where , , 1 or 2i j k  .  , ,

1

2
ij i j j iu u    is the small strain tensor and p is the hydrostatic 

pressure.  

To compare the difference of linear elastic and neo-Hookean models, we plot the 

stress variation over the stretch in the case of uniaxial extension when 1   as shown in 

Figure 7-3. In this case, we utilize the Cauchy stress for the neo-Hookean material as a 

comparison. We observe that these curves nearly coincide with each other when the stretch 

is very small, while the Cauchy stress increases faster than the stress predicted by the 

linear elastic model with increasing stretch. This observation clearly indicates that when 

the deformation is small, the linear elastic law is a good approximation to analyze the 

mechanical behavior of neo-Hookean materials. Even so,  it is incapable of predicting the 

mechanical behavior of nonlinear elasticity undergoing large deformations.   

     Now the question is that what will happen if we utilize the linear elastic model to 

solve the inverse problem in nonlinear elasticity. In the following sections, we will attempt 

to seek the answer.  
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Figure 7-3: Plots of uniaxial stress versus the stretch of neo-Hookean and linear elastic 

solids when the shear modulus is set to 1. Note that the stress measure used for neo-

Hookean solid is Cauchy stress. 

 

 

7.2 Results  

7.2.1 Modulus reconstruction obtained by utilizing phantom data   

We first solve the inverse problem by utilizing phantom data and compare the 

differences in the shear modulus reconstruction results using the linear elastic and neo-

Hookean models.  In the inverse problem, the problem domain of interest (see Figure 7-

4) is discretized by 1221 bilinear elements, and only the vertical displacement component 

is minimized since it is more accurate than the horizontal displacement component. 
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Regarding the boundary conditions, displacements in both directions on all four edges of 

the problem domain are prescribed. As only displacements are utilized to solve the inverse 

problem without using any non-zero traction, force, or partially known shear modulus, the 

shear modulus distribution is mapped qualitatively, i.e. by a multiplicative factor.  Figure 

7-4 shows the shear modulus reconstructions utilizing the linear elastic and neo-Hookean 

models in the case of roughly 2% extension. In this case, the regularization factor for both 

cases is selected as 46.0 10 . Note that in both cases, we utilize the same regularization 

factor for the sake of comparison.  It is apparent that both linear elastic and neo-Hookean 

models are capable of detecting the location and preserving the shape of these two 

inclusions well. However, the mapped shear modulus values in inclusions employing the 

linear elastic model are larger compared to the results using the neo-Hookean model. 

Meanwhile, comparing the recovered shear modulus values in two inclusions, we find that 

the smaller inclusion is underestimated.  

 

 

 

Figure 7-4: Shear modulus reconstructions using (a) linear elastic model; (b) neo-

Hookean model. 
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Figure 7-5 shows the shear modulus reconstructions utilizing the linear elastic and 

neo-Hookean models in the case of roughly 18% extension, and the regularization factor 

utilized for both cases is 37.0 10 . We observe a similar trend to Figure 7-4 in that the 

shear modulus values in inclusions using the linear elastic model are larger than the shear 

moduli predicted by the neo-Hookean model.  

 

 

 

Figure 7-5: Shear modulus reconstructions using (a) linear elastic model; (b) neo-

Hookean model. 

 

 

7.2.2 Modulus reconstruction obtained by utilizing simulated data  

We also utilize simulated data to solve the inverse problem. The simulated data is 

obtained solving a forward problem where the unit square problem domain (see Figure 7-

6) is discretized by 3600 bilinear elements.  We create two inclusions with different sizes 

to resemble the soft phantom sample used in Section 7.2.1. Meanwhile, we utilize the neo-

Hookean model to approximate the mechanical behavior of the hypothetical phantom, and 
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the target shear modulus values in the inclusions and background are 2 and 1, respectively. 

This stiffness ratio is close to that of the phantom specimen. The boundary conditions 

prescribed in the forward simulation are slightly different from those in experiments: we 

apply uniform extension on the top edge and restrict the vertical motion of the bottom 

edge. To avoid the rigid body motion, the center node of the bottom edge is fixed in both 

directions. In solving the inverse problem, we utilize the same displacement boundary 

conditions prescribed in the forward problem. Additionally, we minimize full-field 

displacements in vertical direction, and 3% random noise is added to the displacement 

field.  

Figure 7-6 exhibits the reconstructed shear modulus distributions using the linear 

elastic and neo-Hookean models with the regularization factor of 810 .  In this case, we 

apply 2% deformation to the simulated phantom. It is obvious that the shape and location 

of both small and large inclusions are recovered well. We also observe that the shear 

moduli in the inclusions are larger using the linear elastic model compared to those 

predicted shear moduli using the neo-Hookean model. Besides, the recovered stiffness in 

the smaller inclusion is smaller than that in the large inclusion. These trends are also 

observed in the previous case. For a large deformation of 15% extension as shown in 

Figure 7-7 where the regularization factor is selected as 75.0 10 , the reconstructed shear 

modulus values in inclusions using the linear elastic model are also larger than those using 

the neo-Hookean model. In summary, the reconstructions utilizing the simulated data 

exhibit a very similar trend to the case of the experimental data.  
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Figure 7-6: (a) Target shear modulus distribution; shear modulus reconstructions using 

(b) linear elastic model; (c) neo-Hookean model. 

 

 

 

 

Figure 7-7: (a) Target shear modulus distribution; shear modulus reconstructions using 

(b) linear elastic model; (c) neo-Hookean model. 

 

 

7.3 Discussion 

In this chapter, we utilized the iterative approach to solve inverse problems using 

linear and nonlinear elastic models with experimental and simulated data.  The measured 

datasets were acquired by the experimental and simulated phantoms subjected to small 

and large deformations. We also analyzed and compared the reconstructed results for 
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different constitutive models, i.e., linear and neo-Hookean constitutive models with small 

and large deformations. This work is helpful to understand the feasibility of linear elastic 

approximation in solving the inverse problem for soft solids, e.g., biological tissues, 

subjected to larger deformations.  

In the first case in Section 7.2, we solved the inverse problem by utilizing the 

phantom data. This phantom sample is inhomogeneous with two stiff inclusions embedded 

in the soft background. The stiffness contrasts between the inclusions and the background 

are both roughly 2.5, which is significantly lower than the stiffness ratio of the breast 

tumor to the normal fat tissue [56].  The displacement field of the sample was measured 

with high accuracy by a digital imaging correlation system. The accuracy of the DIC 

system to measure surface displacements has been verified in Chapter 5. In solving the 

inverse problem, we specified the entire displacement boundary of the problem domain 

and minimized the vertical displacement component in the objective function. According 

to the reconstructions, the inclusions can be well recovered in both the shape and shear 

modulus values even when the stiffness contrast between the inclusions and the 

background is fairly low. We also observed that the shear modulus value in the small 

inclusion is underestimated, and the reason for this will be discussed below.  In addition, 

comparing to the neo-Hookean model, we observed that the stiffness contrast is 

overestimated for a linear elastic model in both small and large deformation cases. We 

will then employ a one-dimensional analysis to explain why this occurs.    

      The second case in Section 7.2 is a numerical example that mimics the soft 

phantom used earlier. In this case, the measured displacement fields were obtained by 



 

144 

 

solving forward problems for a neo-Hookean solid subjected to small and large 

deformations. We solved the inverse problem for shear modulus distributions using both 

linear and neo-Hookean models. Additionally, only the vertical displacement component 

is minimized in the presence of 3% noise. In this numerical case, we observed a similar 

trend to the previous case in that the stiffness of the small inclusion is underestimated and 

the linear elastic hypothesis will overestimate the shear moduli. We will explain these two 

issues in the following.   

(1) The stiffness of the small inclusion is smaller than that of the large inclusion. 

In order to explain what we have observed in the two-dimensional case, let us 

utilize the 1-D coupled model (see Figure 3-12 in Chapter 3) for analysis. In this case, 

we assume these two bars follow the linear elastic law instead of the neo-Hookean law 

since the linear elastic problem is easier to solve and this issue occurred in both inverse 

solvers. Thus, we are able to directly employ Equation (3.11) for analysis with 

1 2 1 20  and  in inu u      which is consistent with the 2-D numerical examples presented 

earlier, and also assume 1 2a a  which demonstrates the dimension of the left inclusion is 

smaller than the right one. If we revisit the relative error    1 1 10.8 / 0.8 100%in in in   
 

, 

we will find that a negative relative error reveals the stiffness of the small inclusion is 

underestimated more than the stiffness of the large inclusion. Figure 7-8 plots the relative 

error over the target shear modulus values in the inclusions for two scenarios. The red line 

represents the case where the two inclusions are located in the center of the two bars, 

respectively. The prescribed parameters used in this case are: 
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1 2 1 20.4,  0.2, 0.3, 0.4a a b b    . The green line corresponds to the case where small 

and large inclusions are placed downwards and upwards, respectively, that is,

1 2 1 20.4,  0.2, 0.5, 0.3a a b b    .  We observe that the relative error is always negative, 

which means that the smaller inclusion is underestimated more than the large inclusion. 

Furthermore, this underestimation becomes more significant when the two inclusions are 

placed diagonally.  

 

 

 

Figure 7-8: The relative error over different target shear modulus values in inclusions. 

Red line represents the case where the two inclusions are located in the center of the two 

bars. Green line corresponds to the case where small and large inclusions are placed 

downwards and upwards, respectively.  
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(2) The mapped stiffness of the inclusions are underestimated using the linear 

inverse solver. 

In this case, let us consider a nonhomogeneous and hyperelastic bar as shown in 

Figure 7-9, where the stiffness of the black and white regions are denoted by in   and b

, respectively. The black and white regions mimic the inclusion and background in two-

dimensional cases, respectively. We fix the bar at its bottom end and apply a displacement 

of u  at the top end. The total length of the bar is denoted by L, the length of the black 

region is represented by a,  and the distance between the bottom end of the black region 

and the fixed end of the bar is denoted by b. Given that the stretches are piecewise 

constants in the black and white regions, one can yield the displacement field exactu  along 

the bar: 

 

 

 

  +  when + < 1 

                    when < +  

                                  when 0<  

b in b

exact b a

b

b a y b a b a y

u b y b b y b a

y y b

  

 



      


    
  

  (7.3) 

where a  and b  are stretches in the inclusion and background, respectively. Since the 2nd 

Piola-Kirchhoff stress of the inclusion equals that of the background due to the constant 

axial force in the bar, one can derive the following relationship between  a  and b : 

 
3 3

1 1
1 1in b

a b

 
 

   
     

   
  (7.4) 

Moreover, the displacement on the top end of the bar is u , thus leading to another 

relation between a  and b , that is: 
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  a bu a L a L       (7.5) 

Thereby, with the assistance of Equations (7.4) and (7.5) , we are capable of 

acquiring a  and b , and further determining the displacement field exactu  by virtue of 

Equation (7.3). The displacement field exactu  is used as the measured displacement in the 

inverse problem. The objective function in the 1-D case can be written as 

  
1 2

0

1
d

2
com exact in buF u y         (7.6) 

where b and in  are the estimated stiffness of the background and inclusion, 

respectively. In addition, 
comu   represents the computed displacement. The formula of the 

1-D objective function has been thoroughly discussed in Chapter 3. Clearly, inin    

and bb   when 0  if the same constitutive model is used to predict the mechanical 

response of the bar in the inverse problem. However, adopting the linearized strain 

measure to solve the inverse problem yields the following computed displacement field 

comu : 

 

 

  +          when + < 1 

                                          when < +             

                                             when 0<

i

b in b

com b in

b

b a y b a b a y

u b y b b y b a

y y b

  

 



      


    
  

  (7.7) 

where b   and in  are the computed strains of the background and inclusion, respectively. 

As the stress in this bar is constant, we have the relationship in in b b    . Combining this 

relationship with the kinematic constraint yields the explicit expression of  b   and in : 

   / /b b inu L a a      and   / /in in bu L a a       (7.8) 
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  We also fix 1b   as the stiffness distribution is relatively mapped. Thereby, the 

objective function is merely a function of the inclusion stiffness 
in . Minimizing the 

objective function yields the following equation: 

 0    
in

F







  (7.9) 

which can be utilized to determine the inclusion stiffness in . Figure 7-10 exhibits the 

recovered inclusion stiffness over various external displacements from 0.02L (2% 

deformation) to 0.2L (20% deformation) for different exact inclusion stiffness 
in   

(=2,3,4,5) when the regularization factor    is set to zero. In this case, other parameters 

utilized in Figure 7-10 are as follows: 1L  , 0.2a  , and 0.4b  .   

 

 

 

Figure 7-9: 1-D nonhomogeneous elastic bar subject to uniaxial extension.  
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Figure 7-10: Plot of the reconstructed shear modulus in the inclusion over the external 

displacements at the top end of the bar for different exact stiffness values in the inclusion 

in  (=2, 3, 4, 5).  

 

 

As shown in Figure 7-10, it is clear that the recovered shear modulus in the 

inclusion is overestimated regardless of small or large deformations when the linearized 

theory is employed. Thus this 1-D theoretical analysis validates what we have observed in 

2-D cases. Meanwhile, we also observe that the estimated inclusion shear modulus value 

increases with the increment of the external loading and the target stiffness contrast. In 

particular, the estimated inclusion stiffness is roughly 1.4 times larger than the exact 

stiffness when the target shear modulus is 5 and the external displacement 0.2u  .  This 

observation provides a fairly important insight in the inverse problem in elasticity, that is, 
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the linear elastic assumption can be applied for characterizing elastic property distribution 

of soft solids undergoing a very small deformation, e.g., less than 2% deformation, as the 

overestimation of the recovered inclusion stiffness is infinitesimal. However, it will induce 

a larger error when the external loading becomes larger, especially for a problem domain 

with a substantially large target stiffness ratio. We should note that the phenomenon that 

the overestimation of the stiffness contrast becomes more significant with increasing 

external loading was not observed in the 2-D results presented in Section 7.2. The reason 

for this is that the stiffness of the inclusions is very close to that of the background, thus 

the inclusion behaves very similarly to the background. As such, the resulting full-field 

displacement will be highly sensitive to the noise, thus highly affecting the final 

reconstruction results.  

7.4 Conclusions 

In this chapter, we have presented a thorough study on the feasibility of the linear 

elastic approximation in solving inverse problems for a neo-Hookean solid in two-

dimensional space. Both experimental and simulated displacement datasets have been 

introduced to solve the inverse problem. The experimental data of a soft and 

nonhomogeneous phantom is obtained with high accuracy by a digital camera correlation 

system. According to the shear modulus reconstructions for both the simulated and 

experimental examples, we have observed that the mapped shear moduli are well 

recovered in the size and the location of the stiff inclusions using both the linear and non-

linear models. However, the linear elastic model overestimated the shear modulus values 

in the inclusions. To better analyze this, we have performed a one-dimensional theoretical 
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analysis to explain the observation of the 2-D reconstruction results. In this 1-D theoretical 

analysis, we also observed that the stiffness contrast is overestimated significantly when 

the linear elastic model is adopted. Additionally, we also found that the overestimation 

becomes more significant with the increase of the external loading and target stiffness 

contrast.  Overall, this work provides a good understanding of the feasibility and reliability 

of the use of the linearized theory to solve the inverse problem using the data measured 

from a neo-Hookean solid. 
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8. QUANTIFYING THE ANISOTROPIC LINEAR ELASTIC BEHAVIOR OF 

SOFT SOLIDS  

 

In previous chapters, the main focus was to identify the material property 

distribution for a nonhomogeneous isotropic elasticity. However, a large number of 

biological tissues like bones and skins are anisotropic elastic materials. Meanwhile, 

anisotropic elastic parameters might be altered due to diseases, e.g., the anisotropic elastic 

properties of a bone become smaller during the process of osteoporosis. Thus, the 

assessment and knowledge of nonhomogeneous and anisotropic elastic properties of 

tissues might be of clinical significance. However, due to the ill-posed nature of the 

inverse problem and a large number of unknown material properties in the anisotropic 

constitutive models, identification of heterogeneous anisotropic elastic properties is 

poorly addressed. Shore et al. recovered the heterogeneous 3-D transverse anisotropic 

elastic property distribution for bone tissues assuming the fiber direction is known [120]. 

According to the observation of the reconstruction results, the mapped material property 

distributions are highly sensitive to the noise. A similar trend was also observed in another 

work [121] where 2-D orthotropic linear elastic property distribution is poorly mapped in 

the presence of only 1% noise.  

  In this chapter, we propose and develop an iterative inverse methodology to 

recover the orthotropic linear elastic property distributions in 2-D. We fully take 

advantage of the inverse solvers presented in Chapter 2 and implement the novel feature 

of anisotropy into the existing algorithms. The theoretical background of this new feature 
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will be elaborated in Section 8.1, and we will test it with numerical experiments in Section 

8.2. In Section 8.3, we discuss the numerical results and end with conclusions in Section 

8.4.    

8.1 Forward and inverse problems in 2-D orthotropic linear elasticity  

The strong form of the forward problem in anisotropic linear elasticity in the 2-D 

case is stated as: Find the displacement u  such that the equilibrium equations and the 

prescribed Neumann and Dirichlet boundary conditions are satisfied. In 2-D orthotropic 

linear elasticity, the constitutive law can be represented as: 

 

11 12

12 22

66

0

0

0 0

xx xx

yy yy

xy xy

C C

C C

C

 

 

 

    
    

    
        

  (8.1) 

In this case, material axes are aligned with the x-y axes as shown in Figure 8-1 

(a).  It is noted that there is no coupling effect of shear and axial deformations. In other 

words, shear stresses will only produce shear strains, and normal stresses will only result 

in normal strains.  If the material axes are not aligned with the x-y axes, e.g., the material 

axes are rotated counter-clockwise from the x-y coordinate system by an angle of   as 

shown in Figure 8-1 (b), the stress-strain relation will be rewritten as: 

 

11 12 13

12 22 23

13 23 66
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xy xy

C C C

C C C
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 
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  (8.2) 

The material parameters in Equation (8.2) can be expressed in terms of  

11 12 22 66, , ,C C C C  and  , that is, 
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  (8.3) 

The derivation of Equation (8.3) requires coordinate transformation of stress and 

strain tensors, and has been shown in [122]. With the constitutive law (8.2) or (8.3), the 

governing equations, and the prescribed boundary conditions,  we can solve the forward 

problem adopting the finite element approach to obtain simulated displacement fields. 

 

  

 

Figure 8-1: A schematic diagram of the cross section of a microstructure of an orthotropic 

material where the elliptic fibre bundles are in dark blue color. (a) The material axes are 

aligned with reference axes; (b) the material axes are not aligned with reference axes. 
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In this chapter, we utilize the iterative inverse strategy to solve the inverse problem 

in 2-D orthotropic linear elasticity. In the inverse problem, the unknown material 

parameter vector 11 12 22 66[     ]C C C C  .  As we did in the previous chapters, we utilize 

the adjoint method to evaluate the gradient of the objective function with respect to the 

material properties, which allows us to solve the optimization problem by the limited 

BFGS method. As the implementation of the novel feature is very similar to what we have 

discussed in Chapter 2, we will not discuss herein. In the next section (Section 8.2), we 

will show the feasibility of the inverse scheme to recover the anisotropic material property 

distributions quantitatively using simulated displacements together with traction data. We 

should note that for a 2-D orthotropic linear elasticity, a large number of unknowns must 

be determined, thus leading to the uniqueness issue. To address this issue, we will solve 

the inverse problem using multiple full-field displacement fields acquired from different 

simulated mechanical tests. In order to test the robustness of the inverse algorithms, we 

add the same noise level throughout the displacement field together with applied tractions.  

8.2 Results 

In this section, the performance of the iterative inverse strategy to characterize the 

non-homogeneous anisotropic linear elastic material properties will be tested by simulated 

data. Let us consider a 1cm×1cm square problem domain as shown in the first column of 

Figure 8-2, which is discretized by 900 bilinear elements. In this problem domain, there 

is a stiff inclusion with a radius of 0.1cm embedded in the soft background. The specific 

material parameters for the background and inclusion are shown in Table 8-1. In this case, 

the material parameters of the soft background are taken from the parameters of a healthy 
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human skin [123].  Meanwhile, we assume the material axes of both background and 

inclusion are known and aligned with the reference axes, i.e., 0  . To obtain the multiple 

simulated datasets, we solve forward problems of the same problem domain with different 

loading and boundary conditions as shown in Figure 8-3. In this figure,  Case (a) and (b) 

are uniaxial extension tests, Case (c) and (d) are shear tests, and Case (e) and (f) are biaxial 

tests. Regarding displacement boundary conditions for each case, we restrict are uniaxial 

extension the motion in both directions on the bottom edge in Case (a) and (c), and on the 

left edge in Case (b) and (d). For the last two cases, we restrict axial motion in both left 

and bottom edges. The prescribed non-zero tractions in each case are 

23kPa, 3kPa, 1.5kPa and 3kPax y xy xt t t t      . 
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Figure 8-2: Problem domain with target modulus distributions are defined in the first 

column and material parameter distributions( 11 12 22 66, , ,C C C C ) are presented from top row 

to bottom row, respectively. Column 2 to Column 4 represent the parameter 

reconstructions with 4 displacement measurements using 0, 0.1%, and 1% noise, 

respectively. 
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Table 8-1: Target orthotropic linear elastic material parameters in Figure 8-2.  
C11(kPa) C12(kPa) C22(kPa) C66(kPa)  ( ̥ )  

background 5 9 150 14 0 

inclusion 20 40 300 42 0 

 

 

 

Figure 8-3: Cases used in solving forward and inverse problems.  
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Table 8-2: Regularization factors used in each case presented in Figure 8-2. 

 C11 C12 C22 C66 

0% noise 10-12 10-12 10-12 10-12 

1% noise 5.0×10-10 2.0×10-10 1.0×10-10 2.0×10-10 

3% noise 3.0×10-9 5.0×10-10 2.0×10-10 2.0×10-9 

 

 

In solving the inverse problem, we utilize multiple full-field displacement 

measurements acquired from solving forward problems. To quantitatively determine the 

material property distributions, we will use the non-zero traction boundary conditions in 

the inverse problem as well. Figure 8-2 represents the reconstructions using 4 full-field 

displacement measurements (using the first 4 cases in Figure 8-3) in the presence of 

different noise levels: 0%, 1%, and 3% noise are utilized in Column 2, 3, 4, respectively. 

The regularization factors for each material parameter are listed in Table 8-2. We observe 

that the recovered parameter distributions are fairly close to the target orthotropic linear 

elastic property distributions (see the first column in Figure 8-2) in the case of no noise. 

Meanwhile, in the presence of 1% noise, all the parameter distributions except for the 

material parameter 12C  are still well-recovered in both the shape and parameter values of 

the inclusion. In the reconstruction of the parameter 12C , the shape of the inclusion 

becomes larger and the parameter value is much smaller than the target. With 3% noise 

(see the last column in Figure 8-2), we are incapable of recovering well in that all material 

property values in the inclusion are much lower than the target. Furthermore, the shape of 
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the inclusion in the modulus reconstruction image of each parameter is distorted, 

especially for the parameter 12C . We also collect two more displacement measurements 

from biaxial testing (Case (e) and (f) in Figure 8-3) and utilize 6 total displacement fields 

to solve the inverse problem. The associated reconstructions are displayed in Figure 8-4. 

The regularization factors used in this case are listed in Table 8-3. With low noise level, 

the orthotropic elastic parameter distributions can be quantitatively determined in good 

quality similar to the trend presented in Figure 8-2, while they are poorly recovered for a 

high noise level.  We also observe that in the case of 3% noise, the shape and the inclusion 

value in the mapped distribution of the parameter 12C  improve with increasing total 

number of displacement measurements. 

 

 



 

161 

 

 

Figure 8-4: Problem domain with target modulus distributions are defined in the first 

column and material parameter distributions ( 11 12 22 66, , ,C C C C ) are presented from top row 

to bottom row, respectively. Column 2 to Column 4 represent the parameter 

reconstructions with 6 displacement measurements using 0, 0.1%, and 1% noise, 

respectively. 
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Table 8-3: Regularization factors used in each case presented in Figure 8-4. 

 C11 C12 C22 C66 

0% noise 10-12 10-12 10-12 10-12 

1% noise 3.0×10-10 5.0×10-11 2.0×10-11 3.0×10-10 

3% noise 1.0×10-9 2.0×10-10 3.0×10-10 2.0×10-9 

 

 

 

In practice, the rotation angle of material axes is also unknown. Therefore, we also 

need to test the performance of the inverse algorithms to recover the rotation angle  . In 

this case, we still use the same problem domain and the same boundary conditions utilized 

in the first example to solve the forward problems and collect multiple displacement fields.  

However, the target rotation angle of the inclusion is different from that used in the first 

example as shown in Table 8-5. We also utilize a similar strategy to solve the inverse 

problems. Figure 8-5 and Figure 8-6 exhibit the material property distributions using 4 

and 6 full-field displacement measurements, respectively, with noise levels from 0% to 

3%. The reconstruction results show that in the case of no or low noise levels, the material 

property distributions are generally recovered well, whereas the rotation angle of the 

material axes θ in the case of 1% noise is recovered worse than other parameters, i.e., the 

shape of the inclusion of the distribution of θ is distorted. Additionally, the reconstructions 

are of poor quality for the case with the higher noise level. More specifically, the shape of 

the inclusion is poorly mapped, and the material property values in the inclusion are 

significantly underestimated.  
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Table 8-4: Target orthotropic linear elastic material parameters in Figure 8-2.  
C11(kPa) C12(kPa) C22(kPa) C66(kPa)  ( ̥ ) 

background 5 9 150 14 0 

inclusion 20 40 300 42 30 

 



 

164 

 

 

Figure 8-5: Problem domain with target modulus distributions are defined in the first 

column and material parameter distributions ( 11 12 22 66, , ,C C C C , ) are presented from top 

row to bottom row, respectively. Column 2 to Column 4 represent the parameter 

reconstructions with 4 displacement measurements using 0, 0.1%, and 1% noise, 

respectively. Note that the unit of rotation    used in the last row is radian.  
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Table 8-5: Regularization factors used in each case presented in Figure 8-5. 

 C11 C12 C22 C66    

0% noise 10-12 10-12 10-12 10-12 10-12 

1% noise 1.0×10-10 8.0×10-11 5.0×10-11 3.0×10-10 9.0×10-10 

3% noise 5.0×10-9 1.0×10-9 4.0×10-10 4.0×10-9 2.5×10-8 
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Figure 8-6: Problem domain with target modulus distributions are defined in the first 

column and material parameter distributions ( 11 12 22 66, , ,C C C C ,  ) are presented from top 

row to bottom row, respectively. Column 2 to column 4 represent the parameter 

reconstructions with 6 displacement measurements using 0, 0.1%, and 1% noise, 

respectively. Note that the unit of rotation   used in the last row is in radian. 
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Table 8-6: Regularization factors used in each case presented in Figure 8-6. 

 C11 C12 C22 C66 θ 

0% noise 10-12 10-12 10-12 10-12 10-12 

1% noise 1.0×10-10 8.0×10-11 3.0×10-11 3.0×10-10 9.0×10-10 

3% noise 2.0×10-9 4.0×10-10 2.0×10-10 2.0×10-9 3.0×10-8 

 

 

8.3 Discussion 

In this work, we presented a methodology to quantitatively identify the 

heterogeneous parameter distributions for a 2-D orthotropic linear elasticity, and its 

feasibility was tested successfully by numerical experiments.  Unlike the previous works 

on mapping the non-homogenous anisotropic material property distributions [120, 121], 

non-zero tractions were introduced and prescribed in solving the inverse problem herein, 

which ensures a quantitative solution.  

 We tested the performance of the novel inverse scheme by using simulated data. 

The simulated datasets were acquired by solving forward problems with a target non-

homogenous material property distribution. In the inverse problem, multiple simulated 

full-field displacement datasets acquired from uniaxial, shear, and biaxial tests were used 

to map the material property distributions. The reconstruction results revealed that the 

anisotropic linear elastic property distributions are very sensitive to the noise. When the 

noise level is low, e.g. less than 1% noise, all parameters in the 2-D orthotropic linear 

elastic law were mapped well, while poorly reconstructed in the presence of a higher noise 

level, e.g., 3% noise. Compared to the reconstructions for isotropic elastic solids, the 

reconstructions presented in this work were poorly mapped in the same noise level. The 

phenomenon of the high sensitivity of the reconstructed anisotropic linear elastic 
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parameter distributions to the noise is also observed in other similar works [120, 121]. In 

those works, even with 1% noise or less, the heterogeneous anisotropic parameters were 

not recovered well. The reason for this might be the fact that in the estimation of 

anisotropic parameters, the uniqueness issue becomes more serious as a large number of 

unknown material parameters in the constitutive law must be determined, e.g., five 

material parameters in the 2-D orthotropic linear elastic model.   

We recovered all material parameters 11 12 22 66, , ,C C C C  and   simultaneously in 

this chapter; however, this approach is difficult to ensure a unique solution for a variety 

of coupled material parameters in the constitutive law.  An alternative way is to estimate 

each material parameter separately in terms of their physical interpretations. For instance,

66C  might be determined separately from other parameters using shear deformations.  

Thus, future work will focus on proposing sequential methods to recover anisotropic 

elastic property distributions.  

This work is a preliminary study to present the proof of concept of recovering the 

heterogeneous anisotropic material property distributions using iterative inverse 

algorithms, and we merely introduced the 2-D orthotropic linear elastic feature in the 

inverse algorithms. However, the current inverse scheme can be easily generalized to 2-D 

transversely anisotropic, or 3-D anisotropic elastic cases that may have more clinical 

significance. 

8.4 Conclusions 

In this chapter, we have presented a quantitative approach to identify the 2-D 

heterogeneous, orthotropic, linear elastic material property distributions of biological 
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tissues.  The feasibility of this approach has been tested by multiple full-field simulated 

datasets. We have observed that the mapped anisotropic elastic parameter distributions are 

of good quality with low noise levels, while poorly recovered in the presence of as high 

as 3% noise. This work is a preliminary study to determine the nonhomogeneous 

anisotropic property distributions quantitatively and non-invasively. Future work will 

focus on generalizing this approach to the three-dimensional cases and developing more 

effective approaches to improve the quality of reconstructions.   
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9. MAPPING THE VISCOELASTIC BEHAVIOR OF SOFT SOLIDS FROM 

TIME HARMONIC MOTION 

 

Time harmonic particle motion can be used to map the viscoelastic mechanical 

behavior of solids, such as biological tissues and synthetic polymers. More precisely, shear 

waves are induced by mechanical excitations [124]  on the specimen’s surface or internally 

through acoustic sources [125]. Shear waves are created directly or indirectly by mode 

conversion, e.g. after impact loading [126] . The storage and loss moduli are frequency 

dependent parameters and can be mapped for a spring-dashpot model in the frequency 

domain. These parameters were determined by minimizing the error in the constitutive 

equation [127] or directly from the governing partial differential equations allowing for 

point-wise computation for the material properties, thus reducing computational time 

drastically [128-132]. The latter usually assumes local homogeneity of the material 

properties to simplify the mapping procedure, resulting in the well-known form of the 

Helmholtz equations. This assumption, however, comes at a cost of accuracy in recovering 

regions with high gradients in material properties. Further, higher order derivatives of 

noisy strain amplitudes are utilized, leading to amplified noise levels in measured data.    

In this chapter, we will recover the heterogeneous distribution of the storage and 

loss modulus for measured complex valued displacement amplitudes from simulated 

experiments. The problem is posed as a constrained minimization problem with a 

regularized objective function that is subject to the constraint of the forward problem 

formulated in the frequency domain and solved with finite element techniques. In Section 
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9.1, we start with a brief review of the finite element formulation to solve the forward 

problem in the frequency domain. Then the inverse problem formulation is stated and the 

adjoint equations are derived to evaluate the gradient of the objective function. In Section 

9.2 we test the quality of the reconstructions with respect to shape of inclusion and 

parameter value distribution. Further, the sensitivity of the reconstructions to changes in 

loss angle, driving frequency, and positioning of inhomogeneous inclusions is investigated 

and observations thoroughly discussed and theoretically analyzed in Section 9.3.  

9.1 Method  

In this section, we will discuss the forward and inverse problem of the viscoelastic 

problem in the frequency domain. The forward problem is to find the complex valued 

displacement field in the problem domain when the moduli distribution is known. The 

inverse problem is posed as a constrained minimization problem, where the equation of 

motion for time harmonic excitation depicts the constraint. The performance of the inverse 

algorithms to characterize viscoelastic moduli will be tested with simulated experiments, 

acquired by solving a forward problem. We will discuss the forward and inverse problem 

in detail in the following subsections. 

9.1.1 Forward problem in viscoelasticity 

For time harmonic motion, the equation of motion is expressed as: 

 

2 0 on

on

on

h

g

   





u

u = h

n = g





  (9.1) 
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where    is complex-valued  Cauchy stress and u   is the complex-valued displacement 

of the solid in the domain of interest Ω. ρ denotes the density and 2πf   denotes the 

angular frequency, where f  is the driving frequency of excitation. h and g are prescribed 

displacement and traction values on the boundary h  and 
g , respectively. The boundary 

h  and 
g  constitute the entire boundary of the domain Ω. In addition, n represents the 

outward unit normal vector along the boundary. We assume that the solid is 

incompressible in 3-D space, with the incompressible condition given by 

  tr 0 u   (9.2) 

Based on small deformation theory this implies that the summation of normal 

strain components is zero. We also assume the solid is in the state of plane stress and the 

correspondingly linear viscoelastic stress-strain relation is given by: 

 2 2ij ij kk ij          (9.3) 

where , , 1 or 2i j k  and   , ,

1

2
ij i j j iu u      is the small strain tensor. Also, 

r ii      

denotes the unknown complex shear modulus where r  and i  are the storage and loss 

moduli, respectively. The complex modulus can also be written as   1 tanr i     

where  arctan i r    is the loss angle. We will solve the forward problem from 

Equations (9.1) to  (9.3) using standard finite element methods that leads to the following 

linear algebraic: 

 2w KU MU F   (9.4) 



 

173 

 

In Equation (9.4) K and M are the stiffness matrix and mass matrix, respectively, 

and F is the external force vector. The nodal vector U represents the real and imaginary 

displacement components and has length of 2 2N   in two-dimensional space, where 

N  represents the total number of nodes. We solve Equation (9.4) for U  to simulate 

experimental displacement data acquisition.  

9.1.2 Inverse problem formulation  

The inverse problem is posed as a constrained optimization problem where the 

correlation between the computed and measured amplitude of the complex displacement 

fields are minimized in the L-2 norm. In particular, given the nodal vector of the measured 

complex valued displacements 1 2, ,..., n

meas meas measU U U  , find the storage modulus and loss 

modulus [ ]r i      such that the objective function: 

  
2

2

0

1 1

1 1
|| ( ) || Reg

2 2

n
i i

meas j j

i j

F  
 

   D U U   (9.5) 

is minimized subject to the constraint of the forward problem in Equation (9.5). In 

Equation (9.5), the first term is the displacement correlation term, and the computed 

displacement i
U  is a function of the storage and loss modulus and satisfies the forward 

problem discussed in Section 9.1.1. The summation allows accommodation of 

measurements from multiple experiments, indexed with the superscript i . Spatial 

dependencies of  , ,i

j U   and i
measU  were omitted in Equation (9.5) to reduce notation. 

The linear operator D results from a continuous displacement field, approximated with 

finite element shape functions. The second term in Equation (9.5) represents a 

regularization term to penalize and smooth the mapped moduli. Its relative contribution to 
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the objective function is controlled by the regularization factor 
j . A large regularization 

factor will lead to overly smoothed moduli reconstructions, while a smaller one will 

amplify the measurement noise in the reconstructions, thus producing serious oscillation. 

The optimal 
j  can be selected based on Morozov’s discrepancy principle or a 

smoothness measure based on standard deviations in some small region of the domain [49, 

62]. There are numerous regularization types, and the total variation diminishing (TVD) 

regularization method is employed in this work, given by  

   2 2Reg | |j j c d 


      (9.6) 

Here, the constant c  in the regularization term is chosen to be small to avoid singularities 

when taking derivatives of the objective function with respect to the material parameters. 

The optimization problem is solved using the limited BFGS method which is a gradient-

based method [70, 71]. It requires the objective function value and its gradient with respect 

to material properties. Computing the gradient in a straightforward manner is 

computationally cost prohibitive, thus, we adopt the adjoint method to address this issue 

similarly to [48, 76]. We will develop the adjoint equations for the inverse problem in the 

frequency domain in detail in the next section.  Once the objective function and its gradient 

are evaluated for the current estimate of moduli distribution, the limited BFGS method 

provides an updated moduli distribution, and the entire process is repeated until the 

objective function value does not drop significantly.  
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9.1.3 The adjoint method  

The storage and loss modulus are defined as nodal unknowns in the finite element 

mesh and interpolated throughout the problem domain with linear finite element shape 

functions. The gradient of the objective function will be evaluated at each node with 

respect to the nodal moduli 
jm   where the index j represents the loss or storage modulus 

and m the global node number, yielding 

 
 2

1 1

Reg1
( ),

2

in
jmi i

meas j

i jjm jm jm

F 


   

 
  

  
 

U
D U U D   (9.7) 

where n  denotes the total number of nodes in the finite element mesh.  ,u v  is an inner 

product operator defined by du v  . The expression /i

jm U   in Equation (9.7) will 

be determined from Equation (9.4) by differentiation with respect to 
jm  leading to  

  
1

2
i

i

jm jm

w
 

 
  

 

U K
K M U   (9.8) 

Substituting Equation (9.8) into Equation (9.7) yields 

 
 2

1
2

1 1

Reg1
( ),

2

n
jmi i i

meas j

i jjm jm jm

F 
 

  



 

 
    

  
 

K
D U U D K M U   (9.9) 

Equation (9.9) can be used to evaluate the gradient, however, it is computationally a 

costly process as it requires the solution of Equation (9.8) for each node and each material 

property. This implies that the inverse problem requires solving ( 2 1N  ) forward 

problems at each minimization iteration, where N  denotes the total number of nodes. 

Further, this includes one forward problem to calculate the computed displacement and 
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the factor 2 for the two moduli, namely the storage and loss modulus. An Alternative way 

to evaluate the nodal gradient of the objective function is to utilize the adjoint method. To 

this end, we rewrite Equation (9.9) by  

    
 2

T
2

1 1

Reg1
,

2

n
jmT i i i

meas j

i jjm jm jm

F 
 

  



 

 
    

  
 

K
K M D D U U U   (9.10) 

and define another forward problem given by: 

    
T

2 T i i

meas   K M W D D U U   (9.11) 

After evaluating w  by solving Equation (9.11), we can compute the gradient of 

the objective function with respect to nodal moduli via 

 
 2

1 1

Reg1
,

2

n
jmi

j

i jjm jm jm

F 


   
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 
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 

K
W U   (9.12) 

We note that this strategy requires the solution of two forward problems at each 

minimization iteration, thus reduces computational time drastically. Finally, we observe 

that for the particular problem in this chapter, the linear operator  2K M   is self-

adjoint.  

To test the performance of these inverse algorithms, we simulate experimental 

datasets using finite element methods. More precisely, we will firstly solve a forward 

problem with a target/defined storage and loss modulus distribution to obtain the 

displacement field. We will then add 3% white Gaussian random noise to the complex 

valued displacement amplitude to mimic experimental data. Next, noisy displacement 

fields will be used to solve the inverse problem for the storage and loss modulus 
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distribution. Finally, the reconstructed material distribution will be compared with the 

target distribution to assess performance. 

9.2 Numerical results 

In this section, several experiments will be simulated with the algorithms discussed 

in the previous section and the inverse procedure tested for robustness. To this end, the 

problem domain in Figure 9-1 (a) and (b) is defined with a circular inclusion embedded 

in a 1cm×1cm square background to represent a composite material. The storage modulus 

in the inclusion and background are 500 Pa and 100 Pa, respectively. The loss tangent 

tan 0.1 and 0.08   are for the background and inclusion, respectively. This indicates 

that the solid represents a low damping material. We apply 1% cosinusoidal shear on the 

top surface, and fix the bottom edge as shown in Figure 9-1. The other two sides are 

traction free.  We discretize the problem domain with 3600 bilinear finite elements and 

solve the forward problem at three driving frequencies of 20Hz, 150Hz, and 300Hz. As 

mentioned in the previous section, 3% white Gaussian noise is added to the displacement 

field. Figure 9-2 (a), (c), and (e) represent the reconstructed storage modulus distribution 

at driving frequencies of 20 Hz, 150 Hz and 300 Hz, respectively. Figure 9-2 (b), (d), and 

(f) represent the corresponding reconstructed loss modulus distributions. The 

regularization factor is selected as shown in Table 9-1.  
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Figure 9-1: Problem domain for a simulated tissue (a) the target storage modulus 

distribution; (b) the target loss modulus distribution (unit: 100 Pa). 
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Figure 9-2: Reconstructed viscoelastic modulus distribution for the problem domain in  

Figure 9-1. (a) Reconstructed storage modulus distribution when the driving frequency is 

20Hz; (b) reconstructed loss modulus distribution when the driving frequency is 20Hz; (c) 

reconstructed storage modulus distribution when the driving frequency is 150Hz; (d) 

reconstructed loss modulus distribution when the driving frequency is 150Hz; (e) 

reconstructed storage modulus distribution when the driving frequency is 300Hz; (f) 
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reconstructed loss modulus distribution when the driving frequency is 300Hz (unit: 100 

Pa). 

 

 

 

 
Figure 9-3: Horizontal centerline plot from left to right for the exact and reconstructed 

modulus distribution for (a) the storage modulus plot ; (b) the loss modulus plot (unit: 100 

Pa). 

 

 

Table 9-1: Regularization factors used for the reconstructions in Figure 9-2. 

 f=20Hz f=150Hz f=300Hz 

  for storage modulus 1.0e-9 8.0e-9 8.0e-9 

  for loss modulus 1.0e-9 5.0e-9 7.0e-9 

 

 

Comparing the target storage and loss modulus distribution from Figure 9-1 with 

the reconstructions in Figure 9-2, it is observed that the reconstructed storage modulus 

distribution is of superior quality than the reconstructed loss modulus. The reconstructed 

storage modulus value in the inclusion is very close to the target at higher frequencies of 
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150 Hz and 300 Hz and background oscillations diminish as shown in the horizontal 

centerline plot in Figure 9-3 (a).  The loss modulus is recovered well at higher frequencies 

of 150 Hz and 300 Hz, but yields poor reconstructions at 20 Hz (see Figure 9-2 (b)). This 

will be thoroughly discussed in the next section. 

Next, we consider a problem domain with a higher loss angle, shown in Figure 9-

4 (a) and (b). In this case, the target loss tangent of the background and inclusion are 0.5 

and 0.4, respectively. In addition, the storage distribution is the same as the previous case. 

Figure 9-5 and Figure 9-6 are the reconstruction results for the moduli distribution and 

the corresponding horizontal centerline plot of the moduli from the left to right, 

respectively. The reconstructed storage modulus distribution in Figure 9-5 (a), (c), and 

(e) remain to be of high quality and the loss modulus for the frequency of 20 Hz improves 

significantly compared to the previous case with lower loss angle. In addition, for the 

highest frequency of 300Hz, the reconstructed storage and loss modulus in Figure 9-5 (f) 

becomes worse when comparing to the case of lower loss angle. The loss modulus 

distribution worsens drastically, in particular, the size of its inclusion becomes 

significantly smaller than the target.  In Figure 9-7 we place the inclusions for the storage 

and loss modulus from Figure 9-4  upwards. We observe that both, the storage and loss 

modulus reconstructions in Figure 9-8 (a) and (b), respectively, improve dramatically, 

and the inclusion size of the loss modulus reaches the target inclusion size as shown in 

Figure 9-8 (b). In this case, the regularization factors for the storage modulus and the loss 

modulus are 5.0e-11 and 7.0e-11, respectively.   
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Figure 9-4: Problem domain for a simulated tissue with a higher loss angle (a) the target 

storage modulus distribution; (b) the target loss modulus distribution (unit: 100 Pa). 
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Figure 9-5: Reconstructed viscoelastic modulus distribution for the problem domain 

given in Figure 9-4. (a) Reconstructed storage modulus distribution for a driving 

frequency of 20Hz; (b) reconstructed loss modulus distribution for a driving frequency of 

20Hz; (c) reconstructed storage modulus distribution for a driving frequency of 150Hz; 

(d) reconstructed loss modulus distribution for a driving frequency of 150 Hz; (e) 

reconstructed storage modulus distribution for a driving frequency of 300 Hz; (f) 

reconstructed loss modulus distribution for a driving frequency of 300Hz (unit: 100 Pa). 
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Figure 9-6: Horizontal centerline plot from left to right for the exact and reconstructed 

modulus distribution in the case of higher loss angle for (a) the storage modulus plot ; (b) 

the loss modulus plot(unit: 100 Pa). 

 

 

 
Figure 9-7: Problem domain for a higher loss angle (a) target storage modulus 

distribution; (b) target loss modulus distribution.  In this case, the location of the inclusion 

is shifted upwards closer to the excitation source. 
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Figure 9-8: Reconstructed viscoelastic modulus distribution for the problem domain 

where the inclusion is placed upwards. (a) Reconstructed storage modulus distribution 

when the driving frequency is 300 Hz; (b) reconstructed loss modulus distribution when 

the driving frequency is 300 Hz (unit: 100 Pa). 

 

 

Table 9-2: Regularization factors used in Figure 9-5. 

 f=20Hz f=150Hz f=300Hz 

  for storage modulus 2.0e-10 5.0e-10 5.0e-11 

  for loss modulus 3.0e-10 1.0e-9 7.0e-11 

 

 

9.3 Discussions 

In this chapter, a novel inverse algorithm has been utilized to reconstruct the 

storage and loss modulus distribution for a viscoelastic material behavior. We have tested 

the feasibility of this inverse scheme by several numerical examples presented in Section 

9.2. We observed that for a composite material with a lower target loss angle given in 

Figure 9-1 (a) and (b), the loss modulus reconstructions improve by increasing the driving 
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frequency shown in Figure 9-2 (d) and (f). For a problem with a higher target loss angle 

(see Figure 9-4 (a) and (b)), the loss modulus reconstruction improves for the case with 

20Hz driving frequency as shown in Figure 9-5 (b). However, increasing the frequency 

results in poor loss modulus reconstructions as shown in Figure 9-5 (f). As for the storage 

modulus, we observe that all reconstructions are mapped with high accuracy regardless of 

the driving frequencies being utilized. The best result is obtained when the driving 

frequency is chosen to be 150 Hz, and the reconstructed solution closely resembles the 

target distribution. It is also worth mentioning that for this case the background is smooth 

and does not reveal any oscillations. 

Another important observation is that the wavelength with 20 Hz driving 

frequency is estimated as 1.6 cm, which is much larger than the size of the tumor. In 

clinical medicine,  Some techniques are based on the wavelength, thus if the wavelength 

is larger than the inclusion size, the inclusion may not be well resolved and may be 

undetectable [133, 134]. The method presented in this paper is robust and allows to 

characterize inclusions that are smaller than the wavelength is very large. 

To understand the factors and how they relate to the poorly recovered loss moduli, 

we focus on a semi-infinite one-dimensional vibrating string that can be described by:  

 
2

2

2

u
u

x
  


  (9.13) 

We impose the boundary condition  0 ou x u  . When the loss angle is small, Equation 

(9.13) can be solved for the complex displacement as detailed in [135, 136]  and is given 

here by  
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  
tan

/ 2
x

i x c c
ou x u e e







   (9.14) 

Where /rc     is the shear wave speed. The first exponential in Equation 

(9.14) determines how the wave propagates without attenuation. The second exponential 

term is the attenuation term and controls how the amplitude decreases due to viscous 

effects. This solution qualitatively reveals that both the wave propagation term and the 

attenuation term are dependent on the storage modulus, while the loss modulus appears 

only in the attenuation term. Thus, the attenuation provides the information to map the 

loss modulus. Inspecting the attenuation term, it can be clearly seen that the quality of the 

loss modulus reconstruction is highly influenced by the driving frequency. For a fixed 

wave speed, if the frequency is very small or large, the attenuation term will be close to 1 

or 0, respectively. For these two scenarios, the resulting displacement will not vary 

significantly for a wide range of loss moduli, e.g., choosing two different loss moduli that 

are substantially different will lead to a small difference in their respective displacements.  

Thus, it is highly challenging to map the loss modulus in the presence of noise in the 

displacements.  Therefore, the quality of reconstructing the loss modulus distribution is 

highly correlated with the driving frequency. To reconstruct the loss modulus distribution 

well, the frequency may neither be chosen to be too high nor too low. Compared with the 

two-dimensional continuum model, the one-dimensional semi-infinite model neglects the 

influence of the reflective wave. Analyzing this model, though simplified, helps to better 

understand why the driving frequency affects the final reconstruction qualitatively.    
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To take into account possible wave reflections, a finite one-dimensional vibrating 

string with a length of L will be analyzed in the following. We assume that the string is 

linearly viscoelastic, and the boundary conditions are given by  0 0u x    and

  ou x L u  . The corresponding solution to this problem is given by: 

  
   

2

sin

sin

i ir r

ir r

k L x k L xik x ik x

o o k Lik L ik L

k x e e e e
u x u u

k L e e e

   

 

 
 


  (9.15) 

Where 
r ik k ik    is the complex wavenumber. /rk c , and tan / 2ik c     

assuming that the loss angle is relatively small. It is not easy to interpret Equation (9.15)

, hence, we plot the displacement for varying loss moduli values over the finite one-

dimensional domain.  To this end, we specify the length of the string L 1 , the amplitude 

1ou  . The range of loss moduli is selected to represent similar values as being used for 

the two-dimensional continuum model. Figure 9-9 (a) and (b) represent the real part and 

the imaginary part of the complex-valued displacement with respect to different loss 

modulus values of 0.1, 0.2, 0.3 and 0.4 for the driving frequency at 20 Hz, respectively 

and the storage modulus is set to 5.0.  All four curves (each curve for a different loss 

modulus) nearly coincide with respect to the real part of the complex displacement (see 

Figure 9-9 (a)). Though varying the loss modulus leads to significant differences in the 

imaginary displacement response as shown in Figure 9-9 (b), they are overall quite small 

compared to the real part of the complex displacement. As such, its contribution to the 

objective function will be small as well. Consequently, the loss modulus distribution is 

reconstructed poorly as shown in Figure 9-2 (b) for noisy data. 
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Figure 9-9: Variation of  displacement field  along an one-dimensional vibrating string 

subjected to harmonic motion when the loss modulus is set to 0.1, 0.2, 0.3, 0.4.(a) Real 

part of the complex-valued displacement field when the driving frequency is 20 Hz; (b) 

imaginary part of the complex-valued displacement field when the driving frequency is 

20 Hz; (c) real part of the complex-valued displacement field when the driving frequency 

is 150 Hz; (d) imaginary part of the complex-valued displacement field when the driving 

frequency is 150 Hz; (e) real part of the complex-valued displacement field when the 

driving frequency is 300 Hz; (f) imaginary part of the complex-valued displacement field 

when the driving frequency is 300 Hz. 
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In Figure 9-9 (c) and (d) we plot the real and imaginary displacement for a driving 

frequency of 150 Hz, respectively, and observe that they vary significantly with varying 

loss moduli. Similar observations are made for a driving frequency of 300 Hz (see Figure 

9-9 (e) and (f)). Consequently, the solution to the inverse problem will not be too sensitive 

to noise as it was demonstrated in the two-dimensional loss modulus reconstructions in 

Figure 9-2 (d) and (f).  

Increasing the loss angle by keeping the storage modulus to be same and increasing 

the loss modulus for the two-dimensional problem will yield a slightly improved 

reconstruction as shown in Figure 9-5 (b). This can be explained by Equation (9.15) as 

well. To this end, we plot the real part and imaginary part of the complex-valued 

displacement for different loss moduli of 0.5, 1.0, 1.5, and 2 in Figure 9-10 (a) and (b), 

respectively. For a driving frequency of 20 Hz the difference in the displacements becomes 

more pronounced as compared to the lower loss angle utilized in Figure 9-9 (a) and (b). 

Further, the imaginary part of the complex-valued displacement for each loss modulus 

value is a few factors larger than for the smaller loss angle. As a result, the inclusion shape 

improves in the reconstructed loss modulus distribution as shown in Figure 9-5 (b). For a 

higher frequency of 300 Hz, we also plot each displacement when the loss modulus is set 

to 0.5, 1.0, 1.5 and 2.0, respectively as shown in Figure 9-10 (e) and (f). When the loss 

modulus is selected to be large (in the case of loss modulus being 2.0), it can be clearly 

seen that the displacement attenuates quickly to zero. Hence, if the inclusion is further 

down of the excitation source (see problem domain in Figure 9-5), it cannot be well 

recovered. More precisely, noise will dominate attenuated small displacement values. On 
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the contrary, if the location of the tumor is close to the location of excitation as shown in 

Figure 9-7, the reconstruction will be less influenced by the noise as the displacement in 

that region is much larger than anywhere else. Thus, the inclusion can be recovered well 

for this case as shown in Figure 9-8. Revisiting the result in Figure 9-8 (b), the 

reconstructed loss modulus distribution and with that the inclusion shape improves 

significantly when the target inclusion is placed upwards closer to the excitation source. 
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Figure 9-10: Variation of displacement field  along an one-dimensional vibrating string 

subjected to harmonic motion when the loss modulus is set to 0.5, 1.0, 1.5, 2.0.(a) Real 

part of the complex-valued displacement field when the driving frequency is 20 Hz ; (b) 
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the imaginary part of the complex-valued displacement field when the driving frequency 

is 20 Hz; (c) real part of the complex-valued displacement field when the driving 

frequency is 150 Hz; (d) imaginary part of the complex-valued displacement field when 

the driving frequency is 150 Hz; (e) real part of the complex-valued displacement field 

when the driving frequency is 300 Hz; (f) imaginary part of the complex-valued 

displacement field when the driving frequency is 300 Hz. 

 

 

9.4 Conclusions 

In this chapter, we have tested the feasibility to solve the inverse problem for the 

viscoelastic moduli distribution utilizing simulated experiments. Full-field displacement 

data was assumed to be of time harmonic nature and assumed to be known, e.g., from 

imaging modalities. We have tested several numerical cases with different target 

viscoelastic modulus distributions and different driving frequencies. In most cases, the 

inverse algorithm works well despite high white Gaussian noise levels of 3% in the 

displacement. The storage modulus appears to be more robust than the loss modulus 

reconstruction. We discussed the factors that influence the quality of the loss modulus 

reconstruction and recovering inclusion shape. These depend on the frequency, location 

of the inclusion, and the loss angle. To investigate the influence of these factors 

analytically, we analyzed a one-dimensional vibrating string and correlated the findings 

to the observations of the two-dimensional reconstructions. The study in this chapter may 

be useful in choosing an optimal location to excite the domain and the range of frequencies 

used. Finally, it is noted that an accurate reconstruction of the storage and loss modulus at 

various frequencies is essential to relate them to the actual viscoelastic material properties 

of a given viscoelastic model. 



 

194 

 

10. CONCLUSIONS AND FUTURE WORK 

 

In this dissertation, we have proposed and implemented several new features into 

the inverse algorithms developed in [62].  First of all, a new feature that the material 

property is defined constantly in each element is introduced, and the corresponding 

regularization term has been modified based on the Rankine–Hugoniot jump conditions. 

The new feature has been tested well by the simulated data. Secondly, instead of utilizing 

the conventional L2 norm displacement correlation term, we modify the objective function 

by using a spatially weighted displacement correlation term, This new formulation of the 

objective function is capable of reducing the boundary sensitivity of the final solution in 

the inverse problem. We have then proposed a novel approach to map the non-

homogeneous linear elastic property distribution nondestructively by only minimizing the 

boundary deformation. The proof of concept of this novel method has been shown by 

numerical experiments. This method has potential application in non-invasive breast 

tumor detection with lower medical costs and high accuracy. Then, we have also presented 

a method that quantitatively determines the material property distribution using full-field 

displacement fields, zero traction boundary conditions, and partially known material 

properties on the boundary. We compared the performance of two regularization types and 

observed that TCD regularization yields well-recovered absolute elastic modulus 

reconstructions. Furthermore, we studied the feasibility of linear elastic approximation in 

solving the inverse problem in nonlinear elasticity. We found that the recovered stiffness 

contrast using the linear solver is overestimated, and the overestimation becomes more 
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significant with a larger applied deformation and higher target stiffness contrast. In 

addition, we extended our existing algorithms to estimate the nonhomogeneous 

orthotropic linear elastic property distributions of soft solids. This new feature is highly 

sensitive to noise in that with the high noise level, e.g., 3% noise, the anisotropic parameter 

distributions were poorly mapped. Finally, we have implemented a new scheme to 

characterize the linear viscoelastic material properties of soft tissues subjected to harmonic 

motion. The storage moduli are mapped well in all the numerical cases, while the 

reconstructed loss moduli are sensitive to the driving frequency.  

       The inverse algorithms in this work have been successfully analyzed and tested by 

simulated and phantom datasets, yet considerable efforts should still be devoted into in 

this area: 

(1) In Chapter 3, we have utilized a spatially weighted displacement correlation term 

in the objective function. The modified objective function outperforms the 

prevalent displacement matching term in the L2 norm for the limited numerical 

cases presented in this work. However, a more general objective function should 

be proposed to taking account of other factors, e.g., the size of the inclusions.  

(2) In Chapter 4, we presented a novel approach to map the nonhomogeneous elastic 

property distribution using only boundary displacement datasets qualitatively. In 

the next chapter, we further improve this approach by using the force indentation 

measurements to quantify the material properties. Though the presented 

methodology was tested well by numerical examples and the high accuracy of a 

digital camera correlation system to measure boundary displacements has been 
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verified by a simple experiment for a stiff solid, the accuracy of boundary 

displacement measurements of soft solids and solving inverse problem using the 

measured boundary datasets from experiments require further investigation for 

clinical application.   

(3) Our inverse algorithms are now capable of mapping heterogeneous orthotropic 

linear elastic parameter distributions in two-dimensional space. To enhance the 

capability of the current algorithms in clinical practice, we should extend and 

generalize the current feature to 3-D space. Besides, as a large number of 

parameters in the anisotropic elastic constitutive law, ensuring a unique solution 

of the inverse problem is challenging. In particular, we solve for all the parameters 

in the constitutive law simultaneously in the inverse problem, which might easily 

induce the uniqueness issue. Therefore, we should propose methods to map each 

material parameter separately, and this sequential method is probably helpful to 

address the issue that the recovered orthotropic linear elastic parameter 

distributions are highly sensitive to noise. 

(4)   A variety of tissue types like brain tissue are very soft and viscous. Thus, the 

linear viscoelastic constitutive law is incapable of properly modeling the elastic 

behavior of those soft tissues. Thus, the nonlinear nature of the soft solids should 

be taken into account to accurately map the viscoelastic behavior of soft tissues.  

(5) The ultimate goal of this work is to provide an effective and accurate technique to 

estimate the modulus distribution of soft tissues non-invasively in clinical practice. 

In clinical practice, however, we will face more challenges. For instance, how do 
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we accurately delineate the boundary of a tissue domain from clinical images; what 

kind of boundary conditions should we prescribe in solving the inverse problem 

using imaging data. Thus, the clinical feasibility of using the inverse algorithms to 

characterize the heterogeneous material property distribution requires more effort.     
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APPENDIX A 

  

Derivation of the stabilization term 

Before simplifying stabilization term, two useful equations will be introduced: 

The Piola identity  TJ  F 0   (A.1) 
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Now, the stabilization term can be simplified as: 
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From Equation (A.4) to (A.5),  F 0  is utilized as the problem domain is 

discretized by linear triangular elements. In this case, the displacement is interpolated by 

a linear function in each element, thus the second order spatial derivative of the 

displacement is zero. If Equation (A.5)  is expressed in the integral form, it can be further 

simplified:  
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APPENDIX B 

 

Linearization of the stabilized weak form 

   The linearized formulation of the stabilized weak form can be derived by 

perturbing an infinitesimal quantity, ,h h h= p    U u  , that is, 
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 Computing the first term on the right hand side in Equation (B.1) yields 
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where  
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Inserting Equations (B.3) and (B.4) into Equation (B.2)  yields  
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where 2ijkl ij klM S C     is the tangent modulus. As the 2nd Piola Kirchhoff stress tensor 

and the right Green strain tensor are symmetry, i.e., ijkl jikl ijlkM M M  . For the strain 

energy density function (2.7), the tangent modulus can be expressed as  
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Where  
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To arrive at Equation (B.6), we should use following relations 
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The linearization procedure of the stabilization term is very similar to that of the 

first term in Equation (B.1), by perturbing ,h hp  u  a very small quantity: 

 

 

 

    

0

0

0

0
0

1

1

0
0

1

lim , ;

lim 2

lim

i

i

h h h

h h
n

h i

i

n
h h h h h i

i

d
D

d

Wd
q d

d

d
J q p p d

d







 







  




 




 


 

     
         

   
   

       





W U U

u u

C

C u u

  (B.13) 

The calculus of the first term on the right-hand side of Equation (B.13) is shown 

below: 
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where 2/3 1 2/3

1

1

3
J J    I C I . Here we also utilize the property of the linear triangular 

element, i.e., F 0 . Using following equations: 
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Equation (B.14) can be written as: 
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The second term of the right hand side of Equation (B.13) can be simplified in the 

same way, yielding: 
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