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ABSTRACT

The flipped SU(5) grand unification model with additional vector-like multiplets (F-

SU(5)) in the framework of General No-scale Supergravity is studied. The highly con-

strained soft supersymmetry breaking terms of the one-parameter F-SU(5) are relaxed to

allow the high-energy boundary conditions to be generically non-zero. The phenomeno-

logical viable parameter space is therefore expanded. In this project the CMSSM/mSUGRA

and D-brane inspired soft supersymmetry breaking terms are implemented and studied.

The non-vanishing soft terms are found to produce a broader mass range of vector-like

particles and a lighter SUSY spectrum, increasing the probability that the parameter space

can be probed during the LHC run 2. Both bino and higgsino dark matter are generated

by this model, as well as a Higgs Funnel scenario. Particle compositions from the SUSY

cascade decay modes are presented to distinguish the different scenarios phenomenologi-

cally.
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NOMENCLATURE

SM The Standard Model

SUSY Supersymmetry

SUGRA Supergravity

MSSM Minimal Supersymmetric Standard Model

CMSSM Constrained Minimal Supersymmetric Standard Model

mSUGRA Minimal Supergravity

LHC Large Hadron Collider

DM Dark Matter
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1. INTRODUCTION

We begin this chapter with a review of the Standard Model, Supersymmetry, and Su-

pergravity. We focus on the Grand Unified Theory, especially on the F-SU(5) Model.

1.1 The Standard Model

1.1.1 Elementary Particles

The universe consists of matter. Throughout most of human history materials were

thought to be continuous, and divisible however small one would like. Although there

were Greek hypotheses 2,500 years ago that the division may not continue at a certain

level, that is, materials have elementary constituents that cannot be separated further, or

atoms for short, it was not until the 19th century that atomic hypothesis was supported by

experiments. Richard P. Feynman, the 1965 Nobel laureate in physics, highly valued the

importance of the atomic fact in his famous The Feynman Lectures on Physics [3],

If, in some cataclysm, all of scientific knowledge were to be destroyed, and

only one sentence passed on to the next generation of creatures, what state-

ment would contain the most information in the fewest words? I believe it

is the atomic hypothesis (or the atomic fact, or whatever you wish to call it)

that all things are made of atoms — little particles that move around in per-

petual motion, attracting each other when they are a little distance apart, but

repelling upon being squeezed into one another. In that one sentence, you

will see, there is an enormous amount of information about the world, if just

a little imagination and thinking are applied.

Atoms are elementary at the energy scale of chemical reactions. But as the energy

is elevated, subatomic particles show up. Sir Joseph John Thomson discovered the first

1



subatomic particle — electron, in 1897, disproving the idea that the atoms are indivisible.

Lord Ernest Rutherford probed the existence of nucleus in 1909, and discovered the proton

in 1917. James Chadwick discovered the neutron in 1932 under Rutherford’s supervision.

The 1940s and 1950s are the golden age of subatomic physics. Many subatomic par-

ticles were discovered, including pion (pi meson, π, 1947), kaon (K meson, K, 1947),

Lambda baryon (Λ, 1950), Xi baryon (Ξ, 1952), etc. The list has been continuously ap-

pended and contains hundreds of subatomic particles today.

It is necessary to classify these subatomic particles before one can study them. Some

of them follow the Bose-Einstein Statistics and have integer spin; they are called bosons,

including photon (γ), W and Z bosons, gluon (g), Higgs boson (h), and mesons. The rest

follow the Fermi-Dirac Statistics and have half-integer1 spin; they are called fermions.

Some of fermions are not involved in the strong interaction, including electron (e), muon

(µ), tau (τ ), their antiparticles, and their corresponding neutrinos. They are named lep-

tons. The rest of the fermions, i.e. baryons, as well as mesons are involved in the strong

interaction, and are collectively called hadrons. All of the hadrons except the proton are

highly unstable, that is, they can decay into other particles in a short period of time. It can

be inferred that the hadrons are more likely to be composite particles, just like the nuclei.

In the quark model of hadrons, their constituents, in analog with protons and neutrons in

the nuclei, are quarks, including six “flavors” (Up, Down, Charm, Strange, Top, and Bot-

tom), each having 3 “colors”. Although the quarks have not been observed individually,

the quark model has provided satisfactory explanations to the phenomenology of hadrons,

including why the quarks are confined. Quarks are considered to be “elementary”, i.e.

they cannot be divided into smaller parts, as well as the elementary bosons and leptons

mentioned above, and they are all the elementary particles as far as we know today.

The Standard Model puts these elementary particles in a decent order, as will be intro-

1Half-integers are numbers that can be written as n+ 1
2 , where n is an integer.
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duced next. However, we cannot answer whether there are more elementary particles, or

whether some of these known elementary particles are actually divisible — the answers to

these questions belong to the physics beyond the Standard Model.

In summary, the 58 distinct elementary particles in the Standard Model include 45

fermions and 13 bosons. FIG 1.1 summarizes the elementary particles. Fermions have

half-integer spin, and include 36 quarks/antiquarks (6 flavors, each having 3 colors) and 9

leptons (electron, muon, and tau, their corresponding antiparticles, and their corresponding

neutrinos). Bosons have integer spin, and include 12 gauge bosons and the Higgs boson.

The gauge bosons include photon, W/Z bosons (W+, W−, and Z0), and 8 gluons.

1.1.2 Fundamental Interactions

Each quantum state, be it an elementary particle, a composite particle, a superposition

of two different particles, or any state that is well-defined in quantum mechanics, can be

identified as a vector whose components are complex numbers in mathematics. These

vectors have well-defined and physically-meaningful inner products. Thus, a complex

complete space equipped with an inner product, or Hilbert space for short, suffices to be

used as the playground of particles in quantum mechanics. A fundamental principle in

quantum mechanics indicates that multiplying a state vector by a scalar factor does not

change its physical reality. That is to say, a projective Hilbert space is enough to describe

all physical quantum states of particles.

There are always some symmetries in the universe, that is to say, some specific trans-

formations may be applied to the space mentioned above, while keeping the laws of

physics invariant. These transformations satisfy the definition of a group, thus they form

symmetry groups. Some examples are translation in time, rotation in space, rotation in

isospin space, etc.

From now on we adapt the natural unit system with ~ = c = 1. As a simple example,

3



in Quantum Electrodynamics (QED) the action that generates the Dirac equation of an

electron field is

S =

∫
ψ̄(iγµ∂µ −m)ψd4x (1.1)

which is invariant under the transformation

ψ 7→ eiθψ (1.2)

that is to say, the action remains invariant with a change in the phase angle θ. Since the

change of θ is a rotation in the Hilbert space, they form a U(1) group, and the U(1) here

is a global symmetry.

There are four fundamental interactions, strong, electromagnetic, weak, and gravita-

tional, in descending order in strength. In the Standard Model, the electromagnetic and

weak interactions are the low-energy realities of a unified interaction — electroweak in-

teraction, and the gravitational interaction is not included.

A permutation of the three colors of the strong interactions will not change the laws of

physics, that is the rotation in the color space is an exact symmetry. The three colors of the

same flavor of quark form a triplet in the color space, i.e. they make a representation of the

color group — SU(3). In the list of hadrons, there are several collections of particles that

form multiplets. For example, mesons K, π, and η can be identified with a representation

of the SU(3) color group [4].

Likewise, the left-handed (eL, νL) or (uL, dL) form doublets in the weak isospin space,

i.e. they form representations of an SU(2) group. The right-handed eR, uR, and dR are

singlets in this group, according to the famous violation of parity conservation in weak

interaction [5, 6]. The above is also applicable to their counterparts in the second and third

generations.

4



Finally, there is a hypercharge group U(1). The hypercharge Y of a particle can be

found from the Gell-Mann–Nishijima formula,

Q = I3 +
1

2
Y , (1.3)

where Q is the electric charge and I3 is the z-component of the isospin of the particle.

The fact that a simultaneous phase change associated with hypercharge will not change

the laws of physics implies that the hypercharge group U(1) is also a symmetry group of

the Standard Model.

To summarize, we have three independent symmetries associated with the Standard

Model. The direct product of their corresponding groups, SU(3)C × SU(2)L × U(1)Y , is

the gauge group of the Standard Model.

1.2 Supersymmetry and Supergravity

The Standard Model has been proved to be a successful model in explaining the sub-

atomic phenomena, but there is enough evidence that physics beyond the Standard Model

exists. Supersymmetry is the most promising approach so far, because of its capability of

solving several dilemmas in the Standard Model. We will review supersymmetry in this

section.

The most significant disadvantage of the Standard Model may be the gauge hierarchy

problem. The electricity neutral part of the Higgs field is a complex scalar H with a

classical potential

V = m2
H |H|2 + λ|H|4 , (1.4)

where the observed values ofm2
H and λ arem2

H = −(92.9 GeV)2 and λ = 0.126. Because

the Higgs field couples with all particles, m2
H receives large quantum corrections. Assume

5



there is a coupling Lagrangian term between the Higgs field H and a Dirac fermion f ,

where for instance, f could be any one of the fermions in the Standard Model2,

−λfHf̄f ,

then the 1-loop correction of m2
H received from the Dirac fermion is [7],

∆m2
H = −|λf |

2

8π2
Λ2
UV + · · · (1.5)

where ΛUV is the ultraviolet cutoff of the loop integral, and the omitted terms are propor-

tional to m2
f and increase at most logarithmically with ΛUV .

Likewise, if the coupling Lagrangian term between the Higgs field and a scalar field S

is

−λS|H|2|S|2 ,

then the 1-loop correction of m2
H received from the scalar particle is

∆m2
H =

λS
16π2

(
Λ2
UV − 2m2

S log
ΛUV

mS

+ · · ·
)
. (1.6)

We interpret ΛUV as the energy where new physics enters, and it is usually taken the

value of the Planck scale,MP = 1/
√

8πGNewton = 2.4×1018 GeV , when quantum gravity

plays an important role. However, this will lead to a m2
H of 30 orders larger than what is

observed. We can either introduce a ΛUV significantly lower than the Planck scale, which

results in more problems, or alternatively, we can require the quantum corrections from

fermions and bosons neatly cancel. To fulfill this latter idea, we have a simple solution

by adding a boson partner to each fermion, and a fermion partner to each boson. Thus, at

2Quarks of different colors make their contributions individually.
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the cost of doubling the number of elementary particles, the gauge hierarchy problem and

several other dilemmas are elegantly solved.

The names of the superparticles are given in the following manner. Firstly, the fermions

among the Standard Model elementary particles — quarks and leptons, all have spin 1/2.

Their superpartners all have spin 0, which means they are scalar particles. Thus, these

particles are named by adding a prefix “s” to the names of their superpartners. For instance,

electron’s superpartner is called “selectron”, standing for “scalar electron”. Secondly, the

superpartners of the Standard Model gauge bosons and Higgs boson are fermions. They

are named by adding a suffix “-ino” to the name of their superpartners. For example,

gluon’s superpartner is called “gluino”.

The Standard Model particles have the same quantum numbers as their superpartners,

so that for any SM particle that appears, say, on the Feynman diagram of 1-loop correction

of the Higgs boson mass as shown in FIG. 1.2, we can always substitute the Standard

Model particle, which is a top quark t in our example, by its superpartner, t̃ here, and the

Feynman diagram remains valid.

However, none of these supersymmetric particles has been found yet. This means that

supersymmetry is a broken symmetry at energy levels ever achieved by mankind, and that

SM particles have different masses than their superpartners.

Supersymmetry is a global symmetry. To localize them, i.e., to allow the group ele-

ments to vary with the space-time coordinates, we need a spin 3/2 field and its superpartner

with spin 2 [8]. A graviton, the quantum of the gravitational field, is the spin 2 field needed

by the localization of supersymmetry. Its superpartner — gravitino, is therefore identified

with the spin 3/2 field. So supergravity is local supersymmetry, or supersymmetry with

gravity.

7



1.3 Grand Unified Theory

1.3.1 Motivation

The Standard Model is very successful in explaining most properties of the elemen-

tary particles found to date, despite some imperfections. Firstly, its gauge group SU(3)×

SU(2) × U(1) has three different couplings. There are also many parameters to be ad-

justed, and the fermions are assigned by convenience, not by principle [9]. Intuitively, a

“larger” group with a single gauge coupling and fewer free adjustable parameters would

be preferred.

1.3.2 Georgi-Glashow SU(5)

An early attempt to unify the strong and electroweak interactions is the Georgi-Glashow

SU(5) Model [10]. Because the rank of the gauge group SU(3) × SU(2) × U(1) is 4,

the minimal simple Lie group containing it is SU(5), whose rank is also 4. So SU(5) is

undoubtedly the first Lie group on which one would try to build the grand unified theory

(GUT).

The calculation of anomaly [9] shows that the anomaly-free SU(5) representation is

5̄ + 10. Recall that there are 15 constituents in any of the three generations of fermions,

Taking the first generation as an example, they include one electron, one positron, one

neutrino, three up quarks (one in each of the three colors) and three up anti-quarks, and

three down quarks (likewise) and three down anti-quarks. If we use each of these dimen-

sions to represent the quantum numbers of these fermions, the 5̄ + 10 representation fits

everything in perfectly.

The 5̄-dimensional representation is usually chosen to represent the right-handed fermions.

For convenience we write them in the 5̄ representation of their left-handed conjugate states

so that all particles written down are left-handed,

8



ψ =



dc1

dc2

dc3

e

ν


L

; (1.7)

and 10-dimensional representation for left-handed fermions,

χ =



0 uc3 −uc2 u1 d1

0 uc1 u2 d2

0 u3 d3

0 e+

0


L

. (1.8)

For bosons, the matrix form of the generators are shown in Appendix B.

However, the Georgi-Glashow SU(5) model, along with other GUTs, predicts that the

baryon number is not conserved, thus protons can decay, which has never been observed.

The 2012 Super-Kamiokande result [11] shows that the half-life of proton is at least

τp ∼ 1034 yrs (1.9)

And with larger instruments being adapted, the experimental constraints will likely in-

crease. This motivates us to look for other ways to the objective of unification. One of

these models — the flipped SU(5) is paid special attention next.

1.4 The Flipped SU(5) Model

Flipped SU(5) [12, 13, 14] is an alternative symmetry breaking of SO(10) grand uni-

fied model into SU(5)×U(1)X , which is a different subgroup of SO(10) than the Georgi-

9



Glashow SU(5). The breaking chain of flipped SU(5) is

SO(10)

↓

SU(5)× U(1)X

↓

SU(3)C × SU(2)L × U(1)Y

↓

SU(3)C × U(1)em

in contrast to that of Georgi-Glashow SU(5),

SO(10)

↓

SU(5)

↓

SU(3)C × SU(2)L × U(1)Y

↓

SU(3)C × U(1)em

10



The 5-dimensional right-handed fermion representation of flipped SU(5) is

f̄ =



u1

u2

u3

νc

e+


R

; (1.10)

and 10-dimensional left-handed,

F =



0 dc3 −dc2 d1 u1

0 dc1 d2 u2

0 d3 u3

0 νc

0


L

, (1.11)

in addition to a 1-dimensional singlet of electron,

lc = (ec)L . (1.12)

In contrast to the representation of Georgi-Glashow SU(5) in Eqs. 1.7 and 1.8, it can

be found that the difference is that the up-type quarks and down-type quarks are inter-

changed, and the right-handed neutrino is in the place of the positron, making the right-

handed neutrino mandatory3. This is the origin of “flipped” in the name of the model.

For the minimal flipped SU(5) model, the generator U(1)Y ′ in SU(5) is defined by

3The existence of the right-handed neutrino can be inferred from the observation of neutrino oscillation, but
is not included in neither the Standard Model or the Georgi-Glashow SU(5).
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TU(1)Y′
= diag

(
−1

3
,−1

3
,−1

3
,
1

2
,
1

2

)
. (1.13)

and the hypercharge is

QY =
1

5
(QX −QY ′) . (1.14)

We may rewrite the three families of SM particles given in Eqs. 1.10-1.12 in a more

compact form,

Fi = (Qi, D
c
i , N

c
i ) , f i = (U c

i , Li) , li = Ec
i , (1.15)

where, Qi and Li are the superfields of the left-handed quark and lepton doublets, i.e.u
d


L

and

e
µ


L

, respectively; U c
i ,Dc

i ,E
c
i andN c

i are theCP conjugated superfields for

the right-handed up-type quarks, down-type quarks, leptons and neutrinos, i.e.


uc1

uc2

uc3


L

,


dc1

dc2

dc3


L

, (ecL), and (µcL) respectively. Massive right-handed neutrinos can be generated by

introducing three SM singlets. The quantum numbers of the three families of the Standard

Model fermions under SU(5)× U(1)X are,
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Fi = (10,1) , f i = (5̄,−3) , li = (1,5), (1.16)

where i = 1, 2, 3. In our convention, the normalization factor for U(1)X charges is 1
2
√
10

.

To break the GUT and electroweak gauge symmetries, we introduce two pairs of Higgs

representations,

H = (10,1) , H = (10,−1) ,

h = (5,−2) , h = (5̄,2) . (1.17)

The states in the H multiplet are put in the same order as in the F multiplet, as can be seen

from the explicit form below,

H = (QH , D
c
H , N

c
H) , H = (QH , D

c

H , N
c

H) , (1.18)

h = (Dh, Dh, Dh, Hd) , h = (Dh, Dh, Dh, Hu) , (1.19)

where Hd and Hu are one pair of Higgs doublets in the MSSM. Also needed is an SM

singlet Φ.

The SU(5)×U(1)X gauge symmetry can be broken down to the SU(3)C×SU(2)L×

U(1)Y gauge symmetry by the following Higgs superpotential at the GUT scale

13



W GUT = λ1HHh+ λ2HHh+ Φ(HH −M2
H) . (1.20)

We can always rotate the only F-flat and D-flat direction along the N c
H and N

c

H direc-

tions, and obtain 〈N c
H〉 = 〈N c

H〉 = MH. Particles acquire masses by eating superfields H

andH via the SUSY Higgs mechanism, exceptDc
H andD

c

H , who acquire masses 2λ1〈N c
H〉

and 2λ2〈N
c

H〉 by being coupled by the superpotential terms λ1HHh and λ2HHh with Dh

and Dh, respectively.

1.5 The No-scale F -SU(5) Model

Flipped SU(5) can be built from F-theory and free fermionic string models [15, 16,

17]. In order to obtain the string-scale gauge coupling unification, two sets of vector-like

particles around TeV scale are introduced, as will be discussed soon. We call it F-SU(5),

where the F represents both F-theory and free fermionic. Next we will focus on the no-

scale F-SU(5) model.

In order to fulfill string-scale gauge coupling unification [15, 16, 17], the following

vector-like particles (flippons) are introduce at the TeV scale,

XF = (10,1) , XF = (10,−1) , (1.21)

Xl = (1,−5) , Xl = (1,5) , (1.22)

which can be decomposed under the SM gauge symmetry. Thus we have the following

particle content,
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XF = (XQ,XDc, XN c) , XF = (XQc, XD,XN) , (1.23)

Xl = XE , Xl = XEc . (1.24)

whose quantum numbers under the SU(3)C × SU(2)L × U(1)Y gauge symmetry are

XQ =

(
3,2,

1

6

)
, XQc =

(
3̄,2,−1

6

)
, (1.25)

XD =

(
3,1,−1

3

)
, XDc =

(
3̄,1,

1

3

)
, (1.26)

XN = (1,1,0) , XN c = (1,1,0) , (1.27)

XE = (1,1,−1) , XEc = (1,1,1) . (1.28)

A major drawback of the Georgi-Glashow SU(5), the doublet-triplet splitting problem,

can be addressed by F-SU(5) naturally via the missing partner mechanism [14].

Because no supersymmetric particles has been found in any experiments performed so

far, supersymmetry must be broken, and the breaking must occur at or near the TeV scale

due to the mass difference between SM particles and SUSY particles.
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Figure 1.1: Summary of Elementary Particles. Reprinted from [1].
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Figure 1.2: One-loop corrections to the Higgs mass from top quark and stop squark. 
Reprinted from [2].
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2. NUMERICAL CALCULATIONS

We begin this chapter by introducing the traditional methodology of studying the F-

SU(5) model. We then introduce the new methodology adopted, the general No-Scale

boundary conditions. We conclude this chapter by presenting the numerical results of the

calculations.

2.1 Strict No-Scale Boundary Conditions

In the traditional No-Scale boundary conditions [18, 19, 20, 21, 22], a simple Kähler

potential

K = −3 ln

(
T + T − 1

3

∑
i

ΦiΦi

)
is used to solve the cosmological flatness problem. This implies the strict No-Scale

SUGRA boundary condition M0 = A = Bµ = 0 at the unification scale MF . The vector-

like particle (flippon) mass scale MV , top quark mass mt, and low energy ratio of Higgs

vacuum expectation values (VEVs) tan β are expressed as a function of the gaugino mass

M1/2. So M1/2 remains the only free parameter, giving a One-Parameter Model (OPM).

Although the parameter space is highly constrained, the phenomenology derived from

the model is of interest.

The strict No-Scale boundary conditions result in a massive vector-like flippon mass

ofMV ∼ 23−50 TeV, largely beyond the reach of the current or future phases of the LHC

running.

2.2 General No-Scale boundary conditions

In order to exploit the whole No-ScaleF-SU(5) parameter space beyond the 1-dimensional

parameter space set by the strict No-Scale boundary conditions M0 = A0 = Bµ = 0, we

relax the tight constraints by allowing the scalar mass M0, the trilinear soft term A0, and
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the bilinear term Bµ to be non-zero in general.

The lower and upper limits of each parameter are given in Table 2.1, i.e. each of

the parameters characterizing the SUSY breaking soft term, in addition to the vector-like

flippon mass decoupling scale MV and top quark mass mt, is assigned a value within its

range independently. The most recent LHC constraints on vector-like T andB quarks [23]

bounds (XQ,XQc) vector-like flippons at about 855 GeV and (XD,XDc) vector-like

flippons about 735 GeV from below. Thus the lower limit of vector-like flippon mass MV

is set to 855 GeV. The range of mt is taken to allow sufficient range around the world

average [24]. Also taken into account is that the M0 and A0 are allowed to be assigned a

value freely, and only the consistency of their phenomenology and the experimental results

determines their viability. However, Bµ is not constrained in this study.

Table 2.1: Parameter space used in the numerical calculations of the General No-scale
F-SU(5) boundary condition.

Lower Limit Upper Limit
M1/2 100 GeV 5, 000 GeV
M0 100 GeV 5, 000 GeV
A0 −5, 000 GeV 5, 000 GeV

tan β 2 65
MV 855 GeV 100, 000 GeV
mt 171 GeV 175 GeV

The F-SU(5) mSUGRA/CMSSM high-energy boundary conditions M1/2, M0, and

A0 are applied at the ultimate unification scale MF ' 5 × 1017GeV, the scale of the

ultimate stage of unification inF-SU(5).This is in contrast to the minimal supersymmetric

standard model (MSSM) in which these boundary conditions are taken at the GUT scale

∼ 1016 GeV.
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It is expected that the mSUGRA/CMSSM boundary conditions will allow the SUSY

spectrum to be light, and the Higgs boson mass to lifted to the experimental measured

range by the vector-like flippon Yukawa coupling to the Higgs boson. Flexible SUSY

breaking parameters can also allow a more flexible flippon mass scaleMV . They altogether

provide a more testable SUSY spectrum.

To summarize, in this study the applied SUSY soft terms are M1/2, M0, and A0, which

are the primary components of the mSUGRA/CMSSM SUSY breaking terms.

Another alternative is to involve the D-brane inspired soft terms, which have the fol-

lowing parameters:M1,M5,MQ̃ = MD̃c ,ML̃ = MŨc ,MẼc ,MH , At, Ab, Aτ , tan β, and

the sign of µ. These come directly from the F-SU(5) representations in Eqs. 1.10 - 1.12.

2.3 Sampling Process

A total of 24 million points are sampled in random scans applying these mSUGRA/

CMSSM boundary conditions at the MF scale, and 40 million points for the D-brane in-

spired boundary conditions. MicrOMEGAs 2.1 [25] is used to calculate the SUSY mass

spectra, relic density, rare decay processes, and direct dark matter detection cross-sections,

utilizing a proprietary modification of the SuSpect code-base [26] to run flippon and

General No-Scale F-SU(5) enhanced RGEs.
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3. DATA ANALYSIS*

We begin this chapter by presenting the currently collected results from high-energy

physics experiments. We then present the procedure of processing the numerical simula-

tions. We conclude this chapter with the phenomenology.

3.1 Constraints imposed by experimental results

The Large Hadron Collider (LHC) is built to explore multi-TeV physics. It is hoped

that the LHC could find the evidence of the existence of the SUSY particles. However,

the first phase of LHC since 2009 has not yet found any conclusive signals that belong to

SUSY particles.

Despite the null results in SUSY search, the LHC has successfully discovered the

evidence of the Higgs boson particle, with a mass of mh = 125.09 GeV [27, 28]. For the

purpose of generating the 1-loop and 2-loop contributions to the Higgs boson mass mh

due to the large top Yukawa coupling, the light stop mass mt̃1 is required to be heavy in

minimalistic models, such as minimal Supergravity (mSUGRA) and Constrained Minimal

Supersymmetric Standard Model (CMSSM) that we are looking into.

The viable parameter space is required to be consistent with both the WMAP 9-

year [29] and the 2015 Planck [30] relic density measurements. They impose upper limits

of

Ωh2 ≤ 0.1300 ,

where we allow the inclusion of multi-component dark matter beyond the neutralino.

The most recent LHC gluino search [31] sets a strict lower limit on the gluino mass in

*Reprinted with permission from “General No-Scale Supergravity: An F-SU(5) tale” by D. Hu, T. Li,
A. Lux, J. A. Maxin, and D. V. Nanopoulos, 2017. Physics Letters, B771, 264-270. Copyright [2017] by
Elsevier.
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the model space of

Mg̃ ≥ 1.9 TeV .

A lower limit of

Mt̃1 ≥ 900 GeV

on the light stop mass [31] is also imposed.

The light Higgs boson mass boundary is set to

123 GeV ≤ mh ≤ 128 GeV

to allow for at least 2σ experimental uncertainty floating around the experimental central

value of

mh = 125.09 GeV .

The lower and upper bounds correspond to maximal and minimal flippon Yukawa cou-

plings, respectively.

The branching ratio of the rare b-quark decay [32] is applied as a constraint

Br(b→ sγ) = (3.43± 0.21stat ± 0.24th ± 0.07sys)× 10−4 ,

as well as the branching ratio of the rare B-meson decay to a dimuon [33]

Br(B0
s → µ+µ−) = (2.9± 0.7± 0.29th)× 10−9 .

The 3σ intervals around the SM value and experimental measurement of the SUSY
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contribution to the anomalous magnetic moment of the muon [34] is

−1.2× 10−10 ≤ ∆aµ ≤ 51.0× 10−10 .

COUPP Collaboration [35] and XENON100 Collaboration [36] also impose limits on

the proton spin-dependent cross-sections.

So far, all constraints except those on the spin-independent (SI) cross-sections for

neutralino-nucleus interactions from the Dark Matter detection are applied on the sampled

points. We find that MH0 and MLSP of the points within all these limits are uncorrelated,

and the parameter space is not separable.

3.1.1 Spin-independent cross-sections

The August 2016 result from Large Underground Xenon (LUX) experiment [37] and

earlier Particle AND Astrophysical Xenon detector (PandaX)-II experiment [38] impose

upper limits on spin-independent cross-sections for neutralino-nucleus interactions. In

order to be consistent with these results and to account for multi-component dark matter,

we re-scale the SI cross-section of each sampled points by the ratio of its relic densities,

numerically calculated with its parameter combination, to 0.1138, an average of WMAP

9-year [29] and 2015 Planck [30] relic density measurements,

σre-scaled
SI(SD) = σSI(SD)

Ωh2

0.1138
, (3.1)

and then exclude those points with excessive re-scaled SI cross-sections in accordance

with the DM experiments. The viable points then clearly display gaps dividing them

into multiple categories. Fig. 3.1 illustrates the viable parameter space under the LUX

and PandaX-II WIMP-nucleon spin-independent cross-section constraints. The bino LSP,

Higgs Funnel, Higgsino LSP and the Mixed scenarios are annotated as different regions on
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the plot. The spin-independent cross-sections have been rescaled according to Eq. (3.1).

The empty regions between the viable regions are excluded by the constraints on the gluino

mass, the light Higgs boson mass, and the relic density. The gray region above the LUX

and PandaX-II is excluded due to excessive SI cross-sections, but they indeed satisfy the

constraints by all the other experiments. The red curve on Fig. 3.1 is the upper bound on

coherent neutrino scattering from atmospheric neutrinos and the diffuse supernova neu-

trino background (DSNB), which is considered as the lower limit on the direct probe of

WIMP-nucleon scattering. The viable stau coannihilation region is above the neutrino

scattering limits.

3.2 Phenomenological Analysis for mSUGRA/CMSSM Boundary Conditions

The phenomenological analysis will be conducted in two aspects. We begin by inspect-

ing the parameter space spanned by the mSUGRA/CMSSM soft supersymmetry breaking

terms, and find the intrinsic logic to investigate the dark matter composition. Then we

study the observable signatures of each of the regions of special interest, on the purpose

that the model could be tested at a higher energy.

3.2.1 Classification of the viable parameter space

The viable parameter space can be divided into five categories based on LSP composi-

tion, as shown in TABLE 3.1. Each LSP is nearly all bino (Stau and Higgs Funnel) or all

higgsino (Higgsino and Mixed).

The five dark matter scenarios can be characterized by the particles states emanating

from the SUSY cascade decay,

1. Bino LSP with stau coannihilation and Mt̃1 < Mg̃;

2. Bino LSP with stau coannihilation and Mg̃ < Mt̃1;

3. Higgs Funnel, defined by MH0 ' 2Mχ̃0
1
;
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Figure 3.1: Depiction of the LUX and PandaX-II spin-independent cross-section con-
straints applied to the General No-Scale F-SU(5) viable parameter space.

.

Table 3.1: General No-scaleF-SU(5) lightest supersymmetric particle (LSP) composition
for the five dark matter regions studied. The one-parameter version of the No-scale F-
SU(5) model is listed for comparison.

Scenario LSP Composition
Stau (Mt̃1 < Mg̃) 100% bino
Stau (Mg̃ < Mt̃1) 100% bino

Higgs Funnel 99% bino
Higgsino 100% higgsino

Mixed 98% higgsino
One-parameter Model 100% bino
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4. Higgsino LSP;

5. Mixture of Higgs Funnel and Higgsino LSP.

Categories 2 - 5 posses the typical mSUGRA/CMSSM SUSY spectrum mass ordering

of Mg̃ < Mt̃1 < Mq̃, while category 1 and the one-parameter F-SU(5) generate a unique

mass ordering of Mt̃1 < Mg̃ < Mq̃. They all contain neutralino relic density less than the

observed value, and support multi-component dark matter.

TABLEs 3.3 - 3.7 show a total of twenty-three benchmark points picked from each

category.

FIG. 3.2 displays that a branch of points are surrounding the function graph of MH0 =

2MLSP, i.e. the Higgs Funnel scenario represented by the benchmark spectra shown in TA-

BLE 3.5. Its density map, FIG. 3.3, depicts that the Higgs Funnel consists of a significant

number of points generated. Our statistics shows that more than 70% of all viable points

belong to this category.

FIG. 3.4 displays that another branch of points, other than those referred in FIG. 3.2,

ranging from 100 GeV to 270 GeV in MLSP, are tightly attached to the straight line given

by Mχ̃±1
= MLSP, i.e. the Higgsino LSP scenario. Sample benchmark points of this

category are listed in TABLE 3.6. FIG. 3.5 is the density map of FIG. 3.4. About 25% of

all viable points are in this region.

There are a small amount of points classified as Higgs Funnel scenario staying near

the straight line in FIG. 3.4 as well. They are colored in purple in FIG. 3.4. This region

is of interest because they are the overlap of two scenarios. We list the benchmark points

from this special region as Mixed in TABLE 3.7.

All points left behind by the previous scenarios are found to be sticking to the function

graph of Mτ̃1 = MLSP, i.e. the stau co-annihilation scenario, as displayed in Fig. 3.6. We

find that it has no overlap with previous scenarios. The benchmark points taken here are
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listed as Stau in Table 3.3 - 3.4. Fig. 3.7 is the density map of Fig. 3.6.
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Figure 3.6: All viable dark matter regions with respect to Mτ̃1 and MLSP. The Stau Coan-
nihilation defined by Mτ̃1 'MLSP is represented by the dashed line.

.

3.2.2 Observable signatures

To test these models, we need to identify observable signatures. The decay modes of

selected benchmark points of each scenario are calculated with SUSY-HIT [39] software

package, and organized by a self-made program.

The leading cascade decay channels of each dark matter region are listed in TA-

BLE 3.2. The difference in the gluino branching ratio between Higgsino LSP and Mixed

scenarios is negligible, so they are grouped together.
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Table 3.2: General No-Scale F-SU(5) leading cascade decay channels for the five dif-
ferent dark matter regions studied in this work. The BR column represents the branching
ratio.

Model BR Decay Mode

Stau (Mt̃1
< Mg̃) 0.62 g̃ → tt̄+ χ̃0

1

Stau (Mt̃1
< Mg̃) 0.11 g̃ → tb+ τ + ντ + χ̃0

1

Stau (Mg̃ < Mt̃1
) 0.31 g̃ → tt̄+ χ̃0

1

Stau (Mg̃ < Mt̃1
) 0.19 g̃ → tb+ τ + ντ + χ̃0

1

Stau (Mg̃ < Mt̃1
) 0.19 g̃ → qq̄ + τ + ντ + χ̃0

1

Stau (Mg̃ < Mt̃1
) 0.15 g̃ → qq̄ + τ+τ− + χ̃0

1

Higgs Funnel 0.30 g̃ → tb+W + χ̃0
1

Higgs Funnel 0.11 g̃ → tt̄+ Z + χ̃0
1

Higgs Funnel 0.09 g̃ → tt̄+ h+ χ̃0
1

Higgsino/Mixed 0.28 g̃ → tb+ qq̄ + χ̃0
1

Higgsino/Mixed 0.12 g̃ → tt̄+ χ̃0
1

In models whose gluino is heavier than light stop, the decay options of gluino is mostly

concentrated at g̃ → tt̄ + χ̃0
1. Otherwise, there are several decay channels of gluino,

but none of them are dominant. Thus, the tt̄ channel may be utilized as an indicator to

differentiate these regions and the one-parameter F-SU(5).

In contrast, the squark channels are rather consistent amongst these models. An av-

erage branching ratio of about 75% for q̃ → g̃ + q between right-handed squarks q̃R and

left-handed squarks q̃L is present throughout the model space, where q̃ = (ũ, d̃, c̃, s̃). In

one-parameter F-SU(5) and the bino LSP scenario, t̃1 → t + χ̃0
1 is produced 100% the

time, either because Mt̃1
< Mg̃, or Mg̃ < Mt̃1

but they nearly degenerate. The situation is

not as clean in the remaining model space where the gluino is much lighter than the light

stop, as the primary channel for the light stop in each region will be t̃1 → g̃ + t at 40%

(Higgsino), 36% (Higgs Funnel), and 31% (Mixed).
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Table 3.3: Benchmarks of the bino LSP scenario with stau coannihilation and Mt̃1
< Mg̃

M1/2 1467 1527 1577 1537 1487 1617
M0 100 160 210 698 648 250
A0 -1060 -15 -950 -990 -1040 75
MV 855 915 965 10825 50373 100000
tanβ 18.3 24.3 20.4 34.2 33.7 28.9
mt 172.9 173.8 174 172.6 172.8 174.1
Mχ̃0

1
293 308 319 344 353 396

Mχ̃0
2/χ̃
±
1

628 658 680 714 725 806
Mτ̃±1

297 311 322 349 357 397
Mt̃1 1404 1797 1576 1570 1483 1802
MũR 2872 2975 3063 2822 2624 2720
Mg̃ 1882 1974 2018 2014 2015 2215
MH0 2850 2580 2940 2220 2060 2130
Ωh2 0.113 0.111 0.128 0.119 0.115 0.123
∆aµ 1.48 1.74 1.39 2.14 2.43 2.25

Br(b→ sγ) 3.49 3.51 3.51 3.4 3.38 3.5
Br(B0

s → µ+µ−) 3.11 3.22 3.18 3.62 3.65 3.34
σSI 0.4 0.5 0.3 0.7 1 1.4
σSD 1 2 1 3 4 6
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Table 3.4: Benchmarks of the bino LSP scenario with stau coannihilation and Mg̃ < Mt̃1

M1/2 1527 1557 1607 1587
M0 160 1246 1296 748
A0 970 3955 4005 3000
MV 915 945 995 10875
tanβ 28.8 45.1 45.7 39.2
mt 173.5 173.2 173 174.4
Mχ̃0

1
308 317 328 357

Mχ̃0
2/χ̃
±
1

659 676 700 739
Mτ̃±1

311 320 331 359
Mt̃1 2009 2500 2572 2197
MũR 2974 3262 3361 2915
Mg̃ 1984 2052 2114 2095
MH0 2290 1480 1510 1740
Ωh2 0.114 0.118 0.117 0.116
∆aµ 2.02 2.53 2.39 2.59

Br(b→ sγ) 3.51 3.57 3.57 3.55
Br(B0

s → µ+µ−) 3.27 3.73 3.74 3.52
σSI 0.8 5 5 3
σSD 4 25 21 17
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Table 3.5: Benchmarks of the Higgs Funnel scenario
M1/2 2483 2483 2493 2543 1767 1772
M0 4372 4900 4382 4432 3667 3505
A0 4900 2930 4910 3975 3889 4116
MV 905 905 915 10865 53333 93383
tanβ 50 50 51 51.6 51.7 51.6
mt 172.4 171.8 174.1 173.4 174.1 173.3
Mχ̃0

1
526 527 529 595 431 441

Mχ̃0
2/χ̃
±
1

1021 1049 1109 1206 859 879
Mτ̃±1

2795 3328 2690 2741 2186 2044
Mt̃1 4733 4880 4702 4428 3243 3162
MũR 6416 6786 6433 6241 4726 4582
Mg̃ 3332 3349 3340 3348 2484 2515
MH0 1120 1030 1050 1190 928 945
Ωh2 0.113 0.0962 0.099 0.112 0.1107 0.1111
∆aµ 0.81 0.7 0.79 0.76 1.31 1.37

Br(b→ sγ) 3.75 3.76 3.78 3.71 3.76 3.74
Br(B0

s → µ+µ−) 3.48 3.89 4.09 4.08 3.99 3.88
σSI 64 54 27 16 86 77
σSD 176 123 52 29 203 177
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Table 3.6: Benchmarks of the Higgsino LSP scenario
M1/2 2473 2493 2523 2233
M0 4890 4910 4940 5000
A0 4890 4910 4940 4556
MV 895 915 945 80000
tanβ 22.3 46.6 45.1 45.0
mt 171.7 172.5 171.9 171.0
Mχ̃0

1
250 260 233 270

Mχ̃0
2/χ̃
±
1

256 265 239 276
Mτ̃±1

4723 3575 3717 3769
Mt̃1 5010 4987 5043 4322
MũR 6790 6813 6864 6225
Mg̃ 3388 3383 3417 3158
MH0 5050 2210 2580 2586
Ωh2 0.0090 0.0096 0.0097 0.0101
∆aµ 0.24 0.52 0.49 0.55

Br(b→ sγ) 3.6 3.64 3.62 3.60
Br(B0

s → µ+µ−) 2.98 2.88 2.88 2.84
σSI 48 52 47 55
σSD 1750 1710 1980 1670
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Table 3.7: Benchmarks of the mixed scenario
M1/2 2243 1972 2105
M0 4677 4672 5005
A0 5010 5005 3894
MV 40100 66717 86717
tanβ 49.9 50.4 50.4
mt 171.7 173.3 173.3
Mχ̃0

1
439 434 477

Mχ̃0
2/χ̃
±
1

449 453 496
Mτ̃±1

3005 2937 3296
Mt̃1 4217 3891 4143
MũR 6006 5718 6100
Mg̃ 3096 2792 2985
MH0 892 884 980
Ωh2 0.0019 0.0008 0.0013
∆aµ 0.78 0.86 0.75

Br(b→ sγ) 3.84 3.86 3.81
Br(B0

s → µ+µ−) 2.69 2.74 2.88
σSI 81 62 86
σSD 382 294 406
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3.3 Phenomenological analysis for the D-brane Inspired Soft Terms

The viable parameter space for the D-brane inspired boundary condition is more com-

plicated. The pure scenarios include Higgs Funnel, Higgsino LSP, Stau Coannihilation,

and Light Stop Coannihilation. There are also 4 kinds of mixed-of-two scenarios, and 2

mixed-of-three scenarios. FIGs. 3.8-3.11 show how the parameter spaces are filled. We

separate the parameter subspace with the relic density falling in one standard deviation

from the central value given by WMAP9 and 2015 Planck,

0.1134 ≤ Ωh2 ≤ 0.1198 . (3.2)

FIGs. 3.12-3.15 show the shape of this parameter subspace with respect to different quan-

tities. It is obvious that many empty spaces are taken by points with small relic density.

3.3.1 Classification of viable parameter space

Based on the LSP composition, the viable parameter space can be divided in 9 cate-

gories,

1. Stop coannihilation as defined by Mt̃1 = MLSP ;

2. Higgsino LSP;

3. Stau coannihilation;

4. Higgs Funnel as defined by MH0/A0 = 2MLSP ;

5. Mixture of Stop coannihilation and Higgsino LSP;

6. Mixture of Higgsino LSP and Stau coannihilation;

7. Mixture of Higgs Funnel and Higgsino LSP;
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Figure 3.8: Depiction of spin-independent cross-section of the parameter space for the
D-brane inspired soft term.
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Figure 3.9: Depiction of MH0 as a function of Mχ0
1

of the parameter space for the D-brane
inspired soft term.
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Figure 3.10: Depiction ofMχ±1
as a function ofMχ0

1
of the parameter space for the D-brane

inspired soft term.
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Figure 3.11: Depiction ofMτ̃1 as a function ofMχ0
1

of the parameter space for the D-brane
inspired soft term.
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Figure 3.12: Depiction of spin-independent cross-section of the parameter subspace for
0.1134 ≤ Ωh2 ≤ 0.1198.
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Figure 3.13: Depiction of MH0 as a function of Mχ0
1

of the parameter subspace for
0.1134 ≤ Ωh2 ≤ 0.1198.
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Figure 3.14: Depiction of Mχ±1
as a function of Mχ0

1
of the parameter subspace for

0.1134 ≤ Ωh2 ≤ 0.1198.
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Figure 3.15: Depiction ofMτ̃1 as a function ofMχ0
1

of the parameter subspace for 0.1134 ≤
Ωh2 ≤ 0.1198.
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8. Mixture of Higgs Funnel and Stau coannihilation;

9. Mixture of Higgs Funnel, Higgsino LSP, and Stau coannihilation.
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4. SUMMARY AND CONCLUSIONS

The one-parameter No-Scale F-SU(5) is extended to include General No-Scale Su-

pergravity, allowing the SUSY breaking terms at the unification scale to be generically

non-zero. A more diverse phenomenology than the one-parameter F-SU(5) is revealed

by the numerical scan of the parameter space. The DM searching results directly distin-

guish different physics in our parameter space of general No-Scale boundary conditions in

the F-SU(5) model with mSUGRA/CMSSM soft terms. A special parameter region that

exhibits both Higgs Funnel and Higgsino LSP scenarios is found. The benchmark points

show interesting spectra and decay modes to be tested by the next run of LHC.
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APPENDIX A

GENERATORS OF SU(3)

The generators of SU(3) are Ta = λa, where the λ’s are given by the Gell-Mann

matrices.

A.1 Gell-Mann Matrices

The Gell-Mann matrices are analog to Pauli matrices of SU(2) group. They are given

by,

λ1 =


0 1 0

1 0 0

0 0 0

 , (A.1)

λ2 =


0 −i 0

i 0 0

0 0 0

 , (A.2)

λ3 =


1 0 0

0 −1 0

0 0 0

 , (A.3)

λ4 =


0 0 1

0 0 0

1 0 0

 , (A.4)
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λ5 =


0 0 −i

0 0 0

i 0 0

 , (A.5)

λ6 =


0 0 0

0 0 1

0 1 0

 , (A.6)

λ7 =


0 0 0

0 0 −i

0 i 0

 , (A.7)

λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 . (A.8)

A.2 Commutators and Anticommutators of the Generators of SU(3)

The commutators the generators of SU(3) are

[Ta, Tb] = i

8∑
c=1

fabcTc , (A.9)

where the f ’s are the structure constants of the su(3) Lie algebra, and are given by

f123 = 1 , (A.10)

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2
, (A.11)
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f458 = f678 =

√
3

2
. (A.12)

The anticommutators the generators of SU(3) are

{Ta, Tb} =
1

3
δab +

8∑
c=1

dabcTc , (A.13)

where the d’s are given by

d118 = d228 = d338 = −d888 =
1√
3
, (A.14)

d448 = d558 = d668 = d778 = − 1

2
√

3
, (A.15)

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1

2
. (A.16)
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APPENDIX B

MATRIX FORM OF BOSON REPRESENTATIONS OF GEORGI-GLASHOW SU(5)

The first 8 matrices are the same as the Gell-Mann matrices of SU(3) group in Ap-

pendix A, except that the two added dimensions are all zeros,

λi =

 λi O3×2

O2×3 O2×2

 , i = 1, 2, · · · , 8. (B.1)

The next 12 matrices are in the form of

λi =

O3×3 Ai

ATi O2×2

 , i = 9, 10, · · · , 20, (B.2)

where Ai’s are

A9 =


1 0

0 0

0 0

 , A10 =


−i 0

0 0

0 0

 , (B.3)

A11 =


0 1

0 0

0 0

 , A12 =


0 −i

0 0

0 0

 , (B.4)

A13 =


0 0

1 0

0 0

 , A14 =


0 0

−i 0

0 0

 , (B.5)
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A15 =


0 0

0 1

0 0

 , A16 =


0 0

0 −i

0 0

 , (B.6)

A17 =


0 0

0 0

1 0

 , A18 =


0 0

0 0

−i 0

 , (B.7)

A19 =


0 0

0 0

0 1

 , A20 =


0 0

0 0

0 −i

 . (B.8)

The next 3 matrices are made by putting Pauli matrices in the fourth and fifth dimen-

sion,

λ20+i =

O3×3 O3×2

O2×3 τi

 , i = 1, 2, 3. (B.9)

The last one is

λ24 =
2√
15

diag
(

1, 1, 1,−3

2
,−3

2

)
. (B.10)
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