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ABSTRACT 

 

The goal of this work was to evaluate a task-analysis-based approach to sonification 

design for surface electromyography (sEMG) data. A sonification is a type of auditory 

display that uses sound to convey information about data to a listener. Sonifications 

work by mapping changes in a parameter of sound (e.g., pitch) to changes in data values 

and they have been shown to be useful in biofeedback and movement analysis 

applications. However, research that investigates and evaluates sonifications has been 

difficult due to the highly interdisciplinary nature of the field. Progress has been made 

but to date, many sonification designs have not been empirically evaluated and have 

been described as annoying, confusing, or fatiguing. Sonification design decisions have 

also often been based on characteristics of the data being sonified, and not on the 

listener’s data analysis task.  

 

The hypothesis for this thesis was that focusing on the listener’s task when designing 

sonifications could result in sonifications that were more readily understood and less 

annoying to listen to. Task analysis methods have been developed in fields like Human 

Factors and Human Computer Interaction, and their purpose is to break tasks down into 

their most basic elements so that products and software can be developed to meet user 

needs. Applying this approach to sonification design, a type of task analysis focused on 

Goals, Operators, Methods, and Selection rules (GOMS) was used to analyze two sEMG 

data evaluation tasks, identify design criteria that a sonification would need to meet in 



 

 iii 

order to allow a listener to perform these two tasks, and two sonification designs were 

created to facilitate accomplishment of these tasks. These two Task-based sonification 

designs were then empirically compared to two Data-based sonification designs. The 

Task-based designs resulted in better listener performance for both sEMG data 

evaluation tasks, demonstrating the effectiveness of the Task-based approach and 

suggesting that sonification designers may benefit from adopting a task-based approach 

to sonification design.  
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1. INTRODUCTION 

1.1 What is an Auditory Display? 

An auditory display is a display that uses sound to present information to a listener. 

Auditory displays are analogous to visual displays, which present visual representations 

of data to a viewer. Auditory displays can be used in both technical and artistic 

applications. A technical auditory display might be created in order to allow a listener to 

monitor data over time (e.g. heart rate, oxygen saturation, or muscle exertion level) or 

explore a large, multi-dimensional data set for trends and patterns. These kinds of 

auditory displays typically focus on faithfully representing the data that they present to 

the listener. An artistic auditory display might be created in order to allow a listener to 

hear and experience a sonic interpretation of a given data set (e.g. a dancer’s 

movements). For the purpose of this thesis – which will focus on sonification of sEMG 

(surface electromyography) data – discussion of auditory displays will be limited to 

those that are created for technical purposes.  

 

1.2 Brief History and Classification of Auditory Displays 

An early example of an auditory display is the Geiger counter, a device invented in 1908 

that displays radiation levels using clicks (Neuhoff, Wayand, & Kramer, 2002). The first 

scientific study regarding the use of audio to represent data was published in 1954 

(Pollack & Ficks, 1954), and work on auditory graphing was done at Bell Laboratories 

in the 1970s (Chambers, Matthews, & Moore, 1974). Despite these initial efforts, 

relatively little progress was made in the field of auditory displays until the 1980s and 
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early 1990s (Frysinger, 2005). This was due, at least in part, to the fact that digital sound 

generation technology did not become widely available until the mid 1980s.  

 

The field of Auditory Display as it is known today was formalized in 1992 when 

Gregory Kramer organized the first International Conference on Auditory Display 

(ICAD) in Santa Fe, New Mexico. Since the field’s inception, various methods for 

representing data using audio have been developed. These methods include audification, 

a technique by which data samples are isomorphically mapped to the amplitude of 

consecutive audio samples, creating a direct data-to-audio conversion (Alexander, 

Roberts, Gilbert, & Zurbuchen, 2014), and sonification, which uses non-speech audio to 

convey information (Kramer et al., 1999). Sonification can be further classified into two 

sub-categories: parameter-mapping sonification and model-based sonification (Hermann, 

2008). Parameter-mapping sonification (PMSon) is a technique in which values in a data 

set are mapped to various acoustic parameters of sound such as pitch, loudness, or 

harmonic content (among many others). These parameter mappings can vary in the 

auditory parameter used (e.g. pitch, loudness, tempo, etc.), the range over which the 

auditory parameter is used (e.g. data values could be mapped to pitch over a one octave 

range or a several octave range) and polarity (e.g. an increase in data values could be 

mapped to an increase or a decrease in pitch, depending on the nature of the sonification 

and the expectation of the listener). In model-based sonifications (MBS), the user must 

interact with a model of a data set (in which sonic structures are pre-defined) before any 

sound is heard.  For the purpose of this thesis, discussion of sonification and sonification 
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design will be limited to parameter-mapping sonification, as it is more widely used than 

model-based sonification.   

 

1.3 Why Auditory Display? 

Traditionally, data sets have been displayed visually through graphs, charts, and the like. 

There is good reason for this, as visual displays are often informative and compelling. 

However, there are certain drawbacks to visual displays that have motivated the 

development and exploration of auditory displays. 

 

First, visual displays usually require that users focus their visual attention on the display, 

which is often in a fixed location. This can limit the mobility of the user while using the 

display (Henkelmann, 2007). Sonification is, by definition, eyes-free, and thus allows 

the user to focus his or her visual attention elsewhere while using the display (Kramer et 

al., 1999).  

 

Second, there is a growing body of work suggesting that auditory displays could be 

useful in various medical applications such as EMG sonification, movement sonification 

(measured with a Microsoft Kinect), and sonification for data monitoring in the 

operating room. Electromyography (EMG) sonifications have shown potential for 

identifying osteoarthritis (Pauletto & Hunt, 2006), helping people perform biceps curls 

more consistently, (Yang & Hunt, 2015), and for helping visually impaired people 

perform certain tasks (Iguchi, Matsubara, Kadone, Terasawa, & Suzuki, 2013). 
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Sonification of movement data has shown potential for use in stroke rehabilitation and 

athletic training. One study showed that stroke patients whose movements were sonified 

while re-learning gross-motor control showed increased performance and felt less 

impaired by their stroke as compared to patients whose movements were not sonified 

during motor re-learning (Scholz, Rhode, GroBbach, Rollnik, & Altenmuller, 2015). 

Another study discovered that sonification of elite athletes’ movements revealed 

information about their movements that was not apparent on a video of the movements 

(Schaffert, Mattes, & Effenberg, 2009). For data monitoring purposes, sonifying a 

simulation of anesthesia was shown to be an effective means of identifying potential 

adverse events during anesthesia (Watson & Sanderson, 2004). In these kinds of critical 

care situations, sonification of patient data can be useful due to the communal 

characteristic of sound – everyone present in the room can have simultaneous access to 

the display regardless of their orientation within the rrom, a feature not common to 

visual displays.  

 

Third, and finally, visual displays do not take into account certain capacities of the 

human auditory system. Human hearing has roughly twice the temporal resolution of 

human vision (hearing: 20-30 ms, vision: 50-60 ms), and when sounds are spatialized 

(played to sound as though they are coming from different points in space), the human 

ear can resolve time differences on the order of 1 ms (Warren, 1993). Additionally, 

humans can hear over a wide range of loudness and pitch, allowing for a high resolution 

of data presentation (Henkelmann, 2007). Finally, the human hearing system, via a well-
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designed sonification, can also afford listeners the ability to distinguish changes in states 

with minimal disruption of attentional focus (Watson & Sanderson, 2004).  

 

To conclude, the human ear is fine-tuned to recognize minute changes in sound, and if 

researchers can properly leverage the capacities of the human ear, current research has 

shown that auditory displays have the potential to provide a meaningful and intuitive 

form of data display. 
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2. DEFINITIONS 
 
This section will elaborate on different definitions of sonification that have been given 

over the years, and provide definitions of some common parameters of sound used in 

parameter-mapping sonification as well as provide definitions for common synthesizer 

terminology.   

 

2.1 Definitions of Sonification  

One of the first definitions of auditory display was formulated by Stuart Smith in 1990: 

“…sound is used as a medium for representing data. Here, the values of 

various sound parameters – pitch, loudness, duration, and so on – 

represent the values of multidimensional data (Reuter, Tukey, Maloney, 

Pani, & Smith, 1990).”  

Smith stated further that using sound for data representation is the auditory counterpart 

of data visualization, and he credited Bill Buxton (HCI specialist and Principal 

Researcher at Microsoft Research) for first proposing that this activity be called 

“sonification.” Researchers who attended the first ICAD conference in 1992 recognized 

the need for the auditory display community to begin using a shared vocabulary, and in 

1994, Gregory Kramer published a foundational book presenting the results of the first 

ICAD conference (Kramer, 1994) Several definitions of sonification were offered in this 

book, and among these, Dubus and Bresin (2013) identified Carla Scaletti’s definition as 

the most elaborate. Scaletti’s definition of sonification was:  
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“A mapping of numerically represented relations in some domain under 

study to relations in an acoustic domain for the purposes of interpreting, 

understanding, or communicating relations in the domain under study 

(Scaletti, 1994).”  

Three years after this, Stephen Barrass looked closely at Scaletti’s definition in his 

doctoral dissertation in order to reconsider her definition from a design perspective 

(Barrass, 1997). Through some substitutions of words and phrases, he arrived at the 

following definition of auditory information design:  

“The design of sounds to support an information processing activity.”  

According to Barras and Vickers (Barrass & Vickers, 2011), Barrass’s reconsideration of 

Scaletti’s definition “…embraces both functionality and aesthetics, while sidestepping 

the thorny issues of veridical interpretation and objective communication.” Barrass and 

Vickers explained further that this reconsideration focused on usefulness rather than 

interpretation, providing a basis for display evaluation, iterative development, and theory 

building. Barrass’s definition and Scaletti’s definition were reworded and combined in 

the NSF Sonification Report of 1999 to provide a generally accepted definition of 

sonification:  

“Sonification is the use of non-speech audio to convey information. More 

specifically, sonification is the transformation of data relations into 

perceived relations in an acoustic signal for the purposes of facilitating 

communication or interpretation (Kramer et al., 1999).”  
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This definition stood for the next nine years until it was reconsidered by Thomas 

Hermann when it became apparent that these previous definitions of sonification were too 

narrow to include new sonification techniques such as model-based sonification 

(Hermann, 2008). Seeing this limitation, Hermann proposed four conditions that must be 

met in order for a technique that uses data as input and generates sound to be called 

sonification:  

• The sound reflects objective properties or relations in the input data. 

• The transformation is systematic. This means that there is a precise 

definition provided of how the data (and optional interactions) cause 

the sound to change. 

• The sonification is reproducible: given the same data and identical 

interactions (or triggers) the resulting sound has to be structurally 

identical. 

• The system can intentionally be used with different data, and also be 

used in repetition with the same data. 

 

Hermann argued that this definition emphasizes important prerequisites for the scientific 

utility of sonification.  

 

While these various definitions are similar in nature, they do have subtle differences and 

nuances. Understanding the variety of viewpoints on how to define sonification could 
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help to provide sonification designers with some flexibility as they approach different 

sonification design spaces.   

 

2.2 Definitions of Sound Parameters 

There are five parameters of sound that are referred to in this thesis – pitch, loudness, 

timbre, attack time, and spatial location (also referred to as spatialization).  

 

Pitch is the human perception of a sound’s fundamental frequency, measured in Hz or 

cycles per second (CPS) (Hass, 2003). Pitch is the quality of sound that allows listeners 

to determine the “highness” or “lowness” of a given sound. The higher a sound’s 

fundamental frequency, the higher the perceived pitch, and vice versa. As a general rule, 

young and healthy people can perceive pitches in the frequency range of 20 – 20,000 Hz.  

 

Loudness has multiple components, but most generally it is the human perception of 

sound intensity (Nave, 2016b).   Sound intensity is defined as the sound power per unit 

area and is generally measured in Watts/m2. Loudness is closely related to sound 

intensity, but the two are not the same, since perception of loudness is dependent on the 

amplitude of a sound wave, the specific frequencies contained within the sound wave, as 

well as the duration of the sound wave. Information regarding the amplitude and 

frequency dependence of loudness perception is contained within the equal loudness 

curves, and sounds of equal sound pressure level (SPL) will be perceived to increase in 

loudness as their duration increases over the range of 20, 50, 100, 200 ms. Loudness 
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perception then stabilizes for sounds longer than 1 sec (Bard & Negreira, 2017). While 

sound intensity can also be measured on the logarithmic decibel scale, loudness is often 

measured using a unit called phons. 

 

Timbre, in addition to pitch and loudness, is another way that sounds can be 

characterized, and timbre has to do with the “tone” or “quality” of the sound (Nave, 

2016c). Timbre is the human perception of at least three different components of sound:  

• the harmonic/spectral content of the sound  

• the vibrato/tremolo of the sound  

• changes in loudness over the duration of the sound (commonly referred to as the 

“amplitude envelope” of the sound)  

Timbre is the quality of sound that allows a listener to distinguish between the sound of 

a trumpet and the sound of a guitar if both instruments were used to play the same pitch 

at the same loudness for the same duration.  

 

Attack time refers to the amount of time required for a sound to reach full volume and it 

is the first component of the amplitude envelope mentioned above (Nave, 2016a). The 

shorter the attack time of a sound, the sharper or more percussive it will sound. The 

longer the attack time of a sound, the more the sound will seem to “fade in.” 

 

Spatial location refers to the human perception of a sound’s location in space. Human 

beings can determine the location of an external sound in space by calculating the 



 

 11 

interaural time difference (ITD) which is the time difference between the sound hitting 

one hear and then hitting the other ear, by calculating the interaural level difference 

(ILD) which the amplitude difference between the sound when it hits one hear and the 

sound when it hits the other ear, and through the way in which the pinna (outer ear) and 

head affect the intensity of certain frequencies  (this affect is described by head-related 

transfer functions, or HRTF’s) (Heeger, 2006) When audio is recorded or synthesized 

and listened to on a 2-channel stereo system (i.e. headphones), the easiest way to adjust 

the sound’s spatial location is to adjust the left/right panning control. This alters the 

balance of loudness between the left and right audio channels, causing one channel (e.g. 

the left channel) to become louder than the other, which changes the sound’s perceived 

spatial location (in this example, the sound would be perceived as panning to the left). 

 

2.3 Synthesizer Terminology 

Sonifications are generally created using some kind of audio synthesizer. There are three 

basic components of a synthesizer that are useful to understand when discussing 

sonification: the oscillator, filter, and envelope.  

 

An oscillator is usually the first step in the signal chain of a synthesizer (Sievers, n.d.-b).  

Its function is to generate periodic oscillations anywhere in the audio frequency range 

(between 20 – 20,000 Hz) over a range of different amplitudes. Oscillators can generate 

different kinds of periodic waveforms, from sine waves to triangle, square, or sawtooth 
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waves. Each of these waves has a different harmonic content, and thus has different 

timbres when they are played back on a speaker.  

 

A filter amplifies or reduces selected frequencies in the signal created by the oscillator 

for the purpose of controlling the timbre of the sound. Most synthesizers come equipped 

with a low pass filter, and some have high pass, band pass, and notch options as well.   

 

Envelopes are more abstract conceptually than oscillators and filters but are powerful 

when designing or shaping the timbre of a sound. They are used to control various 

parameters (such as frequency, amplitude, filter cutoff, etc.) of a synthesizer over time 

whenever a note or tone is played. One of the most common envelope types is the ADSR 

envelope, which consists of Attack time, Decay time, Sustain level, and Release time 

(shown below in Figure 1). When applied to amplitude, Attack time is the amount of 

time required for the signal created by the oscillator to reach its maximum amplitude 

whenever a note is played. Decay time and Sustain level can be considered together, 

where the Decay time is the amount of time required for the signal to decay from its 

maximum amplitude to its Sustain amplitude (or level). Release time is the amount of 

time required for the signal to decay from its Sustain amplitude down to zero once a note 

is released.  
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Figure 1: An ADSR envelope (Reprinted from Sievers, n.d.-a)  
(Sievers, n.d.-a). 
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3. SONIFICATION LITERATURE REVIEW 

In this literature review, four topics will be addressed relating to the sonification 

literature: general approaches to, and principles of, sonification design, sonification 

design frameworks, EMG sonification, and obstacles to sonification design. The purpose 

of this section is twofold: to present relevant information regarding sonification research 

that has already been done, and to identify research needs that have not yet been fully 

addressed. The prior research will form the foundation for the work performed in this 

thesis, while the research needs will motivate, inform and provide constraints for the 

research methodology.   

 

3.1 General Approaches and Principles of Sonification Design  

Towards the beginning of the auditory display community’s development in the early 

1990s, it seemed clear that sound could be an excellent medium for communicating 

information to a listener. However, at that time it was unclear how to go about 

developing and evaluating auditory displays, as there were no established, systematic 

methods for doing so (Walker & Kramer, 2005).  

 

Many different concepts to consider when approaching sonification design were 

proposed early on in (Kramer, 1994) and three of these concepts are presented here. 

These concepts demonstrate some of the complexity regarding sonification design – 

complexity that made early design and evaluation of auditory displays difficult. The first 

concept was the idea that different sonification designs would be needed for different 
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tasks (this concept is discussed further in the section on EMG sonification). The second 

concept was the notion of an analogic vs. symbolic spectrum for sonification design; 

where an “analogic” design refers to a direct one-to-one conversion from points in the 

data space to points in the representation space and a “symbolic” design refers to a more 

categorical representation where relations in the representation (i.e. the sound that is 

heard) are not necessarily reflective of relations in the data. Third was the concept that 

auditory parameters (such as pitch, loudness, etc.) can interact unexpectedly. For 

example, changes in attack time can be perceived as changes in the “brightness” of a 

sound (Kramer, 1994). These kinds of unexpected interactions between auditory 

parameters can make the listener’s perception of an auditory display difficult to predict. 

Taking concepts like these into consideration, it became clear that beginning research 

into the design and evaluation of auditory displays would not be easy, particularly when 

considering the inherently interdisciplinary nature of the field – musical, technical, and 

programming skill would all be required just to begin (Walker & Kramer, 2005).  

 

One of the early empirical evaluations of sonification designs was performed by Walker 

and Kramer in a study that sought to begin moving beyond conceptual, non-standardized 

ideas about sonification (Walker & Kramer, 1996). To do this, Walker and Kramer 

decided to investigate the mapping of data onto sound by creating sonifications of 

temperature, pressure, size, and rate of production for a fictitious crystal factory using 

four different “ensembles” of sonification designs: those ensembles they felt would be 

“intuitive,” those they felt would be “okay,” those they felt would be “bad” or 
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counterintuitive, and those that were “random.” They found that the “bad” and “random” 

sonification ensembles actually resulted in better listener performance than the 

“intuitive” and “okay” sonification ensembles. These results revealed two important 

aspects of sonification design research: the need for empirical assessments of 

sonification designs and the importance of mapping polarity - whether or not an increase 

or a decrease in a particular parameter of sound (i.e. pitch) should be used to represent a 

change in data values.  

 

In 1999, Barrass and Kramer identified parameter-mapping sonification as the “usual 

approach” to representing data with sound (Barrass & Kramer, 1999). They stated that 

while this design approach has the benefit of ease of use and the ability to display 

multiple variables simultaneously, it can result in sounds that are unpleasant, and 

unexpected interactions between auditory dimensions can be difficult to predict and can 

obscure data relations (this phenomenon came to be known as The Mapping Problem).   

 

In 2000, three specific questions relating to sonification design were asked by Walker, 

Kramer, and Lane (Walker, Kramer, & Lane, 2000). These were:  

 

1. What auditory dimension best represents a given data dimension? 

2. What is the listener’s preference regarding the polarity of the data-to-display 

mapping? 
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3. Once a mapping and a polarity are established, how much change in a given 

parameter of sound must be used to represent a given change in data values? 

What is the scaling factor for the data and display pair?  

This work investigated different experimental paradigms for determining a listener’s 

preference regarding mapping and polarity. Magnitude estimation, a psychophysical 

scaling paradigm, was determined to be effective for identifying listener preferences 

regarding mapping and polarity. This paradigm also provided transfer functions that 

could be used to effectively scale changes in a data dimension (e.g. temperature or 

pressure) to the appropriate changes in the display dimension (e.g. pitch or tempo). 

These kinds of transfer functions were needed because up until that point, sonification 

designers had often had little theory upon which to base their sonification designs, and 

what sounded good to one – or even several – sonification/sound designers may not have 

matched the expectations or conceptions of the intended listeners (Walker, 2002).  

 

Multiple auditory dimensions can be mapped to the same data variable in order to create 

what is called a redundant mapping. In 2005, Peres and Lane presented work done on 

creating auditory graphs using three auditory dimensions: pitch, loudness, and time 

(Peres & Lane, 2005). The integral auditory dimensions of pitch and loudness were 

combined to create one redundant mapping while the non-integral dimensions of pitch 

and time were combined to create a second redundant mapping. Listener performance 

was compared between single parameter mappings (pitch, loudness, and time 

individually) and the redundant parameter mappings. Results indicated that listeners 
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performed better with the redundant mapping of integral sound parameters (pitch and 

loudness) than they did with the individual parameter mappings, indicating that 

redundant mappings can be beneficial in certain cases.  

 

While the work done on mapping, polarity, psychophysical scaling, transfer functions, 

and redundant mappings was needed to begin establishing a theoretical basis for 

sonification design, it has not, to date, effectively taken the listener’s task into account. 

Very little has been said about the listener’s task and how the specifics of that task could 

inform the design of the sonification. One notable exception to this is Barrass’s doctoral 

dissertation, which is discussed in the next section on sonification design frameworks 

(Barrass, 1997). This work considered the listener’s task as a means for establishing 

sonification design criteria, but no empirical evaluations of task-based sonification 

designs were performed. Recall from Kramer’s book (discussed above) that different 

sonification designs will be needed for different tasks – thus the listener’s task is likely 

an important consideration when designing a sonification. Additionally, recall from 

Walker and Kramer’s work that sonification designs need empirical evaluation. In a 

systematic review of sonification publications, Dubus and Bresin reported that as work 

on sonification design expanded, researchers began using many different parameters of 

sound for mapping, including pitch, loudness, timbre, polyphonic content, brightness, 

spatialization, tempo, filter cutoff, Doppler effect, and decay time (Dubus & Bresin, 

2013). However, they stated that many of these sonification designs were not assessed 

and they argued that there is a problematic lack of empirical evaluation of sonification 
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designs. Couple this finding with the general lack of task-based approaches to 

sonification design as well as the lack of empirical evaluation of certain task-based 

approaches and there is a need for empirical evaluations of task-based approaches to 

sonification design.  

 

3.2 Sonification Design Frameworks 

In 1997, at the request of the NSF, auditory display researchers prepared a report 

overviewing sonification research and discussing the status of the field and its research 

agenda (Kramer et al., 1999). The report identified sonification design and application as 

one of the three major components of auditory display, and further specified that 

research into sonification design should focus on the formulation of a method for 

sonification design.  

 

To this end, Barrass published his doctoral dissertation in 1997 in which he introduced 

the TaDa method for auditory information design (Barrass, 1997). In this method, “Ta” 

refers to task analysis and “Da” refers to data characterization. Task analysis methods 

are a way of breaking down a given task into its most basic elements for the purpose of 

identifying the user’s needs as well as finding potential problems/hazards that could 

prevent the user from successfully completing the task. Task analysis methods are 

discussed further in Section 4 below. Data characterization refers to identifying 

characteristics of the data set to be sonified: how many data points there are, how many 

data dimensions there are, which data dimensions are relevant, which data relations are 
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relevant, etc. In the TaDa framework, task analysis and data characterization are 

combined with information requirements, perceptual factors, and device characterization 

in order to form a multifaceted framework of methods that allows sonification designers 

flexibility in approaching a range of complex sonification design problems.  

 

Barrass also described another method for sonification design using what are called 

Design Patterns – ways of describing good solutions to common problems in context 

(Barrass, 2003). Design Patterns were originally used in architecture but have been 

extended to other fields such as computer programming and HCI. Barrass argued that the 

use of Design Patterns – which are written templates containing complex “IF-THEN” 

statements – could be extended to sonification design as well.  

 

In 2005, Janet Anderson proposed a framework for sonification design that included 

seven facets to consider (Anderson, 2005). First, designers must understand the work 

domain. Second and third, respectively, designers must represent the higher order 

relationships in the data (those relationships that convey meaningful patterns) and 

determine which data variables should be displayed aurally. Designers must then scale 

the auditory dimensions and data variables appropriately and map the data to the sound 

parameters; these are the fourth and fifth aspects, respectively. Sixth, the designer must 

determine the number of auditory streams needed in the sonification. An auditory stream 

is a sound or group of sounds perceived as coming from the same source (Williams, 

1994). For example, when one is walking along a busy street and hears the sounds of 
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multiple cars passing by as well as the sounds of multiple birds chirping, it is easy to 

perceive the traffic sounds as a single stream and the bird sounds as a separate stream. 

The final step in Anderson’s framework is mapping the auditory dimensions to the 

auditory streams identified previously.  

 

In 2007, Alberto de Campo proposed a data sonification design space map (de Campo, 

2007). This map addresses a similar, though slightly different, problem than what 

Barrass’s TaDa framework addressed. Barrass’s framework focused on finding ways to 

represent data relations that are already known in an intuitive manner. De Campo’s 

framework focused on providing a map for creating sonifications of data whose 

structures/relations are not previously known so that these structures can emerge as 

perceptual entities or audible “sound objects” in the acoustic domain.  

 

Despite these proposed methods and frameworks for sonification design, during the 

2016 ICAD Student Think Tank, students and leading auditory display researchers 

discussed the status of the field regarding an agreed-upon design framework and 

concluded that thus far, there is no agreed-upon sonification design framework (S. 

Barrass, D. Brock, M. Gröhn, B. Walker, D. Worrall, personal communication, July 3, 

2016). Thus, there is still a need within the auditory display community to develop a 

sonification design framework.  
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3.3 Electromyography Sonification 

The work conducted here began as research specifically on surface electromyography 

(sEMG) sonification. sEMG is a technique for measuring muscle activation onset and 

duration, as well as muscle exertion level. It is used by physical therapists (Kang, Kim, 

& Kim, 2014), ergonomists (Mabrouk & Kandil, 2012), and scientists (De Luca, 1997) 

as a biofeedback tool (Steele & Bennett, 2012) and as an index of muscle fatigue (De 

Luca, 1997). EMG sonification has shown potential for identifying musculoskeletal 

disorders (Pauletto & Hunt, 2006), helping people perform biceps curls consistently 

(Yang & Hunt, 2015), and for helping visually impaired people perform certain tasks 

(Iguchi et al., 2013). In addition to this work, Matsubara et al. explored whether or not 

participants could listen to an EMG sonification of two different muscles and identify 

certain data characteristics such as whether only one muscle contracted or if both 

muscles contracted (Matsubara, Terasawa, Kadone, Suzuki, & Makino, 2012). They 

tested three different sonification designs (a pitch mapping, polyphonic timbre/loudness 

mapping, and timbre mapping) and found that the polyphonic timbre/loudness mapping 

resulted in the best listener performance (with 85.2% accuracy), but that listeners 

showed a slight subjective preference for the pitch mapping.   

 

Given this information, coupled with the facts that sonification designs need empirical 

evaluation (Walker & Kramer, 2005) and that there have been relatively few empirical 

comparisons between sonification designs to date (Dubus, 2012), one study sought to 

explore the effects of sonification design on listener performance by empirically 
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comparing six different sonification designs for sEMG data (Peres, Verona, Nisar, & 

Ritchey, 2017). Six different redundant sonification designs using the following auditory 

dimensions: pitch, loudness, attack time, and spatial location. Prerecorded sEMG data 

were used to create the sonifications. In each sonification, listeners heard sEMG data 

from two different muscles played simultaneously (referred to as Muscle A and Muscle 

B). Each sonification was 10 seconds long and in each sonification, both Muscle A and 

Muscle B began at rest, contracted at close to the same time, and then returned to rest. 

The six redundant mapping designs are shown below:  

1. Loudness, Attack, Non-Spatialized 

2. Loudness, Attack, Spatialized 

3. Pitch, Loudness, Attack, Non-Spatialized 

4. Pitch, Loudness, Attack, Spatialized 

5. Pitch, Loudness, Non-Spatialized 

6. Pitch, Loudness, Spatialized	

For the spatialized conditions (Designs 2, 4, and 6), data from Muscle A were played in 

the left ear while data from Muscle B were played in the right ear. For the non-

spatialized conditions (Designs 1, 3, and 5), data from both muscles were played equally 

in the left and right audio channels. Participants were given two tasks to perform after 

listening to each sonification: identify which muscle (A or B) activated first (TIME 

task), and which muscle (A or B) exhibited a higher exertion level (LEVEL task). 

Participants listened to 10 sonifications of each design, and their accuracy in answering 

the questions for both tasks was calculated as a percentage (for example, if a participant 
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answered 6 out of 10 questions correctly for the LEVEL task for Design #2, then their 

score for that task/design pair was 0.6). Results indicated that Design #6 (Pitch, 

Loudness, Spatialized) yielded the best listener performance for the TIME task, but 

Design #4 (Pitch, Loudness, Attack, Spatialized) yielded the best performance for the 

LEVEL task. These results indicated that sonification design can impact listener 

performance and that effective sonification designs for sEMG data will need to be 

different based on the task that the listener is performing—indicating that the design of 

the sonification should be based on an analysis of the specific tasks. These results 

motivated the use of task analysis methods (discussed below in Section 4) as a tool for 

informing sonification design. 

 

3.4 Obstacles to Sonification Design: Aesthetics and The Mapping Problem 

As discussed in Section 3.1, there is a general lack of empirical evaluation of different 

sonification designs. Section 3.2 showed that there is still a need for the development of 

an agreed-upon framework or method for sonification design. Section 3.3 showed that 

the listener’s task is important in the design of a sonification.  

 

There are also problems specifically related to sEMG sonification design. Despite the 

potential that sEMG sonification has shown, researchers have identified aspects of the 

sonification designs that needed improvement. Pauletto and Hunt found that 60% of the 

participants in their study did not want to listen to any more of the same type of 

sonifications after only 20 minutes of listening (Pauletto & Hunt, 2006). They suggested 
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that their display seemed to cause fatigue and that this signaled a need for improvement 

in the aesthetic of the sonifications they used. Furthermore, Yang and Hunt found that 

while EMG sonifications helped participants perform biceps curls more consistently, 

there was still room for aesthetic improvement in the sound (Yang & Hunt, 2015). 

Matsubara et al. found that one of their mappings did not contain enough timbre 

variation to be effective and ultimately they suggested that sonifications must sound both 

friendly and clear while also taking the familiarity of a sound into consideration 

(Matsubara et al., 2012). Each of these problems is, on some level, related to the 

problem of sonification aesthetics.   

 

Sonification aesthetics has become a prominent topic within the field of auditory display 

(Barrass & Vickers, 2011; Grond & Hermann, 2012; Roddy & Furlong, 2014; Walker & 

Nees, 2011). The precise definition of what “sonification aesthetics” really is, however, 

is still in a state of flux because views on sonification aesthetics have been developing 

over time.  

 

Initially, Kramer suggested that improving sonification aesthetics would likely reduce 

display fatigue (Kramer, 1994). Roddy and Furlong argue that, historically, sonification 

aesthetics are treated as a means of reducing annoyance and guaranteeing listener 

engagement (Roddy & Furlong, 2014). Walker and Nees considered it advisable to 

design aesthetically pleasing (i.e., musical) sonifications to the extent possible while still 

conveying the intended message (Walker & Nees, 2011). Barrass and Vickers stated that 
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while aesthetics is sometimes considered to be an exclusively artistic pursuit – and 

therefore excluding a scientific field like sonification – this view is predicated on the 

false dichotomy that art and science are incompatible (Barrass & Vickers, 2011). They 

further stated that aesthetics, at its core, is about sensuous perception, not just art. Going 

beyond these ideas, Leplatre and McGregor argued that the aesthetic of a sonification 

and the function of a sonification are not two different things and that function and 

aesthetics cannot be dealt with independently in auditory display (Leplatre & McGregor, 

2004). Furthermore, Johnson noted that aesthetics are the substrate of meaning, and that 

embodied schemata are the syntax by which that meaning unfolds (Johnson, 1990). 

Roddy and Furlong looked to Johnson’s idea in order to propose an understanding of 

sonification aesthetics that looks to embodied cognition and embodied meaning-making 

in order to form an aesthetic framework for sonification design (Roddy & Furlong, 

2014).  

 

Despite this ongoing debate regarding the proper definition of sonification aesthetics, 

perhaps an even larger problem currently facing sonification research is known as The 

Mapping Problem (Worrall, 2011). The Mapping Problem (TMP) is specific to 

parameter mapping sonification, and is thought to arise from the non-orthogonality or 

co-dependence of psychophysical parameters: linear changes in one domain can produce 

non-linear auditory effects in another (Worrall, 2014). Worrall suggests that a new and 

evolving paradigm of perception – involving the way in which perception is influenced 

by the physical body – may allow for a new mapping model for data sonification to 
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emerge, which may allow for the creation of sonifications that are more perceptually 

coherent and stable (Worrall, 2011).   

 

To conclude this section on sonification literature review: sonification design research is 

currently in need of empirical evaluations of different sonification designs, movement 

towards an agreed-upon sonification design framework, improvements in sonification 

aesthetics, and a way to address The Mapping Problem. 
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4. TASK ANALYSIS METHODS 
 

4.1 Task Analysis 

Since the effectiveness of a given sonification design has been shown to be dependent 

on the data analysis task that the listener is performing, it follows that having a 

framework for analyzing the listener’s task would be beneficial for understanding the 

specifics of a given task and predicting which features in a data set would need to be 

displayed audibly in order for a listener to perform that task. To that end, this section 

explains what task analysis methods are, what they are used for, how they are often 

categorized, and presents the reasoning for my choice of which task analysis technique 

to use in this thesis.  

 

Task analysis methods are commonly used by researchers and designers in the fields of 

Human Factors (HF) and Human Computer Interaction (HCI) in order to break down a 

task into its most basic elements (Phipps, Meakin, Beatty, Nsoedo, & Parker, 2008; van 

der Veer, Lenting, & Bergevoet, 1996). Furthermore, task analysis methods can be used 

in several different ways; as the entire front-end predesign process, as one element of 

the front end process, or as a range of techniques that come into play at different times 

during design and development (Redish & Wixon, 2002). Despite this variety in how 

task analysis methods can be used, there is a common thread to each approach: a task 

analysis is meant to provide designers and researchers with knowledge about the users, 

their goals in accomplishing the task, their environment, the manual elements of the 

task, the cognitive elements of the task, the tools used to perform the task, the duration, 
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order, and complexity of the task, as well as any other unique factors pertaining to the 

task (Kirwan & Ainsworth, 1992). Task analysis methods were developed primarily as a 

means for assessing and reducing human error, though the use of these methods has 

expanded over time (Berecuartia, 2011).  

 

There are many different types of task analysis methods available and one simple way to 

categorize them is to divide them into action oriented methods and cognitive methods 

(Embrey, 2000). Action oriented methods (such as the commonly used hierarchical task 

analysis, or HTA) focus on observable actions, or identifying, in top down fashion, the 

goal of the task, as well as the various subtasks and conditions under which those 

subtasks must be performed in order to achieve the goal. Cognitive methods, on the 

other hand, focus on analyzing and outlining the unseen mental processes – diagnosis, 

decision making, problem solving, etc. – that can give rise to human error (Embrey, 

2000).  

 

As discussed in Section 3, the field of auditory display is still in need of methods for 

improving sonification design. Prior research investigating sEMG sonification has 

shown that different sonification designs will be needed for different tasks, and that task 

analysis methods such as those mentioned above may prove useful for informing, 

improving, and selecting a sonification design for a given task. But the question then 

becomes, and indeed Anderson asks: out of the multiple types of task analysis methods 
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available, which analysis methods are appropriate and could be used to inform and 

improve sonification design (Anderson, 2005)?   

 

To propose an answer to this question, as well as lay out the task analysis method 

chosen for use in this thesis, two different definitions of design that have been offered in 

the sonification literature are presented, aspects of both are combined, and the problem 

of sonification aesthetics discussed in Section 3.4 is incorporated into the proposition.  

 

Barrass and Vickers offer the first definition of design: “an iterative practice-based 

discipline involving cycles of hypothesis testing and critical evaluation that aims for 

solutions to specific problems in context” (Barrass & Vickers, 2011). The idea of 

finding solutions to “specific problems in context” is key, and one significant element of 

a sonification design problem’s context is the listener’s task. This suggests that task 

analysis methods might be useful as a tool for addressing the context of a sonification 

design problem.  

 

The second definition, which is specifically related to sonification design, is Barrass’s 

definition, which was discussed in Section 2: “the design of sounds to support an 

information processing activity.” Information processing activities are cognitive 

activities, where cognition is understood to be the acquisition of knowledge and 

understanding through thought, experience, or the senses. Thus, according to these two 

definitions, an effective sonification design must accomplish at least two things:  
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1. It must address the context of the design problem (which is, in part, related to 

the listener’s task), and  

2. It must support the cognitive needs of the listener while performing that task  

To satisfy these two criteria, it seems appropriate to choose a task analysis method that 

identifies the cognitive aspects of interpreting a sonification for use in aiding the 

sonification design process.   

 

4.2 Identification of GOMS as Desired Task Analysis Method 

Given these two criteria, the first appropriate step was to use cognitive task analysis 

(CTA) methods to identify the cognitive needs of the listener for a specific listening 

task, as CTA methods are well established and have been widely used. However, upon 

further investigation, it became obvious that using CTA methods would be problematic 

because they usually involve observation of expert performance, interviews with subject 

matter experts (SMEs), and capturing an expert’s performance with a think aloud 

protocol or subsequent recall (Clark, Feldon, Merrienboer, Yates, & Early, 2008). In 

short, observing experts’ behavior while interpreting a sonification would be largely 

fruitless since cognitive tasks cannot be visually observed and using a think aloud 

process would be remarkably difficult because it would not be possible to “think aloud” 

without interfering with the act of listening to the sonified sEMG data.  

 

To account for the cognitive aspects inherent to sonification interpretation, and to avoid 

the complications involved with using CTA methods for decomposing sonification 
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interpretation tasks, the task analysis method known as GOMS was chosen to analyze 

the cognitive requirements of a sonification interpretation task. GOMS is a form of 

hierarchical task analysis (Gray & Broehm-Davis, 2000) developed by Card, Moran, 

and Newell (Card, Moran, & Newell, 1983) and stands for Goals, Operators, Methods, 

and Selection rules. The four components of a GOMS analysis can be described as 

follows (John & Kieras, 1996):  

• Goals: what the user is trying to accomplish. Goals can be, and often 

are, decomposed into Goal/Subgoal hierarchies.  

• Operators: actions performed in service of a goal. Operators can be 

perceptual, cognitive, or motor acts, or some combination of these.  

• Methods: sequences of operators and sub-goal invocations that 

accomplish a goal.  

• Selection rules: when there is more than one method for accomplishing 

a goal, selection rules are the rules that the user employs to determine 

which method to use to accomplish the goal.  

GOMS analyses can tackle the cognitive elements of a task without the need for 

conducting interviews or observing expert performance. GOMS has been widely used 

and validated as a means of modeling human performance of various tasks (Card et al., 

1983), and as such, it was deemed an ideal type of task analysis for aiding and informing 

sonification design. The specifics of the tasks that were analyzed using GOMS and the 

actual GOMS analyses are presented in Sections 6.1 and 6.2 below.  
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5. EXPERIMENTAL QUESTION AND SPECIFIC AIMS 

There are currently many needs in sonification research. Of these needs, this thesis 

addresses the following:  

1. the lack of empirical evaluation of sonification designs. This will be addressed by 

performing an empirical evaluation of four sonification designs  

2. the need for addressing the context – of which the task is a significant part – of 

sonification design problems. This will be addressed by performing task analyses 

for two sEMG data evaluation tasks and identifying sonification design criteria 

based on the results of these task analyses 

3. the need for sonification designs to support cognitive aspects of the task that the 

listener is performing. This will be addressed by performing GOMS task 

analyses, as opposed to task analyses which focus on observable actions 

To date, many sonification designs have been based on the characteristics of the data to 

be sonified (i.e.,What type of data is it? How many data dimensions are there? How 

many data points are there?) (de Campo, 2007). Thus far, there has been little work done 

describing sonifications that were both based on the results of a task analysis and were 

empirically evaluated.  

 

Based on the results of previous sEMG sonification research, it is clear that approaching 

sonification design from the perspective of the task to be accomplished and the cognitive 

requirements of that task – rather than the characteristics of the data – is an area needing 

investigating as a potential means to improving sonification design.  
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5.1 Experimental Question 

The experimental question for this research is based on the fundamental assumption that 

sEMG sonification designs based on a task analysis that focuses on the cognitive 

requirements of the task will yield better performance than a sEMG sonification design 

based on characteristics of the sEMG data. The question is thus: to what extent can task-

analysis-based sEMG sonification designs, as compared to data-based designs, aid 

listeners in accomplishing their sEMG data evaluation tasks and improve their 

performance on these tasks?  

 

5.2 Specific Aim #1:  

Perform an empirical comparison between task-analysis-based sonification designs 

(Task-based designs) and sonification designs based on data characteristics (Data-based 

designs). Participants completed multiple trials with two different Task-based designs 

and two different Data-based designs in order to determine whether or not certain Task-

based designs can result in improved listener performance for specific tasks as compared 

to Data-based designs.  

 

5.3 Significance of Aim #1: 

If a Task-based approach to sonification design is found to be beneficial, this could mean 

that in certain cases, Task-based designs would outperform Data-based designs. If this is 

the case, an empirical argument could be made for including task analysis methods in a 

general sonification design framework. This could also mean that the two Data-based 
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designs were simply not the best Data-based designs that could have been used, though 

efforts were made to ensure that the Data-based sonification designs used in this work 

were effective, so as not to make for a straw-man comparison between the Task-based 

and Data-based designs (this is described further in Section 6.4 below).  

 

If the Task-based approach is not found to be beneficial, this could mean that either there 

was a problem with the specific task analysis method used or that there was a problem 

with the specific way in which the sonification design was based on the results of the 

task analysis. It could also mean that certain Data-based designs are sufficient or 

intuitive for performing certain sEMG data analysis tasks.  

 

5.4 Specific Aim #2: 

Compare listener performance for the difficulty level of the task. Participants were asked 

to perform two sEMG data evaluation tasks after listening to each sEMG sonification, 

and these tasks were to identify which of two muscles contracted first and which of two 

muscles had a higher exertion level. Data from previous research showed that when 

identifying which of two muscles contracted first, listeners were better able to do so 

when the two muscles contracted 0.4 sec apart than they were when the muscles 

contracted 0.1 sec apart (Peres et al., 2017). However, measurements between these 

difficulty levels were not done systematically and thus statistical comparisons could not 

be made. Thus, in this work, to more accurately measure listener performance for 

different task difficulty levels, four difficulty levels were defined for each task, resulting 



 

 36 

in a 4x4 matrix that determined how the difficulty level of sonification was determined 

(see Table 2, Section 6.6).  

 

5.5 Significance of Aim #2: 

If listener performance decreases as the difficulty of the task increases, this could reveal 

flaws in particular sonification designs and would allow comparisons to be made 

between designs that could not otherwise be made. For example, testing across difficulty 

levels allows listener performance for both Data-based and Task-based designs to be 

compared at low difficulty levels and high difficulty levels in order to determine if the 

Task-based designs performed more consistently across all difficulty levels. If this is the 

case, it would allow the designer to see where the limitations of each design begin to 

manifest themselves, and would also reduce the likelihood of encountering a ceiling 

effect in which all designs show similarly high performance due to the tasks being too 

easy. In short, testing across difficulty levels allows for more sophisticated conclusions 

to be drawn regarding the efficacy of each sonification design.   
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6. METHODS*

Each sonification design created for this study was coded in the SuperCollider audio 

synthesis environment. All sEMG data processing (rectifying and filtering) was 

performed using MATLAB.  

6.1 sEMG Evaluation Tasks 

For this thesis, the sEMG data evaluation tasks that the participants were asked to 

complete were the same TIME and LEVEL tasks originally mentioned in Section 3.3, 

and used in a prior sEMG sonification study (Peres et al., 2017). The two tasks are 

outlined below for clarity: 

• TIME Task: determine which of two muscles (Muscle A or Muscle B) activates

first

• LEVEL Task: determine which of two muscles (Muscle A or Muscle B) has a

higher exertion level during muscle contraction

6.2 GOMS Analyses of TIME and LEVEL Tasks 

In this thesis research, participants were asked to listen to sonifications of two channels 

of sEMG data, referred to as Muscle A and Muscle B, respectively. In the sonifications, 

both Muscle A and Muscle B began at rest, contracted at close to the same time, 

* Reprinted with permission from Verona & Peres 2017. A Comparison Between the Efficacy of Task-
Based vs. Data-Based sEMG Sonification Designs. The 23rd International Conference on Auditory 
Display, p. 49-56. Copyright Verona & Peres 2017.
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remained contracted for a few seconds, and then returned to rest. After listening to each 

sonification, participants were asked to perform the TIME and LEVEL tasks. GOMS 

analyses of these tasks are shown below in Figures 2 and 3.  

 

 

Goal: DETERMINE IF A OR B CONTRACTS FIRST, OR IF THEY CONTRACTED 
SIMULTANEOUSLY 

 

 

Method for TIME Goal: 
SG 1. Start Task 
SG 2. Identify 1st Muscle Activation 
SG 3. Determine if 1st Activation was Muscle A or Muscle B 
SG 4. Determine if other Muscle Activated also 
SG 5. If Unsure regarding Subgoal 3, Identify 2nd Muscle Activation 
SG 6. Determine if 2nd Activation was A or B 
SG 7. Determine if A or B Contracted First 
SG 8. Report if A or B Activated First 
 

 

Method for Subgoal 1: 
Start Task 
Op 1. Grasp computer mouse 
Op 2. Point with mouse to PLAY button 
Op 3. Left-click PLAY button 
 

 

Method for Subgoal 2: 
Identify 1st Muscle Activation 
Op 1. Perceive sonic event indicating muscle activation 
Op 2. Place sonic event in auditory store 
Op 3. Shift attention to auditory store 
 

 

Method for Subgoal 3: 
Determine if 1st Activation was A or B 
Op 1. Perceive unique sonic identifier for A or B 
Op 2. Equate sonic identifier with A or B 
Op 3. Place identification of A or B into working memory 
 

 

Method for Subgoal 4: 
Determine if other Muscle Activated also 
Op 1. Sonic event indicating other muscle activating simultaneously 

perceived? 
Op 2. If yes, store this knowledge in working memory 
Op 3. If no, then keep identification of A or B (from Subgoal 3) in 

working memory 
 

Figure 2: GOMS Analysis for the TIME Task (from Verona & Peres, 2017) 
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Method for Subgoal 5: 
If Unsure regarding Subgoal 3, Identify 2nd Muscle Activation 
Same as Method for Subgoal 2, but for second muscle activation 

Method for Subgoal 6: 
Determine if 2nd Activation was A or B 
Same as Method for Subgoal 3, but for the second muscle activation

Method for Subgoal 7: 
Determine if A or B Contracted First 
Op 1. Retrieve identification of first activation as Muscle A or B from 

working memory (Subgoal 3) 
Op 2. If second muscle activation was perceived simultaneously, 

retrieve this knowledge from working memory (Subgoal 4) 

Method for Subgoal 8: 
Report if A or B Contracted First 
Op 1. Grasp computer mouse 
Op 2. Point with mouse to radio button indicating correct answer 
Op 3. Left-click radio button 

Goal: DETERMINE IF A OR B HAS A HIGHER EXERTION LEVEL, OR IF THEY HAD 
THE SAME EXERTION LEVEL

Method for LEVEL Goal: 
SG 1. Start Task 
SG 2. Identify Muscle A’s Activation 
SG 3. Identify Muscle B’s Activation  
SG 4. Monitor A’s Exertion Relative to B’s Exertion during muscle 

contraction 
SG 5. Identify when A Returns to Rest  
SG 6. Identify when B Returns to Rest 
SG 7. Determine if A or B had Higher Exertion Level 
SG 8. Report if A or B had Higher Exertion Level 

Method for Subgoal 1: 
Start Task 
Op 1. Grasp computer mouse 
Op 2. Point with mouse to PLAY button 
Op 3. Left-click PLAY button  

Figure 3: GOMS Analysis for the LEVEL Task (from Verona & Peres, 2017) 

Figure 2 Continued 



40 

Method for Subgoal 2: 
Identify Muscle A’s Activation 
Op 1. Perceive sonic event 
Op 2. Perceive unique sonic identifier for Muscle A 
Op 3. Place sonic event in auditory store 
Op 4. Shift attention to auditory store 
Op 5. Equate identifier with Muscle A 

Method for Subgoal 3: 
Identify Muscle B’s Activation
Same as Method for Subgoal 2, but for Muscle B 

Method for Subgoal 4: 
Monitor A’s Exertion Relative to B’s Exertion 
Op 1. Use echoic memory to continuously update A’s max exertion 
Op 2. Use echoic memory to continuously update B’s max exertion 
Op 3. Place max exertion in working memory 

Method for Subgoal 5: 
Identify when A Returns to Rest  
Op 1. Perceive sonic event indicating Muscle A returning to rest 
Op 2. Place sonic event in auditory store 
Op 3. Shift attention to auditory store 
Op 4. Stop continuously updating max exertion for Muscle A  

Method for Subgoal 6: 
Identify when B Returns to Rest  
Same as Method for Subgoal 5, but for Muscle B 

Method for Subgoal 7: 
Determine if A or B had a Higher Exertion Level  
Op 1. Retrieve max exertion level from working memory  
Op 2. Equate max exertion level with Muscle A or Muscle B 

Method for Subgoal 8: 
Report if A or B had a Higher Exertion Level 
Op 1. Grasp computer mouse 
Op 2. Point with mouse to radio button indicating correct answer 
Op 3. Left-click radio button 

Figure 3 Continued 

6.3 Study Design 

This study compared the efficacy of two Task-based sonification designs to two Data-

based sonification designs taken from the EMG sonification literature, for two different 

tasks – muscle activation time and muscle exertion level. There were thus three main 
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independent variables (IVs: Design (4: 2 Data and 2 Task), Task (2), and Difficulty 

Level (4)). For the two Data-based designs, the first level was a pitch mapping and the 

second level was a loudness/timbre mapping (loudness). These designs were taken from 

a 2012 study investigating sonification of EMG data for use in analyzing human 

movements (Matsubara et al., 2012). The details of these designs are explained below in 

Section 6.4. For the two Task-based designs, the first level was the “Task-Panning” 

design that used short beeps to indicate the onset of muscle activation and a panning 

tone to indicate exertion level difference. The second level was the “Task-Filter” design 

that also used short beeps to indicate the onset of muscle activation, but used a panned 

filter cutoff mapping to indicate muscle exertion difference. The two tasks were the 

judgment of muscle activation time (TIME task) and judgment of muscle exertion level 

(LEVEL task). The IV’s and Levels are described in Table 1 below. 

 

Table 1: Independent Variables and Level for the four sonification designs and two 
tasks (from Verona & Peres, 2017) 

IV 1: Data-based IV 2: Task-based IV 3: Task IV 4: Task Difficulty 

Data-Pitch Task-Panning 
Muscle activation 

time difference 

Four difficulty levels 

for TIME task 

Data-Loudness Task-Filter 
Muscle exertion 

Level difference 

Four difficulty levels 

for LEVEL task 

 

This study was a within-subjects repeated measures factorial design. Participants 

listened to 16 sonifications with each of the four designs for a total of 64 sonifications. 
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The presentation order of the four sonification designs was counterbalanced to account 

for order effects. 

6.4 Data-Based Designs 

As previously mentioned, the two Data-based designs used in this study were taken 

from a 2012 paper (Matsubara et al., 2012). These were because participants in 

Matsubara’s study were asked to perform sEMG data evaluation tasks that were similar 

to the sEMG data evaluation tasks participants perform in the current study. There were 

three design methods used in Matsubara’s study: Method A: Pitch, Method B: 

Loudness/Polyphonic Timbre, and Method C: Timbre. Methods A and B were chosen as 

the Data-based designs for this study because they resulted in the best listener 

performance.  

 

The Data-Pitch design was created according to the specifications laid out in Matsubara 

(Matsubara et al., 2012) for Method A, with the first channel of sEMG data (Muscle A) 

sonified using a sine wave tone over a frequency range of 300-525 Hz, and the second 

channel of sEMG data (Muscle B) sonified using a sine wave tone over a lower 

frequency range of 165-345 Hz. Additionally, we decided to spatialize this design by 

panning the first channel of sEMG data (A) hard left and panning the second channel of 

sEMG data (B) hard right. We made this decision based on our previous findings that 

spatialization helps listeners distinguish between sEMG channels (Peres et al., 2017).  
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The Data-Loudness design was also created according to the specifications laid out in 

Matsubara’s paper for Method B. Again, we spatialized the design in an attempt to 

enhance listener performance in keeping with our previous findings.    

 

6.5 Task-Based Designs 

To design sonifications specifically for the TIME and LEVEL tasks, GOMS analyses 

were performed for both tasks, and the results are shown above in Figures 2 and 3. 

These GOMS analyses only show Goals, Subgoals, and Operators. The Method is to 

follow the Subgoals in numerical order, and for each Subgoal to follow the Operators in 

numerical order. The assumption is that there are not additional Methods that would 

allow for the accomplishment of each Goal, and thus there are no Selection Rules shown 

for selecting between competing Methods. Identification of the various Subgoals 

involved for each task served as the primary factor in establishing sonification design 

criteria for the Task-Based Designs.  

  

For the TIME task, the analysis shown in Figure 2 indicates that a listener must be able 

to understand that the task has started (Subgoal 1), identify when the first muscle 

changes state from rest to contraction (Subgoal 2), then determine if that muscle was 

Muscle A or Muscle B (Subgoal 3).  If the sonification does not give the listener the 

ability to accomplish even one of these Subgoals, the listener will not be able to 

complete the task. Thus, the design criteria for the sonifications based on the GOMS 

model for the TIME task are:  
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1. The start of the listening task must be evident 

2. The sound of the first muscle changing state from rest to contraction must be 

evident 

3. The listener must have a way of distinguishing between the sound of Muscle A 

activating and the sound of Muscle B activating  

 

For the task of identifying which muscle has a higher exertion level, the analysis shown 

in the right column of Figure 1 indicates that the listener must be able to understand that 

the task has started (Subgoal 1), determine when both muscles change state from rest to 

contraction (Subgoals 2 and 3), monitor the exertion level difference between Muscle A 

and B for the duration of their contractions (Subgoal 4), identify when both muscles 

revert back to rest (Subgoals 5 and 6), then determine if Muscle A or B had a higher 

exertion level (Subgoal 7). Once again, failure to accomplish any of these Subgoals will 

prevent the listener from completing the task.  Thus, the design criteria for the 

sonifications based on the GOMS model for the LEVEL task are:   

1. The start of the listening task must be evident 

2. The sound of both muscles changing state from rest to contraction must be 

evident 

3. The exertion level difference between the two muscles must be evident 

4. The sound of both muscles changing state from contraction back to rest must be 

evident 
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As previously mentioned, two sonification designs were created based on these design 

criteria: the Task-Panning design and the Task-Filter design. The Task-Panning design 

was also based on an interview conducted with a sound designer, in which he 

recommended exploring metaphoric sounds for use in sonification such as those heard 

in film and TV. To this end, a soft, low-pass-filtered (cutoff frequency: 1000 Hz) white 

noise was played while the muscles were at rest. This decision was made because white 

noise is generally associated with inactivity and would also serve to let the listener know 

that the sonification was indeed playing.  

 

To indicate when each muscle activated, short beep tones were played at the moment of 

muscle activation. This decision was made to ensure a sonic contrast between the sound 

of the muscle at rest (white noise) and the sound of the muscle activating. The beeps 

were quite short so that the sound of the first beep would not bleed into the sound of the 

second beep.  To indicate the activation of Muscle A, a short beep (0.07 sec duration) 

using a triangle wave at a frequency of 440 Hz was played in the left ear. To indicate the 

activation of Muscle B, a short beep of equal duration using a triangle wave at a 

frequency of 330 Hz was played in the right ear. Once both muscles had begun to 

contract, the LPF white noise was turned off and a tone indicating exertion level 

difference began to play.  

 

To indicate the exertion level difference between Muscle A and B, the sonification code 

calculated the difference in amplitude between A and B (AmpA - AmpB), and then 
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mapped this difference to the pan position of a tone that played during muscle 

contraction. If the difference was positive, this meant that Muscle A had a higher 

exertion level and the tone panned left, and vice versa. When the difference in exertion 

was small (~0.05 V), the tone panned slightly left or right (to a value of +/– 0.7 on 

SuperCollider’s Pan2 function). When the difference in exertion was larger (> 0.1 V), 

the tone panned hard left or right.  

 

After muscle contraction, the tone became silent and the white noise returned to indicate 

that the muscles had returned to rest. 

 

The Task-Filter design was also based on the design criteria for the TIME and LEVEL 

tasks from the task analyses, as well as on another interview conducted with a different 

sound designer. This sound designer recommended using a filter cutoff mapping to 

indicate muscle exertion level, since changes in filter cutoff can lead to easily 

recognizable changes in timbre. Thus, for this design, when the muscles were at rest, a 

soft, low-pass-filtered sawtooth wave was played, one in the left channel to represent 

Muscle A and one in the right channel to represent Muscle B. The frequency of the 

waves was 100 Hz, and the cutoff frequency of the LPF was set to 300 Hz when the 

muscles were at rest. The two waves were played at equal amplitude so as to be 

perceived in the center of the stereo field. 
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To indicate when each muscle activated, short beep tones were played right when each 

muscle began to contract. To indicate the activation of Muscle A, a short beep (0.09 sec 

duration) using an additive synthesis tone with a fundamental frequency of 300 Hz was 

played in the left ear. To indicate the activation of Muscle B, the same short beep was 

played in the right ear. The fundamental frequency of 300 Hz was chosen so that these 

beeps would “sit on top of” the sawtooth wave tones (which were LPF’d at 300 Hz) and 

not interfere with them.   

 

To indicate the exertion level difference between Muscle A and B, the sonification code 

calculated the amplitude difference in the same manner as in the Task-Panning design. 

If the difference was positive, this meant that Muscle A (in the left channel) had a higher 

exertion level and the difference was mapped to the cutoff frequency of the LPF in the 

left channel, such that the cutoff increased to allow more high frequency content to be 

heard in the left channel during muscle contraction. The opposite occurred when the 

amplitude difference was negative, with the cutoff of the right channel’s LPF increasing 

to indicate that Muscle B had a higher exertion level. For small exertion differences 

(0.05 V), the cutoff would increase from 300 Hz to 1200 Hz, and for larger exertion 

differences (0.15 V), the cutoff increased from 300 Hz to 3600 Hz.   

 

After muscle contraction, the cutoff of both LPF’s was set back to 300 Hz to indicate 

that the muscles had returned to rest.  
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6.6 Activation Time/Exertion Level Differences 

For each of the four sonification designs, participants listened to 16 sonifications. Of 

these 16, 4 displayed both muscles activating at the same time, and 4 each displayed 

both muscles activating 0.13 sec apart, 0.26 sec apart, and 0.39 sec apart.  

 

Additionally, out of the 16, 4 sonifications displayed both muscles exhibiting the same 

exertion level, and 4 each displayed both muscles exhibiting a 0.05 V, 0.10 V, and 0.15 

V amplitude difference during muscle contraction. The 16 sonifications for each design 

were numbered according to Table 2 below.  

 

As an example, Sonification #1 for any given design displayed both muscles contracting 

at the same time (0 sec activation time difference) and exhibiting the same exertion level 

(0 V amplitude difference during contraction). Similarly, Sonification #11 in any given 

design displayed a 0.26 sec difference between the activation of Muscle A and the 

activation of Muscle B, and a 0.1 V difference in amplitude between Muscle A and 

Muscle B. The order in which each sonification within a given design was presented 

was randomized for each counterbalance. 
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Table 2: Listing of structure for the 16 sonifications for each design (from Verona 
and Peres, 2017) 

 

 

Activation time difference 

0 sec	 0.13 sec	 0.26 sec	 0.39 sec	

Exertion level 

difference 

0 V 1 2 3 4 

0.05 V	 5	 6	 7	 8	

0.10 V	 9	 10	 11	 12	

0.15 V	 13	 14	 15	 16	

 

 
6.7 Participants 

Forty students and faculty from Texas A&M university participated in this study (27 

male, 16 female, ages 19-59). They all self-reported as not having any hearing 

impairment that would interfere with their ability to participate. At the beginning of 

each session, participants signed a consent form, completed a demographic survey, and 

were asked about their knowledge of and experience with sEMG data. After this, they 

were briefly trained on what sEMG data is, what sonification is, and how sEMG data 

can be sonified.    

  

6.8 Computer/Audio Setup 

The study was run locally through Google Chrome using the XAMPP environment in 

conjunction with a MySQL database for recording participant responses. Participants 

listened to the sonifications through a pair of Beyerdynamic DT 770 Pro headphones. 
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6.9 Measures 

After listening to each sonification, participants were asked two multiple choice 

questions, one each for the TIME and LEVEL tasks. The choices were: 

1. Muscle A activated first (or had a higher exertion)

2. Muscle B activated first (or had a higher exertion)

3. A and B had the same activation time (or exertion level)

4. Unsure

Listener accuracy was measured as a proportion of correct responses for both tasks. For 

example, if a listener correctly identified if Muscle A or B contracted first for 8 out of 

the 16 Data-Pitch sonifications, their score was 8/16 = 0.5 for that Design/Task pair. 

6.10 Analyses 

To identify the effects of Design (4), Task (2), and Level (4) on participants’ 

performance, a 4 X 2 X 4 Repeated Measure factorial Analysis of Variance 

(RMANOVA) was conducted and Greenhouse-Geisser correction was used for any 

violation of sphericity. All post hoc comparisons were done using Bonferroni 

corrections with the family-wise error rate set at 0.05 using SPSS v.22 ®. 
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7 RESULTS* 

7.1 Overall Performance 

There was no effect of counterbalance on listener performance (p = 0.448), thus all 

subsequent analyses were done collapsed across counterbalance. As seen in Figure 4, 

there was no effect of Task, F(1, 42) = 1.78, p = 0.19. However, there was a main effect 

of design, F(2.08, 87.29) = 91.23, p < 0.001, η2 = 0.69, and an interaction between Task 

and Design F(2.55, 107.23) = 32.83, p < 0.001, η2 = 0.44.    

Pairwise comparisons indicated that performance was different based on design with the 

Data-Pitch design having the worst performance and Task-Filter having the best (p < 

0.001). Data-Loudness and Task-Panning had performance levels in between those two 

and Bonferroni pairwise comparisons show that performance on all designs were 

significantly different from each other (all p's < 0.001). As shown in Figure 4, there was 

an interaction between Design and Task with the Data-Pitch design having better 

performance for the TIME task (p < 0.034), and the Task-Filter design having better 

performance for the LEVEL task (p < 0.028).  

* Reprinted with permission from Verona & Peres 2017. A Comparison Between the Efficacy of 
Task-Based vs. Data-Based sEMG Sonification Designs. The 23rd International Conference on 
Auditory Display, p. 49-56. Copyright Verona & Peres 2017
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7.2 Performance by Difficulty Level 

Figure 5 shows the results by difficulty level for the activation time task. This figure 

shows that performance differed by Design with the Task-based designs resulting in 

better performance than the Data-based designs (all p's < 0.01). The Task-based designs 

and Data-based designs were not different from each other (p's > 0.29), F(2.25, 94.32) = 

19.60, p < 0.001, η2 = 0.318. Figure 5 also shows that there were overall differences in 

performance based on the Activation Time Differences (ATD) with better performance 

when the differences were larger (0.26 sec and 0.39 sec) (all p's < 0.001), F(1.54, 64.65) 

= 12.27, p < 0.001, η2 = 0.23. The differences by Level differed by Design for the TIME 

task with Bonferroni comparisons indicating that Data-Pitch (0.13 sec) was different 

than all others and Data-Pitch (0 sec) was different than Data-Pitch (0.39 sec); Data-

Loudness (0.13 sec) was different than all others; Task-Panning showed no performance 

differences by level; and Task-Filter (0.13 sec) was different than Task-Filter (0.26 sec), 

F(5.43, 228.11) = 7.68, p < 0.001, η2 = 0.12.   

 

Figure 6 shows that overall performance for the LEVEL task differed by Design with 

the Task-Filter Design (all p's < 0.01) resulting in the best performance and Data-Pitch 

design resulting in the worst. Bonferroni comparisons showed that all designs were 

different from each other with performance on the Task-Panning being lower than Task-

Filter and greater than Data-Loudness, F(2.37, 99.55) = 154.54, p < 0.001, η2 = 0.79. 

Figure 6 also shows that there were differences in performance based on the Exertion 

Level Differences with performance generally increasing as exertion level differences 
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increased (all p's < 0.038). The exception to this was the decrease in performance from 0 

V difference to 0.05 V difference, F(1.95, 81.91) = 38.12, p < 0.001, η2 = 0.476. The 

differences by Level differed by Design with Bonferroni comparisons indicating that 

Data-Pitch (0.05 V) was different than Data-Pitch(0.15 V), Data-Loudness (0.15 V) was 

different than Data-Loudness (0, 0.05, 0.1 V), Data-Loudness (0, 0.05 V) was different 

than Data-Loudness (0.1, 0.15 V), Task-Panning (0.05 V) was different than Task-

Panning (0, 0.1, 0.15 V), and Task-Filter showed no differences between levels, F(5.56, 

233.65) = 15.53, p < 0.001, η2 = 0.27.  
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Figure 4: Overall listener performance for each Design and for both Tasks (from Verona & 
Peres, 2017) 
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Figure 5: Listener performance for the TIME Task for each Design and Activation Time 
Difference (ATD). ATD = time difference between activation of Muscle A and Muscle B 

(from Verona & Peres, 2017) 
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Figure 6: Listener performance for the LEVEL task for each Design and Exertion Level 
Difference (ELD). ELD = amplitude difference during contraction between Muscle A and 

Muscle B (from Verona & Peres, 2017) 
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8 DISCUSSION 

The results of this study clearly indicate that for interpreting sEMG sonifications for 

these two tasks (TIME and LEVEL), using sonification designs based on a task analysis 

resulted in superior performance, particularly for the TIME task.  

 

Further, there was an interaction between Design and Task with better listener 

performance for the TIME Task than for the LEVEL Task for the Data-Pitch design, 

reverse performance for the Task-Filter design, and no difference in performance for the 

TIME and LEVEL for the other two designs.  

 

Decreased performance for the LEVEL task with the Data-Pitch design was likely due 

to the fact that this design used different pitch ranges for the two muscles. Thus, when 

listening to the Data-Pitch design, the listener would hear the sound of Muscle A in the 

left ear at the pitch range of 300-525 Hz, and would hear Muscle B in the right ear at a 

lower pitch range of 165-345 Hz. This could lead to at least two different phenomena 

that may have confused the listeners.  

 

The first phenomenon is that listeners would have heard different pitches when both 

muscles actually had the same exertion level. If the sEMG data values from both 

muscles were to rise to an average value of 0.25 V during muscle contraction (i.e. no 

exertion level difference between Muscle A and B), the listener would hear two 

different pitches (Muscle A: 525 Hz/left ear, and Muscle B: 345 Hz/right ear) and would 
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thus not be able to perform a direct exertion level comparison between the two muscles. 

This could result in the listener reporting that the muscles had different exertion levels 

since the listener would have heard different pitches for both muscles. It could also 

result in the listeners realizing that they cannot perform a direct exertion level 

comparison, which could lead to confusion. 

 

The second phenomenon is that listeners could have heard the same pitch for both 

muscles during contraction when the two muscles actually had large exertion level 

differences. If Muscle A (sonified over a higher pitch range) had a low exertion level 

during contraction, and Muscle B (sonified over a lower pitch range) had a high exertion 

level during contraction, it would be possible for the pitch of Muscle A to rise from 300 

to 345 Hz during contraction, and for the pitch of Muscle B to rise from 165 to 345 Hz 

during contraction. If this were to happen, the listener would hear the same pitch for 

both muscles during contraction that could result in the listener falsely reporting that the 

two muscles exhibited the same exertion level. It seems likely that these two phenomena 

could account for the poor performance that the Data-Pitch design showed for the 

LEVEL task.  

 

Although the Task-Filter design resulted in overall high performance, there was a 

difference in performance between the two tasks (LEVEL and TIME) for this design. 

One possible explanation for this phenomenon needs to start with a recognition that the 

listener was asked to perform two tasks sequentially – to identify if Muscle A or B 
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contracted first, and then to immediately shift attention to the second task of identifying 

which muscle had a higher exertion level. The temporal proximity of these two tasks 

could have made it somewhat difficult to accomplish both of them when accomplishing 

either one required interpreting a spatialized sonic event. However, given that both task-

based designs resulted in superior performance than the data-based designed, this 

appears to not result in performance as low as that of the Data-based designs.  

 

To reduce the difference between the two tasks for Data-Filter design, although 

spatialization is highly effective for identifying separate sEMG channels, it may be that 

hearing and interpreting two spatialized events in such close temporal proximity is not 

ideal. In this case, un-spatializing the beeps would create a stereo separation between the 

first sonic event indicating muscle activation and the second sonic event indicating 

exertion difference. This approach would require the use of different-sounding beeps to 

distinguish between A and B (as was done in the Task-Panning design but not in the 

Task-Filter design). But this way, identifying which muscle activated first could be done 

by listening to sounds in the center of the stereo field, and identifying which muscle had 

a higher exertion level could be done by subsequently paying attention to the left and 

right sides of the stereo field. Designing the sonification in this way could also help to 

avoid the disorientation that may have resulted when hearing too many sounds bounce 

back and forth between left and right too quickly. This possible effect of perceptual 

interference between multiple spatialized designs in close temporal proximity would be 

worthy of further investigation, due to the fact that Left/Right panning seems to be 
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highly effective for individual tasks, but, as shown here, might not be as effective if 

multiple sequential tasks all require interpretation of spatialized designs.  

 

Another issue that may have made the TIME task slightly more difficult than the 

LEVEL task for the Task-based designs was the condition where both muscles activated 

at the same time. In this condition, listeners would hear a short beep indicating muscle 

activation, but they would hear two beeps at the same time, one in either ear. This would 

effectively eliminate the spatialized effect if the beeps sounded the same (as in the Task-

Filter design), and could potentially mask of one of the beeps if the beeps sounded 

different (as in the Task-Panning design).  In the case of the Task-Filter design, hearing 

two identical beeps at the same time, one in either ear, may have been confusing 

because it would have been perceived as a non-spatialized event and the listener may 

have been anticipating a spatialized event. In the case of the Task-Panning design, when 

two beeps that were identical except for their pitch were heard at the same time, it may 

have been that one of the beeps (e.g., the one lower in pitch representing Muscle B’s 

activation) was masked by the presence of the other, which may have lead to the listener 

only perceiving the higher-pitch beep and false reporting that Muscle A had activated 

first when in fact they had both activated at the same time.  

 

For the LEVEL task, when comparing the performance of the Task-panning (using 

graduated panning) and the Task-filter (using hard panning) designs, it appears that 

hard-panning is a more effective way to display muscle exertion level difference. To 
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explain this, it is important to note how the Task-Filter design made use of panning. In 

the Task-Filter design, any difference in muscle exertion level between Muscle A and B 

resulted in a hard-panned filter cutoff mapping. Thus, if Muscle A had just a slightly 

higher exertion level than Muscle B, the listener would hear a filter cutoff change in 

only the left ear, and vice versa. This was also true when the exertion difference 

between A and B was larger. For the Task-Panning design, however, this was not the 

case. For the Task-Panning design, differences in muscle exertion level between A and 

B were mapped to the pan position based on the size of the exertion difference. Thus, if 

A had only a slightly higher exertion level difference than B (0.05 V difference), the 

tone representing exertion level difference would only pan 70% left and not 100% left 

(hard-panned). For exertion level differences of 0.1 V or more, however, the tone 

representing exertion difference would pan 100% left or right. It is quite clear from 

Figure 6 that this 70% panning at low exertion level differences for the Task-Panning 

design significantly inhibited listeners’ ability to determine which muscle had a higher 

exertion level. In fact, further post hoc analysis of the data revealed that whenever 

listeners heard a 70% left/right panning, 45.9% of the time they perceived no panning 

and responded saying that the two muscles had the same exertion level.   

 

However, at greater exertion differences (0.1 V and 0.15 V), when the tone panned 

100% left or right, listeners were much better able to identify which muscle had a higher 

exertion level and performance was comparable to the Task-Filter design (again clearly 

visible in Figure 6). It thus seems reasonable to conclude that had the Task-Panning 
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design been designed such that small exertion level differences between Muscle A and 

B resulted in a hard-panned tone, rather than a 70% panned tone, overall average 

listener performance for the Task-Panning design would have been similar to that of the 

Task-Filter design for the LEVEL task.  

 

This finding that a 70% left/right panning was difficult for listeners to interpret is very 

interesting, and suggests that an LCR (Left-Center-Right) approach to panning may be 

more useful in sonification design than attempting to use any finer resolution of 

panning. This is another area that is ripe for further investigation in auditory displays, 

namely, to what degree can listeners distinguish between different amounts of panning? 

Should sonification designers stick to LCR panning, or can they find ways to increase 

the granularity of spatial location that listeners can readily detect? It also seems that 

sonification designers who use spatial location would also need to take the frequency of 

the spatialized sound into account, given that the human ability to spatialize sound is 

somewhat frequency dependent, with low frequency sounds being more difficult to 

spatialize. This may mean that higher frequency sounds could be mapped to spatial 

location with a higher degree of granularity than lower frequency sounds. If this is the 

case, then perhaps if I had used a higher-pitch tone, or more higher harmonics in the 

tone, to display exertion level difference in the Task-Panning design, the 70% left-right 

panning at small exertion differences may have been sufficient.  

 

Regarding performance for the TIME task at each Activation Time Difference (Figure 
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5), it is clear that the Task-based designs performed better than both of the Data-based 

designs, and that there was a general trend of improved performance as activation time 

difference increased. This trend is not particularly surprising, except for what happened 

in both Data-based designs as activation time difference increased from 0 sec to 0.13 

sec. It is clearly visible in Figure 5 that performance decreased as the time difference 

went from 0 sec to 0.13 sec, but then increased again as the time difference increased 

from 0.13 sec to 0.26 sec. This phenomenon is indicative of a limitation of the Data-

based designs, suggesting that the moment of transition from rest to muscle activation 

could not be precisely pinpointed to less than 0.26 sec accuracy using the Data-based 

designs. The reason for this may be that sounds heard in the Data-based designs changed 

in roughly direct proportion to the data, rather than changing significantly when the data 

indicated a transition from rest to activation. In this way, the Data-based designs 

performed more analogically as opposed to the Task-based designs which performed 

more symbolically. In other words, the Data-based designs faithfully represented the 

data using a more-or-less 1:1 conversion from (rectified and filtered) data to sound. 

Looking at the rectified, filtered sEMG data (shown below in Figure 7), it is clear 

approximately when the data transitions from rest to activation, but it is not clear at what 

precise instant this transition takes place.  
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Figure 7: A sample of the rectified, filtered sEMG data sonified in this thesis work 
 

Thus, when a sonification design (in this case, the Data-based designs) performs a more-

or-less direct conversion of the data into sound, it makes sense that the listener would be 

able to hear approximately when the transition from rest to activation happens, but 

would not be able to identify the precise instant at which the transition occurred because 

they would hear the sound change somewhat gradually just as the data changes 

somewhat gradually. It seems clear that for this particular task, an analogic sonification 

design is not ideal, since comparing muscle activation times, particularly when they 

occur in close temporal proximity, requires being able to identify the precise instant of 

activation. The Task-based designs, on the other hand, were designed symbolically, and 

for both Tasks, the symbolic designs resulted in improved listener performance. The 

Task-based designs were symbolic in the sense that they did not attempt to perform a 

faithful translation of data to audio, but instead looked for the data properties relevant to 

each task, attempted to make those properties evident to the listener, and ignored all 

other data properties. In addition to being symbolic, the Task-Panning design made use 
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of a potential sonic metaphor in that it used soft white noise to convey to the listener 

when the muscle was at rest. White noise is what is heard when flipping to a TV channel 

that is currently inactive or tuning in to a radio station that is currently off-air. Thus, in 

our collective cultural consciousness, white noise is associated with inactivity, and using 

white noise in the Task-Panning design may have been particularly effective at 

conveying that the muscles were inactive.  

 

For the TIME task, The Data-Pitch and Data-Loudness designs showed poor 

performance when the activation time difference was 0.13 sec. By contrast, the Task-

Panning and Task-Filter designs showed performance that essentially increased as the 

TIME difference increased (Figure 5). This was likely due to the fact that the Task-

based designs were designed specifically to create a large, temporally precise contrast 

between the sound of a muscle at rest and the sound of a muscle beginning to contract. 

The Data-based designs did not provide the same level of perceivable contrast between 

the sound of a muscle changing state from rest to activation.  

 

For the LEVEL task, there were interesting interactions based on the difficulty level of 

task with the more difficult stimuli (.05 V) reducing performance remarkably more with 

the Task-Panning design than any of other of the designs. Further, there were 

differences in performance between the Data-Pitch and Data-Loudness designs for the 

LEVEL task. This is likely due to two things: the Data-Pitch design used different pitch 

ranges for Muscles A and B which made a direct comparison between the two difficult, 
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and the Data-Loudness design essentially made use of a panning effect by mapping 

muscle exertion level to loudness. Since the designs were spatialized into left and right 

audio channels, at larger exertion level differences (0.1 and 0.15 V), the Data-Loudness 

design acted like a panning mapping, and indeed, the Data-Loudness design showed 

similar performance for the LEVEL task as both of the Task-based designs, which both 

made explicit use of panning (Figure 6).  
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9 CONCLUSION 
 

These findings that Task-based designs can result in better listener performance than 

Data-based designs strongly suggest the broader integration of task-based approaches 

into the sonification design problem space. Additionally, they indicate that the inclusion 

of task analyses within a theoretical framework for sonification design may facilitate the 

development of this illusive framework.  

 

Task-based approaches to sonification design are not well represented in the auditory 

display literature. It is not uncommon in the EMG sonification literature, for example, to 

see an explanation for how a sonification was designed but to not see an explanation for 

why it was designed that way. Justifications for design decisions are sometimes given, 

but they rarely seem to go beyond appeals to sonic cosmetics or “traditional” mappings 

like pitch and loudness.  

 

A task-based approach to sonification design could allow sonification designers to use 

Human Factors and HCI design methodology to identify sonification design criteria. In 

so doing, this approach could afford sonification designers stronger justification for 

design decisions, as well as facilitate easier communication between sonification 

designers and HF/HCI researchers – which could broaden interest in auditory displays 

and stimulate wider interest in the field.  

 

Roddy and Furlong have discussed sonification aesthetics and the problem of a 
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disembodied approach to sonification design, and they have argued that leveraging 

knowledge of embodied cognition and embodied schemata may help sonification 

designers to circumvent the Mapping Problem by mapping sonifications along 

embodied dimensions (Roddy & Furlong, 2014). Task-based approaches to sonification 

design may not be embodied in and of themselves, but since task analyses can provide 

in-depth knowledge of a user’s task, and since mapping sonifications along embodied 

dimensions requires a deep understanding of the user’s task, it seems that task-based 

approaches to sonification design may aid in identifying useful embodied schemata 

along which to map sonifications for specific tasks.  

 

In conclusion, task analysis techniques are well established in fields such as Human 

Factors and HCI, where design decisions are critical. In this work, implementing task 

analysis techniques into the design of auditory displays was shown to be an effective 

approach for creating interpretable sonifications. Further use of task analysis techniques 

in auditory display is thus recommended. This work has served as a “proof-of-concept,” 

and further use of task-based approaches in sonification research may help to ultimately 

ground sonifications in a more accessible – and perhaps embodied – aesthetic 

framework, thus leading to the development of more easily interpretable sonifications.  
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