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ABSTRACT 

 

The oil industry has been utilizing different acid systems, both organic and 

inorganic, to stimulate sandstone and carbonate reservoirs. Among these, hydrochloric 

acid (HCl) is the most commonly used acid because it is cheap and efficient. In carbonate 

reservoirs, HCl is used by itself to decrease skin damage by creating conductive 

wormholes; whereas in sandstone reservoirs, HCl is mixed generally with hydrofluoric 

acid for stimulation of the reservoir. 

Although HCl is widely used to increase hydrocarbon recovery from reservoirs, it 

has some drawbacks like high reaction and corrosion rates, especially in high pressure, 

high temperature environments. Therefore, an alternative acid system, which eliminates 

these problems while maintaining the advantages of HCl, is needed.  

In a previous study, a new in-situ generated acid system was introduced for this 

purpose as an alternative to HCl at high temperatures, and its effectiveness was 

investigated. The objective of this study is to optimize the performance of this new acid 

system in Grey Berea Sandstone, Bandera Sandstone, Silurian Dolomite and Indiana 

Limestone. Elemental analysis of precipitates obtained at the end of aging cell tests will 

be investigated first. Coreflood experiments will be modified (flow rate, injected PV of 

acid, different additives etc.) accordingly, and results of elemental analysis of effluent 

samples and X-ray computed tomography (CT) of cores will be discussed. Finally, 

reaction type between the new acid system and carbonate (diffusion or reaction controlled) 

will be determined according to results of rotating disk apparatus (RDA) tests. 



 

iii 

 

DEDICATION 

 

I dedicate this thesis to my family for their infinite support and belief in me. 

 

 



 

iv 

 

ACKNOWLEDGEMENTS 

 

 I would like to thank my advisor, Prof. Hisham Nasr-El-Din, for providing the 

opportunity to work on this project and for his continuous support. I would also like to 

thank my committee members, Dr. Jerome Schubert and Dr. Mahmoud El-Halwagi, for 

reviewing this work. Moreover, I would like to thank Turkish Petroleum for providing the 

financial support during my research at Texas A&M University. Furthermore, I would like 

to thank my colleagues, Khatere Sokhanvarian and Thanakrich Pummarapanthu, for their 

collaboration during this study. Finally, I would like to thank the Lubrizol Company for 

providing the chemicals and giving the permission to publish this work. 

 



 

v 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors 

 This study was supervised by thesis committee consisting of Professor Hisham 

Nasr-El-Din and Jerome Schubert of the Harold Vance Department of Petroleum 

Engineering and Professor Mahmoud El-Halwagi of the Artie McFerrin Department of 

Chemical Engineering. 

All work for the coreflood studies part of the thesis was completed by the student, 

in collaboration with Khatere Sokhanvarian and Thanakrich Pummarapanthu. All work 

for the part of the thesis on rotating disk apparatus studies was completed independently 

by the student. 

Funding Sources 

 This work was made possible with the scholarship provided by Turkish Petroleum. 



 

vi 

 

NOMENCLATURE 

 

ACS   American Chemical Society 

BT   breakthrough 

Cb   bulk concentration of acid, gmole/cm3 

CT computed tomography 

Cs   surface concentration of acid, gmole/cm3 

D   diffusion coefficient, cm2/s 

D0   pre-exponential factor in units of D 

DI   deionized 

Ea   activation energy, kJ/gmole 

gpt gallons per thousand gallons 

ICP-OES  Inductively Coupled Plasma-Optical Emission Spectroscopy 

Jmt   rate of mass transfer of reactant to rotating disk, gmole/s.cm2 

K   specific reaction rate, (gmole/s.cm2) (gmole/cm3)-n 

k0   pre-exponential factor in units of k 

ki   initial permeability, milidarcy 

kf   final permeability, milidarcy 

n   reaction order, dimensionless 

psi   pound per square inch 

PV   pore volume 

R   gas constant, 8.314 kJ/gmole.K 
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RDA   rotating disk apparatus 
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rpm revolution per minute 

Sc   Schmidt number=ʋ/D, dimensionless 

T absolute temperature, oK 

ʋ   kinematic viscosity, cm2/s 

ω    disk rotational speed, rad/s 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

The use of acids to stimulate oil wells dates back to 1896, when Standard Oil 

patented the use of hydrochloric acid (HCl) to increase production from oil and gas wells 

(Crowe et al. 1992). However, because of excessive corrosion caused by HCl to metal 

equipment such as casings, the acidizing technique was abandoned until the use of arsenic 

inhibitors by Pure Oil and Dow Chemical to treat limestone reservoirs in 1932 (Coulter 

Jr. et al. 1987). Since HCl does not react with silicate, the stimulation of sandstone 

formations was made possible by the introduction of hydrofluoric acid (HF) to the industry 

with the patent taken by Standard Oil in 1933. Nevertheless, it was discovered that HF 

was causing precipitation problems, and the first successful acidizing of sandstone took 

place in 1940 with the Dowell Company mixing HF with HCl (Smith and Hendrickson 

1965). It should be noted that HCl was the first acid used for matrix acidizing more than 

a century ago, and it is still the most common acid used. 

Use of HCl in Carbonate Acidizing 

 Because of the rapid dissolution of carbonates, acidizing in carbonate reservoirs is 

usually aimed to bypass the damage, which is called carbonate matrix acidizing. HCl is 

mainly used to stimulate carbonate formations due to its high reactivity with carbonate 

rocks such as limestone (CaCO3), dolomite (CaMg(CO3)2) and siderite (FeCO3) (Muecke 

1982); 
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CaCO$ + 2HCl → CaCl* + CO* + H*. ………………………………………………... (1) 

CaMg CO$ * + 4HCl → CaCl* + MgCl* + 2CO* + 2H*O. …..…...…………………. (2) 

FeCO$ + 2HCl → FeCl* + CO* + H*O. ..………………….…………………….……. (3) 

 HCl is usually used in concentrations of 15%, 20%, and 28% in the industry. The 

amount of mineral dissolved by these different acid concentration is almost same, but the 

main difference is their reaction rates and volumes (Coulter Jr. et al. 1987).  

 Dissolution of limestone and dolomite is mass transfer limited above 32o F and 

302o F respectively (Hoefner and Fogler 1989). It was shown that diffusion controlled (i.e. 

mass transfer limited) reaction between HCl and carbonate leads to formation of highly 

conductive channels called wormholes (Buijse 1997).  

Wormhole Mechanism in Carbonate Acidizing 

 Wormholes are formed by the reaction of acid inside rock pores and wormholes 

and fluid loss from wormholes to formation (Buijse 1997). Damköhler number, NDa, is 

used to characterize the formation of wormholes in carbonate rocks, and it is defined as 

the ratio of the net rate of dissolution by acid to the rate of convective transport of acid. 

At high Damköhler number values, face dissolution occurs while at low Damköhler 

number values ramified wormholes forms (Fredd and Fogler 1998a). In his later work, 

Fredd (2000) further categorized wormhole patterns into 5 types, which are face 

dissolution, conical wormholes, dominant wormholes, ramified wormholes and uniform 

wormholes. They occur with increasing injection rates respectively from face dissolution 

to uniform wormholes. Fig. 1 shows these structures according to their depths of 
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penetration, and clearly dominant wormholes are desired in matrix acidizing of 

carbonates. 

 

Fig. 1–Wormhole structures and their relative depths of penetration (Fredd 2000) 

Problems Associated with the Use of HCl in Carbonate Acidizing 

 Matrix acidizing of carbonate requires low injection rates for preventing fracturing 

of the formation. Although the high dissolving power of HCl is beneficial in matrix 

acidizing of carbonate rocks, rapid spending of HCl may prevent acid from deep 

penetration into the formation at low injection rates (Fredd and Fogler 1998a). As a result, 

face dissolution and/or conical shaped wormholes can be formed (Fig. 1). Effects of this 



 

4 

 

rapid spending of HCl is more profound at elevated temperatures as the reaction rate 

becomes faster (Buijse et al. 2003).  

 Another problem stated by Harris et al. (1966) is that HCl is highly corrosive and 

can only be used with corrosion inhibitors efficiently up to 225oF. Above this temperature, 

corrosion inhibitors only work for 2 hours, and either higher injection rates or a pre-flush 

to cool down the formation is required. 

Use of HCl in Sandstone Acidizing 

 Sandstone acidizing aims to remove near-wellbore damage by dissolving silica 

(SiO2), clays (e.g. Al2Si2O5(OH)4), feldspars (e.g. NaAlSi3O8) and carbonates (CaCO3) 

through the use of mud acid which is generally composed of HF and HCl and their 

reactions are given by (Muecke 1982); 

SiO* + 4HF → SiF2 + 2H*O. ……...……………………………...…………………... (4) 

Al*Si*O4 OH 2 + 18HF → 2H*SiF7 + 2AlF$ + 9H*O. ……...……..………………... (5) 

NaAlSi$O: + 22HF → 3H*SiF7 + AlF$ + NaF + 8H*O. ……...……………………... (6) 

CaCO$ + 2H< → Ca<< + CO* + H*O. ……...……………………………...…..……... (7) 

 In their study Gatewood et al. (1970) stated that acidizing the damaged sandstone 

reservoirs with HF results in good production increase, while acidizing the undamaged 

sandstone reservoirs with HF can barely cover the cost of acidizing. They also concluded 

that increasing formation temperature and clay concentration decreases the acid 

penetration and increasing the initial HF concentration increases the acid penetration. 

Concentrations of HF and HCl in mud acid for sandstone acidizing usually varies between 

2 to 6% and 8 to 12% respectively (Coulter Jr. et al. 1987). 
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Precipitate Problem in Sandstone Acidizing  

Treating sandstone rocks through acidizing is much more complex than carbonate 

rocks. Even though the purpose of acidizing the formation is to increase the permeability, 

it is possible to have a decrease in permeability after acidizing sandstone formations. Two 

possible mechanisms for this decrease described by Hill et al. (1981) as precipitation of 

reaction products and (or) fines migration. This precipitation was reported as a result of 

secondary and tertiary reactions following the primary reaction (Eqs. 4, 5, 6 and 7) 

between HF and minerals found in sandstone (Gdanski 1999; Li et al. 1998; Ziauddin et 

al. 1999). The secondary reaction, as shown in Eqs. 8 and 9, takes place between fluosilicic 

acid and aluminosilicate (K-feldspar, illite etc.) (Li et al. 1998); 

SiF7*= + 6KAlSi$O: + 18H< + 10H*O → 6K< + 6AlF*< + 18H*SiO$ + H2SiO2. …. (8) 

SiF7*= + KAl$Si$OAB OH * + 6H< + 4H*O → K< + 3AlF*< + 4H2SiO2. ……………. (9) 

Silica gel forms as a result of elimination of aluminum from aluminosilicate through 

tertiary reaction, which is shown in Eq. 10 (Li et al. 1998); 

AlF*< + KAlSi$O: + 4H< + 4H*O → K< + 2AlF*< + 3H2SiO*. ……………........… (10) 

HCl-Clay Interactions in Sandstone Acidizing 

 In sandstone acidizing, in order to prevent the possible precipitation of CaF2, a 

preflush of HCl is usually used before pumping HF-HCl mixture when the amount of 

calcium carbonate (CaCO3) is not negligible (5-10%) (Coulter Jr. et al. 1987; Muecke 

1982). 

 As it was first stated by Gdanski and Peavy (1986), HCl does not react only with 

carbonates within the sandstone formations, but also reacts with aluminosilicates. This 
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interaction between aluminosilicates and HCl was explained by Bryant and Buller (1990) 

as the extraction of aluminum (Al) and weakening of crystal structure of the minerals, and 

the development of a siliceous leached layer on the surface of the minerals resulting in 

fines migration. 

 In their detailed study on acid-sensitive aluminosilicates, Hartman et al. (2006) 

examined the dissolution of analcime (a type of zeolite) and three types of clay minerals 

which are kaolinite, chlorite, and illite in HCl. Accordingly, dissolution reaction takes 

place as leaching of Al and dissolution and precipitation of Silicon (Si). It was found that, 

dissolution process occurs at a much faster rate with zeolite than clays. Their explanation 

for this difference was the difference in their mineral structures. Since zeolites have more 

complex crystalline structure as opposed to simple, layered structure of clay minerals (Fig. 

2), they provide more surface area for reaction and the reaction between acids occurs much 

faster. 

 

Fig. 2–Mineral structures of clays (Hartman et al. 2006) 
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Alternatives of HCl in Carbonate and Sandstone Acidizing 

Organic Acids 

 Weak organic acids such as formic acid, acetic acid have been used as an 

alternative to HCl (Buijse et al. 2003; Fredd and Fogler 1998a). Since organic acids are 

weak acids with low H+ concentration, they react with carbonates at a slower rate than 

HCl and are suitable to use in wells with high bottomhole temperatures (Coulter Jr. et al. 

1987). Therefore, organic acids can provide deeper penetration than HCl in carbonate 

reservoirs at low injection rates. 

2HOrg + CaCO$ → CaOrg* + H*O + CO*. ……...………………………………….. (11) 

Limitations of Organic Acids  

 Organic acids are not as efficient as HCl since their reaction with carbonate is 

reversible (Eq. 11) under reservoir conditions, meaning that they are thermodynamically 

limited. Chatelain et al. (1976) showed that 60% of a 15 wt% acetic acid solution remained 

unreacted when it was injected into carbonate at 250oF. It was reported that corrosion 

caused by organic acids is also an issue, especially at high temperatures (Bybee 2002; 

Frenier et al. 2001; Scribner 2001).  Another limitation of organic acids is that, they cannot 

be used at high concentrations since their calcium salts, like calcium acetate and calcium 

formate, have low solubility. Moreover, the cost of organic acids is considerably higher 

than HCl (Chang et al. 2008). 

Chelating Agents 

Chelating agents have been used for removal of calcium and iron scales in oil wells 

as well as stimulating carbonate reservoirs. The mechanism for the stimulation with 
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chelating agents, however, is different than acids. Chelating agents are capable of forming 

stable metal/ligand chelates with metals such as calcium and iron which are commonly 

found in oil reservoirs. Chelating agents, which have enough bonding sites, surround the 

coordination sites of metal ion in aqueous solution to form these chelates (Shaughnessy 

and Kline 1983). Polyaminocarboxylic acids such as EDTA, can form highly stable 

chelates with both calcium and iron ions (Fredd and Fogler 1998a). For this reaction to 

happen, polyaminocarboxylic acids undergo a stepwise loss of protons to reach their fully 

ionized state (Eqs. 12 through 15). 

H2Y ⇌ H$Y=A + H<, ………………………………………………………….......…. (12) 

H$Y=A ⇌ H*Y=* + H<, ……………………………………………………….......…. (13) 

H*Y=* ⇌ HY=$ + H<, …………………………………..…………………….......…. (14) 

HY=$ ⇌ Y=2 + H<, …………………………………………..……………….......…. (15) 

The dissolution of calcium by EDTA occurs by combination of hydrogen ion 

attack (Eq. 16) and chelation of free calcium ion (Eq. 17) at pH of 4-5 (Shaughnessy and 

Kline 1983). The combined reaction of chelation and hydrogen ion attack is given in Eq. 

18. 

2H< + CaCO$ ⇌ Ca<* + H*O + CO*, ……...……………………………………….. (16) 

Ca<* + H*Y=* ⇌ CaY=* + H<, ……...…………………..………………………….. (17) 

H*Y=* + CaCO$ ⇌ CaY=* + H*O + CO*. ……………………………….........…….. (18) 
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 Chelating agents are also considered as an alternative to HCl like in the case of 

organic acids. Comparing to HCl, it was shown that, chelating agents do not cause face 

dissolution at low injection rates. Moreover, they perform better at high temperature and 

low injection rate conditions (Mahmoud et al. 2011). 

Limitations of Chelating Agents 

 The main concern regarding the use of chelating agents in oil wells is their thermal 

stabilities at high temperatures. Sokhanvarian et al. (2016) studied the thermal stability of 

4 types of chelating agents, which are GLDA, NTA, HEDTA, and EDTA. They concluded 

that, chelating agents are susceptible to thermal degradation at temperatures over 350oF. 

Another limitation of most common chelating agents is their potential risk to health and 

environment. For example, EDTA and DTPA are not biodegradable and NTA is known 

as animal carcinogen (Frenier et al. 2003). Lastly, higher cost is another limitation that 

chelating agents have (Wilson 2015). 

Kinetic Studies for Acid-Carbonate Reactions 

 Kinetic studies for an acid-carbonate system consist of calculating the rock 

dissolution rate, reaction rate constant, reaction order, and diffusion coefficient and 

activation energy. These parameters are used in simulation of acid treatments to obtain 

optimum acid injection rate, acid concentration and shut-in time (Taylor et al. 2004). 

Rotating Disk Apparatus (RDA) has been the widely used method to calculate reaction 

constants for different types of acids (de Rozieres 1994; Fredd and Fogler 1998b; Lund 

and Fogler 1975; Lund et al. 1973; Rabie et al. 2010; Rabie et al. 2014; Taylor et al. 2004; 
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Taylor and Nasr-El-Din 2009). RDA can also assist determining the type of reaction, 

whether it is mass transfer (diffusion) limited or surface reaction limited. 

Mass Transfer Limited and Surface Reaction Limited Reactions  

 Solid-liquid reactions, such as acid-carbonate reaction, occur in the following three 

steps; (1) diffusion of liquid to the solid-liquid interface, (2) reaction between liquid and 

solid at the solid-liquid interface, and (3) diffusion of liquid from the solid-liquid interface 

(Lund et al. 1973). Slowest step determines the reaction type as either mass transfer limited 

or surface reaction limited. In other words, if the slowest step is the diffusion of liquid to 

or from the interface, then the reaction is said to be mass transfer limited and if the slowest 

step is the surface reaction, then the reaction is said to be surface reaction limited (Taylor 

and Nasr-El-Din 2009). 

 In an RDA study, reaction rate constants are plotted against the square root of the 

solid disk angular velocity for laminar conditions. If this plot has a positive slope, the 

reaction is decided to be mass transfer limited. At higher velocities, where the effect of 

velocity decreases, the slope approaches to zero. When velocity has no control over the 

reaction anymore, slope becomes zero and the reaction is called surface reaction limited 

(Boomer et al. 1972) (Fig. 3). 
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Fig. 3–Plot of reaction rate vs. square root of rotational speed indicating reaction types 

Reaction Constants 

 Newman (1966) presented the equation of rate of mass transfer for Newtonian 

fluids in laminar flow regime in Eq. 19. In an RDA study, rate of mass transfer, bulk 

concentration of acid, disk rotational speed, and kinematic viscosity of the acid is known 

and diffusion coefficient is calculated accordingly. It should be noted that, surface 

concentration of acid is approximated to zero for mass transfer limited reactions. 

JGH =
B.7*B2:	LMNO P QR S O

A<B*T:B	LMNS P<B.A24A	LMNO P	
∗ CV − CX , …………………………...……….… (19) 

where, 

Jmt  = rate of mass transfer of reactant to rotating disk, gmole/s.cm2 

ʋ  = kinematic viscosity, cm2/s 

ω = disk rotational speed, rad/s 
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Cb  = bulk concentration of acid, gmole/cm3 

Cs  = surface concentration of acid, gmole/cm3 

Sc  = Schmidt number=ʋ/D, dimensionless 

D  = diffusion coefficient, cm2/s 

 Reaction order for surface reaction limited reactions can be calculated by using 

Eq. 20 which is a power law expression (Lund et al. 1973). 

−rYZ[ = kCX], ……………………………………………………………………...… (20) 

where,  

-rHCl  = rate of consumption, gmole/s.cm2 

k  = specific reaction rate, (gmole/s.cm2) (gmole/cm3)-n 

n  = reaction order, dimensionless 

 Activation energy can be calculated by using Arrhenius equation. For surface 

reaction limited reactions and mass transfer limited reactions Eqs. 21 and 22 can be used 

respectively.  

k = kBexp −Ea RT , …………………………………………………………….… (21) 
 
D = DBexp −Ea RT , …………………………………………………........……… (22) 

where, 

k0 = pre-exponential factor in units of k 

D0 = pre-exponential factor in units of D 

Ea = activation energy, kJ/gmole 

R = 8.314 kJ/gmole.K 

T = temperature, K 
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A Novel In-Situ Generated Acid 

 Organic acids and chelating agents have been used to substitute HCl to address the 

limitations of HCl at high temperature and low injection rate applications of carbonate 

acidizing. However, organic acids and chelating agents are weak acids compared to HCl. 

In this study, a novel in-situ generated acid system is investigated. The new acid system 

is based on HCl and consequently, its dissolution power is comparable with HCl. Without 

sacrificing the strength of the acid, the retardation mechanism of the in-situ generated HCl 

provides slower reaction rates, which in return results in dominant wormholes with no 

face dissolution. Another advantage of in-situ generated HCl is causing less corrosion to 

metal tubulars (Sokhanvarian et al. 2017). 

Qualitative observations, such as face dissolution, breakthrough volume, can be 

obtained from coreflood tests done with acid-carbonate systems. RDA analysis is used, to 

get the reaction constants (reaction rate constant, diffusion coefficient and activation 

energy) of the acid to quantify and confirm these observations.  

The objective of this study is to (1) investigate the performance of the in-situ 

generated HCl with coreflood tests in sandstone cores (as pre-flush) and carbonate cores 

(both dolomite and limestone) at 300oF, (2) determine the reaction constants of in-situ 

generated HCl with RDA analysis, and (3) compare the performance of in-situ generated 

HCl with 15 wt% regular HCl according to the results of coreflood and RDA tests. 
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CHAPTER II  

EXPERIMENTAL METHODS 

 

Materials 

In-situ generated HCl and 15 wt% regular HCl (ACS grade, 36-37 wt%) were the 

two acids tested in this study with coreflood experiments. Deionized (DI) water (18.2 

MΩ.cm at room temperature) and KCl were mixed to prepare 5 wt% brine, which was 

used as pre and post flush fluid in coreflood tests and to saturate cores. The additives used 

are shown in Table 1, while physical properties of fluids measured at 75oF are shown in 

Table 2.  The cores used in this study were obtained from Bandera sandstone, Grey Berea 

sandstone, Silurian dolomite and Indiana limestone with a length of 6 in. and a diameter 

of 1.5 in. Their mineral composition is shown in Table 3. 

Marble disks, having 0 vol% porosity, were cut to dimensions of 1.5 in. diameter 

and 0.65 in. height. Mineralogy of these marble disks was 99 wt% calcite. After cutting, 

the disks were smoothed by first using sandpaper and second soaking in 0.1 M HCl for 30 

minutes. Then, the disks were washed with deionized (DI) water (18.2 MΩ.cm at 25℃) 

and kept in DI water until the time they were used. 

Additive Concentration, gpt 
Corrosion inhibitor 6 

Corrosion inhibitor intensifier 40 
Iron control agent 8 

Non-emulsifier 3 

Table 1–Amounts of additives used in acid compositions 
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Acid Used Viscosity, 
cp 

Density, 
g/cm

3
 

pH HCl Concentration, 
wt% 

15 wt% regular 
HCl 1.220 1.073 0 15 

In-situ generated 
HCl 1.596 1.107 0 16.3 

15 wt% regular 
HCl + additives 

1.30 1.082 0 18.76 

In-situ generated 
HCl + additives 1.92 1.14 0 19.54 

5 wt% KCl 0.910 1.049 - - 

Table 2–Physical properties of fluids used in this study 

 
Grey Berea 
Sandstone 

(wt%) 
Bandera 

Sandstone 
(wt%) 

Silurian 
Dolomite 

(wt%) 
Indiana 

Limestone 
(wt%) 

Quartz 86 57 0.38 1.7 

Dolomite 1 16 96 0.4 

Calcite 2 - 0.04 97.3 

Illite 1 10 - - 

Kaolinite 5 3 - - 

Chlorite 2 1 - - 

K-Feldspar 3 - - - 

Plagioclase - 12 - - 

Ankerite - - 3 - 

Siderite - - 0.04 - 

Albite - - 0.99 - 

Table 3–Mineral composition of cores used in this study 
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Core Preparation 

 Core samples were first dried at 220oF for four hours and then saturated with 5 

wt% KCl for four hours. The dry and saturated weights were each recorded and using the 

density of 5 wt% KCl, the porosity of the cores was calculated. 

Coreflood 

 Using a nitrogen cylinder, a back-pressure regulator was used to apply 1200 psi of 

back pressure for keeping CO2 in the solution. The overburden pressure applied to the core 

holder was 1500 psi. The pressure range of the differential pressure transducer was 0-300 

psi, and it was connected to a computer to record the pressure drop across the core (from 

the inlet of the core to the outlet of the core). LabVIEWTM software was used to plot 

pressure drop versus time graph. To inject the acid composition into the core, a precision 

syringe pump with a maximum allowable pressure of 2000 psi was used. Using an 

automatic fraction collector, effluents were collected every quarter PV (pore volume) of 

acid injected. See Fig. 4 for a schematic of the coreflood setup used in this study. 

 

Fig. 4–Coreflood setup (El-Monier and Nasr-El-Din 2013) 
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Rotating Disk Apparatus (RDA) 

 In this method, reacting rock is mounted on a spindle with the help of a heat-shrink 

Teflon® tubing (Fig. 5) and is rotated at different rotational speeds in a Hastelloy® vessel 

filled with reacting fluid, at different temperatures (Taylor et al. 2004). In this study, the 

operating temperatures were 100oF, 150oF, and 200oF, while rotational speeds of 200 to 

1200 revolution per minute (rpm) was used. The pressure inside the reaction vessel was 

kept between 1000-1300 psi to keep the CO2 in solution. See Fig. 6 for the picture of the 

RDA setup used in this study. 

 

Fig. 5– Photograph of reacting marble disk and reactor lid, which is connected to rotor  
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Fig. 6– Photograph of rotating disk apparatus 

Computed Tomography (CT Scan) 

 Medical-grade CT scanner was used for the analysis of the cores. It is adapted for 

specialized use with drilling cores. Series of standard image files resulted from the data of 

the scanner were visualized using ImageJ software. These image files were interpreted as 

porosity profile for sandstone cores, while one whole image of the core was used to detect 

the wormhole propagation for carbonate cores. 
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See-Through Cell 

 The see-through cell is a pressure vessel to heat liquids higher than the boiling 

point of water (Fig. 7). It has a glass window to ‘see’ inside the cell. The liquid is contained 

in a glass, graduated cylinder and this cylinder is then placed into the see-through cell. 

After the metal cap of the see-through cell is sealed, the vessel can be pressurized with a 

nitrogen source. The system temperature can be set to a certain temperature with a heating 

jacket. See-through cell allows the user to test the behavior of the liquid with temperature 

and observe the physical changes during the test. 

 

Fig. 7–Photograph of see-through cell 

Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP – OES) 

 An Optima 7000 ICP-OES Spectrometer was used for elemental analysis on 

samples collected from RDA and coreflood experiments. Ca, Mg and K concentrations 



 

20 

 

were measured for dolomite and limestone cores, while for sandstone cores, Ca, Mg, K, 

Fe, Si, and Al were measured. Dilution factors for coreflood effluents collected from Grey 

Berea Sandstone, Bandera Sandstone, Silurian Dolomite, and Indiana Limestone were 

1000, 2000, and 5000 ppm respectively. Dilution factors for RDA samples were 500 ppm. 

Auto Titrator 

 Metrohm (907 Titrando) titrator was used to measure the core effluent acid 

concentration. The titration type utilized was strong acid-strong base titration, and 0.1M 

and 0.5M NaOH were used as a titrant. The weight of the effluent sample was measured 

and entered into the software interface. The software then calculated the amount of NaOH 

used to neutralize the acid, and, from there, the weight percent of acid present inside the 

solution was reported. 

pH Measurements 

 The pH of the core effluent samples was measured using epoxy electrode, and it 

was calibrated before each measurement with three pH buffers (4, 7, and 10). 

Density and Viscosity Measurements 

 The density of in-situ generated HCl and 15 wt% HCl was measured with DMA 

35 portable density meter at room temperature. The kinematic viscosity was measured 

with a capillary viscometer. The capillary tube used was 0C type. After putting the fluid 

into this tube, the viscosity timings were recorded at different temperatures. These values 

were multiplied by the constant, 0.003 to calculate kinematic viscosity. Finally, it was 

multiplied by the density of the fluid to obtain the absolute viscosity. 
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CHAPTER III  

RESULTS AND DISCUSSION* 

 

Coreflood Studies 

 In this chapter, performances of the novel in-situ generated HCl and 15 wt% HCl 

were analyzed and compared with a series of coreflood experiments. In these experiments, 

effects of temperature, injection rate and the amount of acid injected were observed. 

Sandstone cores (Grey Berea Sandstone and Bandera Sandstone) were used to measure 

the performances of both acids in a preflush stage and porosity and permeability changes 

were measured. Carbonate cores (Silurian Dolomite and Indiana Limestone) were used to 

measure the performances of both acids in the main stage and wormhole propagations 

were examined. Pressure drop vs. time was plotted with the help of LabVIEWTM software. 

 For sandstone cores, 5 wt% KCl was injected with an injection rate of 3 cm3/min 

through production direction until a stabilized pressure drop was observed in the software. 

Then, the direction was switched to the injection direction and the desired amount of acid 

was injected with the desired injection rate. Effluents were collected every 0.2 PV after 

the start of acid injection. After the acid injection, brine was injected with an injection rate 

of 3 cm3/min first in the injection direction for 2 PV and then in the production direction 

                                                

* Reprinted with permission from “A New In-Situ Generated Acid System for Carbonate Dissolution in 
Sandstone and Carbonate Reservoirs” by Khatere Sokhanvarian, Thanakrich Pummarapanthu, Emre Arslan, 
Hisham Nasr-El-Din, Nicole Shimek, Kern Smith, 2017. SPE International Conference on Oilfield 
Chemistry, 3-5 April, Montgomery, Texas, USA, Copyright [2017] by Society of Petroleum Engineers.  
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until the pressure drop was stabilized and the effluents became colorless. Permeability 

ratio was decided from stabilized pressure drop values before and after acid injection using 

Darcy’s equation. Porosity profiles of cores, before and after the acid treatment, were 

obtained by performing CT scan on the cores in dry and saturated conditions. 

 For carbonate cores, 5 wt% KCl was again injected with an injection rate of 3 

cm3/min through production direction until the pressure drop was stabilized. Afterwards, 

a maximum of 5 PV of acid was injected in the injection direction to observe the 

breakthrough when the pressure drop suddenly dropped to 0. Effluents were collected 

every 0.2 PV after the start of the acid injection. After the breakthrough, brine was injected 

with an injection rate of 3 cm3/min first in the injection direction for 2 PV and then in the 

production direction until the effluents became colorless. Wormhole propagation was 

captured by performing CT scans on cores after the acid treatment. 

 In the first subsection, a summary of previous coreflood experiments is provided, 

which were done with in-situ generated HCl and 15 wt% HCl at 250 and 300oF. The 

possible reason for poor performances at 300oF is addressed in the next subsection. In the 

following subsections, results of coreflood tests, done with Bandera sandstone, Grey Berea 

sandstone, Silurian dolomite, and Indiana limestone at 300oF, were given and compared 

with the results of previous coreflood tests. The performances of the in-situ generated HCl 

and 15 wt% HCl was also compared for all core types. 

Summary of Previous Coreflood Tests Done at 250 and 300oF 

 During the course of this project, series of coreflood tests were carried out. This 

study focuses more on the coreflood experiments done at 300oF. For convenience, 
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previous experiments done at 250 and 300oF is summarized under this section and results 

are compared in detail in the coming sections. 

 At the beginning of the project, coreflood tests were done with Grey Berea 

sandstone, Bandera sandstone, and Silurian dolomite at 250 and 300oF (Sokhanvarian et 

al. 2017). The novel in-situ generated HCl and 15 wt% HCl was used in these tests and 5 

PV of acid was injected with an injection rate of 1 cm3/min for each case.  

 Coreflood tests done with Grey Berea sandstone indicated that at 250oF, in-situ 

generated HCl performed better than 15 wt% HCl. At this temperature, there was a 164% 

permeability improvement with the new in-situ generated HCl, while 15 wt% HCl did not 

change permeability at all. On the other hand, at 300oF, both acids showed a damaging 

trend. In situ-generated HCl caused 11% permeability decrease and 15 wt% HCl caused 

severe damage to the core as the pressure drop did not stabilize. These results are shown 

in Table 4. 

Core ID Acid Temperature, oF kf/ki 
G-6-22 In-situ generated HCl 250 2.64 
G-6-27 15 wt% HCl 250 1.0 
G-6-21 In-situ generated HCl 300 0.89 
G-6-17 15 wt% HCl 300 Pressure drop did not stabilize 

Table 4–Grey Berea sandstone coreflood tests. 5 PV of acid was injected with 1 cm3/min 

 Bandera sandstone has more illite and carbonate than Grey Berea sandstone in its 

mineral composition. Illite is a very sensitive clay type and can plug the pore throats by 

swelling in the presence of HCl. However, the high concentration of carbonate in Bandera 

sandstone can overcome this effect and result in better permeability and porosity 
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improvement. In Table 5, the results of coreflood tests of Bandera sandstone are given. It 

is seen in this table that at 250oF, both in-situ generated HCl and 15 wt% HCl improved 

permeability. When the temperature was increased to 300oF, both acids showed a decline 

in their performances. 

Core ID Acid Temperature, oF kf/ki 
BG-6-12 In-situ generated HCl 250 1.72 
BG-6-6 15 wt% HCl 250 2.17 
BG-6-7 In-situ generated HCl 300 1.00 
BG-6-5 15 wt% HCl 300 1.51 

Table 5–Bandera sandstone coreflood tests. 5 PV of acid was injected with 1 cm3/min 

 Wormhole propagation and injected PV of acid to reach breakthrough were the 

two main parameters to investigate carbonate acidizing. Although in-situ generated HCl 

reached breakthrough after 3 PV of injection into Silurian dolomite at 250oF, 15 wt% HCl 

could not penetrate the 6 inch long core after 5 PV of injection at the same temperature. 

In fact, in-situ generated HCl created a single, dominant wormhole, while 15 wt% HCl 

caused face dissolution (Fig. 8). Increasing the temperature to 300oF however, decreased 

the performances of both acids as they could not reach breakthrough after 5 PV of 

injection. Results of Silurian dolomite coreflood studies are tabulated in Table 6. 

Core ID Acid Temperature, oF PV to breakthrough (BT) 
SD-6-40 In-situ generated HCl 250 3 
SD-6-42 15 wt% HCl 250 Did not reach BT after 5 PV 
SD-6-41 In-situ generated HCl 300 Did not reach BT after 5 PV 
SD-6-37 15 wt% HCl 300 Did not reach BT after 5 PV 

Table 6–Silurian dolomite coreflood tests. Injection rate of acids was 1 cm3/min 
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Fig. 8–Silurian dolomite cores after injecting in-situ generated HCl and 15 wt% HCl at 
250oF with an injection rate of 1 cm3/min 

Addressing the Performance Reduction of In-Situ Generated HCl at High 

Temperature 

 Results provided for the previous coreflood tests indicated that the new in-situ 

generated HCl displayed better performance at 250oF, comparing to 15 wt% HCl. 

However, increasing the temperature to 300oF decreased the performance of in-situ 
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generated HCl dramatically. To address this situation, pH and HCl concentrations of 

effluents collected at 250 and 300oF were compared. In Fig. 9 and Fig. 10, the change in 

pH and H+ concentration with respect to cumulative PV of acid injected is given for in-

situ generated HCl at 250 and 300oF for Grey Berea sandstone and Bandera sandstone 

respectively. A decrease in pH to 0 and an increase in H+ concentration is an indication of 

acidity in the collected effluents. Therefore, it was inferred that there was an excess acid 

which remained unreacted at 250oF. On the other hand, at 300oF, almost all of the in-situ 

generated HCl seemed spent. 

 To confirm these interpretations, a decomposition experiment was conducted with 

see-through cell. The cell was heated to 300oF and in-situ generated HCl was put in this 

cell. A pressure of 400 psi was applied with the help of a nitrogen cylinder to keep the 

CO2 in solution. At the end of 4 hours of heating, pH was measured as 7.61 and H+ 

concentration was 0 vol%. Moreover, a white precipitate was observed during heating and 

after cooling (Fig. 11). 

 This experiment showed that in-situ generated HCl was decomposing very quickly 

at high temperatures and forming a chloride salt precipitation. Since it is known that 

chloride salts are soluble in water, it can be removed by increasing the amount of brine 

injected after the treatment. In the following coreflood experiments, this problem is 

addressed by increasing the injection rate of acid and decreasing the PV of acid injected. 

At the end, an optimum injection rate for in-situ generated HCl was determined. 

 



 

27 

 

 

 

Fig. 9–pH and H+ concentration values for coreflood experiment of Grey Berea 
sandstone at a. 250 and b. 300oF. 5 PV of in-situ generated HCl was injected with 1 
cm3/min injection rate. 
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Fig. 10–pH and H+ concentration values for coreflood experiment of Bandera sandstone 
at a. 250 and b. 300oF. 5 PV of in-situ generated HCl was injected with 1 cm3/min injection 
rate.  
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Fig. 11–Pictures of in-situ generated HCl taken (a) during heating inside the see-through 
cell, (b) after cooling at the end of see-through cell. In both cases a white precipitate is 
visible. 

Coreflood Experiments Done with Grey Berea Sandstone at 300oF  

Treatment with In-Situ Generated HCl (5 cm3/min – 1 PV – G-6-20) 

 Considering the effects of a possible precipitate inside the core, the coreflood 

experiment with in-situ generated HCl and Grey Berea sandstone at 300oF was repeated. 

In this test, the injection rate was increased from 1 cm3/min to 5 cm3/min. By increasing 

the injection rate, residence time of the acid inside the core was decreased and thus it was 

aimed to minimize the formation of precipitates inside the core. Moreover, the amount of 

acid injected was decreased from 5 PV to 1 PV because there was 2 to 4 PV of excess acid 

remained unreacted in the previous coreflood tests at 250oF. 

 These modifications proved successful, and permeability of Grey Berea sandstone 

was increased by 17% with in-situ generated HCl at 300oF. There was an 11% damage in 

the previous case at the same temperature (Table 7). 
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Core ID Flow rate, cm3/min PV of in-situ generated HCl kf/ki 
G-6-21 1 5 0.89 
G-6-20 5 1 1.17 

Table 7–Comparison of permeability change for coreflood tests of Grey Berea sandstone 
after the treatment with in-situ generated HCl at 300oF 

 ICP analysis was carried out to correlate the coreflood results (Fig. 12). The 

presence of calcium and magnesium ions was a sign of carbonate dissolution and the main 

reason for permeability improvement. Iron concentration was around 10,000 mg/L at its 

peak. The presence of iron ions is an indication of dissolution of illite and chlorite clays 

found in the Grey Berea sandstone. K+ concentration was decreased during acid injection 

and increased again when injection switched back to 5 wt% KCl.  

Brine (5 wt% KCl) was injected as pre-flush and its pH was around 7. After the 

injection of in-situ generated HCl followed by post-flush with brine, pH decreased to 

around 4.5 (Fig. 13). This means that almost all of the acid was spent in the core to dissolve 

carbonates present in sandstone. When the injection switched back to brine, pH increased 

to 6 on average. 

 Finally, a CT scan analysis was done after the acid treatment and the porosity 

profile was drawn along the length of the core (Fig. 14). On the same plot, average porosity 

(17.85%) was also included as a line, which was obtained by measuring the dry and 

saturated weight of the core. It was observed that the porosity increased significantly, 

around 1.5% on average. The increase was more evident at the inlet of the core. Porosity 

increase is also an indication of carbonate dissolution and is parallel to permeability 

improvement. 
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Fig. 12–ICP analysis of effluent samples from Grey Berea sandstone (G-6-20) after the 
treatment with in-situ generated HCl at 300oF (5 cm3/min – 1 PV) 

 

Fig. 13–pH of effluent samples from Grey Berea sandstone (G-6-20) after the treatment 
with in-situ generated HCl at 300oF (5 cm3/min – 1 PV) 
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Fig. 14–Porosity profile of Grey Berea sandstone (G-6-20) before and after the treatment 
with in-situ generated HCl at 300oF (5 cm3/min – 1 PV) 

Coreflood Experiments Done with Bandera Sandstone at 300oF 

Treatment with In-Situ Generated HCl (2 cm3/min – 2 PV – BG-6-8) 

 For Bandera sandstone, the injection rate was first increased to 2 cm3/min and the 

injected amount of acid was decreased to 2 PV. In fact, this experiment was the first 

intended to optimize the injection rate of in-situ generated HCl. The pressure drop profile 

in Fig. 15 showed that this modification did not provide any permeability improvement. 

There was a 3% damage observed in this case, which was the same for the treatment done 

at 300oF with 1 cm3/min injection rate and 5 PV of acid (Table 8). 
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Fig. 15–Pressure drop profile of Bandera sandstone (BG-6-8), treated with in-situ 
generated HCl at 300oF (2 cm3/min – 2 PV) 

Core ID Flow rate, cm3/min PV of in-situ generated HCl kf/ki 
BG-6-7 1 5 0.97 
BG-6-8 2 2 0.97 

Table 8–Comparison of permeability change for coreflood tests of Bandera sandstone 
after the treatment with in-situ generated HCl at 300oF (BG-6-7 and BG-6-8) 

 ICP analysis was carried out to correlate the coreflood results (Fig. 16). The 

presence of calcium and magnesium ions was a sign of carbonate dissolution. Iron 

concentration was around 2,500 mg/L at its peak. The presence of iron ions is an indication 

of dissolution of illite and chlorite clays found in the Bandera sandstone. K+ concentration 

was decreased during acid injection and increased again when injection switched back to 

5 wt% KCl. 
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Fig. 16–ICP analysis of effluent samples from Bandera sandstone (BG-6-8) after the 
treatment with in-situ generated HCl at 300oF (2 cm3/min – 2 PV) 

Brine (5 wt% KCl) was injected as pre-flush and its pH was 7. After the injection 

of in-situ generated HCl followed by post-flush with brine, pH remained almost constant 

around 6.5 on average except for 2 data points (Fig. 17). This means that almost all of the 

acid was spent in the core to dissolve carbonates present in sandstone, and therefore no 

live acid was observed in the returning fluid. 
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Fig. 17–pH of effluent samples from Bandera sandstone (BG-6-8) after the treatment with 
in-situ generated HCl at 300oF (2 cm3/min – 2 PV) 

Finally, a CT scan analysis was done after the acid treatment and the porosity 

profile was drawn along the length of the core (Fig. 18). On the same plot, average porosity 

(17.76%) was also included as a line, which was obtained by measuring the dry and 

saturated weight of the core. The plot shows a porosity increase up to 3% at the face of 

the core. After this peak at the face, porosity started to decline, and after around 2.5 inches 

it fell below the original porosity as a result of possible damage. This information was 

another indication that residence time of acid inside the rock plays an important role for 

acidizing treatments of sandstone. 
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Fig. 18–Porosity profile of Bandera sandstone (BG-6-8) before and after the treatment 
with in-situ generated HCl at 300oF (2 cm3/min – 2 PV) 

Treatment with In-Situ Generated HCl (5 cm3/min – 1 PV – BG-6-3) 

 It was understood that acidizing Bandera sandstone with 2 PV of in-situ generated 

HCl at 2 cm3/min was not successful at 300oF. Therefore, another coreflood experiment 

was performed, this time increasing the injection rate to 5 cm3/min and decreasing the 

amount of injected in-situ generated HCl to 1 PV. In this case, a 4% increase in 

permeability was observed after the treatment (Fig. 19). When compared to previous 

experiments, in which 3% damage was seen, this improvement was promising (Table 9). 
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Fig. 19–Pressure drop profile of Bandera sandstone (BG-6-3), treated with in-situ 
generated HCl at 300oF (5 cm3/min – 1 PV) 

Core ID Flow rate, cm3/min PV of in-situ generated HCl kf/ki 
BG-6-7 1 5 0.97 
BG-6-8 2 2 0.97 
BG-6-3 5 1 1.04 

Table 9–Comparison of permeability change for coreflood tests of Bandera sandstone 
after the treatment with in-situ generated HCl at 300oF (BG-6-7, BG-6-8, and BG-6-3) 

ICP analysis was carried out to correlate the coreflood results (Fig. 20). The 

presence of calcium and magnesium ions was a sign of carbonate dissolution. Iron 

concentration was around 0 throughout the experiment. This could be interpreted as 

possible iron precipitation in the pores of the core. Another possibility could be illite and 
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chlorite remaining undissolved. The latter could be more logical since kaolinite and 

feldspar seemed also to remain undissolved as there was no Al+3 or Si+4 observed. K+ 

concentration was decreased during acid injection and increased again when injection 

switched back to 5 wt% KCl. 

 

Fig. 20–ICP analysis of effluent samples from Bandera sandstone (BG-6-3) after the 
treatment with in-situ generated HCl at 300oF (5 cm3/min – 1 PV) 

Brine (5 wt% KCl) was injected as pre-flush and its pH was 7. After the injection 

of in-situ generated HCl followed by post-flush with brine, pH remained almost constant 

around 6.5 on average except for one data point (Fig. 21). This means that almost all of 

the acid was spent in the core to dissolve carbonates present in sandstone, and therefore 

no live acid was observed in the returning fluid. 
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Fig. 21–pH of effluent samples from Bandera sandstone (BG-6-3) after the treatment with 
in-situ generated HCl at 300oF (5 cm3/min – 1 PV) 

Finally, a CT scan analysis was done after the acid treatment and the porosity 

profile was drawn along the length of the core (Fig. 22). On the same plot, average porosity 

(17.74%) was also included as a line, which was obtained by measuring the dry and 

saturated weight of the core. The plot shows a significant porosity increase up to 4.5% at 

the face of the core. After this peak at the face, porosity started to decline, and after around 

1 inch it fell below the original porosity as a result of possible damage. The 4% increase 

in permeability can be attributed to this porosity increase observed within the 1 inch of the 

core. 
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Fig. 22–Porosity profile of Bandera sandstone (BG-6-3) before and after the treatment 
with in-situ generated HCl at 300oF (5 cm3/min – 1 PV) 

Treatment with In-Situ Generated HCl (5 cm3/min – 2 PV – BG-1) 

 Increasing the injection rate from 1 cm3/min to 5 cm3/min provided a 7% increase 

in performance of in-situ generated HCl (3% damage vs. 4% permeability improvement). 

However, this increase was still not comparable with 15 wt% HCl. Therefore, it was 

decided to double the amount of acid injected to 2 PV while keeping the injection rate as 

5 cm3/min. The pressure drop profile indicated a 37% increase in permeability, which was 

a significant achievement (Fig. 23).When compared to previous cases, there was more 

acid available to react with decreased residence time inside the core, which in return 

provided the optimum conditions for acidizing Bandera sandstone with in-situ generated 

HCl (Table 10). 
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Fig. 23–Pressure drop profile of Bandera sandstone (BG-1), treated with in-situ generated 
HCl at 300oF (5 cm3/min – 2 PV) 

Core ID Flow rate, cm3/min PV of in-situ generated HCl kf/ki 
BG-6-7 1 5 0.97 
BG-6-8 2 2 0.97 
BG-6-3 5 1 1.04 
BG-1 5 2 1.37 

Table 10–Comparison of permeability change for coreflood tests of Bandera sandstone 
after the treatment with in-situ generated HCl at 300oF (BG-6-7, BG-6-8, BG-6-3, and 
BG-1) 

ICP analysis was carried out to correlate the coreflood results (Fig. 24). The 

presence of calcium and magnesium ions was a sign of carbonate dissolution. Iron 

concentration was around 25,000 mg/L at its peak. The presence of iron ions is an 

indication of dissolution of illite and chlorite clays found in the Bandera sandstone. 
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Aluminum (Al+3) was also seen in the ICP results, which can be attributed to kaolinite and 

feldspar dissolution. K+ concentration was decreased during acid injection and increased 

again when injection switched back to 5 wt% KCl. 

 

Fig. 24–ICP analysis of effluent samples from Bandera sandstone (BG-1) after the 
treatment with in-situ generated HCl at 300oF (5 cm3/min – 2 PV) 

At this point, a comparison between the three cases (BG-6-8, BG-6-3, and BG-1), 

in terms of calcium, magnesium and iron concentrations is necessary to better understand 

the effects of injection rate and the amount of acid injected on the dissolution of minerals. 

In Fig. 25, it is seen that injection of 2 PV in-situ generated HCl at 5 cm3/min dissolved 

the most minerals, which is in agreement with the increase in permeability. 
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Fig. 25–Comparison of concentration of minerals dissolved (a. calcium, b. magnesium, c. 
iron) after acidizing Bandera sandstone with in-situ generated HCl at 300oF 
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Fig. 26–pH and H+ concentration of effluent samples from Bandera sandstone (BG-1) 
after the treatment with in-situ generated HCl at 300oF (5 cm3/min – 2 PV) 

Brine (5 wt% KCl) was injected as pre-flush, and its pH was 7. After the injection 

of in-situ generated HCl, pH started to decline, and decreased to 0. Parallel to the decrease 

in pH, H+ concentration increased up to 10 wt% (Fig. 26). Finally, brine was injected as 

post-flush, and pH was stabilized at around 6 while H+ concentration was decreased to 0. 

When pH and H+ concentrations were interpreted with ICP results and pressure drop 

profile, it was inferred that most of the acid was spent to dissolve the minerals inside the 

core. Some of the acid remained unreacted, and was collected as live acid. 

CT scan analysis was done after the acid treatment and the porosity profile was 

drawn along the length of the core (Fig. 27). On the same plot, average porosity (17.15%) 

was also included as a line, which was obtained by measuring the dry and saturated weight 

of the core. The plot shows a significant porosity increase, which is around 2% on average. 
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The increase was more evident at the inlet of the core. Porosity increase was also in 

agreement with the pressure drop profile, ICP analysis, pH and H+ concentrations, and all 

results indicated that acidizing of Bandera sandstone with in-situ generated HCl at 300oF 

was successful. 

 

Fig. 27–Porosity profile of Bandera sandstone (BG-1) before and after the treatment with 
in-situ generated HCl at 300oF (5 cm3/min – 2 PV) 

Treatment with 15 wt% HCl (5 cm3/min – 2 PV – BG-2) 

 The optimum injection parameters for acidizing the Bandera sandstone with in-

situ generated HCl at 300oF was obtained as 5 cm3/min and 2 PV. Using the same injection 

parameters, Bandera sandstone was acidized with 15 wt% HCl at 300oF. The pressure drop 

profile indicated that this treatment resulted in 30% permeability improvement (Fig. 28). 

When the performances of 15 wt% HCl and in-situ generated HCl was compared in terms 

of permeability increase, it was seen that the latter performed better (Table 11). 
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Fig. 28–Pressure drop profile of Bandera sandstone (BG-2), treated with 15 wt% HCl at 
300oF (5 cm3/min – 2 PV) 

Core ID Acid Flow rate, cm3/min PV injected kf/ki 

BG-1 
In-situ generated 

HCl 
5 2 1.37 

BG-2 15 wt% HCl 5 2 1.30 

Table 11–Comparison of the change in permeability of Bandera sandstone after acidizing 
with in-situ generated HCl and 15 wt% HCl at 300oF 

 ICP analysis was carried out to correlate the coreflood results (Fig. 29). The 

presence of calcium and magnesium ions was a sign of carbonate dissolution. Iron 

concentration was around 60,000 mg/L at its peak. The presence of iron ions is an 

indication of dissolution of illite and chlorite clays found in the Bandera sandstone. 

Aluminum (Al+3) was also seen in the ICP results, which can be attributed to kaolinite and 
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feldspar dissolution. K+ concentration was decreased during acid injection and increased 

again when injection switched back to 5 wt% KCl. 

 

Fig. 29–ICP analysis of effluent samples from Bandera sandstone (BG-2) after the 
treatment with 15 wt% HCl at 300oF (5 cm3/min – 2 PV) 

 It should be noted that 15 wt% HCl dissolved around two times more minerals than 

in-situ generated HCl according to ICP results (Fig. 30). This was a sign of the high 

dissolving power of HCl and yet, in-situ generated HCl delivered a higher permeability 

increase than regular HCl. This can be interpreted as HCl caused more precipitates than it 

dissolved at 300oF. High dissolving power can be a disadvantage of HCl especially in 

carbonate acidizing; this concept will be discussed more in the coming sections. 
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Fig. 30–Comparison of concentration of minerals dissolved (a. calcium, b. magnesium, c. 
iron) after acidizing Bandera sandstone with in-situ generated HCl and 15 wt% HCl at 
300oF 
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Brine (5 wt% KCl) was injected as pre-flush and its pH was 7. After the injection 

of in-situ generated HCl, pH started to decline, and decreased to 0. Parallel to the decrease 

in pH, H+ concentration increased up to 8 wt% (Fig. 31). Finally, brine was injected as 

post-flush and the pH was stabilized at around 4 while H+ concentration was decreased to 

0. When pH and H+ concentrations were interpreted with ICP results and pressure drop 

profile, it was inferred that most of the acid was spent to dissolve the minerals inside the 

core. Some of the acids remained unreacted and it was collected as live acid. 

 

Fig. 31–pH and H+ concentration of effluent samples from Bandera sandstone (BG-2) 
after the treatment with 15 wt% HCl at 300oF (5 cm3/min – 2 PV) 
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Coreflood Experiments Done with Silurian Dolomite at 300oF 

Treatment with In-Situ Generated HCl (2 cm3/min – SD-6-35) 

 Dolomite, CaMg(CO3)2, is a type of carbonate rock with the formula. The previous 

coreflood experiments with Silurian dolomite were conducted with an injection rate of 1 

cm3/min at 300oF. In-situ generated HCl could not reach breakthrough after 5 PV of 

injection at this rate. Therefore, it was decided to increase the injection rate to 2 cm3/min 

and repeat the experiment at 300oF. According to the pressure drop profile of this 

coreflood experiment, in-situ generated HCl reached breakthrough after 3.3 PV of 

injection (Fig. 32).  

 

Fig. 32–Pressure drop profile of Silurian dolomite (SD-6-35), treated with in-situ 
generated HCl at 300oF (2 cm3/min – reached BT after 3.3 PV) 
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ICP analysis was carried out to correlate the coreflood results (Fig. 33). Calcium 

concentration was around 45,000 mg/L at its peak, whereas magnesium concentration was 

around 20,000 mg/L at its peak. K+ concentration was decreased during acid injection and 

increased again when injection switched back to 5 wt% KCl. 

 

Fig. 33–ICP analysis of effluent samples from Silurian dolomite (SD-6-35) after the 
treatment with in-situ generated HCl at 300oF (2 cm3/min – reached BT after 3.3 PV) 

Brine (5 wt% KCl) with a pH of 7 was injected as post-flush to clean the remaining 

acid inside the wormholes. H+ concentration went up to 15 wt% when pH dropped to 0 

(Fig. 34). This was the sign that live acid was being collected. Brine was continually 

injected until the effluents became colorless, in other words until the H+ concentration was 

0. The pH was stabilized at 7 at the end of the experiment. 
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Fig. 34–pH and H+ concentration of effluent samples from Silurian dolomite (SD-6-35) 
after the treatment with in-situ generated HCl at 300oF (2 cm3/min – reached BT after 3.3 
PV) 

A CT scan was conducted on a Silurian dolomite core after the treatment with in-

situ generated HCl at 300oF (Fig. 35). The wormhole observed in the CT scan was a single, 

dominant wormhole. This type of wormhole is the most efficient as was mentioned earlier. 

Increasing the injection rate from 1 cm3/min to 2 cm3/min proved that in-situ generated 

HCl was very successful in acidizing dolomite at 300oF, and the previous tests were 

misleading about the performance of the novel acid.  
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Fig. 35–Wormhole propagation from CT scan for Silurian dolomite treated with in-situ 
generated HCl at 300oF (2 cm3/min – reached BT after 3.3 PV) 

Treatment with 15 wt% HCl (2 cm3/min – SD-6-35) 

 In the previous coreflood experiment done with Silurian dolomite at 300oF, 15 

wt% HCl could not reach breakthrough after 5 PV of injection at a rate of 1 cm3/min. This 

experiment was also repeated by increasing the injection rate to 2 cm3/min and results of 

both acids were compared. The pressure drop profile showed that 15 wt% HCl reached 

breakthrough after 3.6 PV of injection (Fig. 36). Compared to the breakthrough value of 

in-situ generated HCl, which was 3.3 PV, acidizing with 15 wt% HCl showed a reduced 

performance in Silurian dolomite at 300oF (Table 12). 

 



 

54 

 

 

Fig. 36–Pressure drop profile of Silurian dolomite (SD-6-37), treated with 15 wt% HCl at 
300oF (2 cm3/min – reached BT after 3.6 PV) 

Core ID Acid Temperature, oF PV to breakthrough (BT) 
SD-6-35 In-situ generated HCl 300 3.3 
SD-6-37 15 wt% HCl 300 3.6 

Table 12–Comparison of the BT values of in-situ generated HCl and 15 wt% HCl in 
acidizing of Silurian dolomite at 300oF 

ICP analysis was carried out to correlate the coreflood results (Fig. 37). Calcium 

concentration was around 70,000 mg/L at its peak, whereas magnesium concentration was 

around 35,000 mg/L at its peak. K+ concentration was decreased during acid injection and 

increased again when injection switched back to 5 wt% KCl. 
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Fig. 37–ICP analysis of effluent samples from Silurian dolomite (SD-6-37) after the 
treatment with 15 wt% HCl at 300oF (2 cm3/min – reached BT after 3.6 PV) 

Brine (5 wt% KCl) with a pH of 7 was injected as post-flush to clean the remaining 

acid inside the wormholes. H+ concentration went up to 4 wt% when pH dropped to 0 

(Fig. 38). Brine was continually injected until the effluents became colorless, in other 

words until the H+ concentration was 0. The pH was stabilized at 4 at the end of the 

experiment. 

 A CT scan was conducted on Silurian dolomite core after the treatment with 15 

wt% HCl. The wormhole observed in the CT scan was a conical shaped wormhole. This 

type of wormhole is formed when the acid has a high dissolving power such as regular 

HCl. When a side by side comparison of CT scans was made, the difference in wormhole 

type was more visible (Fig. 39). Moreover, it is seen in Fig. 39 that regular HCl caused 
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more face dissolution, which is again associated with its high dissolving power. These 

results were perfect indicators that in-situ generated HCl had superior performance over 

the regular 15 wt% HCl for acidizing dolomite at 300oF. 

 

Fig. 38–pH and H+ concentration of effluent samples from Silurian dolomite (SD-6-37) 
after the treatment with 15 wt% HCl at 300oF (2 cm3/min – reached BT after 3.6 PV) 

Another sign of the high dissolving power of regular HCl was the concentration of 

calcium and magnesium dissolved. When the ICP results for Silurian dolomite treated with 

in-situ generated HCl and 15 wt% HCl was compared, it was seen that 15 wt% HCl 

dissolved almost two times more minerals than in-situ generated HCl (Fig. 40). 
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                             a. 15 wt% HCl                        b. In-situ generated HCl 

Fig. 39–Comparison of wormhole propagation in Silurian dolomite cores treated with a. 
15 wt% HCl and b. in-situ generated HCl at 300oF 
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Fig. 40–Comparison of concentration of minerals dissolved (a. calcium, b. magnesium) 
after acidizing Silurian dolomite with in-situ generated HCl and 15 wt% HCl at 300oF 
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Coreflood Experiments Done with Indiana Limestone at 300oF 

Treatment with In-Situ Generated HCl (2 cm3/min – L-1-A) 

 Limestone is another type of carbonate rock with the formula CaCO3. In-situ 

generated HCl was injected through Indiana limestone core at 300oF. An injection rate of 

2 cm3/min was used, which was the same in the case of Silurian dolomite coreflood. 

Breakthrough was reached after 1.35 PV of acid injection (Fig. 41). It took 3.3 PV of in-

situ generated HCl to reach breakthrough in the case of Silurian dolomite. Since the 

reaction of HCl with dolomite is much slower than limestone, it is expected for dolomite 

to require more PV to reach breakthrough than limestone. 

 

Fig. 41–Pressure drop profile of Indiana limestone (L-1-A), treated with in-situ generated 
HCl at 300oF (2 cm3/min – reached BT after 1.35 PV) 

ICP analysis was carried out to correlate the coreflood results (Fig. 42). Calcium 

concentration was around 60,000 mg/L at its peak, which indicates carbonate dissolution. 
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K+ concentration was decreased during acid injection and increased again when injection 

switched back to 5 wt% KCl. 

 

Fig. 42–ICP analysis of effluent samples from Indiana limestone (L-1-A) after the 
treatment with in-situ generated HCl at 300oF (2 cm3/min – reached BT after 1.35 PV) 

Brine (5 wt% KCl) with a pH of 7 was injected as post-flush to clean the remaining 

acid inside the wormholes. H+ concentration went up to 5 wt% and pH dropped to a 

minimum of 3 (Fig. 43). Brine was injected until the effluents became colorless, in other 

words, until the H+ concentration was 0. The pH was increased to around 7 at the end of 

the experiment. 

A CT scan was conducted on Indiana limestone core after the treatment with in-

situ generated HCl at 300oF (Fig. 44). Carbonate acidizing aims to have dominant 

wormholes. Like in the case of Silurian dolomite, a single, dominant wormhole was 

observed in this CT scan as well, which verified the success of the treatment. 
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Fig. 43–pH and H+ concentration of effluent samples from Indiana limestone (L-1-A) after 
the treatment with in-situ generated HCl at 300oF (2 cm3/min – reached BT after 1.35 PV) 

 

Fig. 44–Wormhole propagation from CT scan for Indiana limestone treated with in-situ 
generated HCl at 300oF (2 cm3/min – reached BT after 1.35 PV) 
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Treatment with 15 wt% HCl (2 cm3/min – L-1-B) 

 A final coreflood test was done with Indiana limestone at 300oF by injecting 15 

wt% HCl at a rate of 2 cm3/min. The results were compared with in-situ generated HCl. 

The pressure drop profile in Fig. 45 showed that 15 wt% HCl reached breakthrough after 

2.01 PV. Compared to the breakthrough value of in-situ generated HCl, which was 1.35 

PV, 15 wt% HCl was less successful in acidizing the Indiana limestone at 300oF (Table 

13). 

 

Fig. 45–Pressure drop profile of Indiana limestone (L-1-B), treated with 15 wt% HCl at 
300oF (2 cm3/min – reached BT after 2.01 PV) 

Core ID Acid Temperature, oF PV to breakthrough (BT) 
L-1-A In-situ generated HCl 300 1.35 
L-1-B 15 wt% HCl 300 2.01 

Table 13–Comparison of the BT values of in-situ generated HCl with 15 wt% HCl in 
acidizing of Indiana limestone at 300oF 
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ICP analysis was carried out to correlate the coreflood results (Fig. 46Fig. 42). 

Calcium concentration was around 110,000 mg/L at its peak, which indicates carbonate 

dissolution by 15 wt% HCl. This amount is almost double the concentration of calcium 

dissolved by in-situ generated HCl, which was around 60,000 mg/L. By looking at these 

concentrations, once again the high dissolving power of regular HCl was verified with a 

coreflood experiment of Indiana limestone. K+ concentration was decreased during acid 

injection and increased again when injection switched back to 5 wt% KCl. 

 

Fig. 46–ICP analysis of effluent samples from Indiana limestone (L-1-B) after the 
treatment with 15 wt% HCl at 300oF (2 cm3/min – reached BT after 2.01 PV) 

Brine (5 wt% KCl) with a pH of 7 was injected as post-flush to clean the remaining 

acid inside the wormholes. H+ concentration went up to only 2 wt% and pH dropped to 0 

(Fig. 47). Brine was continually injected until the effluents became colorless, in other 
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words, until the H+ concentration was 0. The pH was increased to around 6 at the end of 

the experiment. 

 

Fig. 47–pH and H+ concentration of effluent samples from Indiana limestone (L-1-B) after 
the treatment with 15 wt% HCl at 300oF (2 cm3/min – reached BT after 2.01 PV) 

A CT scan was conducted on Indiana limestone core after the treatment with 15 

wt% HCl. The wormhole observed in the CT scan was a conical shaped wormhole. This 

type of wormhole is formed when the acid has a high dissolving power such as regular 

HCl. When a side by side comparison of CT scans was made, the difference in wormhole 

type was more distinct (Fig. 48). Moreover, it is seen in Fig. 48 that regular HCl caused 

more face dissolution, which is again associated with its high dissolving power. These 

results were perfect indicators that in-situ generated HCl had superior performance over 

the regular 15 wt% HCl for acidizing limestone at 300oF. 
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Fig. 48–Comparison of wormhole propagation in Indiana limestone cores treated with a. 
15 wt% HCl and b. in-situ generated HCl at 300oF 
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Rotating Disk Apparatus (RDA) Studies 

 The results of the coreflood tests, presented in the first chapter, verified that 15 

wt% regular HCl had a higher dissolving power than in-situ generated HCl. The 

indications for this situation were higher concentrations of dissolved minerals and conical 

shaped wormholes observed during coreflood tests, which were done with 15 wt% regular 

HCl. However, these observations were qualitative. In order to calculate and define the 

strength of acid systems used in this study, four sets of RDA experiments were performed. 

The reaction rate constant, diffusion coefficient and activation energy were the parameters 

calculated for quantifying the dissolving power of in-situ generated HCl and 15 wt% HCl. 

 In the first three sets of RDA experiments, the reaction between in-situ generated 

HCl and a marble disk was tested at 100, 150, and 200oF. For experiments done at 100 

and 150oF, six different rotational speeds were used including 200, 400, 600, 800, 1000, 

and 1200 rpm (revolution per minute). At 200oF, two more experiments were performed 

at 300 and 700 rpm in addition to these rotational speeds. In the fourth set of RDA 

experiments, the reaction between 15 wt% regular HCl and a marble disk was tested at 

100oF. This time, four different rotational speeds were used including 200, 600,800, and 

1200 rpm.  

The first section presents the results obtained directly from these four sets of RDA 

tests. In the second section, calculation of reaction rate constant, diffusion coefficient, and 

activation energy values of in-situ generated HCl and 15 wt% HCl were given and then 

these values were compared and discussed.  
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Summary of RDA Experiments Done with In-Situ Generated HCl and 15 wt% HCl 

 RDA setup is given in Fig. 5. Using this setup, in-situ generated HCl and 15 wt% 

regular HCl were tested. The pressure inside the reactor vessel was kept constant between 

1000 and 1300 psi. The duration of each experiment was 10 minutes, and 3 mL samples 

were collected every 1 minute. These samples were diluted with DI water with a dilution 

factor of 500 ppm. Calcium concentrations of each sample were measured by ICP analysis.  

Fig. 49, Fig. 50, and Fig. 51  show each marble disk after reaction with in-situ 

generated HCl at 100, 150, and 200oF respectively. Fig. 52 shows each marble disk after 

reaction with 15 wt% HCl at 100oF. The state of the disks gave the first idea about the 

effect of rotational speed on the dissolution rate of marble disks. It was seen that, with 

increasing rotational speed, the thicknesses of the disks decreased, which was a sign of 

increasing dissolution rate. However, it was also seen that the thicknesses of the disks after 

reacting with in-situ generated HCl at 200oF did not change after 800 rpm. The latter case 

indicates a reaction rate limited reaction while the former case indicates a mass transfer 

limited reaction (Fig. 3). This will be discussed in the next chapter in more detail. 

Calcium concentrations, obtained from ICP analysis, were then plotted against 

time (Fig. 53, Fig. 54, Fig. 55, and Fig. 56). The slope of this plot provided the dissolution 

rate of calcium in gmole/min. In the reaction between the marble disk (carbonate) and the 

in-situ generated HCl, 2 moles of H+ is spent for each mole of Ca+2. With this fact in mind, 

spent H+ concentrations were calculated from Ca+2 concentrations. H+ left inside the 

reactor vessel, which was obtained by subtracting the spent H+ concentration from the 

initial H+ concentration (2.906 gmole for in-situ generated HCl and 2.648 gmole for 15 
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wt% HCl), was plotted against time (Fig. 57, Fig. 58, Fig. 59, and Fig. 60). The slope of 

this plot provided the reaction rate of in-situ generated HCl in gmole/min. Because the 

surface of disks became non-flat as they reacted with the acid, for some experiments 

(especially at higher rotational speeds), late data points were discarded. More accurate 

slope values were obtained this way. R2 values, along with the equation of the linear 

trendline, were included on the graphs as well. 

 

Fig. 49–Marble disks after RDA experiment with in-situ generated HCl at 100oF 
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Fig. 50–Marble disks after RDA experiment with in-situ generated HCl at 150oF 

 
Fig. 51–Marble disks after RDA experiment with in-situ generated HCl at 200oF 
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Fig. 52–Marble disks after RDA experiment with 15 wt% HCl at 100oF 
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Fig. 53–Dissolved Ca+2 concentration vs. time plots for RDA tests done with in-situ 
generated HCl at 100oF and at a. 200, b. 400, c. 600, d. 800, e. 1000, and f. 1200 rpm 
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Fig. 54–Dissolved Ca+2 concentration vs. time plots for RDA tests done with in-situ 
generated HCl at 150oF and at a. 200, b. 400, c. 600, d. 800, e. 1000, and f. 1200 rpm 
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Fig. 55–Dissolved Ca+2 concentration vs. time plots for RDA tests done with in-situ 
generated HCl at 200oF and at a. 200, b. 300, c. 400, d. 600, e. 700, f. 800, g. 1000, and h. 
1200 rpm 

0
0,005
0,01
0,015
0,02
0,025
0,03
0,035
0,04
0,045
0,05

0 2 4 6 8

[C
a+

2 ]
,	g
m
ol
e

Time,	mins
a.

0
0,005
0,01
0,015
0,02
0,025
0,03
0,035
0,04
0,045

0 1 2 3 4 5

[C
a+

2 ]
,	g
m
ol
e

Time,	mins
b.

0

0,02

0,04

0,06

0,08

0,1

0,12

0 2 4 6 8 10

[C
a+

2 ]
,	g
m
ol
e

Time,	mins
c.

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0 1 2 3 4 5

[C
a+

2 ]
,	g
m
ol
e

Time,	mins
d.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0 2 4 6 8

[C
a+

2 ]
,	g
m
ol
e

Time,	mins
e.

0
0,02
0,04
0,06
0,08
0,1

0,12
0,14
0,16
0,18

0 2 4 6 8

[C
a+

2 ]
,	g
m
ol
e

Time,	mins
f.



 

74 

 

 

Fig. 55–Continued 

  

  

Fig. 56–Dissolved Ca+2 concentration vs. time plots for RDA tests done with 15 wt% HCl 
at 100oF and at a. 200, b. 600, c. 800, and d. 1200 rpm 
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Fig. 57–H+ concentration left vs. time plots for RDA tests done with in-situ generated HCl 
at 100oF and at a. 200, b. 400, c. 600, d. 800, e. 1000, and f. 1200 rpm 
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Fig. 58–H+ concentration left vs. time plots for RDA tests done with in-situ generated HCl 
at 150oF and at a. 200, b. 400, c. 600, d. 800, e. 1000, and f. 1200 rpm 
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Fig. 59–H+ concentration left vs. time plots for RDA tests done with in-situ generated HCl 
at 200oF and at a. 200, b. 300, c. 400, d. 600, e. 700, f. 800, g.1000, and h. 1200 rpm 
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Fig. 59–Continued 

 

 
Fig. 60–H+ concentration left vs. time plots for RDA tests done with 15 wt% HCl at 100oF 
and at a. 200, b. 600, c. 800, and d. 1200 rpm 
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Comparison of Reaction Kinetics between In-Situ Generated HCl and 15 wt% HCl 

Reaction Rate Constant 

The slopes of the graphs given in Fig. 57 through Fig. 60 represent the spending 

rate of H+ in gmole/min. After converting the unit into gmole/s, the spending rate of H+ 

was inserted into Eq. 23 to calculate the reaction rate: 

Reaction	rate	 gmole s. cm* = (Ym	Xno]H	 pGq[o X Lrstauo	vsoa	(uGO))
A=nqsqXxHy	(zq[%)

. ……..........… (23) 

 The linear frequency (rpm) for RDA tests was converted into angular frequency ω 

(rad/s), and the square root of ω ((rad/s) 0.5) vs. reaction rate (gmole/s.cm2) was plotted for 

different rotational speeds (Fig. 61). The slope of this plot yielded the reaction rate 

constant (Jmt/ω0.5). It is seen in Fig. 61 that the reaction rate constant for 15 wt% HCl at 

100oF was 7.26x10-6 gmole/s.cm2.(rad/s)0.5. On the other hand, the reaction rate constant 

for in-situ generated HCl was 2.93x10-6, 6.99x10-6, and 1.66x10-5 gmole/s.cm2.(rad/s)0.5 at 

100, 150, and 200oF respectively. The reaction between in-situ generated HCl and calcite 

was mass transfer limited at all rotational speeds at 100 and 150oF, while at 200oF, the 

reaction was surface reaction limited after 800 rpm. This change from mass transfer 

limited reaction to reaction rate limited reaction was unexpected. It may be due to a 

possible blocking of the reaction sites on the marble disk because of the precipitation of 

chloride salt mentioned earlier. Reaction rates were also plotted in a column chart against 

temperature and rotational speed to provide a better comparison (Fig. 62). 

 Reaction rate between HCl and carbonate rock increases with increasing 

temperature according to Arrhenius equation given in Eq. 22 (Alkhaldi et al. 2009). Low 

rotational speeds result in a slower transport of mass to the rock surface. Therefore, the 
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reaction is mass transfer limited at low rotation speeds and it is proportional to reaction 

rate. On the other hand, the mass transfer boundary layer (surface of marble disk in the 

case of RDA) decreases as rotational speed increases and thus, the reaction becomes 

reaction rate limited (Rabie et al. 2010). In other words, reaction rate increases with 

increasing rotational speed, when the reaction is mass transfer limited. 

 The effect of temperature and rotational speed on the reaction rate is seen more 

clearly in Fig. 62. These results were parallel with the literature mentioned above. As the 

rotation speed was increased, the dissolution rate of the marble disk was also increased. 

This increase was more dramatic at higher temperatures because increasing the 

temperature also resulted in an increase in the dissolution rate for all rotation speeds. In 

fact, 15 wt% HCl at 100oF is 2 times more reactive than in-situ generated HCl at the same 

temperature and slightly more reactive than in-situ generated HCl at 150oF. 

 

Fig. 61–Reaction rate vs. square root of angular frequency graph for in-situ generated HCl 
(100oF, 150oF, 200oF) and 15 wt% HCl (100oF). 
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Fig. 62–Effect of temperature and rotational speed on the reaction rate 

Diffusion Coefficient 

Diffusion coefficient was calculated by using Eq. 19. In this equation, kinematic 

viscosity (ʋ) was unknown. Thus, kinematic viscosity of both acids (with additives) were 

measured at different temperatures (Fig. 63) and required values of ʋ at 100oF, 150oF, and 

200oF were obtained by extrapolating the data. The surface concentration of acid (Cs) in 

the equation was taken to be 0 since the reactions were mass transfer limited within the 

temperature and rotational speed range studied. After gathering all required variables in 

Eq. 19 (Jmt/ω0.5, ʋ, Cb), diffusion coefficients for both acids were calculated. Diffusion 

coefficient for in-situ generated HCl was 7.31x10-6, 2.51x10-5, and 8.97x10-5 cm2/s at 100, 

150, and 200oF respectively. Diffusion coefficient for 15 wt% HCl was 3.13x10-5 cm2/s at 
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shown in Table 14. Diffusion coefficients of both acids were also graphed in Fig. 64 for 

comparison. These results indicated that diffusion coefficient of in-situ generated HCl was 

increasing with increasing temperature. 

 

Fig. 63–Measured kinematic viscosity vs. temperature for 15 wt% HCl and in-situ 
generated HCl 

Acid type 
Temperature, 

(oF) 

Reaction rate constant, 

Jmt/ω0.5, 

(gmole/s.cm2.(rad/s)0.5) 

Diffusion 

coefficient, D, 

(cm2/s) 

15 wt% HCl 100 7.26x10-6 3.13x10-5 

In-situ generated HCl 100 2.93x10-6 7.31x10-6 

In-situ generated HCl 150 6.99x10-6 2.51x10-5 

In-situ generated HCl 200 1.66x10-5 8.97x10-5 

Table 14–Kinetic variables calculated for in-situ generated HCl and 15 wt% HCl at 100, 
150, and 200oF 
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Fig. 64–Comparison of diffusion coefficients for in-situ generated HCl and 15 wt% HCl 

 The diffusion coefficient for 15 wt% HCl, with additives mentioned in Table 1, at 

100oF was found as 3.13x10-5 cm2/s (Table 14). This value was compared with literature 

to check its accuracy. Taylor et al. (2004) extrapolated Lund and Fogler (1975)’s diffusion 

coefficient data, for the reaction between HCl and calcite, to 3 different temperature. They 

used an average increment of 6.65x10-7 cm2/s/K, which was gotten from de Rozieres 

(1994)’s study. This set of extrapolated data was used to calculate the diffusion 

coefficients of 15 wt% HCl at 100, 150, and 200oF, which were 3.20x10-5, 5.05x10-5, and 

6.90x10-5 respectively. (Table 15). The value at 100oF is close to the measured diffusion 

coefficient for 15 wt% HCl at 100oF, which was 3.13x10-5 cm2/s. These values are also 

shown in Fig. 64 to compare with the measured diffusion coefficients. However, it should 

be noted that Lund and Fogler (1975)’s RDA experiment was done under 800 psi pressure 
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without additives, while our experiment was done between 1000-1300 psi and included 

the acidizing additives (Table 1). 

 In another RDA study done by Qiu et al. (2015) with 15 wt% HCl and calcite at 

150oF and 1000 psi, the diffusion coefficient was found as 6.48x10-5 cm2/s. Diffusion 

coefficient values measured by de Rozieres (1994) with RDA for 15 wt% HCl and calcite 

at 40oF and 84oF under 1000 psi are 1.27x10-6 and 2.13x10-5 cm2/s respectively. These 

diffusion coefficient along with our measured diffusion coefficient for 15 wt% HCl were 

plotted for comparison (Fig. 65). Taylor et al. (2004)’s extrapolation was also included in 

this plot. Accordingly, the diffusion coefficient for 15 wt% HCl measured in this study is 

in close agreement with the literature. 

HCl 
concentration 

(wt%) 

Diffusion coefficient (cm2/s) 

73.4oF 100oF 122oF 150oF 185oF 200oF 

0.18 3.23E-05 4.21E-05 5.02E-05 6.06E-05 7.35E-05 7.90E-05 

0.36 3.21E-05 4.20E-05 5.01E-05 6.04E-05 7.33E-05 7.88E-05 

0.91 3.17E-05 4.15E-05 4.96E-05 6.00E-05 7.29E-05 7.84E-05 

1.81 3.09E-05 4.08E-05 4.89E-05 5.93E-05 7.22E-05 7.77E-05 

3.59 2.95E-05 3.94E-05 4.75E-05 5.79E-05 7.08E-05 7.63E-05 

7.07 2.70E-05 3.68E-05 4.49E-05 5.53E-05 6.82E-05 7.37E-05 

15 2.21E-05 3.20E-05 4.01E-05 5.05E-05 6.34E-05 6.90E-05 

16.9 2.11E-05 3.10E-05 3.91E-05 4.95E-05 6.24E-05 6.79E-05 

Table 15–Taylor et al. (2004)’s diffusion coefficient data for HCl, which was extrapolated 
from Lund and Fogler (1975)’s data by using an increment of 6.65x10-7 cm2/s/K 
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Fig. 65–Comparison of diffusion coefficient values of 15 wt% HCl with the literature 

The reaction between HCl and carbonate rock is fast and it is even faster at higher 

temperatures (Buijse et al. 2003). Fredd and Fogler (1998a) highlighted that the matrix 

acid treatments require low injection rates. At low injection rates, the rapid spending of 

HCl prevents deep penetration of HCl, often causing face dissolution in carbonate 

reservoirs. In an attempt to tackle this issue, Sokhanvarian et al. (2017) presented a new 

in-situ generated acid, based on HCl. Their results proved that the new acid was causing 

less face dissolution comparing to 15 wt% HCl at the same injection rates. Diffusion 

coefficients of this new in-situ generated HCl were measured in this study and compared 

with 15 wt% HCl. According to the results given in Fig. 64, the diffusion coefficient 

measured for 15 wt% HCl at 100oF was around four times more than the diffusion 

coefficient of in-situ generated HCl at 100oF and slightly more than the diffusion 
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coefficient of in-situ generated HCl at 150oF. These numbers show that in-situ generated 

HCl can stand as a good alternative of regular HCl where low acid injection rates are 

required. 

Activation Energy 

 Molecules of reactant should exceed an energy barrier called activation energy to 

start a chemical reaction. Therefore, the higher the activation energy of a reactant, the 

slower the reaction starts. Activation energy (Ea) was calculated according to Arrhenius 

equation given in Eq. 22. Diffusion coefficients, calculated for in-situ generated HCl at 3 

different temperatures (100oF, 150oF, and 200oF), were plotted against reciprocal of 

absolute temperature in Kelvin on the semi-log graph (Fig. 66). The slope of this graph (-

Ea/R) was used to calculate Ea. 

 The activation energy for in-situ generated HCl was calculated as 10.2 kcal/gmole 

(42.7 kJ/gmole) accordingly. This value is around 1.6-1.7 times higher than the activation 

energies of 5 wt% lactic acid with calcite (26.1 kJ/gmole, (Rabie et al. 2014)) and 0.5 M 

acetic acid (25.1 kJ/gmole, (Fredd and Fogler 1998b)). The activation energy of 15 wt% 

HCl with calcite was calculated by again using the diffusion coefficient data presented by 

Taylor et al. (2004) and it was 14.9 kJ/gmole, which is around three times less than in-situ 

generated HCl. This comparison shows that in-situ generated HCl can provide much 

slower reactions than organic acids and HCl.  
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Fig. 66–Arrhenius plot obtained for in-situ generated HCl 
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CHAPTER IV  

SUMMARY AND CONCLUSIONS 

  

 Regular HCl is known to be a very strong acid and causes problems such as 

corrosion to the tubular, fines migration in sandstone reservoirs, and face dissolution and 

shallow penetration in carbonate reservoirs, especially at high temperatures. It was shown 

that in-situ generated HCl provides much less corrosion than regular HCl, creates single-

dominant wormholes in carbonate reservoirs, increases permeability considerably in 

sandstone reservoirs as pre-flush acid. The new in-situ generated HCl can replace regular 

HCl for dissolution of carbonate in sandstone and carbonate reservoirs at high-temperature 

applications with a comparable cost. In this study, low performance of in-situ generated 

HCl at 300oF was addressed by decreasing the residence time of acid and reaction kinetics 

of in-situ generated acid was studied. Following conclusions were drawn from coreflood 

studies: 

1. The injection rate of the in-situ generated HCl was increased from 1 cm3/min to 5 

cm3/min and the injected amount was decreased from 5 PV to 1 PV for treating 

Grey Berea sandstone core at 300oF. This modification provided a 17% increase 

in permeability. 

2. The injection rate of the in-situ generated HCl was increased from 1 cm3/min to 5 

cm3/min and the injected amount was decreased from 5 PV to 2 PV for treating 

Bandera sandstone core at 300oF. This modification provided a 38% increase in 

permeability. 
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3. In-situ generated HCl performed better than 15 wt% regular HCl in both Grey 

Berea and Bandera sandstone at 300oF. 

4. In both Silurian dolomite and Indiana limestone, increasing injection rate from 1 

cm3/min to 2 cm3/min at 300oF delivered breakthrough after 3.3 PV of injection.  

5. In both Silurian dolomite and Indiana limestone, in-situ generated HCl provided 

earlier breakthrough than 15 wt% regular HCl at 300oF. 

6. In-situ generated HCl caused much less face dissolution than 15 wt% regular HCl 

in treating carbonate cores at 300oF. 

7. In-situ generated HCl generated single-dominant wormholes, while 15 wt% 

regular HCl created branched-conical wormholes in treating carbonate cores at 

300oF. 

Following conclusions were drawn from RDA studies: 

1. The reaction between in-situ generated HCl and marble disk was mass transfer 

limited at 100oF and 150oF. The reaction became reaction rate limited above 800 

rpm at 200oF.  

2. It was observed that an increase in rotational speed and temperature resulted in an 

increase in dissolution rate of calcite with in-situ generated HCl. 

3. Diffusion coefficient of in-situ generated HCl was increased with increasing 

temperature. 

4. Reaction constant of in-situ generated HCl and marble disk was found as 2.93x10-

6, 6.99x10-6, and 1.66x10-5 gmole/s.cm2 at 100, 150, and 200oF respectively. 
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5. Reaction constant of 15 wt% regular HCl and marble disk was found as 7.26x10-6 

gmole/s.cm2 at 100oF, which is around 2.5 times more than in-situ generated HCl 

at the same temperature. 

6. Diffusion coefficient for in-situ generated HCl was 7.31x10-6, 2.51x10-5, and 

8.97x10-5 cm2/s at 100, 150, and 200oF respectively. 

7. The diffusion coefficient for 15 wt% regular HCl at 100oF was found as 3.13x10-

5 cm2/s, which was 4 times more than in-situ generated HCl.  

8. Lower diffusivity and reactivity of in-situ generated HCl was quantified and 

confirmed the results observed in coreflood studies. 

9. The activation energy of in-situ generated HCl was more than 15 wt% regular HCl 

which can be seen as an indication of slower reaction. 

The results of using the in-situ generated HCl for carbonate dissolution was 

promising. Following future studies can provide a better understanding of this acid and 

further increase its performance: 

1. Application of gelled in-situ generated HCl can provide better performance for 

high-temperature application by further retardation. 

2. Effect of additives on reaction kinetics can be studied with more RDA tests for 

more accurate results. 
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