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ABSTRACT 

Electrical Submersible Pumping (ESP) has been developed to be an indispensable 

artificial lifting method in industry due to its high productivity. However, the reliability 

of an ESP system is a disadvantage when being compared with other approaches. 

Erosion is one of the leading factors that causes the reduction of productivity and failure 

of an ESP system. In order to guarantee the longevity of the system and reduce the cost, 

it is necessary to perform erosion tests on a new pump before being installed in an oil 

well. 

This study explores the erosion on a Helico-Axial (Poseidon) ESP manufactured by 

Schlumberger. The erosion test rig was built at Turbomachinery Laboratory at Texas 

A&M University. A 200-hour erosion test with 0.24% sand concentration by weight has 

been operating at 3600 RPM with a liquid flow rate of 880 GPM and 20% inlet Gas 

Volume Fraction (GVF) has been performed. During these 200 hours, 7 performance 

tests were made to acquire the performance maps of the ESP by varying liquid flow rate 

(600-1100 GPM) and GVF (0-45%). Meanwhile, the vibration characteristics 

corresponding to each operating condition were collected simultaneously. After 200 

hours, a combined analysis of components wear measurement, performance and 

vibration are used to investigate the effect of 200 hours of wearing on this pump. In 

order to evaluate the volume of metal loss by this ESP, 3D scan technology is applied, 
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allowing comparison of the original and eroded impellers. Furthermore, CFD 

simulations on both the original and eroded pump geometries are developed in ANSYS-

FLUENT to evaluate the performance variation. An erosion model for predicting erosion 

rate is introduced to the result of simulation and calibrated by the loss of thickness of the 

impeller that measured. 
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1. INTRODUCTION

1.1 Artificial Lift & ESP 

1.1.1 Artificial Lift for Oil and Gas 

In the oil and gas industry, if the bottomhole pressure of a well is enough to overcome 

the total pressure difference and pressure loss along the flowpath and naturally push the 

oil to the ground, we call it “flowing well”, otherwise, it is “dead well”. The bottomhole 

pressure of an oil well drops due to the reduction of liquid in the reservoir underground. 

Hence, the flow rate of the oil will gradually decrease to zero, and finally, the flowing 

well becomes to be a dead well. In this case, artificial lift is applied to prolong the life 

and improve the productivity of the oil well by rising the bottomhole pressure or 

reducing the pressure difference and pressure loss. 

According to Gabor Takacs[1], gas lifting and pumping are the main methods of 

artificial lift in oil and gas industry. 

Gas lifting (Figure 1, 4) can be divided into the intermittent-flow gas lift and the 

continuous-flow gas lift. For intermittent-flow gas lift, gas is periodically injected into 

the tubing string whenever a sufficient length of liquid has accumulated at the pipe 

bottom. A high-speed gas injection below the liquid column will rise the bottom hole 

pressure immediately and push the column as a slug to the ground. On the other hand, 
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continuous-flow gas lift uses high-pressure natural gas injected into the well stream at 

downhole point to aerate the liquid and reduce the pressure difference and pressure 

losses along the flow path.   

 

 

Figure 1: General Types of Artificial Lift Method [2] 

 

Pumping includes rod pumping and rodless pumping. Both types lift liquid by increasing 

the bottomhole pressure. The rod pump method (Figure 1, 1), as the name implies, 

utilizes a rod string to transport mechanical energy and rise the liquid. For a rodless 

pump, electric or hydraulic energy is transported to drive the submersible pump. ESP 

(Figure 1, 3) and hydraulic pumps (Figure 1, 2) are the two main divisions. Typically, 



  

3 

 

an ESP is driven by an electrical motor at the bottom hole which is powered by 

electricity; while a hydraulic pump is driven by pressurized hydraulic fluid injected from 

the surface. 

 

1.1.2 What is ESP:  ESP Configuration 

The electrical submersible pumping was invented and developed by Armais Arutunoff in 

the late 1910s in Russia. The first ESP installation was successfully operated in the El 

Dorado field in Kansas in 1926.[1] 

 

A systemic view of a standard ESP system with its key components is provided by 

Figure 2. The electrical cable connects the power supply on the surface with the 

electrical motor underground. A protector is installed between motor and pump to absorb 

the thrust created by the pump. A gas separator will sometimes be added to prevent most 

of the gas from entering the pump inlet. Most of the components of the system are 

submerged in the fluid to be pumped and they are cooled by the fluid as well.  
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Figure 2: Conventional ESP System [1] 

 

According to Gabor Takacs[1], advantages of using ESP units can be summarized as 

follows[3][4][5]: 

 High productivity from medium depths 

 Relatively high energy efficiency (around 50%) for systems producing over 1,000 bpd 

 Capable to be deployed and be functional in deviated wells 
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 Proper installation may allow low maintenance of the ESP system 

 Limited surface occupation makes it applicable in urban locations 

 Low space requirements make it well suited to the offshore environment 

 Corrosion and scale treatments are relatively easy to perform 

 

Disadvantages are listed below: 

 A reliable electric power of high voltage is required 

 To achieve flexibility of an ESP system operation, a variable speed drive is required 

 With a low flexibility, installation design is crucial 

 To improve the reliability, costly abrasion-resistant materials are required for an ESP 

pumping fluid with sand 

 Difficulties in repairing the ESP equipment 

 High well temperature might require special material for building the ESP system 

 Cable suspended or coiled tubing deployed ESP units are required to reduce running 

and pulling costs 

 

Briefly, the high installation cost and reliability problem caused by the extreme working 

environment are the two main shortages which have limited the development of the ESP. 

However, because of its high productivity and limited maintenance requirement, the ESP 

has a significant presence in the artificial lift market. Figure 3 is provided by Dover 

which shows the market shares of all types of artificial lift methods in the world. With 

the expansion of the market from 2010 to 2012, the ESP had half of the market. 
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Figure 3: Artificial Lifting Market in 2010, 2011 and 2012. By Dover [6][7][8] 

 

1.2 Literature Review 

1.2.1 ESP Reliability 

Considering the huge economical profits of the ESP in the global market, to improve the 

quality and prolong the longevity of an ESP system is very desirable. However, ESP 

technology was not widely used at its early age, thus, practical examples were not 

sufficient for analysis until the end of the last century.  

 

Regarding the high cost of ESP installation, Toole and Brien initiated a test program [9] 

in 1984 which finally resulted in an extensive reduction of ESP failures. They indicated 

the necessity of pump testing before application to eliminate a defective pump and 

guarantee the quality of the new pump. Although slight wear on a ESP might be 
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acceptable by criteria of manufacturer, it will reduce the productive life of the part, so 

they also insisted that only brand new ESP can be accepted.  

 

However, Divine, Lannom and Johnson (1992) [10] had a different view. They 

investigated the head, BHP (Brake Horsepower), Efficiency deviation of the ESP to 

judge if it can be reused, and assumed the used pump can stand long under proper 

operation. In addition, they elucidated the reason for upthrust and downthrust wear 

related to best efficiency point (BEP). 

 

Upchurch (1991) [11] analyzed 1149 ESPs' down-hole pumping equipment failures in 

the East Wilmington Field of California. The main reasons for failure differed case by 

case. According to the different working environments in 3 zones, he exhibited failures 

in 12 categories which are shown in Figure 4 (4 pumping rates for 3 zones). Failures of 

cable, pothead, pump, motor and seal were identified as 5 major downhole failures. He 

indicated that higher temperature, bad cooling and particles are the main reasons for 

such component failures.   
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Figure 4: General Conditions and ESP Downhole Failures in Three Reservoirs [11] 
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Hisham, Farooq and Mehmet (2003)[46] analyzed 501 ESPs which were installed in 

Divided Zone Kuwait-Saudi Arabia during 1998-2001.  Figure 5 shows the percentage 

of failed components. Failures of motor, pump, and cable contribute to the primary 

subsystem failures.  

 

Figure 5: Subsystem Failures of ESPs in DZ[46] 

 

In both studies above, classification of component failures, operating conditions or ESP 

manufacture are not exactly the same. This makes the percentage of each type of failure 

differing case by case. However, erosion is always a key factor that directly affects the 

pump performance and contributes to the failure of an ESP. In addition, the high cost of 

an ESP installation requires engineers to be very cautious when selecting a pump. 

Hence, conducting an erosion study on the turbine pump before it is installed in an 
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abrasive environment can help us to estimate its reliability and guarantee the longevity 

of an ESP system. 

 

1.2.2 Erosion Theory 

According to Finnie[14] and Bitter[15], the earliest studies of erosion originated in 

Germany. De Haller (1939) [18] observed eroded surfaces under a microscope and found 

2 kinds of erosion: one at large impingement angles which causes flattened and highly 

deformed surface, the other at small impact angles which causes scratched and a less-

deformed surface [15]. Holtey (1939)[19] attributed the wear of metal to two 

phenomena, "shock" wear and "rub" wear. He suggested that soft steel is more resistant 

to the “shock” condition, while hard steel is better for the “rub” condition. However, he 

did not elaborate on the influence of material physical properties nor provide any 

explanation of the material removal mechanism [14]. Wellinger (1949) [17] seemed to 

be the first person to gather test data under a wide variety of controlled conditions. He 

carried out multiple erosion tests with different impingement angles on both hard, brittle 

steel and soft, ductile steel. Through reactions of different material to all range angles, he 

concluded that not only the impingement angle but also the eroded material properties 

will determine what type of erosion dominates [15]. 

 

Before Finnie, erosion studies mainly relied on practical examples. Most of them were 

limited by incomplete experiment data, which reduced their ability to predict erosion. In 

other words, the root problem of erosion had rarely been explored. Finnie’s study (1960) 
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[14] emphasizes learning the fundamentals of the erosion mechanism. Regarding 

completely different erosion mechanism of different material, he limited the discussion 

of the sample materials to 2 categories, ductile material and brittle material. One of his 

significant contributions is the first ductile cutting model for a single particle, which sets 

the basic pattern for all the single particle erosion models. For his cutting model, he 

illustrated an ideal erosion process (Figure 6). To simplify this process, several 

assumptions were made: the single particle removes material in mostly the same way as 

a machine tool does; the surface material deforms plastically; the particle should be 

much harder than the surface and does not fracture; it has little rotation; displaced 

volume is equal to the volume removed, contact width and length are much bigger than 

cutting depth.  

 

Figure 6: Schematic of Ideal Cutting [14]  

 

The expressions for the cutting process obtained by Finnie are as follows: 
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𝑄𝑎𝑏 =

𝑚𝑉2

𝑝𝜓𝐾𝑐𝑓 
(𝑠𝑖𝑛2𝛼 −

6

𝐾𝑐𝑓 
𝑠𝑖𝑛2𝛼), 𝑡𝑎𝑛 𝛼 ≤

𝐾𝑐𝑓

6
 

(1) 

 𝑄𝑎𝑏 =
𝑚𝑉2

𝑝𝜓𝐾𝑐𝑓 
(

𝐾𝑐𝑓 

6
𝑐𝑜𝑠2𝛼), 𝑡𝑎𝑛 𝛼 ≥

𝐾𝑐𝑓

6
 (2) 

 
𝜓 =

𝑙

𝑦𝑡
 

(3) 

 

𝑄𝑎𝑏 is the volume of material removed by a single abrasive of mass, 𝑚, velocity, 𝑉, and 

impingement angle, 𝛼. 𝐾𝑐𝑓 is the ratio of the vertical force of the particle to the 

horizontal force (Cutting Friction). According to his experimental result [12], he 

assumed that 𝐾𝑐𝑓 =2 is reasonable. 𝑝 is the horizontal component of flow pressure.  𝑙 is 

the contact area (length), 𝑥𝑡 and  𝑦𝑡 are the cutting length and depth. Referring to metal 

cutting experiment [20],  𝜓 = 2 is selected. 

 

Two situations are considered to determine when the cutting ceases. If 𝑡𝑎𝑛 𝛼 ≤
𝐾𝑐𝑓

6
, 

particle will not stop cutting until it leaves the surface. While for 𝑡𝑎𝑛 𝛼 ≥
𝐾𝑐𝑓

6
, cutting 

will stop when horizontal motion of the particle ceases (before the particle leaves the 

surface). 
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Figure 7: Predicted Variation of Volume Removal with Angle for a Single Abrasive 

Grain (Solid Line); Experimental Points for Erosion By Different Grains [14] 

 

Regarding the curve given by the model and his experiment data(Figure 7), they 

collapse at lower angles. However, for higher angles, the discrepancy is greater. 

Especially for the perpendicular case, the model predicts no erosion, while actually 

erosion exists. Later, Finnie modified his first model by considering the rotation of the 

particle [13]. He added an extra assumption that there was no particle rotation at the 

beginning, but during cutting, the horizontal force on the cutting tip will rotate the 

particle. Equations (4) and (5) include this effect: 
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𝑄 =

𝑐𝑖𝑚𝑉2

4𝑝 (1 +
𝑚𝑟2

𝐼 )

2

𝑃
(𝑠𝑖𝑛2𝛼 − 2

𝑠𝑖𝑛2𝛼

𝑃
) , 𝑦𝑡 = 0 

(4) 

 
𝑄 =

𝑐𝑖𝑚𝑉2

4𝑝 (1 +
𝑚𝑟2

𝐼 )
(𝑐𝑜𝑠2𝛼),   𝑥𝑡

′̇ = 0 
(5) 

 𝑃 = 𝐾𝑐𝑓 /(1 + 𝑚𝑟2/𝐼) (6) 

 
𝑥𝑡

′̇ = 𝑈 𝑐𝑜𝑠 𝛼 −
2𝑈

𝑃
𝑠𝑖𝑛 𝛼 

(7) 

𝑐𝑖: fraction of particles cutting in idealized manner, 

𝐼: moment of inertia of particle about its center of gravity, 

𝑟: average particle radius, 

𝑥𝑡
′̇ : horizontal velocity of tip of particle when the cutting ceases. 

 

He claimed that the model will have a better prediction at higher angles if considering 

the initial angular speed of the particle. Although the curves in Figure 8 seem more 

reasonable, this model still does not capture the key point. One basic reason is that his 

ideal cutting assumptions are not applicable to erosion at big impingement angles.  
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Figure 8: Volume Removal at Difference Impingement Angle(Particle Rotation 

Considered) [13] 

 

Being inspired by De Haller (1939) [18] and R. Wellinger(1949) [17], Bitter (1962) 

considered two main contributions of erosion, cutting and deforming in order to extend 

Finnie’s single particle erosion model. Cutting wear (𝑊𝑐) is “more likely” to happen 

when a particle impacts on ductile material surface with a larger horizontal momentum, 

while deformation wear (𝑊𝑑) is “more likely” to happen when a particle impacts on 

brittle material surface with a larger vertical momentum which is regarded as fatigue 

damage from plastic deformation. Figure 9 illustrates these 2 types of wear and their 

corresponding erosion curves. In his model for cutting (𝑊𝑐) which is expressed in 

Equation (7)(8), like Finnie, 2 ranges of impact angles are divided by 𝛼0. In his erosion 
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model for deformation (𝑊𝑑) which is expressed in Equation (9), he introduced the 

threshold velocity, 𝑉𝑇, and the deformation wear factor, 𝜀. Deformation will not happen 

if the normal velocity of particle is not larger than𝑉𝑇. 𝜀 is related to the amount of energy 

required to remove a unit volume of material. With the superposition of these two kinds 

of wear, the erosion model agrees well with his experiment on cooper erosion, even at 

bigger impact angles (Figure 10). [15][16] 

 𝑊 = 𝑊𝑐+𝑊𝑑 (8) 

 
𝑊𝑑 =

0.5𝑀∆𝑉2

𝜀
 

(9) 

 

𝑊𝑐 =

2𝑀𝐶∆𝑉2 {𝑉 cos 𝛼 −
𝐶𝑓∆𝑉2

√𝑉 sin 𝛼
}

√𝑉 sin 𝛼
,               𝛼 < 𝛼0 

(10) 

 
𝑊𝑐 =

0.5𝑀{𝑉2 cos2 𝛼 − 𝐾1∆𝑉1.5}

𝑓
,                  𝛼 ≥ 𝛼0 

(11) 

 ∆𝑉 = 𝑉 sin 𝛼 − 𝑉𝑇 (12) 

 

𝐾1 = 0.82𝑦2 √
𝑦𝑒

𝜌

4

(
𝐼 − 𝑞1

2

𝐸1
+

𝐼 − 𝑞2
2

𝐸2
)

2

 

(13) 

 

C =
0.288

𝑦𝑒
√

𝑦𝑒

𝜌

4

 

(14) 

𝑓: Cutting Wear Factor 

𝜌: Density 

𝑦𝑒: Elastic Load Limit 

𝑀: Mass of solid impacted on wall 
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Figure 9: Erosion Curves in Brittle and Ductile Erosion Mechanism for Different 

Impingement Angles [48] 

 

 

Figure 10: Erosion of Copper from Experimental Data Explained by Bitter’s 

Erosion Model [16] 
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To simplify the intricate model of Bitter, Neilson, and Gilchrist(1968)[21] postulated a 

simpler cutting model (𝑊𝑐) and retained the deformation model (𝑊𝑑).  The modified 

expressions are shown in equation (15)(16). 𝜑 is a cutting wear constant, and 𝑛 is a 

constant relate to 𝛼0. 

  
𝑊𝑐 =

𝑀𝑉2 cos2 𝛼 sin 𝑛𝛼

2𝜑
,        𝛼 <

𝜋

2𝑛
= 𝛼0 

(15) 

 
𝑊𝑐 =

𝑀𝑉2 cos2 𝛼

2𝜑
,                   𝛼 ≥

𝜋

2𝑛
= 𝛼0 

(16) 

Many erosion models have been developed by different researchers after Finnie and 

Bitter. The general expression of erosion model is developed empirically as 𝐸𝑅 =

𝑐𝑚̇𝑉𝑛𝑓(𝛼).[22] Impact particle mass rate 𝑚̇, impact velocity 𝑉, impact angle 𝛼 are the 

three most commonly considered parameters to affect erosion. Sometimes it might 

consider the particle diameter, sharpness, materials, and other factors which can be 

coupled in the coefficient c or represented in the impact angle function 𝑓(𝛼). This type 

of empirical equations is developed from the fundamental mechanism that described by 

Finnie and Bitter. It has a more accurate prediction for erosion rate and a simpler 

expression. Therefore, it is adopted by ANSYS-FLUENT in erosion prediction [28]. 

Tests were also conducted to design erosion resistance equipment. True and Weiner 

(1976) [31] conducted several tests which were consisted of injecting varying amounts 

of sand into a compressed air stream flowing at several velocities. They evaluated the 

effect of flow stream velocity, sand concentration, coating materials and geometry of 

tested piping (fitting, tee, elbow, and plate) upon the erosion. Regarding their 
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conclusion, some suggestions were made to optimizing the design of erosion resistant 

equipment, for example, the velocity reducing chamber and the bull-plugged field tee. 

Numerical method was developed after computer became accessible, which gradually 

became a widely applied method which expanded the traditional empirical method for 

erosion prediction.  

 

Hussei and Tabakoff [25] started the research on the erosion of turbomachines in 1971.  

They built a special subsonic cascade wind tunnel to analyze the trajectories and 

velocities of solid particles suspended by air. In 1975, Grant and Tabakoff [24] 

developed a code to predict 2-D erosion resulting from particles ingested into that wind 

tunnel using a Monte Carlo simulation. This 2-D model predicts the quantity of material 

loss from the blades of a turbomachine as well as the erosion location on these blades. 

Later, Hamed (1982) [34] investigated the particle trajectories for the inlet flow field of a 

helicopter engine with swirling vanes and particle separator. By using Katsansis and 

McNally's program (1977) [26], he developed a numerical method for this 3-D erosion 

problem. Schuh and Humphrey(1990) [27] [33] claimed that most of the study on 

erosion paid little attention to clarifying the influence of turbulent flow. To predict the 

wear by particle impact, they stated the significance of the erosion model derived in 

material science as well as the fluid turbulent model, both of which deliver the liquid-

solid interaction. They introduced a momentum equilibration constant, λ, which 

represents non-dimensional particle response time. Flow simulations were conducted in 

both turbulence flow and laminar flow to plot trajectories of particles in the particle-
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laden flow over 2 in-line tubes for different value of λ (0.1, 0.5 and 10). Figure 11 and 

Figure 12 show an obvious discrepancy in trajectories for λ=0.1.   

 

 

Figure 11: Particle Paths for Two In-Line Tubes Showing the Effect of the Particle 

Response Time on Collisions with the Downstream Tube [27]  
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Figure 12: A Comparison of Particle Paths for Two In-Line Tubes Showing the 

Effect of Different Values of λ on the Particle Response to the Turbulent 

Fluctuations [27]  

 

Minemura and Uchiyama (1990) [39] developed a 3-D simulation for an inviscid liquid-

solid flow in a flow path of a centrifugal pump impeller. The particle diameter varies 

from 1 mm to 5 mm. Forder, Thew and Harrison (1998) [35] embedded FORTRAN 

routines in CFX which allowed them to calculate and display the impact angle, velocity 

and turbulent intensity with the corresponding location on oilfield control valves. 

1.2.3 Erosion Study on Pump 

Erosion in a pump is quite different with that in a fluidized bed, plate, elbow or any other 

fixed surface with simple geometry. In addition, centrifugal force is basically a leading 
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factor of erosion in most pumps, but experiments on fluidized bed or valve cannot 

simulate this force. Regarding the complicated working condition in an oil well and 

narrow application of ESP at its early age, to improve the reliability of an ESP in an 

abrasive working condition was limited to utilizing wearing resistance material and 

coating technology only. Methods of erosion study on ESP were limited to brief 

experiments on a slurry pump and the practical data in the field, some of which have 

been mentioned above. On the other hand, the evolvement of computation power made it 

possible to perform 3D simulation on the multiphase flow in a rotor machine. In the last 

two decades, commercial software started to play an important role in CFD analysis. 

In the study of Stavros, Nicolas, Antonios and Kristis (2009)[41], experimental 

procedures include nano-indentation, impact tests and 3D surface topography were used 

to evaluate the erosion factor of 6 types of coating. Figure 13 shows the experimental 

setup which can perform erosion test by varying impact angle. Furthermore, CFD 

analysis incorporating Finnie’s erosion model was used to predict the erosion rate of a 

submersible pump. By introducing an erosion factor, k, which was acquired in the 

erosion tests, they obtained 6 erosion rates corresponding to different coating. Figure 15 

and Figure 16 give the streamwise erosion rates of a pump with 6 types of coating.  

Figure 14 gives the erosion rate contours on a pump with different sized particles 

according to their simulation. However, the particle diameter in experiment was 5 mm, 

while in CFD analysis, it was no more than 0.6mm. Such discrepancy of particle size has 

weakened the correlation between experiment and simulation. 
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Figure 13: Inclined and Perpendicular Impact Testers[41] 

 

 

Figure 14: Erosion Rate Contours for the Impeller and Diffuser Shroud for 

Different Size Particles (27 μm, 60 μm) [41] 
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Figure 15: Streamwise Erosion Rates for the Impeller Using Different Coating 

Materials Which Are Calculated by CFD[41] 

 

 

Figure 16: Erosion Rates for the Diffuser Using Different Coating Materials Which 

Are Calculated by CFD [41] 
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Figure 17: Original (Red) and Eroded (Green) Impeller and Profiles of Them in 

Best Fit [30] 

 

Krüger, Martin, and Dupont (2010)[30] performed 2 phase simulations on the original 

and eroded centrifugal pump, respectively. Figure 17 shows the 3D scanned model of 

original and eroded pumps. They calculated the erosion factor on both pumps by 

applying the empirical equation (17) given by Gulich[29]. Figure 18 presents the 

comparison of these two pumps on key parameters, such as particle impingement angle, 

solid concentration, and water turbulence kinetic energy. According to their conclusion, 

the "shock like" erosion at the leading edge is properly presented; while for the "friction 

like" erosion at the trailing edge, tip clearance, and side plate, Gulich’s model seems not 

equally applicable. 

 
𝐸𝐹 = 𝐹𝐾𝐺 (

𝑐𝑆,𝑒𝑞

𝑐𝑆,𝑅𝑒𝑓
) (

𝑤𝑚𝑖𝑥

𝑤𝑅𝑒𝑓
)

3

 
(17) 
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𝑤𝑚𝑖𝑥: Mixture velocity (m/s) 

𝑤𝑟𝑒𝑓: Reference velocity (10m/s) 

𝑐𝑆,𝑒𝑞: Equivalent solids concentration (kg/m3) 

𝑐𝑆,𝑒𝑅𝑒𝑓: Reference solids concentration (kg/m3) 

𝐹𝐾𝐺: Particle Size Factor 

 

 Figure 18: Key Erosion Parameters for Initial (Upper) and Eroded (Lower) 

Impeller’s Leading Edge(left) and Trailing Edge(right) [30] 

 

Pagalthivarthi, Gupta, and Tyagi(2011)[40] predicted the qualitative trends of erosion 

wear inside a 2D pump casing domain of a centrifugal pump casing by utilizing 
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FLUENT. The simulation applied Discrete Phase Model (DPM) for the slurry flow and 

standard k-ε model for turbulence. 

 

Diaz, Saleh, and Zheng built an open loop test rig for erosion study of an ESP in 2012 

[36] [37][38]. An 185-hour erosion test was conducted on a 3-stage mixed pump in this 

new test rig. To explore the mechanism of wear with gas entrainment, they ran the pump 

with water and sand in the 1st 117 hours, and with 15% GVF extra air in the next 68 

hours. Performance and vibration data were collected for inspecting erosion. According 

to their test results, the waterfall plots in Figure 19 show the vibration signature in 

frequency and amplitude at 117th and 185th hours. The trend of the peak growth is similar 

to what happened on the bearing clearance, especially on the subsynchronous peak of 

2/3X (X is the rotating frequency of the shaft). Moreover, efficiency dropped 6.58% 

after 117 hours and 15.8% after 185 hours. Considering the relatively shorter period and 

greater efficiency loss for three phase test, they concluded that the pump performance 

degraded significantly more after air was involved. 
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Figure 19: PP1 Shaft Waterfall at 117 and 185 Hours [36] 

 

 

Figure 20: Pump Performance Curve with Pure Water at 0-117-185 Hours [36] 
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Figure 21: Performance Degradation with Pure Water [36] 

 

 

Figure 22: Wear Marks on Different Stages [36] 

 

Component wear patterns due to abrasive erosion were detected on both the main flow 

field and secondary flow field. In the main flow field, material loss on the hub, shroud, 

blades, balance holes of the impeller and shroud of the diffuser were observed in 

different levels. Figure 22 shows the wear on leading edge of 2 impellers. Bearing 
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clearance and impeller labyrinth both contribute to the secondary flow wear. Bearings 

appeared to have grooves upstream, and crack patterns downstream of the secondary 

flow. They assumed the grooves were made by sand grinding and “cracks” were caused 

by material fatigue (Figure 23).  

 

 

Figure 23: Scoring Wear and Hair Crack [36] 

 

Subsequently, Pirouzpanah and Morrison (2014) [32] conducted a simulation on 

particle-laden flow in this pump by applying the Eulerian-Granular scheme using Ansys-

FLUENT. An empirical-numerical model for predicting erosion was developed by 

correlating the erosion key parameters with the experiment data (Figure 24, equation 

(18) (19)). Erosion rate distribution on this pump was compared with the eroded surface 

of the ESP after 117-hour erosion test (Figure 25). 
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𝐸𝐹 = (𝑐𝑠)0.08 (

𝑉𝑠

𝑉𝑠0
̅̅̅̅

)

0.07

  (
𝑘𝑤

𝑘𝑤0
̅̅ ̅̅ ̅

)

1.25

 
(18) 

 𝐸𝑅 = 𝐴 ∙ 𝐸𝐹2 + 𝐵 ∙ 𝐸𝐹 (19) 

ER: Erosion Rate (μm/hr) 

EF: Erosion Factor 

𝑐𝑠: Sand volume fraction 

Vs: Near wall sand velocity, m/s 

Vs0
̅̅ ̅̅ : Reference sand velocity, m/s 

kw: Turbulent kinetic energy of water, m2/s2 

kw0
̅̅ ̅̅ ̅: Reference turbulent kinetic energy of water, m2/s2 

A= 0.0163, B=0.8774 

 

 

Figure 24: Erosion Rate for the Computed Erosion Factor Values[32]  
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Figure 25: Comparison between the Computed Erosion Rates with the Eroded 

Locations in the First 2 Impellers [32] 
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2. OBJECTIVE

As mentioned earlier, erosion of an ESP is an inconvenient problem which directly 

affects the reliability of the ESP system. Erosion tests on the pump before installation 

can provide a more accurate prediction on the pump life span and effectively avoid an 

early failure of the ESP system. Analysis of the erosion process and the erosion 

mechanism of the pump will help the designer strengthening the endurance of the ESP 

system and reducing the cost spent on ESP underground installation. 

The purpose of this study is to analyze the material loss, performance loss, reliability 

issue and erosion rate of a helico axial pump undergoing an erosive environment which 

includes gas, liquid, and particles. 

Material loss is evaluated by measurement of volume loss and weight loss. For the 

volume of material loss, the 3D scan of the ESP can provide a more accurate 

measurement of the geometry change. 

Performance loss is directly caused by the material loss of the ESP. An experimental-

numerical combined analysis is given based on the performance maps plotted by the data 

from performance tests and CFD simulation on the new and eroded ESP. The geometry 

of the eroded ESP is processed by the 3D scan. 
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The reliability issue is mostly determined by the performance of the bearing. The 

stability of the bearing performance is analyzed based on the profiles and the waterfalls 

of the orbits. The increase of bearing clearance is also used to evaluate the material loss 

and bearing performance.  

 

To predict the erosion rate of the ESP, a CFD simulation is performed on the gas-liquid-

solid flow in the ESP. A popular empirical expression for predicting erosion rate is 

selected and calibrated based on the metal loss of an impeller. The impact angle, impact 

velocity, and the sand flush rate are considered in this erosion model. Due to the 

difficulty to consider all the erosion factors, a certain deviation between the metal loss 

measured from the test and the metal loss predicted in the simulation is expected. An 

assessment of the erosion model weighing the cost and accuracy is given.   
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3. METHODOLOGY

3.1 Experimental Setup 

3.1.1 Test Rig 

The erosion test rig in Turbomachinery Laboratory at Texas A&M University was 

originally built by N. Diaz and R. Saleh [37] [38]. Figure 26 is a systematic view of it. 

A three-phase (Water-Sand-Air) flow loop (red pipes) is the main component of this 

open system. A 5,000-gallon tank is the main water supplier for the system which is 

connected to a cooling loop as well. Table 1 lists the names of the equipment labeled in 

the loop in Figure 26. 

Figure 26:  Experimental Setup Diagram.[37]
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Table 1: Identification for Items in Figure 26[37] 

No. Item 

1 ESP Pump 

2 ESP Motor 

3 Derrick 

4 Coriolis Flow Meter 

5 Pinch Valve 

6 Tank and Separators 

7 Orifice Flow Meter 

8 Sand Auger 

9 Sandhopper 

10 Feed Pump 

11 Slurry Pump 

 

Figure 27 is the piping and instrument diagram(P&ID) of this setup. A sand auger and a 

hopper are used to transport the dry sand to the top of a standpipe and drop sand into the 

slurry loop which feeds 5% of the total water flow rate. A centrifugal pump(11) conveys 

the slurry through a Coriolis flow meter which measures the mass flow rate of the slurry.  

Another centrifugal pump(10) is used to feed the other 95% water to the ESP and 

provide enough net positive suction head (NPSH) for the ESP. The slurry and the water 

converge before entering the bottom tee inlet of the ESP. Air is supplied at 110 Psi by a 

medium pressure air compressor.  It passes through a turbine flow meter and two 

paralleled control valves before entering and mixing with water and sand in the bottom 

tee. The ESP is assembled vertically and driven by a 250 HP motor. Downstream of the 

ESP outlet, there is a pinch valve controlling the total flow rate of the pump. The 

separator system contains a group of cyclone separators and a shaking separator. 

Through this system, used water will be mostly recycled and sent back to the supply 

tank, while used sand will be separated and dumped so as to avoid uncontrolled erosion. 
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Meanwhile, in order to protect all the equipment in the loop from overheating, a heat 

exchanger in the cooling loop (green) is running all the time to keep the liquid 

temperature at the pump inlet below 120°F.  

 

Feed pump

Slurry Pump

95% Water

Air Compressor

Inlet Bottom Tee

Stage 1

Stage 2

Stage 3

Stage 4

Mixure(sand, air, water)

Turbine flow meter

 

40 Psi

Water Tank

slurryUsed sand

Cyclone separator

Shaking Separator

Water

Water

New Sand

5% Water

Sand 
Hopper
&Augur

110 Psi

Coriolis flow meter

Orifice flow meter

Filter

Heat exchanger

Dumpster

 

Figure 27: P&ID for Poseidon ESP Erosion Test Rig 

 

The Poseidon ESP has 4 stages in all. Figure 28 shows more details of the derrick with 

the Poseidon ESP assembled inside.  To balance the thrust, a mechanical seal (gray part 

in Figure 29), which can handle 1000 lb up thrust and 20,000 lb down thrust, is 

assembled above the outlet head (green part in Figure 29).  
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Figure 28: Erosion Loop Indoor Parts 
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Figure 29: Poseidon Pump Installed in a Derrick(SolidWorks) 
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3.1.2 Poseidon ESP  

Figure 30 to Figure 33 exhibit the original impeller, diffuser, and bearing of the 

Poseidon pump. Erosion of these components are the primary contributions to efficiency 

loss and pump failure of an ESP system. Therefore, their metal losses caused by erosion 

will be measured in this study.  

 

 

Figure 30: Impeller of Poseidon ESP 

 

 

Figure 31: Diffuser of Poseidon ESP 
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Figure 32: Sectional View of a Stage of Poseidon ESP[43] 

 

 

Figure 33: Journal of the Poseidon ESP 
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3.1.3 Operating Condition  

Table 2: ErosionTest Operating Conditions 

Item Value Unit 

Sand concentration 2.3-2.4 gram/liter 

Water flow rate 880  gpm 

Inlet pressure 40 Psi 

Gas Volume 

Fraction(GVF) 

20 % 

Rotor speed 3600 RPM 

Stage number 4  

 

Table 2 is the erosion test operating condition utilized for 200 hours. The water flow rate 

at 880 GPM is the BEP at 20% GVF as obtained from the performance curve for the new 

ESP. 

3.1.4 Sand Property 

Sand labeled 100-mesh was purchased from Sierra Frac Sand, LLC. Figure 34 shows 

the sand analyzed by the sifting equipment in Turbomachinery Laboratory. Table 3 is 

the properties of the sand, and Figure 35 exhibits the microscopic view of the sand. Both 

of them are provided by STIM-LAB. 
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Figure 34: Sand Analysis(size distribution) 

 

Table 3: Sand Properties 

Property Value Unit 

Sphericity 0.6  

Roundness 0.6  

Bulk Density 1.44  g/cm3 

Density 2.64  g/cm3 

ISO Mean Dia.  0.164  mm 

Median Dia.  0.157  mm 
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Figure 35: Microscopic View of New Sand  
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3.1.5 Performance Measurement  

 

Figure 36: Operating Interface- Test Rig Control and Performance Data 

Capturing.  

 

Figure 36 exhibits the operating interface in LabView. Current values on it show that 

the pump is running at the operating conditions given by Table 2. Five pressure sensors 

are used to obtain the pressure rise of each stage, the other two are collected for 

calculating the air flow rate.  Thermocouples monitor the temperature of the liquid in the 

cooling loop of the mechanical seal as well as the liquid in the main loop. The 

temperature of the air at the inlet tee is also collected for calculating the air flow rate. 

Two water flow meters record the water flow rate. The feed pump is set to maintain a 

constant pressure at the inlet (40 psi). The slurry pump is set to supply 50 GPM water. 
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The sand augur maintains the sand concentration at 2 gram/L. Air flow rate is kept at 

20% GVF by the control valve. 

 

3.1.6 Vibration Measurement 

 

Figure 37: Monitor Interface-Vibration Data Capturing. 

 

Figure 37 shows the monitor interface in LabVIEW corresponding to the performance 

data. In order to measure vibration, six proximity probes are inserted. Limited by the 

geometry of pump, probes can only be inserted near the outlet of the diffuser, pointing at 

the spacers on the shaft (Figure 38, Figure 39, Figure 40). Moreover, there is no space 

for proximity probes on the 4th diffuser. In order to avoid perforating the blades on the 
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diffuser, the angle between both probes is 120o. The shaft orbits in the picture are plotted 

before transformation to an orthogonal coordinate frame. 

 

 

Figure 38: Proximity Probes Location at 1st Diffuser 

 

 

Figure 39: Locations of Proximity Probe(red) and Pressure Sensor(green) at 1st 

Diffuser (Solidworks) 
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Two accelerometers are mounted below the top flange and above the bottom flange of 

the pump assembly, and are aligned with the proximity probes. Each of them measures 

accelerations in 3 directions, as is shown in Figure 40.  

 

 

Figure 40: Schematic View of the Vibration Measuring Locations 
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3.2 Test Procedure 

3.2.1 Introduction of Comprehensive Performance Test 

Performance data including stage-by-stage pressure, water/air flow rate, sand 

concentration, gas volume fraction, etc were recorded hourly. Vibration data correlated 

was also captured, which includes the 3-direction accelerations at 2 locations. System 

reliability was analyzed through monitoring the head loss and magnification of 

accelerations. 

 

At the 0th, 25th, 50th, 66th, 100th, 150th, 200th hour (Figure 41), the erosion test was 

stopped and comprehensive performance tests were conducted. This comprehensive test 

includes the performance test for acquiring the performance maps, the RPM test for 

plotting the vibration waterfall, Ramp-up, and Ramp-down test. Sand in the loop is 

flushed out before these tests. Only when there is no sand can the proximity probes be 

installed to collect the shaft orbits. Table 4 presents the matrix of operating conditions in 

the test.  

Table 4: Performance Test Matrix 

Hour Valve Position (For Liquid 

flow rate with no air, GPM) 

GVF 

0 600 0 25% 

25 700 5% 30% 

50 800 10% 35% 

66 900 15% 40% 

100 1000 20% 45% 

150 1100   

200    
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Figure 41: Comprehensive Performance Tests Scheduled During Erosion Test. 

 

3.2.2 Practical Issues in Data Trueness and the Solutions 

The pump inlet pressure is supposed to be constant (40 Psi) during the erosion test. 

However, in the test, the pressure sensor to measure the pump inlet was too close to the 

impeller inlet, which affected its accuracy. So the pressure sensor at the air inlet of the 

bottom tee is now used as the inlet pressure.  In addition, the 4th diffuser was identified 

to be rotating at the 1st 100 hours and then stopped rotating after 150th hour. This will 

affect the pressure rise of the 4th stage. Therefore, although some correction has been 

done and the corrected performance would be plotted, the 4th stage performance will 

seldom be considered in the analysis. 
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3.3 Record of Geometry Change   

In order to investigate the wear on the key components, the geometry information of the 

impellers, diffusers, diffuser spacers were recorded by measurement as well as 3D 

scanned before assembling and after disassembling of the ESP. 

3.3.1 3D Laser Scanner 

A 3-D scan system in the Department of Mechanical Engineering at Texas A&M 

University (Figure 42) was utilized to capture the geometry of the Poseidon pumps. 

According to the product introduction [44], the 3-D scan system contains a tracking 

system, a scanner, and the image process software.  

 

The tracking system (Figure 43), NDI’s PRO CMM Model 1000, delivers 3D 

measurements using a high-speed optical tracker and dynamical part reference. It has a 

single point accuracy up to 20 µm and the application accuracy up to 35 µm. 

 

An advanced 3D laser scanner, ScanTRAK (Figure 44), combines NDI’s Multi-Sided 

Probe (MSP) and Perceptron’s ScanWorks® V5 laser scanner. It can directly capture 

complex geometries that are translated into a common coordinate frame to produce 

digital 3D models. However, this scanner is not able to deal with the geometry whose 

surface is not accessible to the laser, so it can be used to scan the impellers only. The 

measurement accuracy, feature resolution and sensor feature repeatability of this scanner 

are 24 µm, 4.5 µm, and 5 µm respectively.  
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Image process software, Geomagic Studio(Figure 45), is used to receive the data in the 

form of point and present clusters of points in the process of scanning. Once all the 

surfaces of a component are basically represented by collected points, the scan is 

completed. After that, the image is processed based on the original points.  

 

 

Figure 42: Instrument for 3D Scan 
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Figure 43: NDI PRO CMM Model 1000 

 

 

Figure 44: NDI ScanTRAK 
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Figure 45: 3-D Scan Interface in Geomagic Studio (1st eroded impeller, points) 

 

3.3.2 Image Process 

 

Figure 46: Preliminary Processed Image of The Original Impeller(polygons). 
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Figure 47: Preliminary Processed Image of 1st Eroded Impeller(polygons) 

 

 

 

Figure 48: Finally Processed Image of 1st Eroded Impeller(surfaces) 
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Basically, image processing is to convert the 3-D scanned points into polygons and then 

polygons into surfaces. During these two steps, most erroneous data from the scan will 

be removed. However, some of the data representing the real geometry might also be 

changed due to the approximating modification or an improper process. Figure 47 

shows the preliminary processed image of an impeller which is transferred from points 

to polygons. Figure 48 shows a successfully processed geometry of the impeller whose 

surfaces are smooth and continuously connected. More importantly, it can be read and 

edited by most CAD software. In this study, the polygon image is used to identify and 

quantify the geometry loss during erosion, while the surfaced 3-D model is used as 

geometry for CFD simulations. 

3.3.3 Impeller Recorded by Camera and 3-D Scanner 

With the help of 3-D scan, the geometries of all the 4 impellers were captured. Since the 

erosion on blades is more crucial in our study, it is bearable that the scan quality of the 

hub surfaces is not as good as that of the blade. To identify the wear of the impeller 

blades, geometries captured before and after erosion are aligned in Figure 50. The 

yellow part is the wear near the leading edge of each blade. And the measurement of 

wear at the leading edge of each impeller is on these figures.  
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Figure 49: 1st Impeller(Eroded and Original) Captured by Camera(left) and 3-D 

Scanner(right) 
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Figure 50: Comparison of Original and Eroded Impellers When Aligned Together 

1st 

 

2nd 

3rd 
4th 
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3.4 Numerical Simulation 

In this study, the commercial software ANSYS FLUENT is used to calculate the single-

phase, two-phase, and three-phase flow in this ESP. Erosion module issued by ANSYS 

is applied to extract the erosion-related parameters.  

3.4.1 Two Ways to Investigate Erosion 

Head loss and erosion related parameters derived from the simulations are utilized to 

investigate the pump erosion. In order to obtain the performance degradation caused by 

erosion, the performance maps of the new and eroded ESP are plotted in chapter 4. From 

observing the pressure distribution and related variables, the mechanism of head loss is 

expected to be determined. 

 

Erosion rate can be predicted in a three-phase simulation by selecting a proper erosion 

model and calibrating it by the measurement of wear in Figure 50. As is discussed in the 

literature reviews [14][15] [21] [23], many factors decide the erosion rate. In this study, 

sand flush rate, impact angle, and impact velocity are selected to generate the erosion 

model. After knowing the erosion rate on a pump, the designer and manufacturer can 

improve the pump by strengthening the area with high erosion rate.  
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3.4.2 Geometry and Mesh for 1st Stage Performance 

 

Figure 51: Geometry and Mesh of Original Impeller of the Pump[43] 

 

Figure 52: Geometry and Mesh of Original Diffuser of Poseidon Pump [43] 

 

Flow paths for the new impeller were meshed by S. Reddy in Gambit[43]. About 3.71 

million hexahedral elements were generated (Figure 51). Flow paths for the new 

diffuser were meshed by S. Reddy in ICEM(Figure 52)[43]. Around 0.94 million 
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elements were created. The geometry of the flow paths for the 1st stage eroded impeller 

is given by the 3-D model from image process in Figure 48. Girds are generated in 

ANSYS-Mesh (Figure 53 to Figure 55).  Around 3.15 million tetrahedral and 

hexahedral mixed elements are generated. Grid independence study is conducted to 

verify the quality of meshes.  

 

 

Figure 53: Geometry and Mesh of Eroded Impeller of 1st Stage 
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Figure 54: Geometry of Eroded Impeller of 1st Stage-Sectional View 

 

 

Figure 55: Geometry of Eroded Impeller of 1st Stage-Detail of the Tip Clearance 
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3.4.3 Time/ Grid Independence Study 

Grids of the new impeller and diffuser were generated by Sujan Reddy[43]. In his study, 

the quality of the grids is verified. Thus, only the grid quality of the eroded impeller is 

analyzed here.  

 

Before checking the grid, a time independence study is done to determine the proper 

time step for grid independence study. Seven simulations with different time steps are 

performed. Time step is presented in the form of rotated angle which is based on the 

time and angular speed. For example, “0.25 degree/step” means in one step the impeller 

has moved by 0.25 degree in “1.15741E-05 second”. The head ratio and torque ratio are 

referenced to the case that time step is 0.25 degree/step and the number of elements is 

3.15 million. Boundary conditions are set as: 

Water flow rate, 880gpm;  

Outlet pressure, 65 Psi;  

Angular speed, 3600 RPM.  

 

For the time step independence study, the head, thrust, and torque calculated at different 

time steps are given in Table 5. 
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Table 5: Time Step Independence Study 

Element 

no.(million) 3.15 3.15 3.15 3.15 3.15 3.15 

Time step(degree) 0.05 0.1 0.25 0.5 1 2.5 

Head(psi) 28.4 28.1 28 28.3 28.8 30.5 

Head Ratio (%) 101.4 100.4 100.0 101.1 102.9 108.9 

Y+ 109.7 109.5 114.9 111.0 111.2 112.8 

Y* 200.2 206.3 201.3 206.1 197.2 198.4 

Thrust on 

Blade(N) -2868 -2779 -2835 -2877 -2941 -3149 

Thrust Ratio (%) 101.2 98.0 100.0 101.5 103.7 111.1 

Total 

Torque(N*m) 61.580 -59.350 -60.160 -60.800 -61.790 -65.100 

Torque Ratio (%) 1.024 0.987 1.000 1.011 1.027 1.082 

 

 

 

Figure 56: Torque Ratio in Time Independence Study 
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Figure 57: Head ratio in Time Independence Study, Logarithmic Scale in X-Axis 

 

Figure 56 and Figure 57 present head ratio and torque ratio for the different time steps. 

When reducing the time step from 2.5 degree/step, both the head ratio and the torque 

ratio go down, getting close to 100% and then go up. Considering that the time step 

which is too small will have the issue of truncation error, and the time step which is too 

big will lose the trueness of the rotating process, the proper time step is picked between 

0.1 and 0.5 degree/s. At this range, the error would be limited to ±1%. Both Y+ and Y* 

are given as reference. Since the mesh does not change, these values do not change 

much.  
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Table 6: Grid Independence Study 

Element 

No.(million) 1.35 2.2 2.63 3.15 3.69 5.01 

Time step(degree) 0.25 0.25 0.25 0.25 0.25 0.25 

Head(psi) 27.8 28.1 28.3 28 28.2 28.1 

Normalized head 0.993 1.004 1.011 1.000 1.007 1.004 

y+ 248.9 161.1 151.8 114.9 87.5 85.4 

y* 440.5 297.100 268.200 201.3 143.9 150.9 

Thrust on blade(N) -2810 -2865 -2848 -2856 -2853 -2862 

Normalized thrust 

on blade % 0.987 1.003 0.997 1.000 0.999 1.002 

Total torque(N*m) -62.83 -60.32 -60.24 -60.16 -60.03 -60.18 

Normalized total 

torque 1.044 1.003 1.001 1.000 0.998 1.000 

 

In Table 6 the head, thrust, and torque calculated using different meshes are given. 

Figure 58 and Figure 59 show the head ratio and torque ratio for grid independence 

study. In the grid independence study, the time step is set as 1.15741E-05s (0.25 

degree/s). When refining the mesh, the head ratio is fluctuating within ±1%, while the 

torque ratio goes down from over 104% to 100% and then fluctuates within ±1%. It 

seems that the torque of the impeller is more sensitive to grid density than the head of 

the impeller. Although torque is not analyzed in this study, it can reveal how accurate the 

simulation is when describing the flow field in the boundary layer. Y+ and Y* are the 

parameters used to describe the boundary layer. Therefore, the grids with no less than 

2.2 million elements in this study, or in other words,(such as) the case that y+ is no more 

than 161, can be used to describe the single phase simulation at flowrate of 880 GPM. 

However, the flowrate in this numerical study will vary from 583 GPM (20 kBPD) to 
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1200 GPM (41 kBPD), so choosing a finer mesh would be a safer choice.  The mesh 

with 3.15 million is utilized. 

 

 

Figure 58: Torque Ratio in Grid Independence Study 

 

 

Figure 59: Head Ratio in Grid Independence Study 
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4. RESULTS AND ANALYSIS

4.1 Metal Loss of the Pump 

4.1.1 Overview of the Wear 

Figure 60: New and Eroded Diffuser of the 1st Stage 
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Figure 61: New and Eroded Diffuser of the 2nd Stage 

 

Figure 60, Figure 61 and Figure 62 compare the new and eroded diffusers and 

impellers of the 1st and 2nd stages. The metal loss on the diffuser mainly appears at the 

trailing edge near the shroud, while the metal loss of the impeller is at the leading edge 

and the blade tip near the leading edge. 

 

Each of the impeller housings, which are also called diffuser spacers, has minor erosion 

at the inner wall. The amount is too small to be observed, but it is measurable and will 

be analyzed later. 
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Figure 62: New and Eroded Impellers of the 1st Stage (Left) and 2nd Stage(Right) 
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4.1.2 Contour of Wear on the Impellers: 3D scan 

 

 

Figure 63: Surface Distance between New and Eroded Impeller 1 (Unit: inch) 

Wear <0.025in 
Wear >0.05in 
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Figure 64: Surface Distance between New and Eroded Impeller 2 (Unit: inch) 

 

As is mentioned above, the pictures captured by the camera cannot quantitatively show 

the metal loss. For example, the wear at the impeller blade tip is very small compared 

with the leading edge. But with the help of 3D scan, when the new and the eroded 

impellers are aligned together, the contours of their surface distance can directly 

represent the loss of thickness. (Figure 63 and Figure 64) The gray area at the leading 

edge illustrates that the distance is large, exceeding the range (±0.1 inch).The wear at the 

blade tip appears near the leading edge is more than 0.05 inch (blue). For the trailing 

edge, the wear goes below 0.025 inch (green). Figure 65 reduces the range of the 

contour and increases the contrast of wear on the tip. It appears as a border dividing the 
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eroded area (green) and non-eroded area (red) on the tip. So, on the impeller, the wear 

mainly appears at the leading edge and the tip area from the leading edge to that border 

in Figure 65. These areas are mainly affected by impact wear. Some areas with yellow 

color (around 0.01-0.03inch) might come from the error in scan, image process and 

alignment. Slight deformation during pump blade disassembly might also contribute to 

it.  

 

 

Figure 65: Boundary Dividing Wear Area on the Blade Tip of Impeller 1 (Unit: 

inch) 

4.1.3 Tip Clearance Increase 

Figure 66 presents the blade profiles in a sectional view when new and eroded impellers 

are aligned. The minimum distances between the blade tips are measured. It is not hard 

to identify that the wear near the pressure side of the tip is more than that near the 

suction side. It is assumed that the abrasive carried by the secondary flow from the 

pressure side to the suction side is the cause of the wear. Figure 67 shows the overview 

of such measurement in Figure 66 for the 1st impeller.  
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Figure 66: Measurement of the Wear on the Aligned Impeller Profile 

 

 

Figure 67: Measurement of the Wear on the Aligned Impellers 

Pressure 

Suction  
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Figure 68: Measurement of the Thickness of Impeller Housing 

 

In order to know the variance of the tip clearance (distance between impeller blade tip 

and impeller housing), the axial thickness of the impeller housing is measured (Figure 

68). 

 

In Figure 70, the thickness of metal loss of the impeller housing and impeller tip is 

plotted along the axial direction. At the top of the plot is the schematic view of the 

impeller blade and impeller housing, which is picked from Figure 69.  The axial 

location of the leading edge of a new impeller is designated to be zero, so the blade tip of 

the eroded impeller is not measurable near x=0 mm. (For impeller 2, the quality of image 

processing is not good enough, so it is removed.) Wears of the tip and housing at the 

same stage are plotted in the same color. Obviously, the overall increase of tip clearance 
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is larger in the downstream stage, and the tip clearance is getting smaller downstream of 

an impeller. 

 

 

Figure 69: Sectional View of the 1st Stage Assembled
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Figure 70: Measurement of the Wear at the Blade Tip and Impeller Housing 
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4.1.4 Wear of the Leading Edges 

 

 

Figure 71: Distance between Leading Edges of the New and Eroded Impellers. 

 

The loss of thickness at the leading edge of each impeller is the most significant wear 

that is observed. In Figure 71:  the wear is measured between the leading edge surfaces 

of new and eroded impellers according to Figure 50. For the eroded impeller at the 1st 

stage, the shape of the profile is obviously different with the other 3 impellers. This 

could be explained by the different flow regime and particle distribution at the inlet. For 

the 1st impeller, there is no diffuser in the upstream. While for the next three stages, the 

inlet flow regime of each impeller is adjusted by the diffuser in the last stage.  
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Considering the next three impellers, the wear at the leading edge of the impeller is more 

severe at the downstream stage. This trend is also seen in the tip clearance wear of each 

stage. 

 

4.1.5 Weight Loss of Each Stage 

According to the measurements above, it is easy to explain the weight loss of the 

impeller and impeller housing shown in Figure 72, Figure 73 and Figure 74. For the 4th 

diffuser, there is no impeller after its outlet, which has reduced its weight loss. 

 

 

Figure 72: Weight Loss of each Impeller Housing 
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Figure 73: Weight Loss of each Impeller 

 

 

Figure 74: Weight Loss of each Diffuser 
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4.2 Pump Performance Change 

4.2.1 Overview of the ESP Performance Change at Erosion Condition 

As is mentioned in 3.2.2, some issues of the data need to be solved. In this section, “C” 

appears in the plots means the value has been “corrected” to be the real value in the test. 

“M” means the value has been modified (based on the tested value) to be the value when 

the 4th diffuser is not rotating. (The process of the correction is shown in Appendix) 

Figure 75 presents the static pressure measured by the pressure sensors at each inlet and 

outlet. The value of PT5 at stage 1 inlet is fixed at 40 Psi in 200 hours. However, it 

cannot truly represent the inlet pressure due to the questionable location of the sensor. 

Thus, the pressure measured at the bottom tee near air inlet is used as the inlet pressure 

of the ESP.  

 

In order to know the performance change of the ESP, the pressure rise of each stage is 

plotted in Figure 76. For the same liquid flow rate, higher GVF will always cause a 

lower pressure rise of a pump. The inlet GVF of each stage goes down, so the pressure 

rise of each stage goes up. In addition, each stage has a slight pressure drop during the 

200 hours.  In order to compare the head ratio loss stage by stage, Figure 77 plots the 

percentage of the pressure rise (or head ratio) of each stage.  The 1st stage is special and 

has around 25% head loss. The 2nd and 3rd stage has 10% head loss, and the 4th stage 

(modified) has 17% head loss which has the most erosion loss of thickness.  
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When considering the head of the multistage pump, it is better to be cautious when 

viewing the compressible mixture condition. Although the inlet GVF of the 1st stage is 

constant, the exact inlet GVFs of the other stages will increase due to the head loss of the 

stages at its upstream. In this case, the head loss of the 1st stage will increase the inlet 

GVF at the 2nd stage and reduce the head of 2nd stage. So the wear on 2nd stage and head 

loss of the 1st stage are both contributions of the 2nd stage head change.  In order to avoid 

the GVF effect on performance loss of each stage, it is better to consider the case with 

water only. 

 

 

Figure 75: Static Pressure Measured at Different Location during the 200-Hour 

Test 
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Figure 76: Pressure Rise of each Stage during the 200-Hour Test 
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Figure 77: Normalized Pressure Rise during the 200-Hour Test 

 

4.2.3 Performance Curves Movement in 200 Hours 

Figure 78 to Figure 82 compare the pump performance at the 0th and 200th hour. Stars 
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curve. Those curves are generated by polynomial fitting based on the tested points. The 
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Figure 79 compare the performance maps of the overall head and efficiency before and 

after erosion test. The efficiency is calculated by equation(20): 

 
𝜂 =

(𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛) ∗ 𝑄𝑤𝑎𝑡𝑒𝑟 + 𝑃𝑖𝑛 ∗ 𝑄𝑎𝑖𝑟,𝑖𝑛 ∗ 𝑙𝑜𝑔(𝑃𝑜𝑢𝑡/𝑃𝑖𝑛)

𝐼 ∗ 𝑈
 

(20) 

 

Figure 80:Figure 80, Figure 81 and Figure 82 compare the head-Q curves of each stage 

before and after erosion test. No matter what stage, at what GVF, a common result is that 

the performance loss is greater at lower flow rate. 

 

 

Figure 78: Total Pressure Rise at the 0th and 200th Hour 
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Figure 79: ESP Efficiency at the 0th and 200th Hour  

 

Figure 80: 1st Stage Pressure Rise at the 0th and 200th Hour 
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Figure 81: 2nd Stage Pressure Rise at the 0th and 200th Hour 

 

Figure 82: 3rd Stage Pressure Rise at 0th and 200th Hour 

 



  

88 

 

To learn how much percentage the parameters have changed, plots present curve 

function of 200th hour over that of curve function of 0th hour (Figure 83 to Figure 86). 

Obviously, the head loss ratio or the efficiency loss ratio has a negative correlation with 

GVF and liquid flowrate. Considering the loss of thickness of the impeller in Chapter 

4.1, the head loss is caused by the increase in tip clearance, which leads to greater 

internal leakage. Then, these two negative correlations can be explained by the reduced 

leakage due to lower pressure rise. Considering the error in curve fitting, the exact 

values of some points in the curve might not accurately represent the real values, but the 

trend of these curves can still be used to study the performance change due to the 

erosion. The 1st stage is special but it also has the similar trends. Only the performance 

curves at the same inlet GVF of the target stage is comparable. Therefore, the curves at 

non-zero GVF in Figure 84 and Figure 85 cannot directly prove the negative correlation 

of head loss ratio and GVF, but this result could be acquired through further analysis. 
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Figure 83: Performance Map, 1st Stage Pressure Rise Ratio at the 200th Hour 

 

 

Figure 84: Performance Map, 2nd Stage Pressure Rise Ratio at the 200th Hour 
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Figure 85: Performance Map, 3rd Stage Pressure Rise Ratio at the 200th Hour 

 

 

Figure 86: Performance Map, Efficiency Ratio at the 200th Hour 
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To have a direct proof of the head loss at each stage caused by erosion only, the test 

points collected every 50 hours from performance tests are plotted in Figure 87, Figure 

88, and Figure 89. The lines here are just connecting the points. The Head-Q map of the 

1st stage is always different with other stages. But the movement of its performance 

curve due to erosion is similar to other stages. The head loss of the each stage is getting 

larger at lower flowrate, which is indicative of larger internal leakage due to larger 

pressure difference between the pressure side and suction side. The measurement of each 

point might have been affected by the pressure fluctuation in the loop. For example, the 

1st stage, the head of 34kBPD flowrate at 150th hour is smaller than that at 200th hour. 

This fluctuation is acceptable and could be reduced by curve fitting. But it affects the 

accuracy in evaluating the head ratio loss which is important in inspecting the GVF 

effect on head loss caused by erosion. 
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Figure 87: Performance Curves of the Head at 1st Stage Every 50 Hours. 

 

 

Figure 88: Performance Curves of the Head at 2nd Stage Every 50 Hours. 
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Figure 89: Performance Curves of the Head at 3rd Stage Every 50 Hours. 
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4.3 Numerical Simulation on the Pump 

4.3.1 Performance Map (Single-Phase) 

This section will discuss the single phase simulation of the 1st stage. According to the 

grid/time independence study in a previous section, the time step is set at 0.25 

degree/step and the mesh with 3.15 million elements is used. Assumptions and 

simplifications for single phase simulation are shown below: 

1. Instruments like proximity probes, pressure sensors are removed 

2. Geometry of the impeller and diffuser from centerline to hub is simplified 

3. The wear in axial direction of the diffuser spacer is averaged 

4. The wear of diffuser does not affect the performance of the ESP 

5. Temperature is constant everywhere 

6. No air dissolved in the water 

7. Ignore the eccentric effect caused by vibration of the impeller 

8. The area-weight average pressure on the sectional surface represents the inlet or outlet 

pressure of the pump 

9. The mass flow rate at the 1st stage inlet is even 

 

Table 7: CFD Boundary Condition for Single-Phase Simulations 

ESP Water Flow Inlet(GPM) 

Original, 1st stage 583 

Eroded, 1st stage 700 

 880 

Pressure outlet 1000 

65 Psi 1100 

 1200 
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Figure 90: Grid for 1st Stage Performance Simulation 

 

For incompressible flow, the mass flow inlet of the 1st stage can be regarded as uniform. 

Considering that the inlet flow regime would be affected by the 1st impeller, simulation 

is performed on the 1st stage connecting with an inlet body. Figure 90 shows the grid of 

these aligned geometries. It also points out the difference between the impeller inlet and 

stage inlet chosen in CFD simulation. Without adding the whole bottom tee, it saves the 

calculation hours. Table 7 presents the boundary conditions for these single-phase 

simulations. All the simulations applied k-epsilon Model, Realizable, and standard wall 

function.  

 

Figure 91 compares the performance curves collected in the performance test and 

calculated in the CFD simulation. For the new pump, the CFD simulation nicely captures 

the curve in the test. For the eroded pump, the simulation has a good match at lower flow 

rate, but it gradually underestimates its head when flow rate is increased. The 

1st stage outlet  

1st stage inlet  

1st impeller 
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assumptions and simplifications mentioned above might have caused the 

underestimation. In short, the overall single-phase simulations have still captured the 

head loss of the 1st stage, though roughly.  

 

 

Figure 91: Comparison of the Head-Q Curves for the 1st Stage 
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keeps rising in the impeller (0 inch to -2.5 inch), drops a little at the interface between 

impeller and diffusers(-3 inch), and then slightly rises at the end of the diffuser.  

 

Moreover, most of the pressure rise happens in the impeller.  Figure 94 presents the 

deduction of the pressure calculated in the new and the eroded pump. The pressure in the 

impeller(-2.5inch to 0 inch) is constantly increasing, while the most pressure loss due to 

erosion happens in the 1st 0.5 inch(-0.5inch to 0inch) where the main material loss 

happens (Figure 70 and Figure 71). Therefore, the simulation can capture the pressure 

loss reasonably. It clearly describes how the metal loss caused by erosion affects the 

performance of the 1st stage. However, it is still not clear which one determines the head 

loss, the wear at leading edge, or the wear at the tip, or both.  

 

 

Figure 92: Schematic View of the Axial Location on the 1st Stage 
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Figure 93: Axial Pressure Distribution in the New and Eroded Pump in CFD 

Simulation 

 

 

Figure 94: Axial Pressure Loss in the New and Eroded Pump in CFD Simulation 
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4.3.2 GVF Distribution at the Interfaces (Two-Phase) 

In order to predict the erosion rate of the pump, a three-phase simulation of the erosion 

condition with gas and sand is necessary. However, it is too complicated and time-

consuming to directly perform a three-phase simulation. Thus, some simplifications and 

assumptions were made by referring to the two-phase simulation.  

 

It is not easy to “describe” the inlet condition of the 1st stage inlet due to the uneven 

GVF distribution at the stage inlet. Therefore, the bottom tee and the mixer body are 

simply meshed and connected to the 1st stage in the simulation. Figure 95 presents the 

whole geometry, and Figure 96 is the mesh based on the simplified geometry. Table 8 

lists the boundary conditions and other related settings.  

 

Figure 95: Front View of the Whole Geometry 
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Figure 96: Mesh of the 1st Stage with the Bottom Tee Connected  
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Table 8: Parameters Setting and Model Selection for 2-Phase Simulation 

Parameter/Model Setting 

Mass flow inlet-water 55.0kg/s 

Mass flow inlet-air 0.056 kg/s 

Pressure outlet 60 Psi 

Angular speed 3600 RPM 

Air density 4.9kg/m3 

Water-air Drag Schiller-Naumann 

k-epsilon Model Realizable 

Water-air (multiphase) Eulerian-Eulerian 

Turbulence Multiphase 

Model 

Mixture 

Near-Wall Treatment Standard wall function 

Lift none 

 

 

Figure 97: GVF Distribution at Certain Cross-Sections, 20% GVF Inlet 
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Figure 97 shows the GVF at the 1st impeller inlet, 1st diffuser inlet, and 1st diffuser 

outlet. The GVF is not even at 1st impeller inlet due to the geometry of bottom tee. 

However, at the 1st diffuser inlet, the unevenness of air distribution has been greatly 

reduced. Although the GVF is not evenly distributed at each outlet of the diffuser 

channel, the nine diffuser channels have similar GVF. In this case, if we perform the 

simulation on the 1st diffuser and 2nd impeller with an evenly distributed GVF at diffuser 

inlet, it can be assumed that the GVF distribution at the inlet of the 2nd impeller is close 

to the “real condition.” This assumption is also verified by S. Reddy [43]. If analyzing 

the 1st stage, it is necessary to simulate on the whole flow field in Figure 95 and Figure 

96.  Therefore, performing the erosion simulation on the 2nd impeller results in more 

uniform inlet GVF than on the 1st impeller.  

 

Although this two-phase simulation does not apply the ideal gas model, the prediction of 

the pressure distribution can still be used for reference due to the lower compress ratio at 

a relatively higher pressure. Figure 98 and Figure 99 present the pressure distribution 

and blade loading of the 2nd impeller at span=0.98. This is the location of the blade tip.  

At the pressure side, the pressure rise mainly happens at the first 1/3 of the impeller 

blade while at the suction side, the pressure rise is evenly distributed (Figure 98). This 

causes a big pressure difference between the suction side and the pressure side at the first 

1/3 of the impeller (Figure 99). Therefore, the leakage will be greater at this area and 

leads to greater erosion and larger tip clearance which is observed in  

Figure 70.  
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Figure 98: Blade to Blade Pressure Distribution of 2nd Impeller at Span=0.98 
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Figure 99: Blade Loading of 2nd Impeller for Pressure at Span=0.98 

 

4.3.3 Erosion Model for Predicting Erosion Rates (Three-Phase)  

In this section, a CFD erosion model is created according to the erosion related 

parameters from the three-phase simulation.  In addition, it is calibrated by the loss of 

thickness measured on the impeller.  

 

After weighing the balance between the trueness and simulation hours, the 2nd impeller 

is chosen to analyze the erosion rate, and the 1st diffuser is used to create a GVF 

distribution inlet for the 2nd impeller. After this simplification, the geometry size and the 

element number have been reduced significantly. Grids of the new impeller and new 

diffuser are aligned and connected (Figure 100). 
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Figure 100: Grid for the 3-Phase Simulation Inspecting the 2nd Impeller 

 

The assumptions and simplifications for the three-phase simulation are as follows: 

1. Instruments like proximity probes, pressure sensors are removed 

2. Geometry from centerline to hub is simplified 

3. Slip velocity (air and water) is not large 

4. Bubble size is constant 

5. Diameter and density of sand are constants 

6. Temperature is constant everywhere 

7. Ignore the eccentric effect caused by vibration of the impeller 

8. GVF and sand concentration is evenly distributed at the inlet of the 1st diffuser 

9. Bubble size is constant[43] 
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Table 9: Boundary Conditions and Other Parameters for 3-phase Simulation 

Parameter Value Unit 

Mass flow inlet-water 55.0 kg/s 

Mass flow inlet-air 0.056 kg/s 

Mass flow inlet-sand 0.133 kg/s 

Pressure outlet 80 Psi 

Angular speed 3600 RPM 

Bubble size 10e-4 m3 

Sand size 0.0159 in 

 

Table 9 lists the boundary conditions and other parameters specified in this three-phase 

simulation. During the simulation, the third phase is not added until the two-phase flow 

field is stabilized. When adding the sand, the DPM (discrete phase model) has been 

applied. When the three-phase simulation is stabilized, the erosion module is applied to 

calculate the impact angle, impact rate (sand flush rate), and impact velocity. After 

obtaining these parameters, a calibration is performed to obtain the coefficients in the 

erosion model. 

 

Assumptions and other details in erosion rate calibration are as follows: 

1. Erosion happening at the leading edge of the impeller is a periodical process, and its 

period is decided by diffuser blade number and rotating speed (every 40 or 120 degrees) 

2. Wear measured at the same radial location of the leading edge of each blade is 

averaged. (Figure 70, in Chapter 4.1) 

3. According to Figure 101, 3x11 points between the tip and hub of each blade are 

considered in the calibration. 
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4. Impact erosion dominates the erosion on this pump, and it mainly happens at the 

leading edge of the impeller. (Only the impeller blade’s leading edge is going to be used 

for calibration here.) 

5. Equation (21) suggested by ANSYS[28] for predicting erosion is calibrated using the 

least square method. 

 
 

𝐸𝑅 = 𝑐𝑚̇𝑉𝑠𝑎𝑛𝑑
𝑛 𝑓(𝛼) (21) 

6. The Impact angle function developed by Y. Zhang [23] is applied here. 

7. For the DPM simulation, all the particles are discrete. This will require the parameters 

in equation(21), which is for continuous phase, to change to be averaged terms for 

describing the discrete phase problem. Assuming in time ∆𝑡, there are 𝑁(∆𝑡)
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

 

particles impacting the surface with area 𝐴𝑓𝑎𝑐𝑒 at impact angle 𝛼𝑝 and impact velocity𝑉𝑝 . The 

averaged erosion parameters are defined in eq(22-25). If  ∆𝑡 is big enough, there will be 

enough particles impacting the area, which makes the time averaged parameter accurate 

enough to represent the parameters in a continuous case. Thus, eq(25) can represent 

Eq(21). In this study, assuming ∆𝑡 =40 degree/angular-velocity is big enough. 

𝑚̅̇ =

∑
𝑚𝑝

𝐴𝑓𝑎𝑐𝑒

𝑁(∆𝑡)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑝=1

∆𝑡
 

(22) 

𝑉
̅̅ ̅̅̅

=

∑
𝑚𝑝

𝐴𝑓𝑎𝑐𝑒

𝑁(∆𝑡)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑝=1 𝑉𝑝

𝑚̅̇∆𝑡
 

(23) 

𝛼̅ =

∑
𝑚𝑝

𝐴𝑓𝑎𝑐𝑒
𝛼𝑝

𝑁(∆𝑡)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑝=1

𝑚̅̇∆𝑡
 

(24) 
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𝐸𝑅 = 𝑐𝑚̅̇𝑉̅𝑛𝑓(𝛼̅) (25) 

 

 

Figure 101: Points at the Leading Edge of Impeller Picked for Calibration (exclude 

two ends) 

 

As is discussed above, the erosion related parameters are time-averaged. When the time 

exceeds the period mentioned above, the longer time it is simulated, the more accurate it 

will be. Figure 102 to Figure 105 show these time-averaged parameters when the 

impeller rotates 120 degrees. At the area with small sand flush rate, the time might not 

be enough to show the continuous distribution of the parameters, for example, the 

downstream area in Figure 104. Due to the characteristic of the erosion model which is 

an empirical formula (eq (21)), when calibrating the erosion model, all these parameters 

are non-dimensionalized by removing the unit shown in these pictures(directly divided 

by a reference parameter with the same unit, and the value equal to 1). 
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Figure 102: Contours of the Impact Angle (unit: degree), 120-Degree Averaged 

 

 

Figure 103: Contours of the Impact Angle Function, 120-Degree Averaged 
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Figure 104: Contours of the Impact Velocity, 120-Degree Averaged 

  
Figure 105: Contours of the Sand Flush Rate, 120-Degree Averaged 

(Logarithmic Scale) 
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Assuming the wear has a linear relationship with time and erosion rate, equation (26) is 

prepared for least square regression. Table 10 presents the calibration details. From 40-

degree average to 120-degree average, the correlation coefficient stabilizes over 0.7. 

(Figure 106, Figure 107 and Figure 108). The coefficients, a, b, c, n, are stable as well.  

 
𝐿𝑜𝑔(𝐸𝑅 ∗ 𝑇) − 𝐿𝑜𝑔(𝑓(𝛼̅)) − 𝐿𝑜𝑔 (𝑚̅̇ ∗ ∆𝑡 ∗

𝑇

∆𝑡
)

= 𝐿𝑜𝑔(𝑐) + 𝑛𝐿𝑜𝑔(𝑉̅̅̅̅ ) 

𝐿𝑜𝑔(𝑐) = 𝑏, 𝑛 = 𝑎 

(26) 

T: erosion time, 7.2E+05 seconds 

Δt: Time spent in rotating by certain degrees  

 

 

Figure 106: Calibration for the Erosion Model from 40-Degree Averaged 

Simulation 
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Figure 107: Calibration for the Erosion Model from 80-Degree Averaged 

Simulation 

 

 

Figure 108: Calibration for the Erosion Model from 120-Degree Averaged 

Simulation 
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Table 10: Coefficients from Least Square Regression Analysis 

 40degree 80 degree 120 degree 

R^2 0.4987 0.5703 0.5352 

R 0.7061 0.7551 0.7315 

a 1.778 1.694 1.714 

b -8.280 -8.274 -8.301 

c 5.245E-09 5.319E-09 4.992E-09 

n 1.778 1.694 1.714 

 

Choosing the c and n calibrated from the 120-degree-averaged simulation, the final 

erosion empirical equation reduces to equation (27). After applying this model to the 

120-degree-averaged simulation, the erosion rate is shown in Figure 109 and Figure 

110. Assuming the linear relationship between loss of thickness and time, equation (28) 

can be used to predict the wear of the pump. 

 𝐸𝑅
̅̅̅̅ = 4.992𝑚̅𝑉𝑠𝑎𝑛𝑑

1.714̅̅ ̅̅ ̅̅ ̅̅ 𝑓(𝛼̅) × 10−9(𝑚𝑚/𝑠) (27) 

 
𝑊𝑒𝑎𝑟 = ∫ (𝐸𝑅𝑡)𝑑𝑡

𝑇

0

≈ 𝐸𝑅𝑇

= 4.992𝑚̅𝑉𝑠𝑎𝑛𝑑
1.714̅̅ ̅̅ ̅̅ ̅̅ 𝑓(𝛼̅)T × 10−9(𝑚𝑚) 

(28) 
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Figure 109: Erosion Rate near 2nd Impeller Inlet, Logarithmic Scale (unit, mm/s) 

 

 

Figure 110: Erosion Rate near 2nd Impeller Inlet, Linear Scale (Unit, mm/s) 



  

115 

 

 

Figure 111: Wear on near the 2nd Impeller for 200 Hours, Linear Scale (Unit, mm) 
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Figure 112: Eroded 1st Diffuser and Eroded 2nd Impeller 

 

Comparing the wear prediction in Figure 111 with the actual wear on the pump in 

Figure 112, the wear predicted has a nice match with the actual wear. The predicted 

values at the leading edge in Figure 111 are close to the values plotted in Figure 71. 

Even the wear at the diffuser trailing edge which is not considered in calibration, is 

captured by the prediction. 

 

However, the quantitative difference is still observable. There are three main factors that 

lead to this difference:  
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First, the wear actually does not have a linear relationship with time and erosion rate. 

The material loss on the impeller happens gradually during the erosion test. Comparing 

with the pipe or elbow, the leading edge of an impeller has a smaller effective erosion 

area but a greater effect on the flow. Any slight volume loss of the leading edge will lead 

to a big change of local flow and affect the impact angle, impact velocity, and sand flush 

rate, all of which directly affect the erosion rate. This makes the prediction even harder. 

 

 

Figure 113: Water Streamline in 3-Phase Simulation without 1st Imp 
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Figure 114: Water Streamline in 2-Phase Simulation with 1st Imp 

 

Second, the velocity angles for all the three phases at the diffuser inlet are defined as 90 

degree, which is not true. Moreover, the volume fraction of each phase at the diffuser 

inlet is actually not uniform. These two differences between the reality and simulation 

will affect the sand flush rate and impact angle at the leading edge of the impeller. 

Figure 113 and Figure 114 presents that the different inlet velocity angles cause 

different flow separation condition at the diffuser channel. 
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Third, the impact angle function used in this study is developed by Y. Zhang[23] based 

on a series of direct impact tests of Inconel 718 conducted by researchers at the E/CRC 

and Baker Oil Tools [47]. Therefore, it is not necessarily applicable to the pump material 

which is ASTM A436 Type I Ni-resist cast iron in the test.  

 

Other assumptions might also affect the result. For example, it is assumed that all the 

particles have the same size and sharpness. But these are the secondary factors compared 

with three main factors mentioned above. 

 

The first problem can be solved by using the erosion-MDM coupling method, which is 

the add-on erosion module provided by ANSYS. This method changes the shape of the 

mesh after each step according to the erosion function. However, this module is still 

under development and not feasible to use. One of its shortcomings is its ability to deal 

with the transient flow. Even if it works well, significant computer hours is still an issue. 

In this three-phase simulation, after the flow is stabilized, it takes 25 days for the 

impeller to rotate 40 degrees. (Simulation is run on the computer with Intel® Xeon® 

Processor, 256 GB RAM, 20 Cores, 40 Threads) If coupling the MDM, it will 

undoubtedly take even longer. 

 

For the second problem, it is not possible to determine the exact velocity angle or sand 

distribution at the 1st diffuser inlet unless adding the 1st impeller to the simulation. 

However, it will take even longer for such a three-phase simulation. 
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For the third problem, designing a test, like R.D. Russell at al[47], to acquire the impact 

function for Ni-Resist material and frac sand might be a solution. But it costs a huge 

amount of time and money as well. Therefore, it is more economical to find an impact 

function for the material that has similar properties to the material of pump in the study. 

 

Erosion is affected by a lot of parameters. Therefore, to quantitatively analyze all the 

effects of these parameters costs a lot of time and money. It also requires the 

development of the computer capacity. In industry, to accurately predict the wear in 

quantity might be not so important. Sometimes, the designers just need to know the 

weakest area so that they can strengthen it. Or, a quantitative estimation of the thickness 

loss with even 100% error will be regarded as a good prediction[23]. Weighing the 

balance between costs and the accuracy of the prediction, this output is acceptable. It has 

already improved the accuracy a lot for erosion prediction of the pump.  

 

Table 11 compares the erosion CFD model with other studies which has already been 

mentioned in the literature review. 

 

In this study, the simulation is not necessarily three-phase if the test required by the 

sponsor is given by two-phase. This increases the difficulties in the simulation. The axial 

pump will limit the radial movement of each phase. Particle model is using Lagrangian 

method (DPM) in a transient condition. This improves the accuracy but it also increases 

the computer hours. The erosion model is given with the parameters which are more 
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directly affecting erosion. For example, the sand concentration at the wall cannot 

describe how much effective particle impacts on the wall without showing impact angle. 

And the mixture velocity cannot directly represent the impact velocity if the drag force is 

much smaller than inertial force. The model is calibrated by the erosion test, which 

provides the verification and improves the accuracy of the prediction.  

 

Table 11: Details of the Models for Pump Erosion in Different Studies. 

 Stavros et 

al(2009) 

Krüger et al 

(2010) 

Pirouzpanah et al (2014) This 

study(2017) 

Phase 2 2 2 3 

Pump type Mixed Centrifugal  Mixed Axial 

Particle 20-70um 

(CFD) 

32um, quarz sand 140um, frac sand 140um, frac 

sand 

Pump 

speed 

(rpm) 

2650 NA 3600 3600 

CFD-

particle 

model 

Lagrangian, 

steady 

Eulerian Eulerian, transient Lagrangian, 

transient 

Erosion 

test on 

pump 

NA 150g/liter water, 117 hour, 2g/liter, 

1457gpm water, 0% gvf 

200hour, 

2.4g/liter, 

880gpm water, 

20% gvf 

Erosion 

model, and 

calibration 

 
EF
= kVp

nf(α) 

K is 

measured, 

no 

calibration 

 

FKG (
cS,eq

cS,Ref

) (
wmix

wRef

)
3

 

No calibration 

 

(cs)0.08 (
Vs

Vs0
̅̅ ̅̅

)

0.07

  (
kw

kw0
̅̅ ̅̅ ̅

)

1.25

 

 

ER = A ∙ EF2 + B ∙ EF 
A, B are calibrated 

 

ER
̅̅̅̅

= cm̅Vsand
n̅̅ ̅̅ ̅̅ ̅f(α̅) 

C, m are 

calibrated 

Impact 

angle 

function 

Finnie NA NA Zhang 

Parameters 

considered 

impact 

velocity,  

impact 

angle 

sand 

concentration, 

mixture velocity 

Sand concentration, TKE-

water, sand velocity 

impact 

velocity, 

impact angle, 

sand flush rate 
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4.4 Bearings and Vibration 

Although the performance degradation caused by the wear of the impeller directly 

affects the productivity, the reliability issue of the bearings is more important to the run 

life of an ESP. In this section, the wear of bearings and the vibration affected by erosion 

will be analyzed. 

4.4.1 Orbits and FFT at Operation Condition 

 

 

Figure 115: Orbit at the 1st Diffuser 
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Figure 116: Orbit at the 2nd Diffuser 
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Figure 117: Orbit at the 3rd Diffuser 
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size while the  3rd one, the smallest. Because of the thrust bearing/seal located on the 

shaft above the pump’s end stage, it eliminates shaft oscillations at its location due to the 

radial roller bearings inside it. Moreover, the most uneven gas void fraction at the 1st 

impeller has caused the biggest imbalance at the 1st stage than other stages. At 50th hour, 

the size does not increase but decreases, instead. The profile of the orbit at each location 

becomes more and more irregular in the last 150 hours. Rubbing of the journal and 

bushing during the first 50 hours causes the circular orbits. Once the bearings have worn, 

the bearings no longer help reducing orbit amplitude and the dominant circular motion. 

In order to analyze the frequency, the Fast Fourier Transformation(FFT) is performed on 

this orbit signal. The signal collected by two proximity probes are similar, so only one 

direction of the signal is selected at one location. Figure 118, Figure 119, and Figure 

120 present the FFT plots of three orbits in the Y direction at the 0th, 25th, 50th, 66th, 

100th, 150th, 200th hour. Here, one unit(1X) of frequency ratio stands for 1X rotating 

frequency(at 3600 rpm, 1X stands for 60Hz; at 1800 rpm, 1X stands for 30Hz). At the 

beginning, at each location, the biggest peak of the signal magnitude appears at 1X and 

the second biggest appears at 2X. These 2 peaks are the only ones that are observed. The 

1X peak achieves maximum amplitude at the 25th hour and then starts to decrease, while 

the 2X peak keeps increasing of all the 200 hours. Meanwhile, a peak near 0X keeps 

growing during the 200 hours and becomes no smaller that the 1X peak in the end. From 

0X to 1X, more and more random fluctuations appear during the erosion test. In 

addition, the 3X and 4X peaks start to appear at a small but observable size. Generally, 
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the orbit at the 1st diffuser has the largest amplitude at 1X and the 3rd diffuser, the 

smallest. The reason has been explained when discussing the orbits. 

 

 

Figure 118: Orbits after FFT for the 1st Diffuser 
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Figure 119: Orbits after FFT for the 2nd Diffuser 
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Figure 120: Orbits after FFT for the 3rd Diffuser 
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4.4.2 Waterfall Plots in RPM Test 

The FFT plots above provide a perspective of the frequency of the shaft vibration and 

help to explain the irregular plots of orbits. In the RPM test(with water only, at 800, 

1200, 1600, 2000, 2400, 2800, 3200, 3580 RPM), the FFT of the orbits at the different 

RPMs are used to assemble the waterfall plots of the shaft vibration. Considering the 

similar trends of the waterfall plots at 2 directions and 3 locations, only the waterfall for 

the 1st diffuser and y-direction are chosen(Figure 121, Figure 122, and 

Figure 123). For the 1st 25 hours, the 1X peak increases with the erosion time and the 

rotating speed. This means the clearances of the bearings increase due to the wear, and 

the bearings are still working properly to load the centrifugal force. However, after 25 
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hours, as was discussed in 4.4.1, the peak at 1X starts to decrease when the rotating 

speed increases in the RPM test. Although at low speed, this peak increases with erosion 

test hours. This means the bearing clearance is getting bigger in the erosion test,  and it 

gradually loses the normal working condition to load greater radial force on the shaft 

when the rotating speed increase. The abnormal working condition, rubbing, is 

becoming easier and easier to happen. Compared with the peaks in Figure 118, the 

peaks at 0X are not that large. Instead, there is a small blunt peak appears at 0.5X in each 

of the waterfalls after the 50th hour, getting larger and larger. It might be the same to the 

subsynchronous peak at 2/3X observed in Zheng’s study[36](Figure 19). 
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Figure 121: Waterfall of the Orbits at 1st Diffuser (0th, 25th hour) 
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Figure 122: Waterfall of the Orbits at 1st Diffuser (50th, 100th hour)
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Figure 123: Waterfall of the Orbits at 1st Diffuser (150th, 200th hour) 
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4.4.3 Bearing Wear 

 

 

Figure 124: Measurement of the Bushing and Journal Bearing 

 

The pressure difference between two sides of a stage pushes the water back through 

bearing. When the sand enters the clearance of the bearings, the journal and bushing 

grind the particles in the clearance, making the clearance larger. Figure 124 reveals the 

bearing clearances before and after erosion, which are calculated via inner diameters of 

the bushing and outer diameters of the journal. Due to the rotating of the 4th diffuser, 

some uncertainties might have affected the wear. So it is listed but not discussed in the 

analysis. Considering the first 3 stages, the clearance increases are close but the loss of 

thickness on journal and bushing are different. The average radial clearance increase of 

the bearing on the stages is over 10mils, which will be an issue for ESP reliability.  The 
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orbits and FFT peaks that obtained from proximity probes cannot capture this increase at 

the 200th hour due to the rubbing of the shaft, although rubbing is most probably caused 

by the increase of bearing clearance.    

 

 

Figure 125: New and Eroded Journal Bearings 
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Table 12: Microscopic View of the Journal Bearing at the 1st Diffuser 

Journal 1, top, mid, 

bot,0 degree 

Journal 1, top, mid, 

bot,90 degree 

Journal 1, top, mid, 

bot,180 degree 

Journal 1, top, mid, 

bot,270 degree 

    

    

    

 

 

Figure 125 shows the five eroded journals on the shaft and a brand new journal. The 

grooves made by sand are observable but not clear on this picture. Pictures in Table 12 

 are the microscopic views of the eroded bearing at the 1st diffuser, for 3 axial locations 

by 4 circumferential directions. Near the top, the big groove width (0.13-0.15mm) is 

close to the size of 100-mesh sand (0.15mm). In the middle, the number of grooves 

becomes denser, and most grooves have smaller width (<0.1mm). Near the bottom, 

groove number reduces. This can be explained by the crushing process of the particles 
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carried by the leakage flow, from top to the bottom. Similar phenomena are observed 

from the journal bearings at diffusers of other stage. 

 

 

 

Figure 126:  Weight Loss and Diameter Reduction of Journal Bearings 

 

Since the bushing is not easy to disassemble from the diffuser, only the weight loss of 

the journal is measured. Figure 126 presents the comparison of the diameter reduction 

and the weight loss. Generally, the weight loss shows a linear relationship with the 

diameter reduction.   
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5. CONCLUSIONS AND SUGGESTIONS

In this study, not only the traditional methods (experiment and simulation) are used, but 

also the novel scanning method is utilized. Although operation error and image process 

error are unavoidable, 3D scan technology can still provide a more accurate 

measurement for the material loss of the pump. In addition, by inputting the eroded 

geometry that scanned, the simulation can be more accurate and explain the head loss of 

the pump. The results from these three methods are nicely combined in the erosion 

analysis. 

Some conclusions about the erosion study and suggestions to improve the ESP are listed 

below: 

1. Erosion mostly appears at the impeller leading edge, tip near the leading edge, diffuser

trailing edge and bearing. 

2. Loss of thickness at the leading edge of the impeller, or the increase of the tip

clearance, or both of them cause the performance loss of the ESP. 

3. Erosion has a greater effect on the performance loss at small flow rates or low GVF.

4. GVF does not have an obvious effect on the volume of metal loss. If there is any, it

should be a minor negative effect. 

5. The single-phase simulation on the eroded impeller can capture the head loss of the

impeller, which mainly happens in the area with the most severe material loss. 
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6. Considering the pressure difference between the pressure side and suction side of an 

impeller, the larger pressure difference near the leading edge might be the reason for the 

larger tip clearance caused by the leakage flow erosion. 

7. By the erosion model calibrated, this pump could be improved by coating the weak 

points at the impeller leading edge and diffuser trailing edge. 

8. Bearing wear caused the bearings to lose the ability to hold the shaft without rubbing 

in the first 50 hours. This might be the most important issue to the reliability of this 

pump. Some design to protect the bearing can prolong the run life of the pump. 

 

Some proposals for the further study on erosion are shown below: 

1. When testing the multi-stage pump, the 1st stage and last stage will not have the 

similar inlet or outlet flow regimes, which makes the analysis on them differ from the 

analysis on the stages between them. To go further in this study, a pump with more than 

five stages is required.  

2. Only one type of erosion model is generated in this study. To have other models to 

compare, it is necessary to calibrate some other types of erosion models. 

3. When the calculation ability of the computer is improved, it is possible to perform 

Erosion-MDM coupling simulation. If doing this, a great erosion model that calibrated is 

a “must”. 
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APPENDIX A 

Diffuser Wear 

Figure 127: 1st Diffuser Comparison, Left: New, Right: Eroded 
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Figure 128: 2nd Diffuser Comparison, Left: New, Right: Eroded 

 

 

Figure 129: 3rd Diffuser Comparison, Left: New, Right: Eroded 
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Figure 130: 4th Diffuser Comparison, Left: New, Right: Eroded 
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APPENDIX B 

More details in CFD simulations 

Single-Phase Simulations for Performance Maps 

k-epsilon Model: Realizable 

Near-Wall Treatment: Standard wall function 

Spatial discretization 

Gradient: Least Square Cell Based 

Pressure: Second Order 

Density, Momentum, Turbulence Kinetic Energy, Turbulence dissipation rate: First 

order upwind 

Time marching (Transient Formulation): First Order Implicit 

Two-Phase Simulations for Testing the GVF 

Water-air Drag: schiller-naumann 

Water-air: Eulerian-Eulerian 

k-epsilon Model: Realizable 

Turbulence Multiphase Model: Mixture 

Near-Wall Treatment: Standard wall function 

Spatial discretization 

Gradient: Least Square Cell Based 
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Pressure: Second Order 

Density, Momentum, Volume Fraction, Turbulence Kinetic Energy, Turbulence 

dissipation rate: First order upwind 

Time marching (Transient Formulation): First Order Implicit 

Air density: 4.9kg/m3 

Lift: none 

 

Three-Phase Simulations for Erosion Model Calibration 

Water-air Drag: schiller-naumann 

Water-air: Eulerian-Eulerian 

Sand: Discrete Phase Model 

Wall Discrete Phase Reflection Coefficients: 

Normal  

 polynomial 4 0.993 -0.0307 0.000475 -2.61e-6  

Tangent 

polynomial 4 0.988 -0.029 0.000643 -3.56e-6  

Lift: none 

k-epsilon Model: Realizable 

Turbulence Multiphase Model: Per Phase 

Standard wall function 

Scheme: Phase Coupled SIMPLE 

Gradient: Least Square Cell Based 
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Density, Momentum, Volume Fraction, Turbulence Kinetic Energy, Turbulence 

dissipation rate: First order upwind 

Time marching (Transient Formulation): First Order Implicit 

sand flow rate: 0.133kg/s 

density:  2650kg/m3 

air density: ideal gas 

impeller mesh motion: 3600rpm 

air bubble size: 10e-4 m 

p-v coupling: Phase coupled SIMPLE 

 

Sand is not added until the two-phase flow field is stabilized. When adding the solid 

phase, DPM (discrete phase model) has been applied. It takes 2 months for a 40-

processor computer to complete the simulation in which the impeller rotates for 3 rounds 

(1080 degrees). During this time, the particle mass flow is balanced at diffuser inlet and 

impeller outlet. The tracked particle number is increased from 0 to 30 million, and the 

file size was increased from 5GB to 20 GB. After that, the flow field could be regarded 

as stabilized. Then the erosion model can be applied. The simulation should keep going 

so that the erosion on the impeller would be accumulated by the erosion module. It takes 

25 days to move 40 degrees. One reason is that the particles are not moving as fast as 

water and some of them will stay at the clearance between the impeller tip and its 

housing, this will make a huge amount of the particles accumulated in the pump.  
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APPENDIX C 

Correction and Modification 

The pressure rise of the 1st stage is originally measured by the pressure sensors at the 

inlet of the 1st impeller and the outlet of the 1st diffuser. This is improper because the 

inlet suction area of the impeller will make the pressure sensor underestimate the inlet 

pressure. In addition, after the 100th hour, the wear at the hole for pressure sensor 

created a hole and caused turbulent flow which will make the pressure sensor 

overestimate the inlet pressure. Both of them make it necessary to correct the pressure 

rise of the 1st stage. Finally, the pressure sensor at the bottom tee of the ESP is used as 

inlet pressure. After this correction, the pressure rise of the 1st stage during the 200 hours 

is more reasonable (Figure 131). After this correction (Figure 135), the inlet GVF 

would be affected. Figure 132 presents the actually GVF during the 200 hours. The 

GVF is maintained at 18%-22%, which is acceptable for the 20% GVF erosion test. 

In Figure 131, the pressure rise of the 4th stage increases from the 90th to the 130th 

hour, which is abnormal compared with other stages. The 4th diffuser is not assembled 

proximity probes when the torque generated by the fluid on the diffuser is greater than 

the maximum torque that the friction can provide, the diffuser will rotate. This makes the 

relative rotating speed of the impeller and diffuser smaller than 3600RPM and reduces 

the performance of the 4th stage. However, when sand enters the clearance between the 

diffuser and housing, the friction will increase, as well as the maximum torque. After the 
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90th hour, the rotating speed of the 4th diffuser decreases which makes the pressure rise 

increased. The 130th hour seems to be the turning point of the head rise. The head stops 

increasing which means the diffuser might have been stopped.  

 

 

Figure 131: Pressure Rise of Each Stage without Modification or Correction 
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Figure 132: GVF at the Pump Inlet in 200-Hour  

 

 

Figure 133: Performance Maps at 20%GVF Inlet (Left: Multi-Phase Test Rig; 

Right: Erosion Test Rig) 

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0 50 100 150 200 250

G
V

F

Time(hour)

Actual GVF

GVF (Mean)

GVF_m

-10

10

30

50

70

90

5 15 25 35 45

Head comparison of each 
stage, 20% GVF

1st Stage dP(psi)-Mean

2nd Stage dP(psi)-Mean

3rd Stage dP(psi)-Mean

4th Stage dP(psi)-Mean

0

10

20

30

40

50

60

70

80

90

5 15 25 35 45

Head comparison of the 4 
stages, 20% GVF 

head 1_0hr(psi) head 2_0hr(psi)

head 3_0hr head 4_0hr



  

156 

 

 

Figure 134: Performance Maps at 0%GVF Inlet (Left: Multi-Phase Test Rig; 

Right: Erosion Test Rig) 

 

There is a multi-phase test rig which has the same Poseidon ESP installed to test the 

performance in the turbomachinery laboratory [43]. The performance maps of both ESPs 

at two test rigs are presented in the left of Figure 133 and Figure 134. With 0% GVF 

inlet, the 4th stage has unreasonably lower head than the 2nd and 3rd stage. This is 

because of the bigger moment of momentum carried by higher mass flow rate which 

makes the diffuser rotating faster. To acquire the reasonable head of the 4th stage, the 

modification is made by referring to the performance map from the multi-phase test rig. 

Assuming that before the 140th hour, the head of the diffuser is decreasing linearly with 
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time; after the 140th hour, the diffuser stops rotating. Equations for this modification are 

shown below. After the modification, the pressure rise of each stage are shown in Figure 

135. 

𝑑𝑝4
∗ = (𝑑𝑝4,𝑟𝑒𝑓 − 𝑑𝑝3,𝑟𝑒𝑓) + 𝑑𝑝3 − (𝑑𝑝3,𝑟𝑒𝑓 − 𝑑𝑝2,𝑟𝑒𝑓) + (𝑑𝑝3 − 𝑑𝑝2) 

∆𝐶𝑝 =
𝑑𝑝4,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑡=140 − 𝑑𝑝4,𝑡=140

∗

140
 

𝑑𝑝4 = ∆𝐶𝑝t+𝑑𝑝4
∗   for t<140 

𝑑𝑝4=𝑑𝑝4,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑   for t>140 

 

 

Figure 135: Pressure Rise of Each Stage after Correction and Modification 
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