ADAPTIVITY AND ONLINE BASIS CONSTRUCTION FOR GENERALIZED MULTISCALE FINITE ELEMENT METHODS

A Dissertation
by
WING TAT LEUNG

Submitted to the Office of Graduate and Professional Studies of Texas A\&M University
in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

Chair of Committee, Yalchin Efendiev
Co-Chair of Committee, Eric Chung
Committee Members, Eduardo Gildin
Peter Howard
Raytcho Lazarov
Head of Department, Emil Straube

August 2017

Major Subject: Mathematics

Copyright 2017 Wing Tat Leung

Abstract

Many problems in application involve media with multiple scale, for example, in composite materials, porous media. These problems are usually computationally challenging since fine grid computation is extremely expensive. Therefore, one may need to develop a coarse grid model reduction for this type of problems. In this dissertation, we will consider a multiscale method called generalized multiscale finite element method (GMsFEM).

GMsFEM follows the framework of multiscale finite element method. Instead of using one basis function per coarse grid node, GMsFEM uses several basis functions for one coarse grid node. Since the media is highly heterogeneous and may involves high contrast, having more than one basis function per node is important to reduce the error significantly.

Due to the varying heterogeneity in the domain, we may require different numbers of basis functions in different regions. Then the question is how to determine the number of basis functions in each region. In this dissertation, we will discuss an adaptive enrichment algorithm for enriching basis functions for the regions with large error. We will consider two different types of basis function for enrichment. One is using the pre-computed offline basis functions. We call this method offline adaptive enrichment. The other method uses online constructed basis functions called online adaptive enrichment.

In applications, non-conforming basis functions can give us more flexibility on gridding. The discontinuous Galerkin method also makes the mass matrix block diagonal, which enhances the computation speed in solving time-dependent problem with an explicit scheme. In this dissertation, we will discuss offline and online adaptive methods for the generalized multiscale discontinuous Galerkin method (GMsDGM). We will also discuss using GMsDGM for simulating wave propagation in heterogeneous media.

ACKNOWLEDGMENTS

I would like to thank the Department of Mathematics, Texas A\&M University. It will be difficult for me to purse my doctorate degree without the support of the department. The Department of Mathematics gives me many opportunities to attend different seminars, conferences and workshops. It helps me to explore future development of my research. It also allow me to make connection which potentially lead to interesting collaborative work.

Next, I would like to thank Dr. Yalchin Efendiev, my supervisor, for his guidance and advices in both academic and personal life. He gives me many ideas in my research and always be helpful when I am facing any problems. I am also thankful to Dr. Eric T. Chung. We have lots of discussions in my research topic. He always gives many useful suggestions.

Besides, I would like to thank Dr. Eduardo Gildin, Dr. Peter Howard and Dr. Raytcho Lazarov for serving as my committee and giving suggestions for my dissertation. I would also like to thank my colleagues, especially to Dr. Victor M. Calo, Dr. Richard L Gibson Jr and Dr. Maria Vasilyeva.

Last but not least, I want to show my gratitude to my parents and my brother for their support. Without their support, I will not be able to focus on my study.

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a dissertation committee consisting of Professor Yalchin Efendiev and Professor Eric Chung of the Department of Mathematics.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by a fellowship from Texas A\&M University.

NOMENCLATURE

MsFEM	Multiscale Finite Element Method
GMsFEM	Generalized Multiscale Finite Element Method
GMsDGM	Generalized Multiscale Discontinuous Galerkin Method
Ω	Computational domain
\mathcal{T}^{h}	A partition of Ω into fine finite element
\mathcal{T}^{H}	A partition of Ω into coarse finite element
h	The fine mesh size
H	The coarse mesh size
x_{i}	A coarse grid vertex
ω_{i}	a subdomain with a common vertex at x_{i}
ω_{i}^{+}	a oversampled subdomain for ω_{i}
K_{i}	a coarse grid element
K_{i}^{+}	a oversampled subdomain for K_{i}
u_{h}	The fine-grid solution
u_{H}	The coarse-grid solution
V_{h}	The fine-scale space
N_{c}	The number of coarse-grid nodes
N	The number of coarse-grid elements
χ_{i}	The partition of unity
$\psi_{k}^{(i)}$	$\phi_{k}^{(i)}$

TABLE OF CONTENTS

Page
ABSTRACT ii
ACKNOWLEDGMENTS iii
CONTRIBUTORS AND FUNDING SOURCES iv
NOMENCLATURE v
TABLE OF CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi

1. INTRODUCTION 1
1.1 Motivation 1
1.2 Introduction of upscaling method and multiscale finite element method 4
1.2.1 Homogenization 4
1.2.2 Numerical Homogenization 6
1.2.3 Multiscale finite element method (MsFEM) 7
2. RESIDUAL-BASED ONLINE GENERALIZED MULTISCALE FINITE ELE- MENT METHODS 10
2.1 GMsFEM for high contrast flow 10
2.1.1 Overview 10
2.1.2 Construction of offline basis functions for GMsFEM 12
2.2 Offline Adaptive GMsFEM 14
2.3 Residual based online adaptive GMsFEM 17
2.4 Numerical result 21
2.4.1 Comparison of using different number of initial basis 22
2.4.2 Adaptive online enrichment 29
3. AN ADAPTIVE GENERALIZED MULTISCALE DISCONTINUOUS GAL- ERKIN METHOD (GMSDGM) FOR HIGH-CONTRAST FLOW PROBLEMS 33
3.1 GMsDGM for high-contrast flow problems 33
3.1.1 Overview 33
3.1.2 Construction of offline basis functions 35
3.2 A-posteriori error estimate and adaptive enrichment 48
3.3 Numerical Results 52
3.3.1 Example 1 54
3.3.2 Example 2 58
3.3.3 Adaptive enrichment algorithm 60
3.3.3.1 Adaptive enrichment algorithm with basis removal 60
3.3.3.2 Adaptive enrichment using local basis pursuit 63
3.4 Convergence analysis 65
3.4.1 Proof of Theorem 3.2.1 68
3.4.2 An auxiliary lemma 70
3.4.3 Proof of Theorem 3.2.2 73
4. AN ONLINE GENERALIZED MULTISCALE DISCONTINUOUS GALER- KIN METHOD (GMSDGM) FOR FLOWS IN HETEROGENEOUS MEDIA 78
4.1 Overview 78
4.2 Locally online adaptivity 80
4.2.1 Initial space 80
4.2.2 Construction of online basis functions 82
4.2.3 Convergence of the adaptive procedure 86
4.3 Numerical Results 91
4.3.1 Comparison of using different number of initial basis 92
4.3.2 Setting tolerance for the residual 94
4.3.3 Adaptive online enrichment 96
5. GENERALIZED MULTISCALE FINITE ELEMENT METHODS FOR WAVE PROPAGATION IN HETEROGENEOUS MEDIA 100
5.1 Overview 100
5.2 The generalized multiscale discontinuous Galerkin method 102
5.2.1 Global IPDG solver 102
5.3 Numerical Results 105
5.3.1 The use of oversampling 108
5.4 Stability and convergence 109
5.4.1 Preliminaries 109
5.4.2 Convergence analysis 114
5.5 Convergence of the fully discrete scheme 121
5.6 Proof of the Lemma 5.4.1 132
6. SUMMARY AND CONCLUSIONS 140

REFERENCES . 143

LIST OF FIGURES

FIGURE Page
1.1 Illustration of the coarse grid for numerical homogenization. 6
1.2 Illustration of a coarse neighborhood and a coarse element. 9
2.1 Left: Permeability field κ. Right: Source function f 22
2.2 Comparison for the permeability field in Figure 2.1 with different choices of the number of initial basis. Left: The contrast is 10^{4}. Right: The contrast is 10^{6}. 26
2.3 Permeability field κ for second case. 27
2.4 Comparison for the permeability field in Figure 2.3 with different numbers of initial basis functions. 28
3.1 Left: Permeability field κ. Right: Fine grid solution with $f=1$. 55
3.2 A comparison of different ways of enrichment for Example 1. 57
3.3 Relation of error and eigenvalue decays for Example 1. The correlation coefficient of these two curves is 0.9863 . Left: Relative error decay. Right: Eigenvalue decay. 57
3.4 The ratio of error to residual with respect to the dimension of the approxi- mation space for Example 1. 58
3.5 Left: The source function f for the second example. Right: The fine grid solution. 59
3.6 A comparison of different ways of enrichment 61
3.7 Solution with sparse coefficient 66
4.1 Illustration of the initial basis construction. Left: An eigenfunction $\chi_{i}^{K} \psi_{k}^{\omega_{i}}$ is defined in ω_{i}. Right: 4 basis functions are obtained by splitting $\chi_{i}^{K} \psi_{k}^{\omega_{i}}$ into 4 pieces, and each has support in $K \subset \omega_{i}$. 98
4.2 Permeability field κ for first case. 99
4.3 Permeability field κ for second case. 99
4.4 Distribution of number of basis functions in coarse blocks. 99
5.1 Left: a subset of the Marmousi model. Right: fine grid solution. 137
5.2 Left: 75\% energy. Right: 80% energy. 138
5.3 Eigenvalues for the space $V_{1, \text { off }}$. 138

LIST OF TABLES

TABLE

2.1 Convergence history for the permeability field in Figure 2.1 and for the
case with one initial basis. Left: Lower contrast(1e4). Right: Higher
contrast(1e6).

2.2 Convergence history for the permeability field in Figure 2.1 and for the
case with two initial basis. Left: Lower contrast(1e4). Right: Higher
contrast(1e6). 25
2.3 Convergence history for the permeability field in Figure 2.1 and for the case with three initial basis. Left: Lower contrast(1e4). Right: Higher contrast(1e6). 26
2.4 Convergence history for the permeability field in Figure 2.3 and for the case with one initial basis. (The value of $\Lambda_{\text {min }}=0.0033$). 27
2.5 Convergence history for the permeability field in Figure 2.3. Left: Two initial basis $\left(\Lambda_{\min }=0.026\right)$. Right: Five initial basis $\left(\Lambda_{\min }=319.32\right)$. 27
2.6 Convergence history with a fixed tolerance (tol) and one initial basis for the permeability field in Figure 2.1. Left: $t o l=10^{-3}$. Middle: $t o l=10^{-4}$. Right: tol $=10^{-5}$. 30
2.7 Convergence history with a fixed tolerance (tol) and two initial basis for the permeability field in Figure 2.1. Left: $t o l=10^{-3}$. Middle: $t o l=10^{-4}$. Right: tol $=10^{-5}$. 31
2.8 Convergence history with a fixed tolerance ($t o l$) and three initial basis for the permeability field in Figure 2.1. Left: $t o l=10^{-3}$. Middle: tol $=10^{-4}$. Right: $t o l=10^{-5}$. 31
2.9 Convergence results using cumulative errors with $\theta=0.7$, tol $=10^{-4}$ and the permeability field in Figure 2.1. Left: One initial basis. Middle: Two initial basis. Right: Three initial basis. 32
3.1 Left: oversampling basis, Right: no-oversampling basis 45
3.2 Convergence history with $\theta=0.4$ for Example 1. Left: Enrich in V_{1} space only. Right: Enrich in both V_{1} and V_{2} spaces. 56
3.3 Left: Convergence history for oversampling basis with $\theta=0.4$ for Ex- ample 1 and enrichment in V_{1} space only. Right: Convergence history for uniform enrichment in V_{1} space only. 56
3.4 Convergence history with $\theta=0.4$ for Example 2. Left: Enrich in V_{1} space only. Right: Enrich in both V_{1} and V_{2} spaces. 60
3.5 Left: Convergence history for oversampling basis with $\theta=0.4$ for Ex- ample 2 and enrichment in V_{1} space only. Right: Convergence history for uniform enrichment in V_{1} space only. 60
3.6 Enrichment with $\theta=0.4$ and basis removal as well as enrichment in V_{1} space only. Left: $\varepsilon=10^{-12}$. Middle: $\varepsilon=10^{-13}$. Right: $\varepsilon=10^{-14}$ 63
3.7 Enrichment using basis pursuit with $\theta=0.8$ and basis removal as well as enrichment in V_{1} space only. 66
3.8 Enrichment with $\theta=0.8$. Left: basis pursuit. Right: standard enrichment 67
4.1 Top-left: One initial basis $\left(\Lambda_{\min }=4.89 e-4\right)$. Top-right: Two initial basis $\left(\Lambda_{\min }=0.9504\right)$. Bottom-left: Three initial basis $\left(\Lambda_{\min }=1.4226\right)$. Bottom-right: Four initial basis ($\Lambda_{\min }=2.2045$). 92
4.2 One initial basis. Left: Lower contrast(1e4)($\left.\Lambda_{\min }=0.0062\right)$. Right: Higher contrast $(1 \mathrm{e} 6)\left(\Lambda_{\min }=6.22 e-5\right)$. 93
4.3 Two initial basis. Left: Lower contrast(1e4)($\left.\Lambda_{\min }=0.027\right)$. Right: Higher contrast $(1 \mathrm{e} 6)\left(\Lambda_{\min }=2.72 e-4\right)$. 94
4.4 Three initial basis. Left: Lower contrast(1e4)($\left.\Lambda_{\min }=0.0371\right)$. Right: Higher contrast $(1 \mathrm{e} 6)\left(\Lambda_{\min }=3.75 e-4\right)$. 94
4.5 Four initial basis. Left: Lower contrast(1e4)($\left.\Lambda_{\min }=0.4472\right)$. Right: Higher contrast $(1 \mathrm{e} 6)\left(\Lambda_{\min }=0.3844\right)$. 95
4.6 One initial basis. Left: tol $=10^{-3}$. Middle: tol $=10^{-4}$. Right: tol $=10^{-5}$. 95
4.7 Two initial basis. Left: tol $=10^{-3}$. Middle: tol $=10^{-4}$. Right: tol $=10^{-5}$. 96
4.8 Three initial basis. Left: tol $=10^{-3}$. Middle: tol $=10^{-4}$. Right: tol $=10^{-5} .96$
4.9 The results using cumulative errors with $\theta=0.5$, tol $=10^{-5}$ and 1 initial basis. Left: using energy norm based residual. Right: using L_{2} norm based residual.97
5.1 Errors for various choices of energy for the space $V_{1, \text { off }}$. 137
5.2 Offline and online computational times. 137
5.3 Errors for various number of eigenfunctions in $V_{2, \text { off }}$ for using 75% energyin $V_{1, \text { off. }}$. 138
5.4 Offline and online computational times for various number of eigenfunc- tions in $V_{2, \text { off }}$ for using 75% energy in $V_{1, \text { off }}$. 138
5.5 Simulation results with one basis function in $V_{2 \text {,off }}$ 139
5.6 Errors and computational times for various number of eigenfunctions in $V_{2, \text { off }}$ for using $E=73 \%$. 139

1. INTRODUCTION

1.1 Motivation

In real life applications, many multiscale problems are involved in different areas (for example, in engineering, mathematics, physics, chemistry, computational biology and computer science problems). One can use an extremely fine mesh to solve these multiscale problems, however, it is computationally experience. Therefore, some types of model reduction technique is required for solving these problems efficiently. There are many different mutliscale model reduction methods. They are basically fall into two types of approach. One is called global model reduction [1, 2, 3]. The other is called local model reduction techniques $[4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,3,19,20,21,22,23]$.

Global model reduction techniques basically use global basis functions or global information to construct a reduced global model to approximate the original model. Since these methods using some global information in the offline stage, it may require a huge amount of computational power and also lack local adaptivity. In this dissertation, we will mostly focus on local model reduction techniques. In order to capture the global information of the model, we will present an online basis construction technique which uses the residual information obtained from solving the global equation. We remark that these online basis functions are constructed locally, therefore, it is time effective and compute these online basis function in parallel.

There are many different local multiscale model reduction techniques developed previously. They solve some underlying fine-scale problems on a coarse grid. These approaches can be classified into two categories. One is upscaling type approach. The other is multiscale method type approach. Upscaling approaches [4, 5] basically involve computation of some effective mediums in the coarse grid level which give an approximate model. Mul-
tiscale methods $[7,9,16,17,18,3,19,20,21,22]$ basically involve construction of some local basis functions in coarse grid level. These basis functions are constructed to capture the local multiscale information of the problem. We will briefly discuss some examples of upscaling and multiscale approach in Chapter 1 later.

There are many papers [24, 25, 26] discussed on using few local multiscale basis functions to approximate the solution. In this dissertation, we will mainly focus on a recent developed local model reduction method called Generalized Multiscale Finite Element method (GMsFEM) [27, 20, 22, 28, 29]. GMsFEM can be viewed as a generalization of the Multiscale Finite Element Method (MsFEM) ([30]). It gives a systematic way to enrich the basis functions in the coarse grid space. Enriching these basis functions are essential to reduce the error significantly. GMsFEM involves two stages of computation, which are offline stage and online stage. We will construct a small dimensional multiscale finite element space in the offline stage and use it to compute an approximate solution with a given source term and boundary condition in the online stage. We remark that one can use the multiscale finite element space for solving the problem with different source term and boundary condition without recomputing the basis functions. The most important part of the construction of offline spaces is the choice of local spectral problems and the choice of the snapshot space. We will discuss it in Chapter 2 in detail.

In practice, one may need to use different number of basis functions in different coarse elements (coarse neighborhoods) to obtain an accurate representation of the solution. We can use a small amount of basis functions in the regions with less heterogeneous property. In contrast, we will need to use more basis functions in the regions with more heterogeneities and high contrast. Therefore, we will need an adaptive enrichment algorithm to determine how many basis functions are required in each coarse region. In [31], the authors proposed a residual based local error estimator for adaptive enrichment of GMsFEM. In this dissertation, we will discuss on using residual based local error estimator to preform
basis enrichment for generalized multiscale discontinuous Galerkin method (GMsDGM). We will also use this residual based local error estimator to preform our online basis construction algorithm for GMsFEM and GMsDGM. There are many existing research papers [32, 33, 31] discussing on using local error estimator to preform mesh refinement or basis enrichment. Our analysis follows the same idea and do not consider the error coming from the fine grid discretization. We will discuss the adaptivity enrichment method for GMsDGM in detail in Chapter 3. We remark that there are many related activities in designing a-posteriori error estimates $[34,35,36,37,38,39]$ for global reduced models. The main difference is that our error estimators are based on special local eigenvalue problem and use the eigenstructure of the offline space. We also discuss an approach that adaptively selects multiscale basis functions from the offline space by selecting a basis with the most correlation to the local residual (cf. [40]). Adaptivity is important for local multiscale methods as it identifies regions with large errors. However, after adding some initial basis functions, one needs to take into account some global information as the distant effects can be important. In this dissertation, we discuss the development of online basis functions for both GMsFEM and GMsDGM that substantially accelerate the convergence of the method. The online basis functions are constructed based on a residual and motivated by the analysis. We will discuss the online basis construction in the adaptivity enrichment method for GMsFEM in Chapter 2 and GMsDGM in Chapter 4.

GMsDGM has many applications in different areas, for example, flow problem, wave simulation problem. In Chapter 5, we will discuss on using GMsDGM to simulate wave propagation in heterogeneous media. The discontinuous Galerkin framework give us a block diagonal mass matrix and more flexibility on gridding process which improve the computational performance and handle complex geometry of the computational domain.

1.2 Introduction of upscaling method and multiscale finite element method

In this section, we will briefly discuss about homogenization, numerical homogenization and multiscale finite element method for the flow problem with periodic media parameter, that is, solving u_{ϵ} satisfying

$$
-\nabla \cdot\left(\kappa\left(\frac{x}{\epsilon}\right) \nabla u_{\epsilon}\right)=f(x), \quad x \in \Omega
$$

with periodic parameter $\kappa\left(\frac{x}{\epsilon}\right)$ in the computational domain $\Omega=[0,1]^{d} \subset \mathbb{R}^{d}$, where ϵ is assumed to be extremely small.

1.2.1 Homogenization

In this subsection, we will introduce the homogenization technique for the flow problem. The basic idea of homogenization is to approximate the solution u_{ϵ} by a solution u_{0} of the flow problem with a constant coefficient κ^{*}, which is,

$$
-\nabla \cdot\left(\kappa^{*} \nabla u_{0}\right)=f(x), \quad x \in \Omega .
$$

Next, the question is how to find out the constant coefficient κ^{*}. We assume u_{ϵ} can written as a asymptotic expansion which is

$$
u_{\epsilon}=u_{0}(x, y)+\epsilon u_{1}(x, y)+\epsilon^{2} u_{2}(x, y)+\cdots
$$

where $y=\frac{x}{\epsilon}$ is fast variable and the functions $u_{i}(x, y)$ are periodic in y with period T. It is easy to see $\nabla=\nabla_{x}+\epsilon^{-1} \nabla_{y}$. By comparing the coefficient of ϵ in $O\left(\epsilon^{-2}\right)$ order, we have,

$$
-\nabla_{y} \cdot\left(\kappa(y) \nabla_{y} u_{0}(x, y)\right)=0
$$

By solving the above equation with periodic boundary condition in y, we have u_{0} is independent of y, that is, $u_{0}(x, y)=u_{0}(x)$. Next, by comparing the coefficient of ϵ in $O\left(\epsilon^{-1}\right)$ order, we have

$$
\begin{equation*}
-\nabla_{y} \cdot\left(\kappa(y) \nabla_{y} u_{1}(x, y)\right)=\nabla_{y} \cdot\left(\kappa(y) \nabla_{x} u_{0}(x)\right)=\left(\nabla_{y} \kappa(y)\right) \cdot\left(\nabla_{x} u_{0}(x)\right) \tag{1.1}
\end{equation*}
$$

We consider $\mathcal{N}_{j}=\mathcal{N}_{j}(y)$ to be the solution to the following "cell problem":

$$
-\nabla_{y} \cdot\left(\kappa(y) \nabla_{y} \mathcal{N}_{j}\right)=\frac{\partial}{\partial y_{j}} \kappa(y)
$$

with periodic boundary condition in y. Then, the solution of (1.1) can be written in form of

$$
u_{1}(x, y)=\mathcal{N}_{j} \frac{\partial}{\partial x_{j}} u+\tilde{u}_{1}(x) .
$$

By comparing the coefficient of ϵ in $O(1)$ order, we have

$$
\begin{equation*}
-\nabla_{x} \cdot\left(\kappa(y)\left(\nabla_{x} u_{0}(x)+\nabla_{y} u_{1}(x, y)\right)\right)-\nabla_{y} \cdot\left(\kappa(y)\left(\nabla_{x} u_{1}(x, y)+\nabla_{y} u_{2}(x, y)\right)\right)=f(x) \tag{1.2}
\end{equation*}
$$

Finally, integrating (1.2) over periodic cell Y, we have the homogenized equation is given as

$$
-\nabla_{x} \cdot\left(\kappa^{*} \nabla_{x} u_{0}(x)\right)=f
$$

where

$$
\kappa_{i j}^{*}=\frac{1}{|Y|} \int_{Y} \kappa\left(\delta_{i j}+\frac{\partial}{\partial y_{j}} \mathcal{N}_{i}\right) d y
$$

We remark that even if the parameter coefficient $\kappa(y)$ is a scalar coefficient, the homogenized coefficient κ^{*} can be a symmetric tensor.

1.2.2 Numerical Homogenization

In this subsection, we will briefly introduce numerical homogenization technique. Similar to homogenization, we would like to compute the homogenized coefficient for the problem. However, it is not easily to determine the periodic cell Y in practice. Sometimes, the parameter coefficient is even not periodic. Therefore, we may need to fix the coarse regions of the "cell problem" numerically. In numerical homogenization approach, we will first partition the computational domain into a coarse grid (see 1.1). Using this

Figure 1.1: Illustration of the coarse grid for numerical homogenization.
coarse grid, we will compute the "cell problem" in each coarse element K where the "cell problem" is defined as: finding $\mathcal{N}_{j}^{n h}$ with

$$
-\nabla\left(\kappa\left(\frac{x}{\epsilon}\right) \nabla \mathcal{N}_{j}^{n h}\right)=0 \quad x \in K
$$

subjecting to the boundary condition $\mathcal{N}_{j}^{n h}=x_{j}$ on ∂K.
Then the numerical homogenized coefficient $\kappa_{i j}^{*, \text { nh }}$ is defined by

$$
\kappa_{i j}^{*, n h}=\frac{1}{|K|} \int_{K} \kappa \nabla \mathcal{N}_{i}^{n h}
$$

We remark that the numerical homogenized coefficient $\kappa_{i j}^{*, \text { nh }}$ is a symmetric tensor.
In fact, the "cell problem" in numerical homogenization is similar to the "cell problem" in homogenization case in the sense of $\mathcal{N}_{j}^{n h}-x_{j}$ satisfying

$$
-\nabla_{y} \cdot\left(\kappa(y) \nabla_{y}\left(\mathcal{N}_{j}^{n h}-x_{j}\right)\right)=\frac{\partial}{\partial y_{j}} \kappa(y)
$$

with zero Dirichlet boundary condition and

$$
\kappa_{i j}^{*, \text { nh }}=\frac{1}{|K|} \int_{K} \kappa\left(\delta_{i j}+\frac{\partial}{\partial y_{j}}\left(\mathcal{N}_{i}^{n h}-x_{i}\right)\right) d y .
$$

That is, instead of solving the local problem with periodic boundary condition in periodic cell Y, we solve the local problem with boundary condition (can be Dirichlet, Mixed Dirichlet-Neumann or even periodic) in each coarse element K.

1.2.3 Multiscale finite element method (MsFEM)

In this subsection, we briefly introduce multiscale finite element method. In contrast to numerical homogenization, multiscale finite element method constructs the basis functions instead of the homogenized coefficient. Multiscale finite element method follows the framework of the standard finite element method, for example, it considers the variational
problem for flow problem: find $u \in H^{1}(\Omega)$ satistying

$$
\int_{\Omega} \kappa \nabla u \cdot \nabla v=\int_{\Omega} f v \forall v \in H^{1}(\Omega) .
$$

Multicale finite element method will approximate the variational solution $u \in H^{1}(\Omega)$ by a solution $u_{m s}$ satisfying the variational equation in a finite dimensional multsicale subspace $V_{m s} \subset H^{1}$, that is, finding $u_{m s} \in V_{m s}$ such that

$$
\begin{equation*}
\int_{\Omega} \kappa \nabla u_{m s} \cdot \nabla v=\int_{\Omega} f v \forall v \in V_{m s} \tag{1.3}
\end{equation*}
$$

The main idea of multiscale finite element method is constructing a multiscale basis function per coarse grid node which can capture the multiscale feature of the solution u.

We consider the computational domain Ω is partition into a coarse grid \mathcal{T}^{H} which is similar to the coarse grid in numerical homogenization. For each coarse vertices x_{i}, the coarse neighborhood ω_{i} is defined by

$$
\begin{equation*}
\omega_{i}=\bigcup\left\{K_{j} \in \mathcal{T}^{H} ; \quad x_{i} \in \bar{K}_{j}\right\} \tag{1.4}
\end{equation*}
$$

that is, ω_{i} is the union of the coarse elements $K \in \mathcal{T}^{H}$ containing the coarse grid node x_{i}. In Figure 1.2, we show an illustration of the coarse mesh and coarse neighborhood.

To construct the multiscale basis functions $\phi^{(i)}$, we will solve a local problem in each coarse neighborhood ω_{i} which is:

$$
\begin{gather*}
-\nabla \cdot\left(\kappa(x) \nabla \phi^{(i)}\right)=0 \forall K \in \mathcal{T}^{H} \tag{1.5}\\
\phi^{(i)}\left(x_{j}\right)=\delta_{i, j} \text { for all coarse node } x_{j},
\end{gather*}
$$

and $\phi^{(i)}$ is piecewise linear in each coarse edge, where $\delta_{i, j}$ is the Kronecker delta function.

Figure 1.2: Illustration of a coarse neighborhood and a coarse element.

The multiscale finite element space is defined as the span of these local basis functions, namely,

$$
V_{m s}=\operatorname{span}\left\{\phi^{(i)} \mid 1 \leq i \leq N_{c}\right\}
$$

where N_{c} is the number of coarse-grid nodes. After constructing the multiscale finite element space, one can use this space repeatedly for solving (1.3) with different source terms and boundary conditions.

The methods introduced in this section can basically handle the problems with scale separation quite well. However, in some applications, one may need to handle some more complicated cases, for example, high contrast media with multiple inclusions and channels. In these cases, we will require a more complex coarse grid upscaling model or enriching the multiscale finite element space to capture the complex multiscale feature of the solution. In the next chapter, we will discuss on the GMsFEM which is a generalization of the multiscale finite element method for handling the flow problem in high contrast medium.

2. RESIDUAL-BASED ONLINE GENERALIZED MULTISCALE FINITE ELEMENT METHODS

2.1 GMsFEM for high contrast flow

2.1.1 Overview

In this section, we will introduce the GMsFEM ([27, 20, 22, 28, 29]) for flow problem. Let Ω be the computational domain. We are considering the flow problem in highly heterogeneous media defined as

$$
\begin{align*}
-\nabla \cdot(\kappa \nabla u)=f & \text { in } \quad \Omega, \tag{2.1}\\
u=0 & \text { on } \quad \partial \Omega \tag{2.2}
\end{align*}
$$

where κ is the permeability coefficient in $L^{\infty}(\Omega), f$ is a source function in $L^{2}(\Omega)$. We assume the coefficient κ is highly heterogeneous, which can involve multiple non-separable scale and high contrast.

The GMsFEM starts with partitioning the computational domain Ω into a coarse mesh \mathcal{T}^{H} with mesh size H. The coarse mesh is then refined into a fine mesh \mathcal{T}^{h} with fine mesh size $h \ll H$. We assume this fine mesh is fine enough to restore the multiscale properties of the problem. To simplify the discussion, we will consider the coarse mesh and fine mesh are both uniform rectangular mesh. Let N_{c} be the number of nodal points of the coarse mesh. We consider the set $N_{x}=\left\{x_{i} \mid 1 \leq i \leq N_{c}\right\}$ containing all of the coarse

[^0]grid nodes. For each coarse grid node x_{i}, the coarse neighborhood ω_{i} is defined by
\[

$$
\begin{equation*}
\omega_{i}=\bigcup\left\{K_{j} \in \mathcal{T}^{H} ; \quad x_{i} \in \bar{K}_{j}\right\} \tag{2.3}
\end{equation*}
$$

\]

that is, ω_{i} is the union of the coarse elements $K \in \mathcal{T}^{H}$ containing the coarse grid node x_{i}. In Figure 1.2, we show an illustration of the coarse mesh and coarse neighborhood.

Next, we denote the conforming piecewise bilinear fine-scale finite element space as V_{h}, that is $V_{h}=\left\{v \in H^{1}(\Omega)|v|_{K} \in Q^{1}(K), \forall K \in \mathcal{T}^{H}\right\}$. This finite element space is used to compute some local problems for constructing the multsicale finite element space and the fine-scale reference solution for comparison. The finite-scale reference solution u_{h} is defined by the following variational problem: find $u_{h} \in V_{h}$ such that

$$
\begin{equation*}
a\left(u_{h}, v\right)=(f, v), \quad \text { for all } v \in V_{h}, \tag{2.4}
\end{equation*}
$$

where a is the bilinear form which is defined as $a(u, v)=\int_{\Omega} \kappa \nabla u \cdot \nabla v d x$. We define the energy norm, $\|v\|_{a}$, by $\|v\|_{a}^{2}=a(v, v)$. Since the fine mesh is fine enough to resolve the multiscale properties of the problem, we notice that the reference solution is a good approximation of the exact solution. We would like to construct a multiscale finite element space $V_{m s}$ which is a subspace of the the fine-scale finite element space V_{h} in the coarse mesh with multiscale basis function resolve the local multiscale behaviors of the exact solution.

Next, we will present the general framework of GMsFEM ([27, 20, 22, 28, 29]). It follows the standard continuous Galerkin framework. We seek for a multiscale numerical solution $u_{m s} \in V_{m s}$ such that

$$
\begin{equation*}
a\left(u_{m s}, v\right)=(f, v), \quad \text { for all } v \in V_{m s} \subset V_{h} . \tag{2.5}
\end{equation*}
$$

The basis functions of the multiscale finite element space are constructed in coarse neighborhoods, and therefore, they are nodal based and supposed on coarse neighborhoods. That is, $V_{m s}=\operatorname{span}\left\{\phi_{j}^{(i)} \in V_{h} \mid \operatorname{supp}\left\{\phi_{j}^{(i)}\right\} \subset \omega_{i}\right.$, for $\left.1 \leq i \leq N\right\}$. The most important part of GMsFEM is how to construct these local basis functions in order to obtain a good approximation of the solution. We will discuss it in detail in the latter subsection. By [27, 20, 22, 28, 29], we will use some basis functions which is called offline basis function to span our initial multiscale finite element space. These basis functions are called offline basis function since they are constructed in the offline stage. These basis functions are not always sufficient to give us a good approximation of the solution. Therefore, we may need to construct some local basis functions in online stage to give a rapid convergence to the reference solution.

2.1.2 Construction of offline basis functions for GMsFEM

In this section, we discuss how to construct the offline basis function in GMsFEM (see e.g. [27, 20, 22, 28, 29]). For each coarse neighbourhood ω, we consider the local finescale finite element space $V_{h}^{(i)}$ to be the restriction of the global finite-scale finite element space V_{h}, namely, $V_{h}^{(i)}=\left\{v\left|\in H^{1}(\omega)\right| v=\left.w\right|_{\omega}\right.$ for some $\left.w \in V_{h}\right\}$. Next, we will introduce a subspace of the local fine-scale finite element space which is called the local snapshot space $V_{\text {snap }}^{(i)}$. The local snapshot space is considered to be a space containing all of the important components of the reference solution in the coarse neighbourhood ω. The snapshot space is usually too large that will not be used directly to be our multiscale finite element space. We will use a spectral problem to select some dominant modes in order to obtain a low dimensional subspace, and our multiscale finite element space is consider to be the sum of low dimensional subspace. Usually, there are two choices for the snapshot space. One is using the local fine-scale finite element space directly. Another choice is using the space containing all κ - harmonic extensions.

Next, we discuss the construction of harmonic extension snapshot space $V_{\text {snap }}^{(i)}$. Let $J_{h}(\omega)$ be the set of all finite grid nodal points on the coarse neighbourhood boundary $\partial \omega$. For each finite grid nodal point $x_{j} \in J_{h}(\omega)$, we construct a local snapshot basis function $\psi_{\text {snap }, j}$ by solving

$$
\begin{align*}
-\operatorname{div}\left(\kappa(x) \nabla \psi_{\text {snap }, j}\right)=0, & \text { in } \omega \tag{2.6}\\
\psi_{\text {snap }, j}\left(x_{k}\right)=\delta_{k, j}^{h}, & \text { for all } x_{k} \in J_{h}(\omega) .
\end{align*}
$$

where δ_{j}^{h} is the discrete delta function defined by

$$
\delta_{k, j}^{h}= \begin{cases}1, & k=j \\ 0, & k \neq j\end{cases}
$$

The local snapshot space $V_{\text {snap }}^{(i)}$ is the space spanned by these snapshot basis functions, namely, $V_{\text {snap }}^{(i)}=\operatorname{span}\left\{\psi_{\text {snap }, j} \mid \forall x_{j} \in J_{h}(\omega)\right\}$. Therefore, the dimension of the local snapshot space is equal the number of finite grid nodes on on the coarse neighbourhood boundary $\partial \omega$. To construct this snapshot space, we need to solve a number of local problems. To reduce the computational cost of the construction, we can use randomized snapshots with oversampleing technique [41]. For each coarse neighbourhood ω, we can define an oversampled domain ω^{+}by extending several fine grid layers around ω. We will construct K snapshot basis functions $\psi_{\text {snap }, j}^{+}$by solving the κ - harmonic extension with random boundary conditions, that is, solving

$$
\begin{align*}
-\operatorname{div}\left(\kappa(x) \nabla \psi_{\text {snap }, j}^{+}\right)=0, & \text { in } \omega^{+}, \tag{2.7}\\
\psi_{\text {snap }, j}^{+}=r_{j}, & \text { on } \partial \omega^{+}, .
\end{align*}
$$

where r_{j} are independent identically distributed (i.i.d.) Gaussian random vectors on the
fine-grid nodes on $\partial \omega^{+}$. The local snapshot space $V_{\text {snap }}^{(i)}$ is the space spanned by these snapshot basis functions restricted in ω, namely, $V_{\text {snap }}^{(i)}=\operatorname{span}\left\{\psi_{\text {snap }, j}^{+}|\omega|\right.$ for $\left.1 \leq j \leq K\right\}$. K can be chosen as the number of offline basis function per coarse neighbourhood plus a small number $p_{b f}$, for example, $p_{b f}=4$. Therefore, we only need to solve about $n+4$ local problems if we need n offline basis functions.

Next, we will discuss about the construction of offline basis functions. We will use a spectral problem to perform a local model reduction. From the analysis in [16], we consider the spectral problem to be: find $(\phi, \lambda) \in V_{\text {snap }}^{(i)} \times \mathbb{R}$ such that

$$
\begin{equation*}
\int_{\omega} \kappa(x) \nabla \phi_{j}^{(i)} \cdot \nabla v d x=\lambda_{j}^{(i)} \int_{\omega} \widetilde{\kappa}(x) \psi_{j}^{(i)} v d x, \quad \forall v \in V_{\text {snap }}^{(i)} \tag{2.8}
\end{equation*}
$$

where $\widetilde{\kappa}(x)$ is defined by

$$
\widetilde{\kappa}=\kappa \sum_{i=1}^{N_{c}} H^{2}\left|\nabla \chi_{i}\right|^{2},
$$

with χ_{i} being the nodal multiscale basis function for the coarse node x_{i}.
We assume the eigenvalues $\lambda_{j}^{(i)}$ from (2.8) are in ascending order. For each ω_{i}, the first l_{i} eigenfunctions corresponding to the small eigenvalues are chosen to construct the offline space. The offline space $V_{\text {off }}$ is spanned by the basis $\chi_{i} \phi_{j}^{(i)}$, namely $V_{\text {off }}=\operatorname{span}\left\{\chi_{i} \phi_{j}^{(i)} \mid 1 \leq\right.$ $\left.i \leq N, 1 \leq j \leq l_{i}\right\}$. After constructing the offline space, we can set the multiscale finite element space to be this offline space and compute the numerical solution by solving (2.5).

2.2 Offline Adaptive GMsFEM

In the previous section, we introduced a multiscale offline space to a coarse-scale approximation of the exact solution. However, using a pre-defined number of basis functions l_{i} in the coarse neighborhood ω_{i} may not be enough to restore all of the scale of the exact solution. Therefore, we may need to use an adaptive approach to select the number of basis functions used in each coarse neighborhood. In [31], there is an adaptive enrichment
algorithm for choosing l_{i} is introduced and analyzed. The general idea of this adaptive enrichment algorithm is using the local residual of the equation to indicate the regions which require more basis functions. We will first compute a numerical solution by using the offline multiscale space and use it to compute the local residual for each coarse neighborhood. Next, for each coarse neighborhood with large residual, we enrich more basis functions by using the next eigenfunctions in (2.8), namely adding $\chi_{i} \phi_{l_{i}+1}^{(i)}, \ldots, \chi_{i} \phi_{l_{i}+p}^{(i)}$ to finite element space. We repeat the basis enrichment process until the residual is smaller than a tolerance. We call this algorithm the offline adaptive GMsFEM since we only add the predefined offline basis functions to multiscale finite element space.

Next, we will discuss the offline adaptive GMsFEM in more details. We assume $u_{\mathrm{ms}} \in$ $V_{\text {off }}$ to be the solution obtained in (2.5). For a given coarse neighborhood, we can define the local residual functional, $R_{i}: V_{h}^{(i)} \rightarrow \mathbb{R}$, by

$$
R_{i}(v):=\int_{\omega_{i}} f v-\int_{\omega_{i}} a \nabla u_{\mathrm{ms}} \cdot \nabla v
$$

The operator norm of the residual functional is defined by $\left\|R_{i}\right\|:=\sup \frac{\left|R_{i}(v)\right|}{\|v\|_{V}}$. Follow the result in [31], we have a posteriori error estimate for GMsFEM which is

$$
\begin{equation*}
\left\|u_{h}-u_{\mathrm{ms}}\right\|_{V}^{2} \leq C_{\mathrm{err}} \sum_{i=1}^{N_{c}}\left\|R_{i}\right\|^{2}\left(\lambda_{l_{i}+1}^{(i)}\right)^{-1} \tag{2.9}
\end{equation*}
$$

where $C_{\text {err }}$ is a uniform constant, and $\lambda_{l_{i}+1}^{(i)}$ is the $\left(l_{i}+1\right)$-th eigenvalue for the spectral problem (2.8) which corresponds to the first eigenfunction that do not used in the offline basis construction.

Next, we will present the adaptive enrichment algorithm. The index $m \geq 1$ is used to denote the enrichment level. To enrich the multiscale finite element space, we will use the

Dorlfer's bulk marking strategy [34] to select the number of enriching local regions. We first define a constant $0<$ theta <1 independent of m. At each enrichment level m, we compute the numerical solution u_{ms}^{m} by computing the corresponding solution obtained in (2.5) with $V_{\mathrm{ms}}=V_{\mathrm{ms}}^{m}$ where V_{ms}^{m} is the corresponding multiscale finite element space in m-th level. Next, we compute the local error indicator η_{i} for each coarse neighborhood ω_{i} with

$$
\eta_{i}^{2}=\left\|R_{i}\right\|^{2}\left(\lambda_{l_{i}^{m}+1}^{\omega_{i}}\right)^{-1}, \quad i=1,2, \cdots, N
$$

where l_{i}^{m} is the number of basis functions used in the coarse neighborhood ω_{i} and $R_{i}(v)$ is defined using u_{ms}^{m}, namely,

$$
R_{i}(v)=\int_{\omega_{i}} f v-\int_{\omega_{i}} a \nabla u_{\mathrm{ms}}^{m} \cdot \nabla v, \quad \forall v \in V_{i} .
$$

We will use the error indicator to identify the regions where basis enrichment is required. We first rearrange the order of the coarse neighborhoods such that the error indicator η_{i}^{2} are in decreasing order, that is, $\eta_{1}^{2} \geq \eta_{2}^{2} \geq \cdots \geq \eta_{N}^{2}$. Let k be the smallest integer such that

$$
\begin{equation*}
\theta \sum_{i=1}^{N_{c}} \eta_{i}^{2} \leq \sum_{i=1}^{k} \eta_{i}^{2} \tag{2.10}
\end{equation*}
$$

We then add the next eigenfunction $\chi_{i} \phi_{l_{i}^{m}+1}^{(i)}$ to the multiscale finite element space for $1 \leq i \leq k$ where i is in the new arranged order. We call the enriched space V_{ms}^{m+1}, namely, $V_{\mathrm{ms}}^{m+1}=V_{\mathrm{ms}}^{m}+\operatorname{span}\left\{\chi_{i} \phi_{l_{i}^{m}+1}^{(i)} \mid 1 \leq i \leq k\right\}$.

In [31], the above enrichment algorithm can give a fast convergent rate if the eigenvalues in (2.8) increase rapidly. Although rapid eigenvalue growth occur in many cases, this offline enrichment algorithm may be give a rapid convergence in some situations since the offline constructed basis functions may not contain the global information of the problem. Thus, we may need to construct some basis functions involving global information
to accelerate the convergence. In next section, we will introduce an adaptive algorithm by using online constructed basis functions where these basis functions can capture the global behaviors of the solution and thus give a rapid convergent rate.

2.3 Residual based online adaptive GMsFEM

In previous sections, we discussed about the offline adaptive enrichment method and mentioned that online constructed basis functions may be important in some cases. In this section, we will present the online basis function construction algorithm in more details. We call the adaptive algorithm using the online constructed basis functions online adaptive GMsFEM. Based on the analysis and numerical result, we show that using sufficient number of offline basis functions is necessary to give a rapid convergence for online adaptive GsFEM.

Basically, the online adaptive GMsFEM following a similar framework as the offline adaptive GMsFEM. Thus, we will use similar notations as in the previous section. In online adaptive GMsFEM, instead of, using the next eigenfunction constructed in 2.8, we will add a online constructed basis function $\phi_{\mathrm{on}}^{(i)}$ to the multiscale finite element space V_{ms}. Therefore, the resulting multiscale finite element space contain both offline constructed and online constructed basis functions.

Next, we will discuss how to construct the online basis functions. In the m - th enrichment level, similar to the offline adaptive GMsFEM, we will obtain the numerical solution u_{ms}^{m} by solving (2.5) with $V_{\mathrm{ms}}=V_{\mathrm{ms}}^{m}$. The main point is how to find a suitable basis function $\phi_{o n}$ with support in ω_{i} such that the next level multiscale finite element space $V_{\mathrm{ms}}^{m+1}=V_{\mathrm{ms}}^{m}+\operatorname{span}\left\{\phi_{o n}\right\}$ can give a good approximation of the reference solution.

Let u_{ms}^{m+1} be the numerical solution for the next enrichment level. By using Galerkin
orthogonal property of the numerical solution. We have

$$
\left\|u_{h}-u_{\mathrm{ms}}^{m+1}\right\|_{a}^{2}=\inf _{v \in V_{\mathrm{ms}}^{m+1}}\left\|u_{h}-v\right\|_{a}^{2}
$$

By taking $v=u_{\mathrm{ms}}^{m}+\phi_{o n}$, we have

$$
\left\|u_{h}-u_{\mathrm{ms}}^{m+1}\right\|_{V}^{2} \leq\left\|u_{h}-u_{\mathrm{ms}}^{m}-\alpha \phi_{o n}\right\|_{V}^{2}=\left\|u_{h}-u_{\mathrm{ms}}^{m}\right\|_{V}^{2}-2 a\left(u_{h}-u_{\mathrm{ms}}^{m}, \phi_{o n}\right)+a\left(\phi_{o n}, \phi_{o n}\right) .
$$

To reduce the error for next level enrichment, we will minimize the last two terms in the above inequality. That is, we will find $\phi_{o n} \in V_{h}^{(i)}$ such that,

$$
\begin{equation*}
\phi_{o n}=\operatorname{argmin}_{\phi \in V_{h}^{(i)}}\left\{-2 a\left(u_{h}-u_{\mathrm{ms}}^{m}, \phi\right)+a(\phi, \phi)\right\} \tag{2.11}
\end{equation*}
$$

Since $R_{i}(\phi)=\int_{\omega_{i}} f \phi-\int_{\omega_{i}} a \nabla u_{\mathrm{ms}}^{m} \cdot \nabla \phi=a\left(u_{h}-u_{\mathrm{ms}}^{m}, \phi\right)$, we have

$$
\phi_{o n}=\operatorname{argmin}_{\phi \in V_{h}^{(i)}}\left\{-2 R_{i}(\phi)+a(\phi, \phi)\right\}
$$

and by simple variation argument, we have $\phi_{o n} \in V_{h}^{(i)}$ satisfying

$$
\begin{equation*}
a\left(\phi_{o n}, v\right)=R_{i}(v) \forall v \in V_{h}^{(i)} \tag{2.12}
\end{equation*}
$$

Moreover, we know the error of next level is reduced by $2 R_{i}\left(\phi_{o n}\right)-a\left(\phi_{o n}, \phi_{o n}\right)=$ $a\left(\phi_{o n}, \phi_{o n}\right)=\left\|R_{i}\right\|^{2}$, namely,

$$
\begin{equation*}
\left\|u_{h}-u_{\mathrm{ms}}^{m+1}\right\|^{2} \leq\left\|u_{h}-u_{\mathrm{ms}}^{m}\right\|^{2}-\left\|R_{i}\right\|^{2} \tag{2.13}
\end{equation*}
$$

We consider the spaces V_{ms}^{m} contains the first n_{i} offline basis functions for the coarse
neighborhood ω_{i} for all level m. Therefore, by (2.9), we obtain

$$
\begin{equation*}
\left\|u-u_{\mathrm{ms}}^{m}\right\|_{V}^{2} \leq C_{\mathrm{err}} \sum_{i=1}^{N_{c}}\left\|R_{i}\right\|^{2}\left(\lambda_{n_{i}+1}^{\omega_{i}}\right)^{-1} \tag{2.14}
\end{equation*}
$$

Combining (2.13) and (2.14), we obtain

$$
\left\|u-u_{\mathrm{ms}}^{m+1}\right\|_{V}^{2} \leq\left(1-\frac{\lambda_{n_{i}+1}^{\omega_{i}}}{C_{\mathrm{err}}} \frac{\left\|R_{i}\right\|^{2}\left(\lambda_{n_{i}+1}^{\omega_{i}}\right)^{-1}}{\sum_{j=1}^{N_{c}}\left\|R_{j}\right\|^{2}\left(\lambda_{n_{j}+1}^{\omega_{j}}\right)^{-1}}\right)\left\|u-u_{\mathrm{ms}}^{m}\right\|_{V}^{2}
$$

The above inequality show the error decay rate for enriching one basis function with support in ω_{i} per iteration. To increase the rate of convergence of the method, we can enrich multiple basis functions with non-overlapping support in each iteration. For example, we can choose a index set of some non-overlapping course neighborhoods $I \subset$ $\{1, \cdots, N\}$, that is $\omega_{i} \cap \omega_{j}=\emptyset$ for all $i, j \in I$ with $i \neq j$. Next, we can construct a set of basis functions, $\left\{\phi_{o n}^{(i)} \in V_{h}^{(i)} \mid \forall i \in I\right\}$, by solving (2.12) for each coarse neighborhood ω_{i} with $i \in I$. It is easy to check that, using the same argument as above, we can obtain the following inequality

$$
\begin{equation*}
\left\|u-u_{\mathrm{ms}}^{m+1}\right\|_{V}^{2} \leq\left\|u-u_{\mathrm{ms}}^{m}\right\|_{V}^{2}-\sum_{i \in I}\left\|R_{i}\right\|^{2} \tag{2.15}
\end{equation*}
$$

if the coarse neighborhoods $\omega_{i}, \forall i \in I$ are non-overlapping. Consequently, we have

$$
\begin{equation*}
\left\|u-u_{\mathrm{ms}}^{m+1}\right\|_{V}^{2} \leq\left(1-\frac{\Lambda_{\mathrm{min}}^{(I)}}{C_{\mathrm{err}}} \frac{\sum_{i \in I}\left\|R_{i}\right\|^{2}\left(\lambda_{n_{i}+1}^{\omega_{i}}\right)^{-1}}{\sum_{j=1}^{N_{c}}\left\|R_{j}\right\|^{2}\left(\lambda_{n_{j}+1}^{\omega_{j}}\right)^{-1}}\right)\left\|u-u_{\mathrm{ms}}^{m}\right\|_{V}^{2} \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda_{\min }^{(I)}=\min _{i \in I} \lambda_{n_{i}+1}^{\omega_{i}} . \tag{2.17}
\end{equation*}
$$

Form the above inequality, we can see that the convergence of the online enrichment
method is determined by $\Lambda_{\text {min }}^{(I)}$ which related to the number of basis functions of the offline space. To obtain a rapid convergence, we need to take enough offline basis function such that $\Lambda_{\text {min }}^{(I)}$ is large enough and

$$
\frac{\Lambda_{\min }^{(I)}}{C_{\mathrm{err}}} \frac{\sum_{i \in I} r_{i}^{2}\left(\lambda_{n_{i}+1}^{\omega_{i}}\right)^{-1}}{\sum_{j=1}^{N_{c}} r_{j}^{2}\left(\lambda_{n_{j}+1}^{\omega_{j}}\right)^{-1}} \geq \theta_{0}
$$

for some $0<\theta_{0}<1$ which is independent of the contrast in $\kappa(x)$.
Hence, we obtain the following convergence for the online adaptive GMsFEM:

$$
\left\|u-u_{\mathrm{ms}}^{m+1}\right\|_{V}^{2} \leq\left(1-\theta_{0}\right)\left\|u-u_{\mathrm{ms}}^{m}\right\|_{V}^{2} .
$$

We note that $\Lambda_{\text {min }}^{(I)}$ can be very small when there are channels in the domain. This is extensively discussed in [42]. For this reason, we introduce a definition.

Definition 2.3.1. We say $V_{\text {off }}$ satisfies Online Error Reduction Property (ONERP) if

$$
\frac{\Lambda_{\min }^{(I)}}{C_{\text {err }}^{(I)}} \frac{\sum_{i \in I} r_{i}^{2}\left(\lambda_{n_{i}+1}^{\omega_{i}}\right)^{-1}}{\sum_{i=1}^{N_{c}} r_{i}^{2}\left(\lambda_{n_{i}+1}^{\omega_{i}}\right)^{-1}} \geq \theta_{0},
$$

for some $\theta_{0}>\delta>0$, where δ is independent of physical parameters such as contrast.

We remark that if $V_{\text {off }}$ is ONERP, then the error will decrease independent of physical parameters such as the contrast and scales. We will show in our numerical results that if we do not choose $V_{\text {off }}$ with ONERP, the online basis functions will not decrease the error. One of easiest way to determine $V_{\text {off }}$ being ONERP is to guarantee that $\Lambda_{\min }^{(I)}$ is sufficiently large. In general, one can use the sizes of $\Lambda_{\text {min }}^{(I)}$ and $\sum_{i \in I} r_{i}^{2}\left(\lambda_{n_{i}+1}^{\omega_{i}}\right)^{-1}$ to determine the switching between offline and online.

We remark that one can derive apriori error estimate for $\left\|u-u_{\mathrm{ms}}^{m+1}\right\|_{V}^{2}$. To do so, we can use an error estimate for the GMsFEM that uses initial multiscale basis functions ([31,
$29,16]$) and obtain estimate for $\left\|u-u_{\mathrm{ms}}^{0}\right\|_{V}^{2}$, where u_{ms}^{0} denotes the multiscale solution that uses the initial basis functions. This convergence rate depends on the use of oversampling and is proportional to $1 / \Lambda_{*}$, where Λ_{*} is the largest eigenvalue that the corresponding eigenvector is not used in constructing the initial multiscale space.

2.4 Numerical result

In this section, we will present some numerical examples to demonstrate the performance of the online adaptive enrichment method. We first briefly introduce the algorithm for online adaptive GMsFEM. As we mentioned before, the online adaptive enrichment will start constructing a offline space with a fixed number of offline basis functions for each coarse neighborhood. The offline space is denoted as $V_{\text {off }}$. We consider the initial multiscale finite element space V_{ms}^{1} be the offline space $V_{\text {off }}$. Next, the coarse neighborhoods are denoted by $\omega_{i, j}$, where $i=1,2, \cdots, N_{x}$ and $j=1,2, \cdots, N_{y}$ and N_{x} and N_{y} are the number of coarse nodes in the x and y directions respectively. We consider $I_{x, \text { odd }}$ and $I_{x, \text { even }}$ as the set of odd and even indices from $\left\{1,2, \cdots, N_{x}\right\}$. Similarly, $I_{y, \text { odd }}$ and $I_{y, \text { even }}$ are the set of odd and even indices from $\left\{1,2, \cdots, N_{y}\right\}$. In each iteration of our online adaptive GMsFEM, we will perform 4 sub-iterations which add online basis functions in the non-overlapping coarse neighborhoods $\omega_{i, j}$ with $(i, j) \in I_{x, \text { odd }} \times I_{y, \text { odd }}$, $(i, j) \in I_{x, \text { odd }} \times I_{y, \text { even }},(i, j) \in I_{x, \text { even }} \times I_{y, \text { odd }}$ and $(i, j) \in I_{x, \text { even }} \times I_{y, \text { even }}$ respectively.

The computational domain D is considered as $[0,1]^{2}$ and the coarse mesh is an uniform square mesh with mesh size $H=1 / 16$. The fine mesh is an uniform square mesh with mesh size $H=1 / 256$. In Figure 2.1, we will show the permeability field κ and the source function f. In the following sections, we will use the following error quantities to measure the accuracy of our algorithm.

$$
e_{2}=\frac{\left\|u-u_{\mathrm{ms}}\right\|_{L^{2}(D)}}{\|u\|_{L^{2}(D)}}, \quad e_{a}=\frac{\left\|u-u_{\mathrm{ms}}\right\|_{V}}{\|u\|_{V}},
$$

Figure 2.1: Left: Permeability field κ. Right: Source function f.

2.4.1 Comparison of using different number of initial basis

In this subsection, we will present the numerical result to compare the convergence rate of using different number of initial basis functions. In Table 2.1, we will show the result of using one basis function per coarse neighborhood for the offline space. In the table, we will show the number of basis functions used in each coarse neighborhood and the degrees of freedom (DOF), which is the total number of basis functions. In the table, we will consider two different contrast level. In the left table, we have the contrast $\frac{\max \kappa}{\min \kappa}=10^{4}$. In the right table, we have a contrast $\frac{\max \kappa}{\min \kappa}=10^{6}$ which is 100 times larger than the contrast in the left table. That is, we have a permeability field with permeability equal to 10^{6} in the inclusion and channels in Figure 2.1. We know that the first few eigenvalue are dependent on the contrast([42]). For using 100 times contrast, we will have 100 times smaller eigenvalues for the first few eigenfunctions. By comparing the convergence history for using different level of contrast (in Table 2.1), we can see the convergence rate is dependent on the contrast if we do not have enough initial basis functions. Similarly, in Table 2.2, we can see the convergence rate is slower for the higher contrast case if we use two initial basis functions. However, in Table 2.3, we show that the convergence rate does
not dependent on the contrast since $\Lambda_{\min }$ is independent of the contrast. In Figure 2.2, we plot the relative errors in energy norm and the logarithm of relative errors in energy norm against total number of degrees of freedom. for various number of the initial basis functions for two different contrasts. We observed that the convergence rates are similar for using 3 and 4 initial basis functions. Therefore, we can conclude that the convergence rate is independent of contrast if we have enough initial basis functions. Moreover, we can see the error decay exponentially for using online adaptive method.

From Figure 2.2, we can observe the following facts. First, we observe if we choose the number of initial basis functions to be 2 (which satisfies ONERP), it will give the smallest error for a fixed coarse space dimension. Indeed, if we start with the smallest number of initial basis functions (that satisfy ONERP), then at every iteration of the online stage, the error will reduce more compared to the offline-stage basis addition (i.e., adding the basis functions computed in the offline stage). On the other hand, if we would like to reduce the online cost associated with computing basis functions, then it is more advantageous to choose more offline basis functions. Indeed, by choosing a larger number of initial offline basis functions will give us a better result, as we observe from Figure 2.2. For example, if we compare the errors for one online basis addition, we will find that the case with 4 initial offline basis functions gives smallest error. This is because the initial error for the four offline basis functions is smallest among those shown in Figure 2.2. In general, one needs to be careful as more offline basis functions will increase the dimension of the online system and, consequently, the cost of solving the coarse-grid system.

Next, we will present an example with a different medium parameter κ shown in Figure 2.3 to show the importance of ONERP. The source function f is taken as the constant 1 . The domain D is divided into 8×8 coarse blocks consisting of uniform squares. Each coarse block is then divided into 32×32 fine blocks also consisting of uniform squares.

The convergence history for the use of one initial basis and the corresponding total

number of basis (DOF)	e_{a}	e_{2}
$1(225)$	60.71%	33.87%
$2(450)$	33.10%	13.38%
$3(675)$	14.38%	3.25%
$4(900)$	4.28%	1.02%
$5(1125)$	1.33%	0.24%
$6(1350)$	0.065%	0.0028%
$7(1575)$	0.00083%	$2.96 \mathrm{e}-05 \%$
$8(1800)$	$1.59 \mathrm{e}-05 \%$	$4.87 \mathrm{e}-07 \%$
$9(2025)$	$2.35 \mathrm{e}-07 \%$	$2.10 \mathrm{e}-08 \%$
number of basis (DOF)		e_{a}
$1(225)$		60.90%
$2(450)$	34.15%	
$3(675)$	35.00%	15.87%
$4(900)$	25.77%	15.29%
$5(1125)$	14.17%	4.39%
$6(1350)$	7.79%	2.78%
$7(1575)$	6.83%	2.06%
$8(1800)$	4.15%	1.20%
$9(2025)$	2.60%	0.64%

Table 2.1: Convergence history for the permeability field in Figure 2.1 and for the case with one initial basis. Left: Lower contrast(1e4). Right: Higher contrast(1e6).
number of degrees of freedom (DOF) are shown in Table 2.4. In this case, $\Lambda_{\text {min }}=0.0033$, which is considered to be very small, and we observe very slow convergence of the online adaptive procedure. In Table 2.5, we present the convergence history for the use of two to five initial basis, where we only show the results for the last 4 iterations. We see that the values of $\Lambda_{\text {min }}$ increase as we increase the number of initial basis. We also observe that the convergence rate increase when we raise the number of initial basis from 2 to 4 . For the use of 5 initial basis, we again see rapid convergence and a faster convergence compared when using 4 initial basis functions. In particular, we observe (based on 3 iterations following the initial one) that the error decays at 130 -fold when 5 initial basis functions are selected, while the error decay is about 90 -fold when 4 initial basis functions

num of basis(DOF)	e_{a}	e_{2}
$2(450)$	26.60%	6.92%
$3(675)$	1.46%	0.060%
$4(900)$	0.017%	0.000079%
$5(1125)$	0.000021%	$1.06 \mathrm{e}-05 \%$
$6(1350)$	$3.56 \mathrm{e}-06 \%$	$1.65 \mathrm{e}-07 \%$
num of basis (DOF)	e_{a}	e_{2}
$2(450)$	27.17%	7.53%
$3(675)$	4.99%	0.79%
$4(900)$	0.20%	0.0073%
$5(1125)$	0.0017%	$8.16 \mathrm{e}-05$
$6(1350)$	$2.71 \mathrm{e}-05 \%$	$1.09 \mathrm{e}-06 \%$

Table 2.2: Convergence history for the permeability field in Figure 2.1 and for the case with two initial basis. Left: Lower contrast(1e4). Right: Higher contrast(1e6).
are selected. A comparison of error decay for the use of 1 to 5 initial basis functions is shown in Figure 2.4. We have also tested harmonic basis functions and the results are similar, i.e., the convergence rate is very slow unless sufficient number of offline basis functions is selected.

In conclusion, we observe

- If V_{ms} does not satisfy ONERP, then the error decay is slower as the contrast becomes larger.
- If V_{ms} does not satisfy ONERP, in some cases, we have observed the error does not decrease as we add online basis functions (see Table 2.4, 2.5).
- If V_{ms} satisfies ONERP, then we observe a fast convergence, which is independent of contrast.

num of basis (DOF)	e_{a}	e_{2}
$3(675)$	16.95%	2.53%
$4(900)$	0.54%	0.023%
$5(1125)$	0.011%	0.00040%
$6(1350)$	$9.07 \mathrm{e}-05 \%$	$3.79 \mathrm{e}-06 \%$
$7(1575)$	$1.38 \mathrm{e}-06 \%$	$6.05 \mathrm{e}-08 \%$
num of basis (DOF)	e_{a}	e_{2}
$3(675)$	16.96%	2.54%
$4(900)$	0.54%	0.023%
$5(1125)$	0.011%	0.00041%
$6(1350)$	$9.07 \mathrm{e}-05 \%$	$3.79 \mathrm{e}-06 \%$
$7(1575)$	$1.58 \mathrm{e}-06 \%$	$5.49 \mathrm{e}-07 \%$

Table 2.3: Convergence history for the permeability field in Figure 2.1 and for the case with three initial basis. Left: Lower contrast(1e4). Right: Higher contrast(1e6).

Figure 2.2: Comparison for the permeability field in Figure 2.1 with different choices of the number of initial basis. Left: The contrast is 10^{4}. Right: The contrast is 10^{6}.

Figure 2.3: Permeability field κ for second case.

DOF	e_{a}	e_{2}
81	17.24%	4.35%
162	2.80%	1.02%
243	2.65%	0.88%
323	2.64%	0.87%
401	1.09%	0.081%
478	0.74%	0.094%
555	0.73%	0.090%
632	0.48%	0.039%
709	0.37%	0.026%

Table 2.4: Convergence history for the permeability field in Figure 2.3 and for the case with one initial basis. (The value of $\Lambda_{\text {min }}=0.0033$).

DOF	e_{a}	e_{2}	DOF	e_{a}	e_{2}
162	13.29%	2.90%	405	7.24%	0.92%
405	1.60%	0.17%	486	0.0684%	0.0028%
486	0.33%	0.025%	567	0.00049%	$1.51 \mathrm{e}-05 \%$
567	0.30%	0.022%	635	$3.80 \mathrm{e}-06 \%$	$2.49 \mathrm{e}-06 \%$

Table 2.5: Convergence history for the permeability field in Figure 2.3. Left: Two initial basis ($\Lambda_{\min }=0.026$). Right: Five initial basis $\left(\Lambda_{\min }=319.32\right)$.

Figure 2.4: Comparison for the permeability field in Figure 2.3 with different numbers of initial basis functions.

2.4.2 Adaptive online enrichment

In this section, the online enrichment is performed only for regions with the residual that is larger than a certain threshold. In the first case, the online enrichment is performed for the coarse regions with a residual error bigger than a certain threshold which will be taken $10^{-3}, 10^{-4}$, and 10^{-5}. In the second case, the online enrichment is performed for coarse regions that have cumulative residual that is θ fraction of the total residual. One of our objectives is to show that one can drive the error down to a number below a threshold, adaptively.

In our numerical results, we will consider three tolerances (tol) $10^{-3}, 10^{-4}$ and 10^{-5}. We will enrich coarse regions, if the H^{-1}-norm of the residual is bigger than the tolerance. In Table 2.6, we show the errors when using 1 initial basis function for tolerances 10^{-3}, 10^{-4} and 10^{-5}. We first observe a very slow reduction in errors similar to the results presented in the previous section. Another observation is that the energy error of the multiscale solution is in the same order of the tolerance, and the error cannot be further reduced if we perform more iterations. This allows us to compute a multiscale solution with a prescribed error level by choosing a suitable tolerance in the adaptive algorithm. In Table 2.7 and Table 2.8, we show the errors for the last three iterations when using 2 and 3 initial basis functions respectively for tolerances $10^{-3}, 10^{-4}$ and 10^{-5}. We observe that the convergences are much faster. In addition, the energy errors are again have the same magnitude as the tolerances. From these results, we obtain the following conclusions.

- Using smaller tolerances, we can reduce the final error below desired threshold errors.
- We have observed that the number of initial basis functions are important to achieve better results. For example, we observe a slow decay of the error when 1 initial basis function is selected. Moreover, if the contrast is higher, the decay becomes slower.

DOF	e_{a}		e_{2}	DO		e_{a}	e_{2}
225	60.71\%		33.87\%	225		60.71\%	33.87\%
447	33.10\%		13.39\%	449		33.10\%	13.38\%
652	14.43\%		3.28\%	674		14.38\%	3.25\%
776	4.37\%		1.06\%	883		4.28\%	1.02\%
824	1.83\%		0.37\%	103		1.33\%	0.24\%
847	1.10\%		0.25\%	112		0.082\%	0.0036\%
863	0.50\%		0.029\%	1136		0.052\%	0.0023\%
	DOF		- e_{a}			e_{2}	
		225	60.701	\%		3.87\%	
		450	33.10%			3.38\%	
		675	14.38			3.25\%	
		899	4.28\%			1.02\%	
		1114	1.33\%			0.24\%	
		1275	0.065			0028\%	
		1338	0.0048			00017\%	

Table 2.6: Convergence history with a fixed tolerance ($t o l$) and one initial basis for the permeability field in Figure 2.1. Left: $t o l=10^{-3}$. Middle: $t o l=10^{-4}$. Right: $t o l=10^{-5}$.

In our next numerical example, the online enrichment is performed for coarse regions that have a cumulative residual that is θ fraction of the total residual. Assume that the local residuals are arranged so that

$$
r_{1} \geq r_{2} \geq r_{3} \geq \cdots
$$

Then, we only add the basis $\phi_{1}, \cdots, \phi_{k}$ for the coarse neighborhoods $\omega_{1}, \cdots, \omega_{k}$ such that k is the smallest integer with

$$
\theta \sum_{i=1}^{N_{c}} r_{i}^{2} \leq \sum_{i=1}^{k} r_{i}^{2}
$$

In Table 2.9, we present numerical results for the last 4 iterations when using 1, 2 and 3 initial basis functions with the tolerance 10^{-4} and $\theta=0.7$. We observe that one can reduce the total number of basis functions compared to the previous case to achieve a similar error. Our conclusions regarding the importance of ONERP condition for V_{ms} is

DOF	26.60\%	e_{2}	DOF	e_{a}	e_{2}
450		6.92\%	450	26.60\%	6.92\%
649	1.49\%	0.063\%	674	1.46\%	0.059\%
666	0.53\%	0.028\%	802	0.048\%	0.0022\%
	DOF	e_{a}	e_{2}		
	675	1.46\%	0.060\%		
	885	0.017\%	0.00079\%		
	925	0.0043\%	\% 0.00019\%		

Table 2.7: Convergence history with a fixed tolerance ($t o l$) and two initial basis for the permeability field in Figure 2.1. Left: $t o l=10^{-3}$. Middle: $t o l=10^{-4}$. Right: $t o l=10^{-5}$.

Table 2.8: Convergence history with a fixed tolerance (tol) and three initial basis for the permeability field in Figure 2.1. Left: $t o l=10^{-3}$. Middle: $t o l=10^{-4}$. Right: tol $=10^{-5}$.
the same as before.

DOG	e_{a}	e_{2}	DOF	e_{a}	e_{2}	DOF	e_{a}	e_{2}
620	1.10%	0.23%	450	26.60%	6.92%	675	16.96%	2.54%
709	0.49%	0.082%	576	1.94%	0.12%	827	1.02%	0.045%
787	0.050%	0.0024%	690	0.20%	0.0099%	957	0.091%	0.0033%
789	0.046%	0.0022%	744	0.051%	0.0023%	987	0.048%	0.0017%

Table 2.9: Convergence results using cumulative errors with $\theta=0.7$, tol $=10^{-4}$ and the permeability field in Figure 2.1. Left: One initial basis. Middle: Two initial basis. Right: Three initial basis.

3. AN ADAPTIVE GENERALIZED MULTISCALE DISCONTINUOUS GALERKIN METHOD (GMSDGM) FOR HIGH-CONTRAST FLOW PROBLEMS

3.1 GMsDGM for high-contrast flow problems

3.1.1 Overview

In this section, we will introduce the GMsDGM ([43]) for the flow problem. As in the chapter 2 , we denote the computational domain by Ω. We will consider the flow problem (2.1) with high-contrast medium coefficient $\kappa(x)$ and Dirichlet boundary condition $u=g$ on boundary $\partial \Omega$. Instead of using continuous Galerkin approach, we would like to introduce an efficient coarse grid discontinuous Galerkin approach to capture the multiscale feature of the solution.

We denote the coarse grid by \mathcal{T}^{H} as in the previous chapter. We then denote consider the fine grid \mathcal{T}^{h} to be a refinement of the coarse grid. To simplify the discussion of the methodology, we will consider a conforming refinement only. We remark that the conforming refinement is not necessary in the discontinuous Galerkin case.

GMsDGM also consists of two main ingredients, which are the construction of local basis functions and the global coarse grid level coupling. For the local basis functions, a snapshot space $V_{\text {snap }}^{(i)}$ is first constructed for each coarse grid block $K_{i} \in \mathcal{T}^{H}$. The snapshot space contains a large library of basis functions, which can be used to obtain a fine scale approximate solution to (2.1). A spectral problem is then solved in the snapshot space $V_{\text {snap }}^{(i)}$ and eigenfunctions corresponding to dominant modes are used as the final basis functions. The resulting space is called the local offline space $V_{\text {off }}^{(i)}$ for the i-th coarse grid block K_{i}. The global offline space $V_{\text {off }}$ is then defined as the linear span of all these $V_{\text {off }}^{(i)}$, for $i=1,2, \cdots, N$. This global offline space $V_{\text {off }}$ will be used as the approximation space of
our discontinuous Galerkin method, which can be formulated as: find $u_{H}^{\mathrm{DG}} \in V_{\text {off }}$ such that

$$
\begin{equation*}
a_{\mathrm{DG}}\left(u_{H}^{\mathrm{DG}}, v\right)=(f, v), \quad \forall v \in V_{\mathrm{off}}, \tag{3.1}
\end{equation*}
$$

where the bilinear form a_{DG} is defined as
$a_{\mathrm{DG}}(u, v)=a_{H}(u, v)-\sum_{E \in \mathcal{E}^{H}} \int_{E}\left(\left\{\kappa \nabla u \cdot n_{E}\right\} \llbracket v \rrbracket+\left\{\kappa \nabla v \cdot n_{E}\right\} \llbracket u \rrbracket\right)+\sum_{E \in \mathcal{E}^{H}} \frac{\gamma}{h} \int_{E} \bar{\kappa} \llbracket u \rrbracket \llbracket v \rrbracket$
with

$$
\begin{equation*}
a_{H}(u, v)=\sum_{K \in \mathcal{T}_{H}} a_{H}^{K}(u, v), \quad a_{H}^{K}(u, v)=\int_{K} \kappa \nabla u \cdot \nabla v, \tag{3.3}
\end{equation*}
$$

where $\gamma>0$ is a penalty parameter, n_{E} is a fixed unit normal vector defined on the coarse edge $E \in \mathcal{E}^{H}$. Note that, in (3.2), the average and the jump operators are defined in the classical way. Specifically, consider an interior coarse edge $E \in \mathcal{E}^{H}$ and let K^{+}and K^{-} be the two coarse grid blocks sharing the edge E. For a piecewise smooth function G, we define

$$
\{G\}=\frac{1}{2}\left(G^{+}+G^{-}\right), \quad \llbracket G \rrbracket=G^{+}-G^{-}, \quad \text { on } E,
$$

where $G^{+}=\left.G\right|_{K^{+}}$and $G^{-}=\left.G\right|_{K^{-}}$and we assume that the normal vector n_{E} is pointing from K^{+}to K^{-}. Moreover, on the edge E, we define $\bar{\kappa}=\left(\kappa_{K^{+}}+\kappa_{K^{-}}\right) / 2$ where $\kappa_{K^{ \pm}}$ is the maximum value of κ over $K^{ \pm}$. For a coarse edge E lying on the boundary ∂D, we define

$$
\{G\}=\llbracket G \rrbracket=G, \quad \text { and } \quad \bar{\kappa}=\kappa_{K} \quad \text { on } E,
$$

where we always assume that n_{E} is pointing outside of D. We note that the DG coupling (3.1) is the classical interior penalty discontinuous Galerkin (IPDG) method [44] with our multiscale basis functions as the approximation space.

3.1.2 Construction of offline basis functions

In this subsection, we will give a detailed description of the method. We will first give the construction of the snapshot space, and then give the definitions of the local spectral problems for the construction of the offline space. Furthermore, a priori estimate of the method will be derived.

Let $K_{i} \in \mathcal{T}^{H}$ be a given coarse grid block. We will define two types of snapshot spaces. The first type of local snapshot space $V_{1, \text { snap }}^{(i)}$ for the coarse grid block K_{i} is defined as the linear span of all harmonic extensions. Specifically, given a function δ_{k} defined on ∂K_{i}, we find $\psi_{k}^{i, \text { snap }} \in V_{h}\left(K_{i}\right)$ by

$$
\begin{align*}
\int_{K_{i}} \kappa \nabla \psi_{k}^{i, \text { snap }} \cdot \nabla v=0, & \forall v \in V_{h}^{0}\left(K_{i}\right), \tag{3.4}\\
\psi_{k}^{i, \text { snap }}=\delta_{k}, & \text { on } \partial K_{i},
\end{align*}
$$

where $V_{h}\left(K_{i}\right)$ is the standard conforming piecewise polynomial finite element space with respect to the fine grid defined on $K_{i}, V_{h}^{0}\left(K_{i}\right)$ is the subspace of $V_{h}\left(K_{i}\right)$ containing functions vanishing on ∂K_{i} and δ_{k} is piecewise polynomial on ∂K_{i} with respect to the fine grid such that δ_{k} has the value one at the k-th fine grid degree of freedom and value zero at all the remaining fine grid degree of freedoms. The linear span of the above harmonic extensions is the local snapshot space $V_{1, \text { snap }}^{(i)}$, namely

$$
V_{1, \text { snap }}^{(i)}=\operatorname{span}\left\{\psi_{k}^{i, \text { snap }}, \quad k=1,2, \cdots, M^{i, \text { snap }}\right\}
$$

where $M^{i, \text { snap }}$ is the number of basis functions in $V_{1, \text { snap }}^{(i)}$, which is also equal to the number of fine grid degree of freedoms on ∂K_{i}. The second type of local snapshot space $V_{2, \text { snap }}^{(i)}$ for the coarse grid block K_{i} is defined as $V_{2, \text { snap }}^{(i)}=V_{h}^{0}\left(K_{i}\right)$. It is easy to see that $V_{h}\left(K_{i}\right)=$ $V_{1, \text { snap }}^{(i)}+V_{2, \text { snap }}^{(i)}$, namely the space $V_{h}\left(K_{i}\right)$ is decomposed as the sum of harmonic extensions
and functions vanishing on the boundary ∂K_{i}. Moreover, the global snapshot space $V_{1, \text { snap }}$ is defined so that any $v \in V_{1, \text { snap }}$ if $\left.v\right|_{K_{i}} \in V_{1, \text { snap }}^{(i)}$. The space $V_{2, \text { snap }}$ is defined similarly.

We will perform dimension reductions on the above snapshot spaces by the use of some carefully selected spectral problems. Based on our analysis to be presented in this section, we define the spectral problem for $V_{1, \text { snap }}^{(i)}$ as finding eigenpairs $\left(\phi_{k}^{(i)}, \lambda_{1, k}^{(i)}\right), k=$ $1,2, \cdots, M^{i, \text { snap }}$, such that

$$
\begin{equation*}
\int_{K_{i}} \kappa \nabla \phi_{k}^{(i)} \cdot \nabla v=\frac{\lambda_{1, k}^{(i)}}{H} \int_{\partial K_{i}} \widetilde{\kappa} \phi_{k}^{(i)} v, \quad \forall v \in V_{1, \text { snap }}^{(i)} \tag{3.5}
\end{equation*}
$$

where $\widetilde{\kappa}$ is the maximum of $\bar{\kappa}$ over all coarse edges $E \in \partial K_{i}$. Moreover, we assume that

$$
\lambda_{1,1}^{(i)}<\lambda_{1,2}^{(i)}<\cdots<\lambda_{1, M^{i, \text { snap }}}^{(i)}
$$

For the space $V_{2, \text { snap }}^{(i)}$, we define the spectral problem as finding eigenpairs $\left(\xi_{k}^{(i)}, \lambda_{2, k}^{(i)}\right), k=$ $1,2, \cdots$, such that

$$
\begin{equation*}
\int_{K_{i}} \kappa \nabla \xi_{k}^{(i)} \cdot \nabla v=\frac{\lambda_{2, k}^{(i)}}{H^{2}} \int_{K_{i}} \kappa \xi_{k}^{(i)} v, \quad \forall v \in V_{2, \text { snap }}^{(i)} \tag{3.6}
\end{equation*}
$$

where we also assume that

$$
\lambda_{2,1}^{(i)}<\lambda_{2,2}^{(i)}<\cdots
$$

In the spectral problems (3.5) and (3.6), we will take respectively the first $l_{1, i}$ and $l_{2, i}$ eigenfunctions to form the offline space for the coarse grid block K_{i}. The local offline spaces are then defined as

$$
\begin{array}{ll}
V_{1, \mathrm{off}}^{(i)}=\operatorname{span}\left\{\phi_{l}^{(i)},\right. & \left.l=1,2, \cdots, l_{1, i}\right\} \\
V_{2, \mathrm{off}}^{(i)}=\operatorname{span}\left\{\xi_{l}^{(i)},\right. & \left.l=1,2, \cdots, l_{2, i}\right\}
\end{array}
$$

We define $V_{\text {off }}^{(i)}=V_{1, \text { off }}^{(i)}+V_{2, \text { off }}^{(i)}$. The global offline space $V_{1}^{\text {off }}$ is defined so that the restriction of any function $v \in V_{1}^{\text {off }}$ on the coarse grid block K_{i} belongs to $V_{1}^{i, \text { off }}$. The definition for $V_{2}^{\text {off }}$ is defined similarly. In addition, we define $V_{\text {off }}=V_{1, \text { off }}+V_{2, \text { off. }}$. This space is used as the approximation space in (3.1). We remark that we assume the eigenvalues in the spectral problems (3.5) and (3.6) are simple only to simplify the notations. If there is a non-simple eigenvalue, then there are multiple eigenfunctions correspond to this eigenvalue. In this case, we will include all these eigenfunctions in the space when this eigenvalue is chosen in our adaptive process.

Now we will analyze the method defined in (3.1). For any piecewise smooth function u, we define the DG-norm by

$$
\|u\|_{\mathrm{DG}}^{2}=a_{H}(u, u)+\sum_{E \in \mathcal{E}_{H}} \frac{\gamma}{h} \int_{E} \bar{\kappa} \llbracket u \rrbracket^{2} d s
$$

Let K be a coarse grid block and let $n_{\partial K}$ be the unit outward normal vector on ∂K. We denote $V_{h}(\partial K)$ by the restriction of the conforming space $V_{h}(K)$ on ∂K. For any $u \in V_{1}^{\text {snap }}$, the normal flux $\kappa \nabla u \cdot n_{\partial K}$ is understood as an element in $V_{h}(\partial K)$ and is defined by

$$
\begin{equation*}
\int_{\partial K}\left(\kappa \nabla u \cdot n_{\partial K}\right) \cdot v=\int_{K} \kappa \nabla u \cdot \nabla \widehat{v}, \quad v \in V^{h}(\partial K) \tag{3.7}
\end{equation*}
$$

where $\widehat{v} \in V_{h}(K)$ is the harmonic extension of v in K. By the Cauchy-Schwarz inequality,

$$
\int_{\partial K}\left(\kappa \nabla u \cdot n_{\partial K}\right) \cdot v \leq a_{H}^{K}(u, u)^{\frac{1}{2}} a_{H}^{K}(\widehat{v}, \widehat{v})^{\frac{1}{2}}
$$

By an inverse inequality and the fact that \widehat{v} is the harmonic extension of v

$$
\begin{equation*}
a_{H}^{K}(\widehat{v}, \widehat{v}) \leq \kappa_{K} C_{\mathrm{inv}}^{2} h^{-1} \int_{\partial K}|v|^{2}, \tag{3.8}
\end{equation*}
$$

where we recall that κ_{K} is the maximum of κ over K and $C_{\mathrm{inv}}>0$ is the constant from inverse inequality. Thus,

$$
\int_{\partial K}\left(\kappa \nabla u \cdot n_{\partial K}\right) \cdot v \leq \kappa_{K}^{\frac{1}{2}} C_{\mathrm{inv}} h^{-\frac{1}{2}}\|v\|_{L^{2}(\partial K)} a_{H}^{K}(u, u)^{\frac{1}{2}} .
$$

This shows that

$$
\begin{equation*}
\int_{\partial K}\left|\kappa \nabla u \cdot n_{\partial K}\right|^{2} \leq \kappa_{K} C_{\mathrm{inv}}^{2} h^{-1} a_{H}^{K}(u, u) \tag{3.9}
\end{equation*}
$$

We remark that the above steps show that the inequality (3.9) holds for any u in the snapshot space $V_{1}^{\text {snap }}$. On the other hand, for any function $u \in V_{2}^{\text {snap }}$, one can show that (3.9) holds, with possibly a different constant $C_{\text {inv }}$, by using arguments based on inverse inequality. See also Lemma 2 in [22]. Furthermore, the relation (3.7) will be used in the proof of Theorem 3.1.2.

Our first step in the development of an a priori estimate is to establish the continuity and the coercivity of the bilinear form (3.2) with respect to the DG-norm.

Lemma 3.1.1. Assume that the penalty parameter γ is chosen so that $\gamma>C_{\mathrm{inv}}^{2}$. The bilinear form $a_{D G}$ defined in (3.2) is continuous and coercive, that is,

$$
\begin{align*}
a_{D G}(u, v) & \leq a_{1}\|u\|_{D G}\|v\|_{D G}, \tag{3.10}\\
a_{D G}(u, u) & \geq a_{0}\|u\|_{D G}^{2} \tag{3.11}
\end{align*}
$$

for all u, v, where $a_{0}=1-C_{\mathrm{inv}} \gamma^{-\frac{1}{2}}>0$ and $a_{1}=1+C_{\mathrm{inv}} \gamma^{-\frac{1}{2}}$.

Proof. By the definition of a_{DG}, we have

$$
a_{\mathrm{DG}}(u, v)=a_{H}(u, v)-\sum_{E \in \mathcal{E}^{H}} \int_{E}\left(\left\{\kappa \nabla u \cdot n_{E}\right\} \llbracket v \rrbracket+\left\{\kappa \nabla v \cdot n_{E}\right\} \llbracket u \rrbracket\right)+\sum_{E \in \mathcal{E}^{H}} \frac{\gamma}{h} \int_{E} \bar{\kappa} \llbracket u \rrbracket \llbracket v \rrbracket .
$$

Notice that

$$
a_{H}(u, v)+\sum_{E \in \mathcal{E}^{H}} \frac{\gamma}{h} \int_{E} \bar{\kappa} \llbracket u \rrbracket \cdot \llbracket v \rrbracket \leq\|u\|_{\mathrm{DG}}\|v\|_{\mathrm{DG}} .
$$

For an interior coarse edge $E \in \mathcal{E}^{H}$, we let $K^{+}, K^{-} \in \mathcal{T}^{H}$ be the two coarse grid blocks having the edge E. By the Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\int_{E}\left\{\kappa \nabla u \cdot n_{E}\right\} \cdot \llbracket v \rrbracket \leq\left(h \int_{E}\left\{\kappa \nabla u \cdot n_{E}\right\}^{2}(\bar{\kappa})^{-1}\right)^{\frac{1}{2}}\left(\frac{1}{h} \int_{E} \bar{\kappa} \llbracket v \rrbracket^{2}\right)^{\frac{1}{2}} . \tag{3.12}
\end{equation*}
$$

Notice that

$$
h \int_{E}\left\{\kappa \nabla u \cdot n_{E}\right\}^{2}(\bar{\kappa})^{-1} \leq h\left(\int_{E}\left(\kappa^{+} \nabla u^{+} \cdot n_{E}\right)^{2}\left(\kappa_{K^{+}}\right)^{-1}+\int_{E}\left(\kappa^{-} \nabla u^{-} \cdot n_{E}\right)^{2}\left(\kappa_{K^{-}}\right)^{-1}\right)
$$

where $u^{ \pm}=\left.u\right|_{K^{ \pm}}, \kappa^{ \pm}=\left.\kappa\right|_{K^{ \pm}}$. So, summing the above over all E and by (3.9), we have

$$
h \sum_{E \in \mathcal{E}^{H}} \int_{E}\left\{\kappa \nabla u \cdot n_{E}\right\}^{2}(\bar{\kappa})^{-1} \leq h \sum_{K \in \mathcal{T}_{H}} \int_{\partial K}\left(\kappa \nabla u \cdot n_{\partial K}\right)^{2}\left(\kappa_{K}\right)^{-1} \leq C_{\mathrm{inv}}^{2} a_{H}(u, u) .
$$

Thus we have

$$
\begin{equation*}
\sum_{E \in \mathcal{E}^{H}} \int_{E}\left\{\kappa \nabla u \cdot n_{E}\right\} \llbracket v \rrbracket \leq C_{\text {inv }} a_{H}(u, u)^{\frac{1}{2}}\left(\sum_{E \in \mathcal{E}^{H}} \frac{1}{h} \int_{E} \bar{\kappa} \llbracket v \rrbracket^{2} d s\right)^{\frac{1}{2}} \tag{3.13}
\end{equation*}
$$

Similarly, we have

$$
\sum_{E \in \mathcal{E}^{H}} \int_{E}\left\{\kappa \nabla v \cdot n_{E}\right\} \llbracket u \rrbracket \leq C_{\text {inv }} a_{H}(v, v)^{\frac{1}{2}}\left(\sum_{E \in \mathcal{E}^{H}} \frac{1}{h} \int_{E} \bar{\kappa} \llbracket u \rrbracket^{2} d s\right)^{\frac{1}{2}} .
$$

Summing the above two inequalities, we have

$$
\begin{equation*}
\sum_{E \in \mathcal{E}^{H}} \int_{E}\left(\left\{\kappa \nabla u \cdot n_{E}\right\} \llbracket v \rrbracket+\left\{\kappa \nabla v \cdot n_{E}\right\} \llbracket u \rrbracket\right) \leq C_{\mathrm{inv}} \gamma^{-\frac{1}{2}}\|u\|_{\mathrm{DG}}\|v\|_{\mathrm{DG}} \tag{3.14}
\end{equation*}
$$

This proves the continuity (3.10).
For the coercivity (3.11), we have

$$
a_{\mathrm{DG}}(u, u)=\|u\|_{\mathrm{DG}}^{2}-\sum_{E \in \mathcal{E}^{H}} \int_{E}\left(\left\{\kappa \nabla u \cdot n_{E}\right\} \cdot \llbracket u \rrbracket+\left\{\kappa \nabla u \cdot n_{E}\right\} \cdot \llbracket u \rrbracket\right) .
$$

By (3.14), we have

$$
a_{\mathrm{DG}}(u, u) \geq\left(1-C_{\mathrm{inv}} \gamma^{-\frac{1}{2}}\right)\|u\|_{\mathrm{DG}}^{2}
$$

which gives the desired result.

In the following, we will prove an a priori estimate of the method (3.1). First, we let

$$
\begin{equation*}
V_{\mathrm{DG}}^{h}=\left\{v \in L^{2}(D):\left.v\right|_{K} \in V_{h}(K)\right\} . \tag{3.15}
\end{equation*}
$$

Let $u_{h} \in V_{h}^{\text {DG }}$ be the fine grid solution which satisfies

$$
\begin{equation*}
a_{\mathrm{DG}}\left(u_{h}, v\right)=(f, v), \quad \forall v \in V_{h}^{\mathrm{DG}} . \tag{3.16}
\end{equation*}
$$

It is well-known that u_{h} converges to the exact solution u in the DG-norm as the fine mesh size $h \rightarrow 0$. Next, we define a projection $u_{1} \in V_{1, \text { snap }}$ of u_{h} in the snapshot space by the following construction. For each coarse grid block K_{i}, the restriction of u_{1} on K_{i} is defined as the harmonic extension of u_{h}, that is,

$$
\begin{gather*}
\int_{K_{i}} \kappa \nabla u_{1} \cdot \nabla v=0, \quad \forall v \in V_{h}^{0}\left(K_{i}\right) \tag{3.17}\\
u_{1}=u_{h}, \quad \text { on } \partial K_{i} .
\end{gather*}
$$

The following theorem gives an a priori estimate for the GMsDGM (3.1).

Theorem 3.1.2. Let $u_{h} \in V_{h}^{D G}$ be the fine grid solution defined in (3.16) and u_{H} be the GMsDGM solution defined in (3.1). Then we have

$$
\begin{aligned}
\left\|u_{h}-u_{H}\right\|_{D G}^{2} \leq C(& \sum_{i=1}^{N} \frac{H}{\widetilde{\kappa} \lambda_{1, l_{1, i}+1}^{(i)}}\left(1+\frac{\gamma H}{h \lambda_{1, l_{1, i}+1}^{(i)}}\right) \int_{\partial K_{i}}\left(\kappa \nabla u_{1} \cdot n_{\partial K}\right)^{2} \\
& \left.+\sum_{K \in \mathcal{T}_{H}} \frac{H^{2}}{\lambda_{2, l_{2, i}+1}^{(i)}}\|f\|_{L^{2}(K)}^{2}+C_{\mathrm{inv}}^{2} \sum_{E \in \mathcal{E}^{H}} \frac{1}{h} \int_{E} \bar{\kappa} \llbracket u_{h} \rrbracket^{2}\right),
\end{aligned}
$$

where u_{1} is defined in (3.17).

Proof. First, we write $u_{h}=u_{1}+u_{2}$ where $u_{2}=u_{h}-u_{1}$. Notice that, on each coarse grid block K_{i}, the functions u_{1} and u_{2} can be represented by

$$
\begin{equation*}
u_{1}=\sum_{l=1}^{M_{i}} c_{l} \phi_{l}^{(i)} \quad \text { and } \quad u_{2}=\sum_{l \geq 1} d_{l} \xi_{l}^{(i)} \tag{3.18}
\end{equation*}
$$

where $M_{i}=M^{i, \text { snap }}$ and we assume that the functions $\phi_{l}^{(i)}$ and $\xi_{l}^{(i)}$ are normalized so that

$$
\int_{\partial K_{i}} \widetilde{\kappa}\left(\phi_{l}^{(i)}\right)^{2}=1 \quad \text { and } \quad \int_{K_{i}} \kappa\left(\xi_{l}^{(i)}\right)^{2}=1 .
$$

Notice that, the functions u_{1} and u_{2} belong to the snapshot spaces $V_{1 \text {,snap }}$ and $V_{2 \text {,snap }}$ respectively. We will need two functions \widehat{u}_{1} and \widehat{u}_{2}, which belong to the offline spaces $V_{1, \text { off }}$ and $V_{2, \text { off }}$ respectively. These functions are defined by

$$
\widehat{u}_{1}=\sum_{l=1}^{l_{1 . i}} c_{l} \phi_{l}^{(i)} \quad \text { and } \quad \widehat{u}_{2}=\sum_{l=1}^{l_{2 . i}} d_{l} \xi_{l}^{(i)} \quad \text { on } K_{i} .
$$

We remark that \widehat{u}_{1} and \widehat{u}_{2} are the truncation of u_{1} and u_{2} up to the eigenfunctions selected to form the offline space.

Next, we will find an estimate of $\left\|u_{1}-\widehat{u}_{1}\right\|_{\mathrm{DG}}$. Let $K_{i} \in \mathcal{T}^{H}$ be a given coarse grid
block. Recall that the spectral problem to form $V_{1, \text { off }}^{(i)}$ is

$$
\int_{K_{i}} \kappa \nabla \phi_{k}^{(i)} \cdot \nabla v=\frac{\lambda_{1, k}^{(i)}}{H} \int_{\partial K_{i}} \widetilde{\kappa} \phi_{k}^{(i)} v, \quad \forall v \in V_{1, \text { snap }}^{(i)}
$$

By the definition of the flux defined in (3.7), the above spectral problem can be represented as

$$
\int_{\partial K_{i}}\left(\kappa \nabla \phi_{k}^{(i)} \cdot n_{\partial K_{i}}\right) v d s=\frac{\lambda_{1, k}^{(i)}}{H} \int_{\partial K_{i}} \widetilde{\kappa} \phi_{k}^{(i)} v .
$$

By the definition of the DG-norm, the error $\left\|u_{1}-\widehat{u}_{1}\right\|_{\text {DG }}$ can be estimated by

$$
\left\|\widehat{u}_{1}-u_{1}\right\|_{\mathrm{DG}}^{2} \leq \sum_{i=1}^{N}\left(\int_{K_{i}} \kappa\left|\nabla\left(\widehat{u}_{1}-u_{1}\right)\right|^{2}+\frac{\gamma}{h} \int_{\partial K_{i}} \widetilde{\kappa}\left(\widehat{u}_{1}-u_{1}\right)^{2}\right) .
$$

Note that, by (3.18), we have

$$
\int_{K_{i}} \kappa\left|\nabla\left(\widehat{u}_{1}-u_{1}\right)\right|^{2}=\sum_{l=l_{1, i}+1}^{M_{i}} \frac{\lambda_{1, l}^{(i)}}{H} c_{l}^{2} \leq \frac{H}{\lambda_{1, l_{1, i}+1}^{(i)}} \sum_{l=l_{1, i}+1}^{M_{i}}\left(\frac{\lambda_{1, l}^{(i)}}{H}\right)^{2} c_{l}^{2}
$$

and

$$
\left.\frac{1}{h} \int_{\partial K_{i}} \widetilde{\kappa}\left(\widehat{u}_{1}-u_{1}\right)\right)^{2}=\frac{1}{h} \sum_{l=l_{1, i}+1}^{M_{i}} c_{l}^{2} \leq \frac{H^{2}}{h\left(\lambda_{1, l_{1, i}+1}^{(i)}\right)^{2}} \sum_{l=l_{1, i}+1}^{M_{i}}\left(\frac{\lambda_{1, l}^{(i)}}{H}\right)^{2} c_{l}^{2}
$$

Furthermore,

$$
\sum_{l=l_{1, i}+1}^{M_{i}}\left(\frac{\lambda_{1, l}^{(i)}}{H}\right)^{2} c_{l}^{2} \leq \sum_{l=1}^{M_{i}}\left(\frac{\lambda_{1, l}^{(i)}}{H}\right)^{2} c_{l}^{2}=(\widetilde{\kappa})^{-1} \int_{\partial K_{i}}\left(\kappa \nabla u_{1} \cdot n_{\partial K_{i}}\right)^{2} .
$$

Consequently, we obtain the following bound

$$
\left\|u_{1}-\widehat{u}_{1}\right\|_{\mathrm{DG}}^{2} \leq \sum_{i=1}^{N} \frac{H}{\widetilde{\kappa} \lambda_{1, l_{1, i}+1}^{(i)}}\left(1+\frac{\gamma H}{h \lambda_{1, l_{1, i}+1}^{(i)}}\right) \int_{\partial K_{i}}\left(\kappa \nabla u_{1} \cdot n_{\partial K}\right)^{2} .
$$

Next, we will find an estimate of $\left\|u_{2}-\widehat{u}_{2}\right\|_{\mathrm{DG}}$. By definition of the bilinear form $a_{D G}$,

$$
a_{D G}\left(u_{2}, v\right)=-a_{D G}\left(u_{1}, v\right)+(f, v)=\sum_{E \in \mathcal{E}^{H}} \int_{E}\left(\left\{\kappa \nabla v \cdot n_{E}\right\} \llbracket u_{1} \rrbracket\right)+(f, v)
$$

which holds for any $v \in V_{2, \text { snap. }}$. In addition, by the fact that any function in $V_{2, \text { snap }}$ is zero on boundaries of coarse grid blocks, we have

$$
\left\|u_{2}-\widehat{u}_{2}\right\|_{\mathrm{DG}}^{2}=a_{D G}\left(u_{2}-\widehat{u}_{2}, u_{2}-\widehat{u}_{2}\right)=a_{D G}\left(u_{2}, u_{2}-\widehat{u}_{2}\right),
$$

where it follows from the fact that the eigenfunctions of (3.6) are κ-orthogonal on every coarse grid block. Therefore we have

$$
\begin{equation*}
\left\|u_{2}-\widehat{u}_{2}\right\|_{\mathrm{DG}}^{2}=\sum_{E \in \mathcal{E}^{H}} \int_{E}\left(\left\{\kappa \nabla\left(u_{2}-\widehat{u}_{2}\right) \cdot n_{E}\right\} \llbracket u_{1} \rrbracket\right)+\left(f, u_{2}-\widehat{u}_{2}\right) . \tag{3.19}
\end{equation*}
$$

The second term on the right hand side of (3.19) can be estimated as

$$
\left(f, u_{2}-\widehat{u}_{2}\right) \leq \sum_{K \in \mathcal{T}^{H}}\|f\|_{L^{2}(K)}\left\|\kappa^{\frac{1}{2}}\left(u_{2}-\widehat{u}_{2}\right)\right\|_{L^{2}(K)} .
$$

By (3.6), for every $K_{i} \in \mathcal{T}^{H}$, we have

$$
\int_{K_{i}} \kappa\left|\left(u_{2}-\widehat{u}_{2}\right)\right|^{2}=\sum_{l \geq l_{2, i}+1} d_{l}^{2} \leq\left(\frac{H^{2}}{\lambda_{2, l_{2, i}+1}^{(i)}}\right) \sum_{l=l_{2, i}+1} \frac{\lambda_{2, l}^{(i)}}{H^{2}} d_{l}^{2}=\frac{H^{2}}{\lambda_{2, l_{2, i}+1}^{(i)}} \int_{K_{i}} \kappa\left|\nabla\left(u_{2}-\widehat{u}_{2}\right)\right|^{2} .
$$

For the first term on the right hand side of (3.19), we use inequality (3.13) to conclude that

$$
\sum_{E \in \mathcal{E}^{H}} \int_{E}\left(\left\{\kappa \nabla\left(u_{2}-\widehat{u}_{2}\right) \cdot n_{E}\right\} \llbracket u_{1} \rrbracket\right) \leq C_{\mathrm{inv}} \gamma^{-\frac{1}{2}}\left\|u_{2}-\widehat{u}_{2}\right\|_{\mathrm{DG}}\left(\sum_{E \in \mathcal{E}^{H}} \frac{\gamma}{h} \int_{E} \bar{\kappa} \llbracket u_{1} \rrbracket^{2}\right)^{\frac{1}{2}}
$$

Consequently, from (3.19) and the fact that $\llbracket u_{1} \rrbracket=\llbracket u_{h} \rrbracket$ for all coarse edges, we obtain the
following bound

$$
\left\|u_{2}-\widehat{u}_{2}\right\|_{\mathrm{DG}}^{2} \leq C\left(C_{\mathrm{inv}}^{2} \sum_{E \in \mathcal{E}^{H}} \frac{1}{h} \int_{E} \bar{\kappa} \llbracket u_{h} \rrbracket^{2}+\sum_{K \in \mathcal{T}_{H}} \frac{H^{2}}{\lambda_{2, l_{2, i}+1}^{(i)}}\|f\|_{L^{2}(K)}^{2}\right) .
$$

Finally, we will prove the required error bound. By coercivity,

$$
\begin{aligned}
a_{0}\left\|\widehat{u}_{1}+\widehat{u}_{2}-u_{H}\right\|_{\mathrm{DG}}^{2} \leq & a_{\mathrm{DG}}\left(\widehat{u}_{1}+\widehat{u}_{2}-u_{H}, \widehat{u}_{1}+\widehat{u}_{2}-u_{H}\right) \\
= & a_{\mathrm{DG}}\left(\widehat{u}_{1}+\widehat{u}_{2}-u_{H}, \widehat{u}_{1}+\widehat{u}_{2}-u_{h}\right) \\
& +a_{\mathrm{DG}}\left(\widehat{u}_{1}+\widehat{u}_{2}-u_{H}, u_{h}-u_{H}\right) .
\end{aligned}
$$

Note that $a_{\mathrm{DG}}\left(\widehat{u}_{1}+\widehat{u}_{2}-u_{H}, u_{h}-u_{H}\right)=0$ since $\widehat{u}_{1}+\widehat{u}_{2}-u_{H} \in V_{\text {off. }}$. Using the above results,

$$
\begin{aligned}
& \left\|\widehat{u}_{1}+\widehat{u}_{2}-u_{H}\right\|_{\mathrm{DG}}^{2} \\
\leq & C\left(\sum_{i=1}^{N} \frac{H}{\widetilde{\kappa} \lambda_{1, l_{1, i}+1}^{(i)}}\left(1+\frac{\gamma H}{h \lambda_{1, l_{1, i}+1}^{(i)}}\right) \int_{\partial K_{i}}\left(\kappa \nabla u_{1} \cdot n_{\partial K}\right)^{2}\right. \\
& \left.+\sum_{K \in \mathcal{T}_{H}} \frac{H^{2}}{\lambda_{2, l_{2, i}+1}^{(i)}}\|f\|_{L^{2}(K)}^{2}+C_{\mathrm{inv}}^{2} \sum_{E \in \mathcal{E} H^{H}} \frac{1}{h} \int_{E} \bar{\kappa} \llbracket u_{h} \rrbracket^{2}\right) .
\end{aligned}
$$

The desired bound is then obtained by the triangle inequality

$$
\left\|u_{h}-u_{H}\right\|_{\mathrm{DG}} \leq\left\|u_{h}-\widehat{u}\right\|_{\mathrm{DG}}+\left\|\widehat{u}-u_{H}\right\|_{\mathrm{DG}}
$$

where $\widehat{u}=\widehat{u}_{1}+\widehat{u}_{2}$. This completes the proof.

We remark that, the term

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{H}{\widetilde{\kappa} \lambda_{1, l_{1, i}+1}^{(i)}}\left(1+\frac{\gamma H}{h \lambda_{1, l_{1, i}+1}^{(i)}}\right) \int_{\partial K_{i}}\left(\kappa \nabla u_{1} \cdot n_{\partial K}\right)^{2} \tag{3.20}
\end{equation*}
$$

corresponds to the error for the space $V_{1, \text { off }}$ and the term

$$
\sum_{K \in \mathcal{T}_{H}} \frac{H^{2}}{\lambda_{2, l_{2, i}+1}^{(i)}}\|f\|_{L^{2}(K)}^{2}
$$

corresponds to the error for the space $V_{2, \text { off }}$. Moreover, the term

$$
C_{\mathrm{inv}}^{2} \sum_{E \in \mathcal{E}^{H}} \frac{1}{h} \int_{E} \bar{\kappa} \llbracket u_{h} \rrbracket^{2}
$$

is the error in the fine grid solution u_{h}. This is the irreducible error, and an estimate of this can be derived following standard DG frameworks. In particular, the fine grid solution u_{h} satisfies (3.16), which is the standard interior penalty discontinuous Galerkin (IPDG) method with the use of the DG space defined in (3.15). One can find the error analysis of this method, for example, in [44]. More precisely, one can show that $\sum_{E \in \mathcal{E}^{H}} \frac{1}{h} \int_{E} \bar{\kappa} \llbracket u_{h} \rrbracket^{2} \leq C_{\mathrm{err}} h^{2 p}$ where p is the degree of the piecewise polynomial in $V_{h}(K)$. We note that the constant $C_{\text {err }}$ depends on the derivatives of the true solution and can be large. However, we assume that the fine mesh size h is small enough to resolve all scales of the true solution so that this error term is small.

h	$\Lambda_{K}^{\text {snap }}$
$1 / 48$	$1.0021 \mathrm{e}+03$
$1 / 96$	$1.0193 \mathrm{e}+03$
$1 / 192$	$1.3094 \mathrm{e}+03$

h	$\Lambda_{K}^{\text {snap }}$
$1 / 48$	$7.7650 \mathrm{e}+05$
$1 / 96$	$1.6569 \mathrm{e}+06$
$1 / 192$	$3.3254 \mathrm{e}+06$

Table 3.1: Left: oversampling basis, Right: no-oversampling basis

Remark 3.1.3. It is important to note that one can also replace (3.8) by

$$
\begin{equation*}
a_{H}^{K}(\widehat{v}, \widehat{v}) \leq \Lambda_{K}^{\text {snap }} \widetilde{\kappa} \int_{\partial K}|v|^{2} \tag{3.21}
\end{equation*}
$$

where $\Lambda_{K}^{\text {snap }}$ is the largest eigenvalue for the spectral problem (3.5). Therefore, (3.9) can be replaced by

$$
\begin{equation*}
\int_{\partial K}\left|\kappa \nabla u \cdot n_{\partial K}\right|^{2} \leq \Lambda_{K}^{\text {snap }} \widetilde{\kappa} a_{H}^{K}(u, u) \tag{3.22}
\end{equation*}
$$

By following the above steps, we see that one can choose γ in (3.20) so that

$$
\gamma>C_{\kappa} h \max _{K \subset \mathcal{T}^{H}} \Lambda_{K}^{\text {snap }}
$$

where the constant C_{κ} is defined as

$$
C_{\kappa}=\max _{K \subset \mathcal{T}^{H}} \frac{\max _{E \subset \partial K} \bar{\kappa}}{\min _{E \subset \partial K} \bar{\kappa}}
$$

We remark that this constant C_{κ} is order one if we assume that every coarse element has a high contrast region.

One can take smaller values of γ if oversampling is used (oversampling method is discussed in Section 3.3). The main idea of the oversampling is to choose larger regions for computing snapshot vectors. For every coarse block K_{i}, we choose an enlarged region K_{i}^{+}, and find oversampling snapshot functions $\psi_{k}^{i, \text {,over }}$ by solving (3.34). We have performed numerical experiments and computed $\Lambda_{K}^{\text {snap }}$ with and without oversampling. Denote $\Lambda_{K^{+}}^{\text {snap }}$ to be the largest eigenvalue corresponding to the oversampled problem. In our numerical results (see Table 3.1), we have removed linearly dependent snapshot vectors with respect to the inner product corresponding to $\int_{\partial K}|v|^{2}$ before computing the largest eigenvalue. Our numerical results show that one can have about three orders of magnitude
smaller value for $\Lambda_{K^{+}}^{\text {snap }}$ compared to $\Lambda_{K}^{\text {snap }}$. Moreover, our numerical results show a weak h dependence for $\Lambda_{K^{+}}^{\text {snap }}$ as we decrease h, while $\Lambda_{K}^{\text {snap }}$ behaves as h^{-1} (when no-oversampling is used).

Our error analysis holds when oversampling snapshot space is used. The term in (3.20) will become

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{H}{\widetilde{\kappa} \lambda_{1, l_{1, i}+1}^{(i)}}\left(1+\frac{\alpha C_{\kappa} \max _{K \subset \mathcal{T}^{H}} \Lambda_{K^{+}}^{\text {snap }} H}{\lambda_{1, l_{1, i}+1}^{(i)}}\right) \int_{\partial K_{i}}\left(\kappa \nabla u_{1} \cdot n_{\partial K}\right)^{2} \tag{3.23}
\end{equation*}
$$

when $\gamma=\alpha C_{\kappa} h \max _{K \subset \mathcal{T}^{H}} \Lambda_{K^{+}}^{\text {snap }}$. If $\Lambda_{K^{+}}^{\text {snap }}$ is a weak function of h, e.g., if it is bounded with respect to h, then the terms involving $\Lambda_{K^{+}}^{\text {snap }}$ doesnt influence the error and the error is dominated by the first term. We emphasize that our discussions in this Remark are based on our numerical studies and their analytical studies are difficult because it requires interior estimates for solutions. We plan to study them in future.

Remark 3.1.4. From the remark above as well as (3.21) and (3.22), one sees that the penalty term in (3.2) can be replaced by

$$
\beta \Lambda_{\max }^{\text {snap }} \int_{E} \bar{\kappa} \llbracket u \rrbracket \llbracket v \rrbracket
$$

where β is an $O(1)$ constant and $\Lambda_{\text {max }}^{\text {snap }}:=\max _{K \subset \mathcal{T}^{H}} \Lambda_{K}^{\text {snap }}$. Moreover, it is easy to show that the result in Theorem 3.1.2 becomes

$$
\begin{aligned}
\left\|u_{h}-u_{H}\right\|_{D G}^{2} \leq C(& \sum_{i=1}^{N} \frac{1}{\widetilde{\kappa} \lambda_{1, l_{1, i}+1}^{(i)}}\left(1+\frac{\beta \Lambda_{\max }^{\text {snap }}}{\lambda_{1, l_{1, i}+1}^{(i)}}\right) \int_{\partial K_{i}}\left(\kappa \nabla u_{1} \cdot n_{\partial K}\right)^{2} \\
& \left.+\sum_{K \in \mathcal{T}_{H}} \frac{H^{2}}{\lambda_{2, l_{2, i}+1}^{(i)}}\|f\|_{L^{2}(K)}^{2}+\sum_{E \in \mathcal{E}^{H}} \Lambda_{\max }^{\text {snap }} \int_{E} \bar{\kappa} \llbracket u_{h} \rrbracket^{2}\right) .
\end{aligned}
$$

Remark 3.1.5. We note that while the solution can be well approximated by using our
basis functions within coarse elements, the jumps of the solutions across coarse edges may not be well controlled (particularly, for a small number of multiscale basis functions). One reason for this is because we use a constant penalty parameter $\gamma>0$ and a very large penalty factor (scaled as h^{-1}). In general, the solution has multiscale structure on coarse edges, and the use of multiscale penalty (instead of constant penalty) is desirable and is important in order to capture the jumps of the solution (e.g., similar to HDG methods). Despite these limitations, the IPDG formulation performs well in practical applications. The method is easy to implement in parallel using unstructured coarse meshes and avoids overlaps.

3.2 A-posteriori error estimate and adaptive enrichment

In this section, we will derive an a-posteriori error indicator for the error $u_{h}-u_{H}$ in energy norm. We will then use the error indicator to develop an adaptive enrichment algorithm. The a-posteriori error indicator gives an estimate of the local error on the coarse grid blocks K_{i}, and we can then add basis functions to improve the solution. Our indicator consists of two components, which correspond to the errors made in the spaces $V_{1, \text { snap }}$ and $V_{2 \text {,snap }}$. By using the indicator, one can determine adaptively which space has to be enriched. This section is devoted to the description of the a-posteriori error indicator and the corresponding adaptive enrichment algorithm. The convergence analysis of the method will be given in the Section 3.4.

Recall that V_{DG}^{h} is the fine scale DG finite element space, and the fine scale solution u_{h} satisfies

$$
\begin{equation*}
a_{\mathrm{DG}}\left(u_{h}, v\right)=(f, v) \quad \text { for all } v \in V_{\mathrm{DG}}^{h} . \tag{3.24}
\end{equation*}
$$

Moreover, the GMsDGM solution u_{H} satisfies

$$
\begin{equation*}
a_{\mathrm{DG}}\left(u_{H}, v\right)=(f, v) \quad \text { for all } v \in V_{\text {off }} . \tag{3.25}
\end{equation*}
$$

We remark that $V_{\text {off }} \subset V_{h}^{\text {DG }}$. Next we will give the definitions of the residuals.

Definitions of residuals:

Let K_{i} be a given coarse grid block. We will define two residuals corresponding to the two types of snapshot spaces. First, on the space $V_{1, \text { snap }}^{(i)}$, we define the following linear functional

$$
\begin{equation*}
R_{1, i}(v)=\int_{K_{i}} f v-a_{\mathrm{DG}}\left(u_{H}, v\right), \quad v \in V_{1, \text { snap }}^{(i)} . \tag{3.26}
\end{equation*}
$$

Similarly, on the space $V_{2, \text { snap }}^{(i)}$, we define the following linear functional

$$
\begin{equation*}
R_{2, i}(v)=\int_{K_{i}} f v-a_{\mathrm{DG}}\left(u_{H}, v\right), \quad v \in V_{2, \text { snap }}^{(i)} \tag{3.27}
\end{equation*}
$$

These residuals measure how well the solution u_{H} satisfies the fine-scale equation (3.24). Furthermore, on the snapshot spaces $V_{1, \text { snap }}^{(i)}$ and $V_{2, \text { snap }}^{(i)}$, we define the following norms

$$
\begin{equation*}
\|v\|_{V_{1}\left(K_{i}\right)}^{2}=H^{-1} \int_{\partial K_{i}} \widetilde{\kappa} v^{2} \quad \text { and } \quad\|v\|_{V_{2}\left(K_{i}\right)}^{2}=H^{-2} \int_{K_{i}} \kappa v^{2} \tag{3.28}
\end{equation*}
$$

respectively. The norms of the linear functionals $R_{1, i}$ and $R_{2, i}$ are defined in the standard way, namely

$$
\begin{equation*}
\left\|R_{1, i}\right\|=\sup _{v \in V_{1, \text { nap }}^{(i)}} \frac{\left|R_{1, i}(v)\right|}{\|v\|_{V_{1}\left(K_{i}\right)}} \quad \text { and } \quad\left\|R_{2, i}\right\|=\sup _{v \in V_{2, \text { snap }}^{(i)}} \frac{\left|R_{2, i}(v)\right|}{\|v\|_{V_{2}\left(K_{i}\right)}} . \tag{3.29}
\end{equation*}
$$

The norms $\left\|R_{1, i}\right\|$ and $\left\|R_{2, i}\right\|$ give estimates on the sizes of fine-scale residual errors with respect to the spaces $V_{1, \text { snap }}^{(i)}$ and $V_{2, \text { snap }}^{(i)}$.

We recall that, for each coarse grid block K_{i}, the eigenfunctions of the spectral problem (3.5) corresponding to the eigenvalues $\lambda_{1,1}^{(i)}, \cdots, \lambda_{1, l_{1, i}}^{(i)}$ and the eigenfunctions of the spectral problem (3.6) corresponding to the eigenvalues $\lambda_{2,1}^{(i)}, \cdots, \lambda_{2, l_{2, i}}^{(i)}$ are used in the construction of $V_{\text {off }}$. In addition, the energy error in this section and Section 3.4 is mea-
sured by $\|u\|_{a}^{2}=a_{\mathrm{DG}}(u, u)$, which is equivalent to the DG norm.
In Section 3.4, we will prove the following theorem, and we see that the norms $\left\|R_{j, i}\right\|$ give indications on the size of the energy norm error $\left\|u_{h}-u_{H}\right\|_{a}$.

Theorem 3.2.1. Let u_{h} and u_{H} be the solutions of (3.24) and (3.25) respectively. Then

$$
\begin{equation*}
\left\|u_{h}-u_{H}\right\|_{a}^{2} \leq C_{\text {err }} \sum_{i=1}^{N} \sum_{j=1}^{2}\left\|R_{j, i}\right\|^{2}\left(\lambda_{j, l_{j, i}+1}^{(i)}\right)^{-1} \tag{3.30}
\end{equation*}
$$

where $C_{\text {err }}$ is a uniform constant.
We will now present the adaptive enrichment algorithm. We use $m \geq 1$ to represent the enrichment level, $V_{\text {off }}(m)$ to represent the solution space at level m and u_{H}^{m} to represent the GMsDGM solution at the enrichment level m. For each coarse grid block K_{i}, we use $l_{j, i}^{m}$ to represent the number of eigenfunctions in $V_{j, \text { off }}^{(i)}$ used at the enrichment level m for the coarse region K_{i}. Assume that the initial offline space $V_{\text {off }}(0)$ is given.

Adaptive enrichment algorithm: Choose $0<\theta<1$. For each $m=0,1, \cdots$,

1. Step 1: Find the solution in the current space. That is, find $u_{H}^{m} \in V_{\text {off }}(m)$ such that

$$
\begin{equation*}
a_{\mathrm{DG}}\left(u_{H}^{m}, v\right)=(f, v) \quad \text { for all } v \in V_{\text {off }}(m) . \tag{3.31}
\end{equation*}
$$

2. Step 2: Compute the local residuals. For each coarse grid block K_{i}, we compute

$$
\eta_{j, i}^{2}=\left\|R_{j, i}\right\|^{2}\left(\lambda_{j, l_{j, i}^{m}+1}^{(i)}\right)^{-1}, \quad j=1,2 .
$$

where the residuals and their norms are defined in (3.26)-(3.29). In particular, the residuals are the L^{2} projections with respect to the inner products (3.28) and their norms are L^{2} norms of these projections. After we computed the residual norms, we re-enumerate the above $2 N$ residuals in the decreasing order, that is, $\eta_{1}^{2} \geq \eta_{2}^{2} \geq$
$\cdots \geq \eta_{2 N}^{2}$, where we adopted single index notations. That is, each single index k corresponds to a double index (j, i) for the i-th coarse block K_{i} and the space $V_{j, \text { off }}^{(i)}$.
3. Step 3: Find the coarse grid blocks and spaces where enrichment is needed. We choose the smallest integer k such that

$$
\begin{equation*}
\theta \sum_{J=1}^{2 N} \eta_{J}^{2} \leq \sum_{J=1}^{k} \eta_{J}^{2} \tag{3.32}
\end{equation*}
$$

The above is the standard Dorfler marking strategy. It is also a criterion to select the coarse regions with large errors. The numbers of regions and spaces to enrich are determined by the parameter θ.
4. Step 4: Enrich the space. For each $J=1,2, \cdots, k$, chosen by the above criterion, we add basis functions in $V_{j, \text { off }}^{(i)}$ according to the following rule. Let s be the smallest positive integer such that $\lambda_{j, l_{j, i}^{m}+s+1}^{(i)}$ is large enough (see the proof of Theorem 3.2.2) compared with $\lambda_{j, l_{j, i}^{m}+1}^{(i)}$. Then we will add the eigenfunctions $\phi_{k}^{(i)}$ or $\xi_{k}^{(i)}$ from the spectral problem (3.5) or (3.6) for $k=l_{j, i}^{m}+1, \cdots, l_{j, i}^{m}+s$, depending on the value of j, in the construction of the basis functions. We note that $j=1$ or 2 corresponds to the space defined by eigenfunctions the spectral problem (3.5) or (3.6). The resulting space is denoted as $V_{\text {off }}(m+1)$.

We remark that the choice of s above will ensure the convergence of the enrichment algorithm, and in practice, the value of s is easy to obtain. Moreover, contrary to classical adaptive refinement methods, the total number of basis functions that we can add is bounded by the dimension of the snapshot space. Thus, the condition (3.32) can be modified as follows. We choose the smallest integer k such that

$$
\theta \sum_{J=1}^{2 N} \eta_{J}^{2} \leq \sum_{J \in I} \eta_{J}^{2}
$$

where the index set I is a subset of $\{1,2, \cdots, k\}$.
Finally, we state the convergence theorem.

Theorem 3.2.2. There are sequence $\left\{L_{m}\right\}_{m=1}^{M}$ and positive constants τ, ϵ_{0}, ρ independent of m such that the following contracting property holds

$$
\left\|u_{h}-u_{H}^{m+1}\right\|_{a}^{2}+\frac{\tau}{1+\tau L_{m+1}} \sum_{J=1}^{2 N}\left(S_{J}^{m+1}\right)^{2} \leq \varepsilon\left(\left\|u_{h}-u_{H}^{m}\right\|_{a}^{2}+\frac{\tau}{1+\tau L_{m}} \sum_{J=1}^{2 N}\left(S_{J}^{m}\right)^{2}\right) .
$$

Note that $0<\varepsilon<1$ and

$$
\varepsilon=1-\epsilon_{0} \theta^{2} \frac{\tau}{2 C_{\mathrm{err}}\left(1+\tau L_{M}\right)}
$$

where we can take any value of θ with the following condition

$$
\begin{equation*}
0<\theta<\min \left\{1,\left(\frac{C_{\mathrm{err}}\left(1+\tau L_{M}\right)}{\tau}\right)^{\frac{1}{2}}\right\} . \tag{3.33}
\end{equation*}
$$

We remark that the precise definitions of S_{J}^{m} as well as the constants τ, ϵ_{0}, ρ and the sequence L_{m} are given in Section 3.4.

3.3 Numerical Results

In this section, we will present some numerical examples to demonstrate the performance of the adaptive enrichment algorithm. The domain Ω is taken as the unit square $[0,1]^{2}$ and is divided into 16×16 coarse blocks consisting of uniform squares. Each coarse block is then divided into 32×32 fine blocks consisting of uniform squares. Consequently, the whole domain is partitioned by a 512×512 fine grid blocks. We will use the following error quantities to compare the accuracy of our algorithm

$$
e_{2}=\frac{\left\|u_{H}-u_{h}\right\|_{L^{2}(\Omega)}}{\left\|u_{h}\right\|_{L^{2}(\Omega)}}, e_{a}=\frac{\sqrt{a_{\mathrm{DG}}\left(u_{H}-u_{h}, u_{H}-u_{h}\right)}}{\sqrt{a_{\mathrm{DG}}\left(u_{h}, u_{h}\right)}}
$$

$$
e_{2}^{\text {snap }}=\frac{\left\|u_{H}-u_{\text {snap }}\right\|_{L^{2}(\Omega)}}{\left\|u_{\text {snap }}\right\|_{L^{2}(\Omega)}}, e_{a}^{\text {snap }}=\frac{\sqrt{a_{\mathrm{DG}}\left(u_{H}-u_{\text {snap }}, u_{H}-u_{\text {snap }}\right)}}{\sqrt{a_{\mathrm{DG}}\left(u_{\text {snap }}, u_{\text {snap }}\right)}}
$$

where u_{H} and u_{h} are the GMsDGM and the fine grid solutions respectively. Moreover, $u_{\text {snap }}$ is the snapshot solution obtained by using all snapshot functions generated by an oversampling strategy, see below.

We consider the permeability field κ which is shown in Figure 3.1. The boundary condition is set to be bi-linear, $g=x_{1} x_{2}$. We will consider two examples with two different source functions f. We will compare the result of V_{1} enrichment, $V_{1}-V_{2}$ enrichment, oversampling basis enrichment, uniform enrichment and the exact indicator enrichment. The following gives the details of these enrichments.

- V_{1} enrichment: We use the error indicator, $\eta_{1, i}^{2}$ to perform the adaptive algorithm by enriching the basis functions in V_{1} space only, that is, basis functions obtained by the first spectral problem (3.5). We use 4 basis functions from (3.5) and zero basis function from (3.6) in the initial step.
- $V_{1}-V_{2}$ enrichment: We use both the error indicators, $\eta_{1, i}^{2}, \eta_{2, i}^{2}$ to perform the adaptive algorithm by enriching the basis functions in both V_{1} and V_{2} spaces, that is, basis functions from both spectral problems (3.5) and (3.6). We use 4 basis functions from (3.5) and zero basis function from (3.6) in the initial step.
- Oversampling enrichment: For every coarse block K_{i}, we choose an enlarged region K_{i}^{+}(in the examples presented below, we enlarge the coarse block in each direction by a length H, that is K_{i}^{+}is a 3×3 coarse blocks with K_{i} at the center).

Then we find oversampling snapshot functions $\psi_{k}^{i, \text { over }} \in V_{h}\left(K_{i}^{+}\right)$by solving

$$
\begin{align*}
\int_{K_{i}} \kappa \nabla \psi_{k}^{i, \text { over }} \cdot \nabla v=0, & \forall v \in V_{h}^{0}\left(K_{i}^{+}\right), \tag{3.34}\\
\psi_{k}^{i, \text { over }}=\delta_{k}, & \text { on } \partial K_{i}^{+}
\end{align*}
$$

The linear span of these snapshot functions is called $V^{i, \text { over }}$. Then we choose 40 dominant oversampling basis functions by POD method. Specifically, we solve the following eigenvalue problem

$$
\int_{K_{i}} \psi_{k}^{i, \text { over }} v=\lambda_{k}^{i} \int_{\partial K_{i}^{+}} \psi_{k}^{i, \text { over }} v, \quad \forall v \in V^{i, \text { over }}
$$

and choose the first 40 eigenfunctions with largest eigenvalues. Then we use these 40 functions as boundary conditions in (3.4) and repeat the remaining construction of the offline space.

- Uniform enrichment: We enrich the basis functions in V_{1} space uniformly with 4 basis functions from the V_{1} space in the initial step.
- The exact indicator enrichment: We use the exact error as the error indicator to perform the adaptive algorithm by enriching the basis functions in V_{1} space only with 4 basis functions in the space V_{1} in the initial step. Here, the exact error is defined as $\left\|u-u_{H}\right\|_{a}$.

3.3.1 Example 1

In our first example, we take the source function $f=1$. The fine grid solution is shown in Figure 3.1. In Table 3.2 and Table 3.3, we present the convergence history of our algorithm for enriching in V_{1} space only, enriching in both V_{1} and V_{2} spaces and enriching by the oversampling basis functions. We remark that, in the presentation of our results, DOF

Figure 3.1: Left: Permeability field κ. Right: Fine grid solution with $f=1$.
means the total number of basis functions used in the whole domain. We see from Table 3.2 that the behaviour of enriching in V_{1} space only and enriching in both V_{1} and V_{2} spaces are similar. The is due to the fact that the source function f is a constant function, and the space V_{2} will not help to improve the solution. This is in consistent with classical theory that basis functions obtained by harmonic extensions are good enough to approximate the solution. In Table 3.3, the convergence behaviour is shown for the oversampling case, and we see again that a clear convergence is obtained. For this case, we use 40 snapshot basis functions per coarse grid block giving a total DOF of 10240, and the corresponding snapshot errors (that is, the difference between the solution obtained by these 10240 basis functions and the solution u_{h}) of 4.5195×10^{-4} and 9.8935×10^{-4} in relative L^{2} norm and relative a-norm respectively. In addition, we observe that the oversampling basis provides more efficient representation of the solution than the non-oversampling basis. To further demonstrate the efficiency of our algorithm, we compare our result with the uniform enrichment scheme. The convergence history for using uniform enrichment is shown in Table 3.3, and we see that our adaptive enrichment algorithm performs much better than uniform enrichment. Finally, a comparison among all the above cases and the enrichment by exact error is shown in Figure 3.2, in which the energy error is plotted against DOF. From the figure, we clearly see that our enrichment algorithm performs much better than uniform
enrichment. Moreover, our enrichment algorithm performs equally well compared with enrichment by the exact error. This shows that our indicator is both reliable and efficient.

DOF	e_{2}	e_{a}
1024	0.1082	0.0479
1769	0.0456	0.0178
2403	0.0156	0.0105
3135	0.0070	0.0067
5607	0.0016	0.0031

DOF	e_{2}	e_{a}
1024	0.1082	0.0479
1639	0.0802	0.0239
2584	0.0194	0.0114
3822	0.0061	0.0063
5660	0.0021	0.0037

Table 3.2: Convergence history with $\theta=0.4$ for Example 1. Left: Enrich in V_{1} space only. Right: Enrich in both V_{1} and V_{2} spaces.

DOF	e_{2}	e_{a}	$e_{2}^{\text {snap }}$	$e_{a}^{\text {snap }}$
1024	0.0940	0.0469	0.0939	0.0469
1975	0.0204	0.0121	0.0202	0.0121
2648	0.0087	0.0077	0.0084	0.0077
3422	0.0046	0.0056	0.0043	0.0056
6748	0.0009	0.0022	0.0006	0.0020

DOF	e_{2}	e_{a}
1024	0.1082	0.0479
2048	0.0671	0.0199
3328	0.0423	0.0150
5888	0.0161	0.0059
8448	0.0128	0.0044

Table 3.3: Left: Convergence history for oversampling basis with $\theta=0.4$ for Example 1 and enrichment in V_{1} space only. Right: Convergence history for uniform enrichment in V_{1} space only.

Next, we will numerically demonstrate in Figure 3.3 the result of Theorem 3.1.2. In particular, we will show that the error decay is inversely proportional to the smallest eigenvalue corresponding to the un-used eigenfunctions. To better show this relation, we will consider basis function enrichment only in the V_{1} space and we fix the number of basis in the V_{2} space. Thus, we consider only the relation between error decay and the reciprocal of eigenvalues from the V_{1} space. In the left graph of Figure 3.3, the decay in relative error

Figure 3.2: A comparison of different ways of enrichment for Example 1.
with respect to the number of basis functions per coarse element is shown, and in the right graph of Figure 3.3, the decay in reciprocal of eigenvalue with respect to the number of basis functions per coarse element is shown. We can see that the decay behaviours are very similar. Indeed, the correlation of these two curves is 0.9863 , which confirms our result in Theorem 3.1.2. We remark that we conducted a similar test for the space V_{2} and obtained the same conclusion.

Figure 3.3: Relation of error and eigenvalue decays for Example 1. The correlation coefficient of these two curves is 0.9863 . Left: Relative error decay. Right: Eigenvalue decay.

Finally, we will show numerically that the error indicator (3.26)-(3.27) gives a good approximation of the error. In Figure 3.4, we plot the ratio of error to residual with respect to the dimension of the approximation space, which contains both basis functions from V_{1} and V_{2}. The error and the residual are the quantities appeared in (3.30). We see that the ratio remains bounded and $O(1)$, and is independent of the dimension of the approximation space. This shows that the constant in (3.30) is $O(1)$. This also shows that the residual gives a good indication of the level of error.

Figure 3.4: The ratio of error to residual with respect to the dimension of the approximation space for Example 1.

3.3.2 Example 2

In our second example, we will take the source f to be the function shown in the left plot of Figure 3.5 and the corresponding fine grid solution shown in the right plot of Figure 3.5. In Table 3.4 and Table 3.5, we present the convergence history of our algorithm for enriching in V_{1} space only, enriching in both V_{1} and V_{2} spaces and enriching by oversampling basis. We see from Table 3.4 that enrichment in both V_{1} and V_{2} spaces provides much more efficient methods than enrichment in V_{1} space only. In particular,
for an error level of approximately 1%, we see that enrichment in both V_{1} and V_{2} spaces requires 3144 DOF while enrichment in V_{1} space only requires 3483 DOF. In Table 3.5, the convergence behaviour is shown for the oversampling case, and we see again that a clear convergence is obtained. For this case, we use 40 snapshot basis functions per coarse grid block giving a total DOF of 10240, and the corresponding snapshot errors (that is, the difference between the solution obtained by these 10240 basis functions and the solution u_{h}) of 0.0078 and 0.0093 in relative L^{2} norm and relative a-norm respectively. In addition, we observe again that the oversampling basis provides more efficient representation of the solution than the non-oversampling basis. To further demonstrate the efficiency of our algorithm, we compare our results with the uniform enrichment scheme. The result for using uniform enrichment is shown in Table 3.5 and we clearly observe that our adaptive method is more efficient. Moreover, a comparison of the performance of various strategies is shown in Figure 3.6, where the errors against DOF are plotted. From the figure, we see that our method is much better than uniform enrichment. Furthermore, enrichment in both V_{1} and V_{2} spaces has the best performance, which suggests that both V_{1} and V_{2} spaces are important for more complicated source functions.

Figure 3.5: Left: The source function f for the second example. Right: The fine grid solution.

DOF	e_{2}	e_{a}
1024	0.2052	0.0554
2028	0.0362	0.0191
2717	0.0152	0.0140
3483	0.0111	0.0118
5116	0.0084	0.0102

DOF	e_{2}	e_{a}
1024	0.2052	0.0554
2023	0.0486	0.0206
3144	0.0113	0.0105
4456	0.0050	0.0066
7407	0.0013	0.0034

Table 3.4: Convergence history with $\theta=0.4$ for Example 2. Left: Enrich in V_{1} space only. Right: Enrich in both V_{1} and V_{2} spaces.

DOF	e_{2}	e_{a}	$e_{2}^{\text {snap }}$	$e_{a}^{\text {snap }}$				
1024	0.1882	0.0540	0.1865	0.0532				
1926	0.0296	0.0182	0.0269	0.0156				
2626	0.0137	0.0135	0.0098	0.0098				
3368	0.0105	0.0116	0.0057	0.0070				
6677	0.0080	0.0097	0.0007	0.0025	\quad	DOF	e_{2}	e_{a}
:---:	:---:	:---:	:---:					
1024	0.2052	0.0554						
2048	0.0923	0.0282						
3328	0.0659	0.0215						
5888	0.0278	0.0135						
8448	0.0226	0.0121						

Table 3.5: Left: Convergence history for oversampling basis with $\theta=0.4$ for Example 2 and enrichment in V_{1} space only. Right: Convergence history for uniform enrichment in V_{1} space only.

3.3.3 Adaptive enrichment algorithm

3.3.3.1 Adaptive enrichment algorithm with basis removal

In our adaptive enrichment algorithm, we can add basis functions to the offline space by using the error indicators. However, the addition of the basis functions must follow the ordering of the eigenfunctions. There may be cases that some of the intermediate eigenfunctions are not required in the representation of the solution. Therefore, we propose a numerical strategy to remove basis functions that do not contribute or contribute less to the representation of the solution. In the following, we will present this numerical strategy. Basically, the first 4 steps are the same as before. We introduce Step 5 below to remove unnecessary basis functions.

Adaptive enrichment algorithm with basis removal: Choose $0<\theta<1$. For each

Figure 3.6: A comparison of different ways of enrichment.
$m=0,1, \cdots$,

1. Step 1: Find the solution in the current space. That is, find $u_{H}^{m} \in V_{\text {off }}(m)$ such that

$$
\begin{equation*}
a_{\mathrm{DG}}\left(u_{H}^{m}, v\right)=(f, v) \quad \text { for all } v \in V_{\text {off }}(m) \tag{3.35}
\end{equation*}
$$

2. Step 2: Compute the local residuals. For each coarse grid block K_{i}, we compute

$$
\eta_{j, i}^{2}=\left\|R_{j, i}\right\|^{2}\left(\lambda_{j, l_{j, i}^{m}+1}^{(i)}\right)^{-1}, \quad j=1,2 .
$$

Then we re-enumerate the $2 N$ residuals in the decreasing order, that is, $\eta_{1}^{2} \geq \eta_{2}^{2} \geq$ $\cdots \geq \eta_{2 N}^{2}$, where we adopted single index notations.
3. Step 3: Find the coarse grid blocks where enrichment is needed. We choose the smallest integer k such that

$$
\begin{equation*}
\theta \sum_{J=1}^{2 N} \eta_{J}^{2} \leq \sum_{J=1}^{k} \eta_{J}^{2} \tag{3.36}
\end{equation*}
$$

4. Step 4: Enrich the space. For each $J=1,2, \cdots, k$, we add basis function in $V_{j, \text { off }}^{(i)}$
according to the following rule. Let s be the smallest positive integer such that $\lambda_{j, l_{j, i}^{m}+s+1}^{(i)}$ is large enough (see the proof of Theorem 3.2.2) compared with $\lambda_{j, l_{j, i}^{m}+1}^{(i)}$. Then we include the eigenfunctions in the construction of the basis functions. The resulting space is denoted as $\widehat{V}^{\text {off }}(m+1)$. Note that this is the offline space without basis removal.
5. Step 5: Remove basis. In this step, we will remove basis functions that have little contribution to the solution. For each coarse grid block K_{i}, we can write the restriction of the current solution u_{H}^{m} on K_{i} as

$$
\sum_{l=1}^{l_{1, i}^{m}} \alpha_{1, l} \phi_{l}^{(i)}+\sum_{l=1}^{l_{2, i}^{m}} \alpha_{2, l} \xi_{l}^{(i)}
$$

Fixed a tolerance $\varepsilon>0$, which specify the importance of basis functions. Then the basis function $\phi_{l}^{(i)}$ or $\xi_{l}^{(i)}$ is removed from $\widehat{V}^{\text {off }}(m+1)$ if

$$
\alpha_{1, l}^{2}<\varepsilon\left(\sum_{l=1}^{l_{1, i}^{m}} \alpha_{1, l}^{2}+\sum_{l=1}^{l_{2, i}^{m}} \alpha_{2, l}^{2}\right) \quad \text { or } \quad \alpha_{2, l}^{2}<\varepsilon\left(\sum_{l=1}^{l_{1, i}^{m}} \alpha_{1, l}^{2}+\sum_{l=1}^{l_{2, i}^{m}} \alpha_{2, l}^{2}\right)
$$

is satisfied. The resulting space is called $V_{\text {off }}(m+1)$.

To test this strategy, we consider our second example with the source function f defined in Figure 3.5. We will consider three choices of ε, with values $10^{-12}, 10^{-13}$ and 10^{-14}. The convergence history of these cases are shown in Table 3.6. We can see that our basis removal strategy gives more efficient representation of the solution. For example, comparing the errors with DOF of around 2000 with basis removal (Table 3.6) and without basis removal (Table 3.4), we see that the method with basis removal gives a solution with smaller errors in both L^{2} norm and a-norm. On the other hand, we see that the choice of $\varepsilon=10^{-14}$ performs better than $\varepsilon=10^{-12}$. In particular, for DOF of around 2200 , the
error with $\varepsilon=10^{-14}$ is around 2% while the error with $\varepsilon=10^{-12}$ is around 4%. However, one expects that smaller choices of ε are not as economical as larger choices of ε.

DOF	L_{2}-error	a-error		DOF	L_{2}-error	a-error
1024	0.2052	0.0554		1024	0.2052	0.0554
951	0.1824	0.0502		996	0.1767	0.0501
1074	0.1158	0.0415		1107	0.1236	0.0431
1742	0.0461	0.0174		2006	0.0266	0.0154
2218	0.0404	0.0153		2824	0.0192	0.0123
		DOF	L_{2}-error	a-error		
		1024	0.2052	0.0554		
		1048	0.1774	0.0500		
		1185	0.1280	0.0434		
		2235	0.0223	0.0150		
		3275	0.0147	0.0117		

Table 3.6: Enrichment with $\theta=0.4$ and basis removal as well as enrichment in V_{1} space only. Left: $\varepsilon=10^{-12}$. Middle: $\varepsilon=10^{-13}$. Right: $\varepsilon=10^{-14}$

3.3.3.2 Adaptive enrichment using local basis pursuit

In this section, we discuss an algorithm that follows basis pursuit ideas [40] and identify the basis functions which need to be added based on the residual. The main idea is to find multiscale basis functions that correlate to the residual the most and add those basis functions. More precisely, we identify basis functions that has the largest correlation coefficient with respect to the residual and add those basis functions. In the following, we will present the details of the numerical algorithm. The key components of the algorithm are Step 2 and Step 3, which determine the basis functions that correlate to the residual the most.

Adaptive enrichment algorithm using local basis pursuit: Choose $0<\theta<1$. For each $m=0,1, \cdots$,

1. Step 1: Find the solution in the current space. That is, find $u_{H}^{m} \in V_{\text {off }}(m)$ such that

$$
\begin{equation*}
a_{\mathrm{DG}}\left(u_{H}^{m}, v\right)=(f, v) \quad \text { for all } v \in V_{\text {off }}(m) \tag{3.37}
\end{equation*}
$$

2. Step 2: Compute the local residuals. For each coarse grid block K_{i}, we compute

$$
\zeta_{j, i, l}^{2}=\frac{\left|R_{j, i}\left(v_{l}\right)\right|^{2}}{\left\|v_{l}\right\|_{V_{j}\left(K_{i}\right)}^{2}}, \quad j=1,2, \quad \forall v_{l} \in V_{j}\left(K_{i}\right)
$$

Note that $\left|R_{j, i}\left(v_{l}\right)\right|$ is the inner-product that identifies the basis functions that have the largest correlation to the residual. More precisely,

$$
\left|R_{j, i}\left(v_{l}\right)\right|=\left|\int_{K_{i}} f v_{l}-a_{D G}\left(u_{H}^{m}, v_{l}\right)\right|
$$

which is just the local inner-product of the residual vector and basis function v_{l}. We remark that v_{l} denotes generically the l-th basis functions in the space $V_{j}\left(K_{i}\right)$. The above quantity $\zeta_{j, i, l}^{2}$ has triple indices. But we re-enumerate these residuals using single indices in the decreasing order, that is, $\zeta_{1}^{2} \geq \zeta_{2}^{2} \geq \cdots$. More precisely, each single-index residual η_{k}^{2} corresponds to a triple-index residual $\zeta_{j, i, l}^{2}$ for some (j, i, l).
3. Step 3: Find the coarse grid blocks where enrichment is needed. We choose the smallest integer k such that

$$
\begin{equation*}
\zeta_{k} \geq \theta \zeta_{1} \tag{3.38}
\end{equation*}
$$

More precisely, if ζ_{k}^{2} is selected by (3.38), then by Step 2 , η_{k}^{2} corresponds to a tripleindex residual $\zeta_{j, i, l}^{2}$ for some (j, i, l). We will then add the basis function v_{l} in the space $V_{j}\left(K_{i}\right)$ to the new approximation space. (See Step 4).
4. Step 4: Enrich the space. For each $J=1,2, \cdots, k$, we add the basis function
$v_{l} \in V_{j}\left(K_{i}\right)$ corresponding to ζ_{J}. The resulting space is denoted as $\widehat{V}^{\text {off }}(m+1)$. Note that this is the offline space without basis removal.
5. Step 5: Remove basis. For each coarse grid block K_{i}, we can write the restriction of the current solution u_{H}^{m} on K_{i} as

$$
\sum_{l=1}^{l_{1, i}^{m}} \alpha_{1, l} \phi_{l}^{(i)}+\sum_{l=1}^{l_{2, i}^{m}} \alpha_{2, l} \xi_{l}^{(i)}
$$

Fixed a tolerance $\varepsilon>0$. Then the basis function $\phi_{l}^{(i)}$ or $\xi_{l}^{(i)}$ is removed if

$$
\alpha_{1, l}^{2}<\varepsilon\left(\sum_{l=1}^{l_{1, i}^{m}} \alpha_{1, l}^{2}+\sum_{l=1}^{l_{2, i}^{m}} \alpha_{2, l}^{2}\right) \quad \text { or } \quad \alpha_{2, l}^{2}<\varepsilon\left(\sum_{l=1}^{l_{1, i}^{m}} \alpha_{1, l}^{2}+\sum_{l=1}^{l_{2, i}^{m}} \alpha_{2, l}^{2}\right)
$$

is satisfied. The resulting space is called $V_{\text {off }}(m+1)$.
To demonstrate the performance of this strategy, we will consider two examples. In the first example, the source function f is defined as in Figure 3.5 and the rest of the parameters as in the Example 2. In the second example, we will take the solution (see Figure 3.7) which only contain the component of the 1 st, 17 th and 30 th eigen-basis. The boundary conditions are as in Example 2 and the source term is calculated based on this sparse solution. The convergence history for the first example is shown in Table 3.7. Comparing these results to Table 3.6, we can see that the adaptive enrichment provides a better convergence. The convergence history is substantially improved if we consider the sparse solution as in our second example. The numerical results are shown in Table 3.8.

3.4 Convergence analysis

In this section, we will provide the proofs for the a-posteriori error estimates (Theorem 3.2.1) and the convergence of the adaptive enrichment algorithm (Theorem 3.2.2).

For each coarse grid block $K_{i}, i=1,2, \cdots, N$, we define two projection operators

DOF	e_{2}	e_{a}
1024	0.2052	0.0554
1036	0.1474	0.0405
1259	0.0585	0.0230
2096	0.0129	0.0125
2643	0.0099	0.0111

Table 3.7: Enrichment using basis pursuit with $\theta=0.8$ and basis removal as well as enrichment in V_{1} space only.

Figure 3.7: Solution with sparse coefficient
$P_{j, i}: V_{j, \text { snap }}^{(i)} \rightarrow V_{j, \text { off }}^{(i)}, j=1,2$, from the local snapshot spaces to the corresponding local offline spaces by

$$
\begin{aligned}
\int_{\partial K_{i}} \widetilde{\kappa} P_{1, i}(v) w & =\int_{\partial K_{i}} \widetilde{\kappa} v w & \forall w \in V_{1, \text { off }}^{(i)}, \\
\int_{K_{i}} \kappa P_{2, i}(v) w & =\int_{K_{i}} \kappa v w & \forall w \in V_{2, \text { off }}^{(i)} .
\end{aligned}
$$

For any $v \in V_{1, \text { snap }}^{(i)}$, we can write $v=\sum_{l=1}^{M_{i}} c_{1, l} \phi_{l}^{(i)}$. By orthogonality of eigenfunctions, we have $P_{1, i}(v)=\sum_{l=1}^{l_{1, i}} c_{1, l} \phi_{l}^{(i)}$. Therefore, by the equivalence of $\|\cdot\|_{a}$ and $\|\cdot\|_{\text {DG }}$, we have

$$
\left\|P_{1, i}(v)\right\|_{a}^{2} \leq a_{1}\left(\int_{K_{i}} \kappa\left|\nabla P_{1, i}(v)\right|^{2}+\frac{\gamma}{h} \int_{\partial K_{i}} \widetilde{\kappa} P_{1, i}(v)^{2}\right)
$$

DOF	e_{2}	e_{a}	DOF	e_{2}	e_{a}
1024	0.0150	0.0424	1024	0.0150	0.0424
941	0.0069	0.0286	997	0.0150	0.0424
934	0.0032	0.0135	1327	0.0108	0.0412
688	0.0001	0.0010	2447	0.0023	0.0154
744	$1.20 \mathrm{e}-06$	$2.13 \mathrm{e}-05$	889	0.0003	0.0022

Table 3.8: Enrichment with $\theta=0.8$. Left: basis pursuit. Right: standard enrichment

By the spectral problem (3.5) and the fact that the eigenvalues are ordered increasingly, we have

$$
\begin{aligned}
\left\|P_{1, i}(v)\right\|_{a}^{2} & \leq a_{1}\left(\sum_{l=1}^{l_{1, i}} \frac{\lambda_{1, l}^{(i)}}{H} c_{1, l}^{2}+\frac{\gamma}{h} \int_{\partial K_{i}} \widetilde{\kappa} P_{1, i}(v)^{2}\right) \\
& \leq a_{1}\left(\frac{\lambda_{1, l_{1, i}}^{(i)}}{H}+\frac{\gamma}{h}\right) \sum_{l=1}^{l_{1, i}} c_{1, l}^{2}=a_{1}\left(\lambda_{1, l_{1, i}}^{(i)}+\frac{\gamma H}{h}\right)\|v\|_{V_{1}\left(K_{i}\right)}^{2}
\end{aligned}
$$

Similarly, for $v=\sum_{l \geq 1} c_{2, l} \xi_{l}^{(i)}$, we have $P_{2, i}(v)=\sum_{l=1}^{l_{2, i}} c_{2, l} \xi_{l}^{(i)}$. Therefore, by the equivalence of $\|\cdot\|_{a}$ and $\|\cdot\|_{\mathrm{DG}}$, we have

$$
\left\|P_{2, i}(v)\right\|_{a}^{2} \leq a_{1}\left(\int_{K_{i}} \kappa\left|\nabla P_{2, i}(v)\right|^{2}\right) .
$$

By the spectral problem (3.6) and the fact that the eigenvalues are ordered increasingly, we have

$$
\left\|P_{2, i}(v)\right\|_{a}^{2} \leq a_{1}\left(\sum_{l=1}^{l_{2, i}} \frac{\lambda_{2, l}^{(i)}}{H^{2}} c_{2, l}^{2}\right) \leq a_{1}\left(\frac{\lambda_{2, l_{2, i}}^{(i)}}{H^{2}}\right) \sum_{l=1}^{l_{2, i}} c_{2, l}^{2}=a_{1} \lambda_{2, l_{2, i}}^{(i)}\|v\|_{V_{2}\left(K_{i}\right)}^{2} .
$$

Thus the projections $P_{j, i}$ satisfy the following stability bound

$$
\begin{equation*}
\left\|P_{j, i}(v)\right\|_{a} \leq a_{1}^{\frac{1}{2}}\left(\lambda_{j, l_{j, i}}^{(i)}+\frac{\gamma H}{h}\right)^{\frac{1}{2}}\|v\|_{V_{j}\left(K_{i}\right)}, \quad j=1,2, \quad i=1,2, \cdots, N \tag{3.39}
\end{equation*}
$$

Next, we will establish some approximation properties for the projection operators $P_{j, i}$. Indeed, by the definitions of the operators $P_{j, i}$, for any $v \in V_{j, \text { snap }}^{(i)}$,

$$
\begin{aligned}
\left\|v-P_{j, i}(v)\right\|_{V_{j}\left(K_{i}\right)}^{2} & =H^{-j} \sum_{l \geq l_{j, i}+1} c_{j, l}^{2} \leq\left(\lambda_{l_{j, i}+1}^{(i)}\right)^{-1} \sum_{l \geq l_{j, i}+1} \frac{\lambda_{j, l}^{(i)}}{H^{j}} c_{j, l}^{2} \\
& =\left(\lambda_{j, l_{j, i}+1}^{(i)}\right)^{-1} \int_{K_{i}} \kappa|\nabla v|^{2}
\end{aligned}
$$

and therefore the following convergence result holds

$$
\begin{equation*}
\left\|v-P_{j, i}(v)\right\|_{V_{j}\left(K_{i}\right)} \leq\left(\lambda_{j, l_{j, i}+1}^{(i)}\right)^{-\frac{1}{2}}\left(\int_{K_{i}} \kappa|\nabla v|^{2}\right)^{\frac{1}{2}} \tag{3.40}
\end{equation*}
$$

For the analysis presented below, we define the projection $\Pi: V_{\text {snap }} \rightarrow V_{\text {off }}$ by $\Pi v=$ $\sum_{i=1}^{N} \sum_{j=1}^{2} P_{j, i}(v)$.

3.4.1 Proof of Theorem 3.2.1

Let $v \in V_{h}^{\mathrm{DG}}$ be an arbitrary function in the space V_{h}^{DG}. Using (3.24), we have

$$
a_{\mathrm{DG}}\left(u_{h}-u_{H}, v\right)=a_{\mathrm{DG}}\left(u_{h}, v\right)-a_{\mathrm{DG}}\left(u_{H}, v\right)=(f, v)-a_{\mathrm{DG}}\left(u_{H}, v\right) .
$$

Therefore,

$$
\begin{aligned}
a_{\mathrm{DG}}\left(u_{h}-u_{H}, v\right) & =(f, v)-a_{\mathrm{DG}}\left(u_{H}, v\right) \\
& =(f, v-\Pi v)+(f, \Pi v)-a_{\mathrm{DG}}\left(u_{H}, \Pi v\right)-a_{\mathrm{DG}}\left(u_{H}, v-\Pi v\right)
\end{aligned}
$$

Thus, using (3.25), we have

$$
\begin{equation*}
a_{\mathrm{DG}}\left(u_{h}-u_{H}, v\right)=(f, v-\Pi v)-a_{\mathrm{DG}}\left(u_{H}, v-\Pi v\right) \tag{3.41}
\end{equation*}
$$

Since the space V_{h}^{DG} is the same as $V_{\text {snap }}$, we can write $v=\sum_{i=1}^{N} \sum_{j=1}^{2} v_{j}^{(i)}$ with $v_{j}^{(i)} \in$ $V_{j, \text { snap }}^{(i)}$. Hence, (3.41) becomes

$$
\begin{equation*}
a_{\mathrm{DG}}\left(u_{h}-u_{H}, v\right)=\sum_{i=1}^{N} \sum_{j=1}^{2}\left(\int_{K_{i}} f\left(v_{j}^{(i)}-P_{j, i} v_{j}^{(i)}\right)-a_{\mathrm{DG}}\left(u_{H}, v_{j}^{(i)}-P_{j, i} v_{j}^{(i)}\right)\right) . \tag{3.42}
\end{equation*}
$$

We remark that, in the computation of the term $a_{\mathrm{DG}}\left(u_{H}, v_{j}^{(i)}-P_{j, i} v_{j}^{(i)}\right)$ in (3.42), we assume that the second argument is zero outside the coarse grid block K_{i}.

Using the definition of $R_{j, i}$, we see that (3.42) can be written as

$$
a_{\mathrm{DG}}\left(u_{h}-u_{H}, v\right)=\sum_{i=1}^{N} \sum_{j=1}^{2} R_{j, i}\left(v_{j}^{(i)}-P_{j, i} v_{j}^{(i)}\right)
$$

Thus, we have

$$
a_{\mathrm{DG}}\left(u_{h}-u_{H}, v\right) \leq \sum_{i=1}^{N} \sum_{j=1}^{2}\left\|R_{j, i}\right\|\left\|\left(v_{j}^{(i)}-P_{j, i} v_{j}^{(i)}\right)\right\|_{V_{j}\left(K_{i}\right)} .
$$

Using (3.40),

$$
a_{\mathrm{DG}}\left(u_{h}-u_{H}, v\right) \leq \sum_{i=1}^{N} \sum_{j=1}^{2}\left\|R_{j, i}\right\|\left(\lambda_{j, l_{j, i}+1}^{(i)}\right)^{-\frac{1}{2}}\left(\int_{K_{i}} \kappa\left|\nabla v_{j}^{(i)}\right|^{2}\right)^{\frac{1}{2}} .
$$

The inequality (3.30) is then followed by taking $v=u_{h}-u_{H}$ and

$$
\sum_{i=1}^{N} \sum_{j=1}^{2} \int_{K_{i}} \kappa\left|\nabla v_{j}^{(i)}\right|^{2} \leq\|v\|_{\mathrm{DG}}^{2} \leq a_{0}\|v\|_{a}^{2}
$$

3.4.2 An auxiliary lemma

In this section, we will derive an auxiliary lemma which will be used for the proof of the convergence of the adaptive enrichment algorithm stated in Theorem 3.2.2. We use the notation $P_{j, i}^{m}$ to denote the projection operator $P_{j, i}$ at the enrichment level m.

In Theorem 3.2.1, we see that $\left\|R_{j, i}\right\|$ gives an upper bound of the energy error $\| u_{h}-$ $u_{H} \|_{a}$. We will first show that, $\left\|R_{j, i}\right\|$ is also a lower bound up to a correction term (see Lemma 3.4.1). To state this precisely, we define

$$
\begin{equation*}
S_{j, i}^{m}=\left(\lambda_{j, l_{j, i}^{m}+1}^{(i)}\right)^{-\frac{1}{2}} \sup _{v \in V_{j, \text { snap }}^{(i)}} \frac{\left|R_{j, i}\left(v-P_{j, i}^{m}(v)\right)\right|}{\|v\|_{V_{j}\left(K_{i}\right)}} . \tag{3.43}
\end{equation*}
$$

Notice that the residual $R_{j, i}$ is computed using the solution u_{H}^{m} obtained at enrichment level m. We omit the index m in $R_{j, i}$ to simplify notations. Next, we will obtain

$$
\begin{equation*}
\left(S_{j, i}^{m}\right)^{2}=\left\|R_{j, i}\right\|^{2}\left(\lambda_{j, l_{j, i}^{m}+1}^{(i)}\right)^{-1} \tag{3.44}
\end{equation*}
$$

Indeed, by the fact that $P_{j, i}^{m}(v) \in V_{j, \text { off }}^{(i)}$,

$$
R_{j, i}\left(P_{j, i}^{m}(v)\right)=\int_{K_{i}} f P_{j, i}^{m}(v)-a_{\mathrm{DG}}\left(u_{H}^{m}, P_{j, i}^{m}(v)\right)=0 .
$$

Thus,

$$
\begin{aligned}
S_{j, i}^{m} & =\left(\lambda_{j, l_{j, i}^{m+1}}^{(i)}\right)^{-\frac{1}{2}} \sup _{v \in V_{j, \text { nap }}^{(i)}} \frac{\left|R_{j, i}\left(v-P_{j, i}^{m}(v)\right)\right|}{\|v\|_{V_{j}\left(K_{i}\right)}} \\
& =\left(\lambda_{j, l, l_{j, i}^{m}+1}^{(i)}\right)^{-\frac{1}{2}} \sup _{v \in V_{j, \text { nap }}^{(i)}} \frac{\left|R_{j, i}(v)\right|}{\|v\|_{V_{j}\left(K_{i}\right)}}=\left(\lambda_{j, l_{j, i}^{m}+1}^{(i)}\right)^{-\frac{1}{2}}\left\|R_{j, i}\right\| .
\end{aligned}
$$

This implies (3.44).
To prove Theorem 3.2.2, we will need the following recursive properties for $S_{j, i}^{m}$ (see Lemma 3.4.1). Notice that, the notation $\|u\|_{a, K_{i}}$ is defined as

$$
\|u\|_{a, K_{i}}^{2}=a_{\mathrm{DG}}(u, u)=\int_{K_{i}} \kappa|\nabla u|^{2}-\sum_{E \in \partial K_{i}} 2 \int_{E}\left\{\kappa \nabla u \cdot n_{E}\right\} \llbracket u \rrbracket+\sum_{E \in \partial K_{i}} \frac{\gamma}{h} \int_{E} \bar{\kappa} \llbracket u \rrbracket^{2} .
$$

Lemma 3.4.1. For any $\alpha>0$, we have

$$
\begin{equation*}
\left(S_{j, i}^{m+1}\right)^{2} \leq(1+\alpha) \frac{\lambda_{j, l_{j, i}^{m}+1}^{(i)}}{\lambda_{j, l_{j, i}^{m+1}+1}^{(i)}}\left(S_{j, i}^{m}\right)^{2}+\left(1+\alpha^{-1}\right) a_{1} D\left\|u_{H}^{m+1}-u_{H}^{m}\right\|_{a, K_{i}}^{2} \tag{3.45}
\end{equation*}
$$

where the enrichment level dependent constant D is defined by by

$$
D=\left(\frac{\Lambda_{j, i}}{\lambda_{j, l_{j, i}^{m+1}+1}^{(i)}}+\frac{\gamma H}{h \lambda_{j, l_{j, i}^{m+1}+1}^{(i)}}\right)
$$

with $\Lambda_{j, i}=\max _{l} \lambda_{j, l}^{(i)}$.

Proof. By direct calculations, we have

$$
\begin{align*}
& \int_{K_{i}} f\left(v-P_{j, i}^{m+1}(v)\right)-a_{\mathrm{DG}}\left(u_{H}^{m+1}, v-P_{j, i}^{m+1}(v)\right) \\
= & \int_{K_{i}} f v-a_{\mathrm{DG}}\left(u_{H}^{m+1}, v\right) \tag{3.46}\\
= & \int_{K_{i}} f v-a_{\mathrm{DG}}\left(u_{H}^{m}, v\right)+a_{\mathrm{DG}}\left(u_{H}^{m}-u_{H}^{m+1}, v\right) \\
= & \int_{K_{i}} f\left(v-P_{j, i}^{m}(v)\right)-a_{\mathrm{DG}}\left(u_{H}^{m}, v-P_{j, i}^{m}(v)\right)+a_{\mathrm{DG}}\left(u_{H}^{m}-u_{H}^{m+1}, v\right) .
\end{align*}
$$

By definition of $S_{j, i}^{m}$, we have

$$
\begin{equation*}
S_{j, i}^{m}=\left(\lambda_{j, l_{j, i}^{m}}^{(i)}\right)^{-\frac{1}{2}} \sup _{v \in V_{j, \text { snap }}^{(i)}} \frac{\left|\int_{K_{i}} f\left(v-P_{j, i}^{m}(v)\right)-a_{\mathrm{DG}}\left(u_{H}^{m}, v-P_{j, i}^{m}(v)\right)\right|}{\|v\|_{V_{j}\left(K_{i}\right)}} . \tag{3.47}
\end{equation*}
$$

Multiplying (3.46) by $\left(\lambda_{j, l_{j, i}^{m}+1}^{(i)}\right)^{-\frac{1}{2}}\|v\|_{V_{j}\left(K_{i}\right)}^{-1}$ and taking supremum with respect to v, we have

$$
\begin{equation*}
S_{j, i}^{m+1} \leq\left(\frac{\lambda_{j, l, i}^{(i)}}{\lambda_{j, l_{j, i}^{m+1}+1}^{(i)}}\right)^{\frac{1}{2}} S_{j, i}^{m}+I \tag{3.48}
\end{equation*}
$$

where

$$
I=\left(\lambda_{j, l_{j, i}^{m+1}}^{(i)}\right)^{-\frac{1}{2}} \sup _{v \in V_{j, \text { snap }}^{(i)}} \frac{\left|a_{\mathrm{DG}}\left(u_{H}^{m}-u_{H}^{m+1}, v\right)\right|}{\|v\|_{V_{j}\left(K_{i}\right)}} .
$$

To estimate I, we note that

$$
a_{\mathrm{DG}}\left(u_{H}^{m}, P_{j, i}^{m}(v)\right)=\int_{K_{i}} f P_{j, i}^{m}(v)=a_{\mathrm{DG}}\left(u_{H}^{m+1}, P_{j, i}^{m}(v)\right) .
$$

Therefore, we have
$a_{\mathrm{DG}}\left(u_{H}^{m}-u_{H}^{m+1}, v\right)=a_{\mathrm{DG}}\left(u_{H}^{m}-u_{H}^{m+1}, v-P_{j, i}^{m}(v)\right) \leq\left\|u_{H}^{m}-u_{H}^{m+1}\right\|_{a, K_{i}}\left\|v-P_{j, i}^{m}(v)\right\|_{a, K_{i}}$,
where we remark that v has value zero outside K_{i}. By the stability bound (3.39),

$$
\left\|v-P_{j, i}^{m}(v)\right\|_{a} \leq a_{1}^{\frac{1}{2}}\left(\Lambda_{j, i}+\frac{\gamma H}{h}\right)^{\frac{1}{2}}\left\|v-P_{j, i}^{m}(v)\right\|_{V_{j}\left(K_{i}\right)} \leq a_{1}^{\frac{1}{2}}\left(\Lambda_{j, i}+\frac{\gamma H}{h}\right)^{\frac{1}{2}}\|v\|_{V_{j}\left(K_{i}\right)}
$$

Thus we have

$$
I \leq a_{1}^{\frac{1}{2}}\left(\lambda_{j, l_{j, i}^{m}+1}^{(i)}\right)^{-\frac{1}{2}}\left(\Lambda_{j, i}+\frac{\gamma H}{h}\right)^{\frac{1}{2}}\left\|u_{H}^{m+1}-u_{H}^{m}\right\|_{a, K_{i}}
$$

Using (3.48), we get

$$
S_{j, i}^{m+1} \leq\left(\frac{\lambda_{j, l_{j, i}^{m}+1}^{(i)}}{\lambda_{j, l_{j, i}^{m+1}+1}^{(i)}}\right)^{\frac{1}{2}} S_{j, i}^{m}+a_{1}^{\frac{1}{2}}\left(\frac{\Lambda_{j, i}}{\lambda_{j, l_{j, i}^{m+1}+1}^{(i)}}+\frac{\gamma H}{h \lambda_{j, l_{j, i}^{m+1}+1}^{(i)}}\right)^{\frac{1}{2}}\left\|u_{\mathrm{ms}}^{m+1}-u_{\mathrm{ms}}^{m}\right\|_{a, K_{i}}
$$

Hence, (3.45) is proved.

3.4.3 Proof of Theorem 3.2.2

In this section, we prove the convergence of the adaptive enrichment algorithm. First of all, we recall that

$$
\begin{equation*}
\eta_{j, i}^{2}=\left\|R_{j, i}\right\|^{2}\left(\lambda_{j, l_{j, i}+1}^{(i)}\right)^{-1}=\left(S_{j, i}^{m}\right)^{2} . \tag{3.49}
\end{equation*}
$$

We let the single index $J=(j, i)$, and we will use the single index notation η_{J} and S_{J}^{m} for $\eta_{j, i}$ and $S_{j, i}^{m}$ respectively. Note that there is an one-to-one mapping of the set of single indices J and the set of integers $\{1,2 \cdots, 2 N\}$.

Let $0<\theta<1$. We choose an index set I so that

$$
\begin{equation*}
\theta^{2} \sum_{J=1}^{2 N} \eta_{J}^{2} \leq \sum_{J \in I} \eta_{J}^{2} \tag{3.50}
\end{equation*}
$$

We will then add basis function from $V_{j, \text { snap }}^{(i)}$ with $J=(j, i) \in I$. Then, using Theorem 3.2.1 and (3.50), we have

$$
\theta^{2}\left\|u_{h}-u_{H}^{m}\right\|_{a}^{2} \leq \theta^{2} C_{\text {err }} \sum_{J=1}^{2 N} \eta_{J}^{2} \leq C_{\text {err }} \sum_{J \in I} \eta_{J}^{2}
$$

By (3.49), we also have

$$
\begin{equation*}
\left\|u_{h}-u_{H}^{m}\right\|_{a}^{2} \leq \frac{C_{\mathrm{err}}}{\theta^{2}} \sum_{J \in I}\left(S_{J}^{m}\right)^{2} \tag{3.51}
\end{equation*}
$$

On the other hand,

$$
\sum_{J=1}^{N}\left(S_{J}^{m+1}\right)^{2}=\sum_{J \in I}\left(S_{J}^{m+1}\right)^{2}+\sum_{J \notin I}\left(S_{J}^{m+1}\right)^{2}
$$

By Lemma 3.4.1, for any $J \in I$, we have

$$
\left(S_{J}^{m+1}\right)^{2} \leq(1+\alpha) \frac{\lambda_{j, l_{j, i}+1}^{(i)}}{\lambda_{j, l_{j, i}^{m+1}+1}^{(i)}}\left(S_{J}^{m}\right)^{2}+\left(1+\alpha^{-1}\right) a_{1} D\left\|u_{H}^{m+1}-u_{H}^{m}\right\|_{a, K_{i}}^{2}
$$

If $J \notin I$, then there is no enrichment involved. So $\lambda_{j, l_{j, i}^{m+1}}^{(i)}=\lambda_{j, l_{j, i}^{m+1}+1}^{(i)}$, which implies

$$
\left(S_{J}^{m+1}\right)^{2} \leq(1+\alpha)\left(S_{J}^{m}\right)^{2}+\left(1+\alpha^{-1}\right) a_{1} D\left\|u_{H}^{m+1}-u_{H}^{m}\right\|_{a, K_{i}}^{2} .
$$

Combining the above two cases, we have

$$
\begin{aligned}
\sum_{J=1}^{2 N}\left(S_{J}^{m+1}\right)^{2} \leq & \sum_{J \in I}\left((1+\alpha) \frac{\lambda_{j, l_{j, i}^{m}+1}^{(i)}}{\lambda_{j, l_{j, i}^{m+1}+1}^{(i)}}\left(S_{J}^{m}\right)^{2}+\left(1+\alpha^{-1}\right) a_{1} D\left\|u_{H}^{m+1}-u_{H}^{m}\right\|_{a, K_{i}}^{2}\right) \\
& +\sum_{J \notin I}\left((1+\alpha)\left(S_{J}^{m}\right)^{2}+\left(1+\alpha^{-1}\right) a_{1} D\left\|u_{H}^{m+1}-u_{H}^{m}\right\|_{a, K_{i}}^{2}\right) .
\end{aligned}
$$

We assume the enrichment is obtained so that

$$
\delta:=\max _{J \in I} \frac{\lambda_{j, l_{j, i}^{m}+1}^{(i)}}{\lambda_{j, l_{j, i}^{m+1}+1}^{(i)}} \leq \delta_{0}<1,
$$

where δ_{0} is independent of m. We then have

$$
\begin{aligned}
\sum_{J=1}^{2 N}\left(S_{J}^{m+1}\right)^{2} \leq & \sum_{J \in I}\left((1+\alpha) \delta_{0}\left(S_{J}^{m}\right)^{2}\right)+\sum_{J \notin I}\left((1+\alpha)\left(S_{J}^{m}\right)^{2}\right) \\
& +\sum_{J=1}^{2 N}\left(1+\alpha^{-1}\right) a_{1} D\left\|u_{H}^{m+1}-u_{H}^{m}\right\|_{a, K_{i}}^{2} .
\end{aligned}
$$

Since $\delta_{0}=1-\left(1-\delta_{0}\right)$, the above can be written as

$$
\sum_{J=1}^{2 N}\left(S_{J}^{m+1}\right)^{2} \leq(1+\alpha) \sum_{J=1}^{2 N}\left(S_{J}^{m}\right)^{2}-(1+\alpha)\left(1-\delta_{0}\right) \sum_{J \in I}\left(S_{J}^{m}\right)^{2}+L_{m+1}\left\|u_{H}^{m+1}-u_{H}^{m}\right\|_{a}^{2}
$$

where

$$
\begin{equation*}
L_{m+1}=N_{E}\left(1+\alpha^{-1}\right) a_{1}\left(\max _{1 \leq i \leq N} \max _{1 \leq j \leq 2} D\right) \tag{3.52}
\end{equation*}
$$

where N_{E} is the maximum number of edges of coarse grid blocks, and we also emphasise that L_{m+1} depends on m. By (3.50),

$$
\sum_{J=1}^{2 N}\left(S_{J}^{m+1}\right)^{2} \leq(1+\alpha) \sum_{J=1}^{2 N}\left(S_{J}^{m}\right)^{2}-(1+\alpha)\left(1-\delta_{0}\right) \theta^{2} \sum_{J=1}^{2 N}\left(S_{J}^{m}\right)^{2}+L_{m+1}\left\|u_{H}^{m+1}-u_{H}^{m}\right\|_{a}^{2}
$$

Let $\rho=(1+\alpha)\left(1-\left(1-\delta_{0}\right) \theta^{2}\right)$. We choose $\alpha>0$ small enough so that $0<\rho<1$. We remark that α is fixed if we fix the values of δ_{0} and θ, which are user inputs. The above inequality can then be written as

$$
\begin{equation*}
\sum_{J=1}^{2 N}\left(S_{J}^{m+1}\right)^{2} \leq \rho \sum_{J=1}^{2 N}\left(S_{J}^{m}\right)^{2}+L_{m+1}\left\|u_{H}^{m+1}-u_{H}^{m}\right\|_{a}^{2} \tag{3.53}
\end{equation*}
$$

Note that, by Galerkin orthogonality, we have

$$
\begin{equation*}
\left\|u_{H}^{m+1}-u_{H}^{m}\right\|_{a}^{2}=\left\|u_{h}-u_{H}^{m}\right\|_{a}^{2}-\left\|u_{h}-u_{H}^{m+1}\right\|_{a}^{2} . \tag{3.54}
\end{equation*}
$$

We let $\tau>0$ which will be specified in the following. Then, by using (3.53) and (3.54), we have

$$
\left\|u_{h}-u_{H}^{m+1}\right\|_{a}^{2}+\tau \sum_{J=1}^{2 N}\left(S_{J}^{m+1}\right)^{2} \leq\left\|u_{h}-u_{H}^{m}\right\|_{a}^{2}+\tau \rho \sum_{J=1}^{2 N}\left(S_{J}^{m}\right)^{2}+\tau L_{m+1}\left\|u_{H}^{m+1}-u_{H}^{m}\right\|_{a}^{2}
$$

Using (3.54), the above can be written as

$$
\begin{aligned}
\left\|u_{h}-u_{H}^{m+1}\right\|_{a}^{2}+\tau \sum_{J=1}^{2 N}\left(S_{J}^{m+1}\right)^{2} \leq & \left\|u_{h}-u_{H}^{m}\right\|_{a}^{2}+\tau \rho \sum_{J=1}^{2 N}\left(S_{J}^{m}\right)^{2} \\
& +\tau L_{m+1}\left(\left\|u_{h}-u_{H}^{m}\right\|_{a}^{2}-\left\|u_{h}-u_{H}^{m+1}\right\|_{a}^{2}\right)
\end{aligned}
$$

which implies

$$
\left\|u_{h}-u_{H}^{m+1}\right\|_{a}^{2}+\frac{\tau}{1+\tau L_{m+1}} \sum_{J=1}^{2 N}\left(S_{J}^{m+1}\right)^{2} \leq\left\|u_{h}-u_{H}^{m}\right\|_{a}^{2}+\frac{\tau \rho}{1+\tau L_{m+1}} \sum_{J=1}^{2 N}\left(S_{J}^{m}\right)^{2}
$$

Next, we let $0<\beta<1$ which will be specified in the following. Using (3.51), we have

$$
\begin{align*}
& \left\|u_{h}-u_{H}^{m+1}\right\|_{a}^{2}+\frac{\tau}{1+\tau L_{m+1}} \sum_{J=1}^{2 N}\left(S_{J}^{m+1}\right)^{2} \tag{3.55}\\
\leq & (1-\beta)\left\|u_{h}-u_{H}^{m}\right\|_{a}^{2}+\left(\frac{\beta C_{\mathrm{err}}}{\theta^{2}}+\frac{\tau \rho}{1+\tau L_{m+1}}\right) \sum_{J=1}^{2 N}\left(S_{J}^{m}\right)^{2} . \tag{3.56}
\end{align*}
$$

We choose β by the following

$$
\beta=\theta^{2}\left(\theta^{2}+C_{\mathrm{err}} \tau^{-1}\left(1+\tau L_{m}\right)\right)^{-1}\left(1-\rho \frac{1+\tau L_{m}}{1+\tau L_{m+1}}\right) .
$$

Then (3.55) becomes

$$
\begin{equation*}
\left\|u_{h}-u_{H}^{m+1}\right\|_{a}^{2}+\frac{\tau}{1+\tau L_{m+1}} \sum_{J=1}^{2 N}\left(S_{J}^{m+1}\right)^{2} \leq(1-\beta)\left\|u_{h}-u_{H}^{m}\right\|_{a}^{2}+\frac{\tau(1-\beta)}{1+\tau L_{m}} \sum_{J=1}^{2 N}\left(S_{J}^{m}\right)^{2} . \tag{3.57}
\end{equation*}
$$

Finally, we will see that one can choose τ such that $\beta>0$. Since $\left\{L_{m}\right\}$ is a decreasing sequence, we have

$$
\frac{1+\tau L_{m}}{1+\tau L_{m+1}} \leq 1+\tau L_{1} .
$$

Then we have

$$
1-\rho \frac{1+\tau L_{m}}{1+\tau L_{m+1}} \geq \epsilon_{0}>0 \quad \Longleftrightarrow \quad \tau<\frac{1-\rho-\epsilon_{0}}{L_{1}}
$$

where we take $\epsilon_{0}<1-\rho$. Using the above choice of τ, we see that $\beta>0$. On the other hand, the condition $\beta<1$ is obvious. To complete the proof, we let M be the maximum number of adaptive iterations, so that we have

$$
L_{M}=a_{1} N_{E}\left(1+\alpha^{-1}\right) \max _{1 \leq i \leq N} \max _{1 \leq j \leq 2}\left(1+\gamma H h^{-1} \Lambda_{j, i}^{-1}\right) .
$$

Using the condition (3.33), we obtain

$$
\beta \geq \epsilon_{0} \theta^{2}\left(C_{\mathrm{err}} \tau^{-1}\left(1+\tau L_{M}\right)+C_{\mathrm{err}} \tau^{-1}\left(1+\tau L_{m}\right)\right)^{-1} \geq \epsilon_{0} \theta^{2}\left(2 C_{\mathrm{err}} \tau^{-1}\left(1+\tau L_{M}\right)\right)^{-1}
$$

which gives the required convergence rate ϵ. This completes the proof of Theorem 3.2.2.

4. AN ONLINE GENERALIZED MULTISCALE DISCONTINUOUS GALERKIN METHOD (GMSDGM) FOR FLOWS IN HETEROGENEOUS MEDIA

4.1 Overview

In this chapter, we will discuss about the online basis construction for GMsDGM for the high-contrast flow problem (2.1). In order to obtain a good convergence result for the online adaptive enrichment method, we need to use different multiscale offline space as in the Chapter 3. Instead of using a different offline space, the offline stage of the method is basically the same as in Chapter 3. Therefore, we will use the same set of notations defined before.

Let we recall the framework of our GMsDGM. The methodology consists of two main ingredients, namely, the construction of local basis functions and the global coarse grid level coupling. For the coarse grid level coupling, we will apply the interior penalty discontinuous Galerkin (IPDG) method. That is, we find $u_{H} \in V_{H}$ such that

$$
\begin{equation*}
a_{\mathrm{DG}}\left(u_{H}, v\right)=(f, v), \quad \forall v \in V_{H} \tag{4.1}
\end{equation*}
$$

where the bilinear form a_{DG} is defined as

$$
\begin{equation*}
a_{\mathrm{DG}}(u, v)=a_{H}(u, v)-\sum_{E \in \mathcal{E}^{H}} \int_{E}\left(\left\{\kappa \nabla u \cdot n_{E}\right\} \llbracket v \rrbracket+\left\{\kappa \nabla v \cdot n_{E}\right\} \llbracket u \rrbracket\right)+\sum_{E \in \mathcal{E}^{H}} \frac{\gamma}{h} \int_{E} \bar{\kappa} \llbracket u \rrbracket \llbracket v \rrbracket \tag{4.2}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{H}(u, v)=\sum_{K \in \mathcal{T}_{H}} a_{H}^{K}(u, v), \quad a_{H}^{K}(u, v)=\int_{K} \kappa \nabla u \cdot \nabla v, \tag{4.3}
\end{equation*}
$$

In the previous chapter, we already proved the continuity and coercivity of the bilinear form a_{DG} in DG-norm $\|\cdot\|_{D G}$. Therefore, this bilinear form is well pose for any offline
subspace $V_{\text {off }} \subset V_{h}^{D G}$.
One main result of the chapter is a convergence estimate of an adaptive procedure for the problem (4.1). For this purpose, we will compare the multiscale solution u_{H} to a fine-scale solution u_{h} defined in the following way. We first let

$$
V_{h}^{\mathrm{DG}}=\left\{v \in L^{2}(D):\left.v\right|_{K} \in V^{h}(K)\right\},
$$

where $V^{h}(K)$ is the space of continuous piecewise bilinear functions defined on K with respect to the fine grid. The fine-scale solution $u_{h} \in V_{\mathrm{DG}}^{h}$ is defined as the solution of the following

$$
\begin{equation*}
a_{\mathrm{DG}}\left(u_{h}, v\right)=(f, v), \quad \forall v \in V_{\mathrm{DG}}^{h} . \tag{4.4}
\end{equation*}
$$

It is well-known that u_{h} gives a good approximation to the exact solution u up to a coarse grid discretization error.

The second main component of our method is the construction of local basis functions, which contains two stages, namely the offline stage and the online stage. In the offline stage, a snapshot space $V_{\text {snap }}^{(i)}$ is first constructed for each coarse grid block $K_{i} \in \mathcal{T}^{H}$. The snapshot space contains a rich space of basis functions, which can be used to approximate the fine-scale solution defined (4.4) with a good accuracy. A spectral problem is then solved in the snapshot space $V_{\text {snap }}^{(i)}$ and eigenfunctions corresponding to dominant modes are used as the basis functions. The resulting space is called the local offline space $V_{\text {off }}^{(i)}$ for the i-th coarse grid block K_{i}. The global offline space $V_{\text {off }}$ is then defined as the linear span of all these $V_{\text {off }}^{(i)}$, for $i=1,2, \cdots, N$. This global offline space $V_{\text {off }}$ will be used as the initial space of our method. We denote this initial space as $V_{H}^{(0)}$. Using the initial space, an initial solution $u_{H}^{(0)}$ can be computed by solving (4.1). Local residuals in coarse grid blocks can then be computed based on the initial solution $u_{H}^{(0)}$. In coarse grid blocks with
large residuals, new basis functions are computed and added to the approximation space. This procedure is continued until certain tolerance is reached. Next, we present a general outline of the method.

Assume that the initial space $V_{H}^{(0)}$ is given and the initial solution $u_{H}^{(0)}$ is computed. For any $m \geq 0$, we repeat the following until the solution $u_{H}^{(m)}$ satisfies certain tolerance requirement.

Step 1: Solve (4.1) using the space $V_{H}^{(m)}$ to obtain the solution $u_{H}^{(m)} \in V_{H}^{(m)}$.
Step 2: Compute local residuals based on the solution $u_{H}^{(m)}$.

Step 3: Construct new basis functions in regions, where the residuals are large.

Step 4: Add these basis functions to $V_{H}^{(m)}$ to form a new space $V^{(m+1)}$.

In the following, we will give the details of Step 2 and Step 3. We will also explain how one chooses the initial space $V_{H}^{(0)}$.

4.2 Locally online adaptivity

In this section, we will give details of our locally online adaptivity for the problem (4.1). As presented in the general outline of the method from the previous section, our adaptivity idea contains the choice of initial space as well as construction of new local multiscale basis functions. In the following, we will give the construction of these in detail.

4.2.1 Initial space

We present the definition of the initial space $V_{H}^{(0)}$. Let x_{i} be a node in the coarse grid \mathcal{T}^{H}, referred to as the i-th coarse node, for $i=1,2, \cdots, N_{c}$, where N_{c} is the number of nodes in the coarse grid \mathcal{T}^{H}. We will then define the i-th coarse neighbourhood ω_{i} as the union of all coarse grid blocks having the node x_{i}, see Figure 1.2. Moreover, for each
coarse grid block $K \in \mathcal{T}^{H}$, we let $\chi_{(j)}^{K}, j=1,2,3,4$, be the partition of unity functions, having value 1 at one vertex y_{j} and value 0 at the remaining three vertices, where y_{j}, $j=1,2,3,4$, are the four vertices of K. Note that there is exactly one value of j such that the vertex y_{j} is the same as the vertex x_{i}. In the case, we write $\chi_{(j)}^{K}=\chi_{i}^{K}$. One can use the standard multiscale basis functions or bilinear functions as the partition of unity functions. Note that we do not require any continuity of these partition of unity functions across coarse grid edges. The partition of unity functions are all supported on coarse grid blocks. Furthermore, we define the space $V^{h}\left(\omega_{i}\right)$ by

$$
V^{h}\left(\omega_{i}\right)=\left\{v \in L^{2}\left(\omega_{i}\right):\left.v\right|_{K} \in V^{h}(K), K \in \mathcal{T}^{H}, K \subset \omega_{i}\right\}
$$

where $V^{h}(K)$ is the space of continuous piecewise bilinear functions defined on K. We remark that functions in $V^{h}\left(\omega_{i}\right)$ are supported in ω_{i} and belong to the space $V^{h}(K)$ for each coarse grid block $K \subset \omega_{i}$. Note that there is no continuity condition across boundaries of coarse grid blocks. We consider $V^{h}\left(\omega_{i}\right)$ as the snapshot space in ω_{i}, that is $V_{\text {snap }}^{(i)}=V^{h}\left(\omega_{i}\right)$, and perform a dimension reduction through a spectral problem. For this purpose, we define \mathcal{E}_{i}^{H} be the set of coarse grid edges lying in the interior of ω_{i}, and the following bilinear form

$$
\begin{equation*}
a_{\omega_{i}}(u, v)=\sum_{K \in \mathcal{T}^{H}, K \subset \omega_{i}} a_{H}^{K}(u, v)+\sum_{E \in \mathcal{E}_{i}^{H}} \frac{\gamma}{h} \int_{E} \bar{\kappa} \llbracket u \rrbracket \llbracket v \rrbracket, \quad \forall u, v \in V^{h}\left(\omega_{i}\right) . \tag{4.5}
\end{equation*}
$$

Based on our analysis to be presented next, we solve the following spectral problem

$$
\begin{equation*}
a_{\omega_{i}}(u, v)=\lambda s_{\omega_{i}}(u, v), \quad \forall v \in V^{h}\left(\omega_{i}\right) \tag{4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{\omega_{i}}(u, v)=\sum_{K \in \mathcal{T}^{H}, K \subset \omega_{i}} \int_{K} \kappa\left|\nabla \chi_{i}^{K}\right|^{2} u v+\sum_{E \in \mathcal{E}_{i}^{H}} \frac{\gamma}{h} \int_{E} \bar{\kappa} \llbracket \chi_{i}^{K} \rrbracket^{2}\{u\}\{v\}, \quad \forall u, v \in V^{h}\left(\omega_{i}\right) . \tag{4.7}
\end{equation*}
$$

We use the notations $\lambda_{k}^{\omega_{i}}$ and $\Phi_{k}^{\omega_{i}}$ to denote the k-th eigenvalue and the k-th eigenvector of the above spectral problem (4.6). Each eigenfunction $\Phi_{k}^{\omega_{i}}$ corresponds to a function in $\phi_{k}^{\omega_{i}} \in V^{h}\left(\omega_{i}\right)$ defined by

$$
\begin{equation*}
\phi_{k}^{\omega_{i}}=\sum_{j=1}^{n_{i}}\left(\Phi_{k}^{\omega_{i}}\right)_{j} w_{j}^{\omega_{i}}, \tag{4.8}
\end{equation*}
$$

where n_{i} is the dimension of $V^{h}\left(\omega_{i}\right)$ and $\left\{w_{j}^{\omega_{i}}\right\}_{j=1}^{n_{i}}$ is a basis for $V^{h}\left(\omega_{i}\right)$. In the above definition, $\left(\Phi_{k}^{(i)}\right)_{j}$ is the j-th component of the eigenvector $\Phi_{k}^{\omega_{i}}$.

For each ω_{i}, we solve the spectral problem (4.6) and the first L_{i} eigenfunctions are used to form the initial space. Each eigenfunction $\phi_{k}^{\omega_{i}}$ will be first multiplied by the partition of unity function χ_{i}^{K}, for each $K \subset \omega_{i}$, and is then decoupled across coarse grid edges to form 4 basis functions. In particular, the 4 new basis functions have support in one of the coarse grid block forming ω_{i} and are zero in the other three coarse grid blocks forming ω_{i}. For example, if $K \subset \omega_{i}$, the basis function is $\chi_{i}^{K} \phi_{k}^{\omega_{i}}$. We write $V_{\text {off }}^{(i)}$ as the space spanned by $I_{K}\left(\chi_{i}^{K} \phi_{k}^{\omega_{i}}\right)$, for all $K \subset \omega_{i}$, where I_{K} is the standard bilinear interpolation operator. Therefore, $V_{\text {off }}^{(i)}$ is a subspace of V^{h}. See Figure 4.1 for an illustration. The initial space $V_{H}^{(0)}$ is obtained by the linear span of all functions constructed in the above procedure. Notice that $V_{H}^{(0)} \subset V_{h}^{\mathrm{DG}}$.

4.2.2 Construction of online basis functions

In this section, we will discuss the construction of our local online basis functions. The purpose is to add basis functions locally in some coarse neighborhoods to obtain rapidly decaying errors. Assume that the space $V_{H}^{(m)}$ at the m-th iteration and the corresponding
solution $u_{H}^{(m)}$ are given. For each coarse neighborhood ω_{i}, we define the local residual by

$$
\begin{equation*}
R_{i}^{(m)}(v)=(f, v)-a_{\mathrm{DG}}\left(u_{H}^{(m)}, v\right), \quad v \in V_{0}^{h}\left(\omega_{i}\right) \tag{4.9}
\end{equation*}
$$

where $V_{0}^{h}\left(\omega_{i}\right) \subset V^{h}\left(\omega_{i}\right)$ contains functions that are zero on $\partial \omega_{i}$ and

$$
V^{h}\left(\omega_{i}\right)=\left\{v \in L^{2}\left(\omega_{i}\right):\left.v\right|_{K} \in V^{h}(K), K \in \mathcal{T}^{H}, K \subset \omega_{i}\right\}
$$

The residual $R_{i}^{(m)}$ can be seen as a linear functional defined on $V_{0}^{h}\left(\omega_{i}\right)$ with norm $\left\|R_{i}^{(m)}\right\|$ defined by

$$
\begin{equation*}
\left\|R_{i}^{(m)}\right\|=\sup _{v \in V_{0}^{h}\left(\omega_{i}\right)} \frac{\left|R_{i}^{(m)}(v)\right|}{\|v\|_{\omega_{i}}} \tag{4.10}
\end{equation*}
$$

and $\|v\|_{\omega_{i}}^{2}=a_{\omega_{i}}(v, v)$. We will then find the new online basis function $\phi \in V_{0}^{h}\left(\omega_{i}\right)$ by solving

$$
\begin{equation*}
a_{\omega_{i}}(\phi, v)=R_{i}^{(m)}(v), \quad \forall v \in V_{0}^{h}\left(\omega_{i}\right) . \tag{4.11}
\end{equation*}
$$

The new online basis function ϕ is added to $V_{H}^{(m)}$ to form $V_{H}^{(m+1)}$.
The motivation of finding a new basis function ϕ by solving (4.11) can be explained as follows. We define the A-norm by

$$
\|u\|_{A}^{2}=a_{\mathrm{DG}}(u, u), \quad \forall u \in V_{H} .
$$

We notice that the A-norm is equivalent to the DG-norm $\|u\|_{\text {DG }}$ by Lemma 3.1.1. From (4.1) and (4.4), we have the following Galerkin orthogonality condition

$$
\begin{equation*}
a_{\mathrm{DG}}\left(u_{h}-u_{H}^{(m)}, v\right)=0, \quad \forall v \in V_{H}^{(m)} \tag{4.12}
\end{equation*}
$$

Thus, we see that the following optimal error bound holds

$$
\begin{equation*}
\left\|u_{h}-u_{H}^{(m)}\right\|_{A}^{2} \leq\left\|u_{h}-\widetilde{u}\right\|_{A}^{2}, \quad \forall \widetilde{u} \in V_{H}^{(m)} . \tag{4.13}
\end{equation*}
$$

Notice that (4.12) and (4.13) hold for any $m \geq 0$.
We will enrich the space $V_{H}^{(m)}$ by adding a basis function ϕ in the space $V_{0}^{h}\left(\omega_{i}\right)$ to form $V_{H}^{(m+1)}$. First, (4.13) implies

$$
\begin{equation*}
\left\|u_{h}-u_{H}^{(m+1)}\right\|_{A}^{2} \leq\left\|u_{h}-\widetilde{u}\right\|_{A}^{2}, \quad \forall \widetilde{u} \in V_{H}^{(m+1)} . \tag{4.14}
\end{equation*}
$$

Taking $\widetilde{u}=u_{H}^{(m)}+\alpha \phi$, for some scalar α, in (4.14), we have

$$
\left\|u_{h}-u_{H}^{(m+1)}\right\|_{A}^{2} \leq\left\|u_{h}-u_{H}^{(m)}-\alpha \phi\right\|_{A}^{2}
$$

which implies

$$
\left\|u_{h}-u_{H}^{(m+1)}\right\|_{A}^{2} \leq\left\|u_{h}-u_{H}^{(m)}\right\|_{A}^{2}-2 \alpha a_{\mathrm{DG}}\left(u_{h}-u_{H}^{(m)}, \phi\right)+\alpha^{2}\|\phi\|_{A}^{2} .
$$

Taking $\alpha=a_{\mathrm{DG}}\left(u_{h}-u_{H}^{(m)}, \phi\right) /\|\phi\|_{A}^{2}$, we obtain

$$
\begin{equation*}
\left\|u_{h}-u_{H}^{(m+1)}\right\|_{A}^{2} \leq\left\|u_{h}-u_{H}^{(m)}\right\|_{A}^{2}-\frac{a_{\mathrm{DG}}\left(u_{h}-u_{H}^{(m)}, \phi\right)^{2}}{\|\phi\|_{A}^{2}} \tag{4.15}
\end{equation*}
$$

By the definition of the residual $R_{i}^{(m)}$ in (4.9), we see that (4.15) becomes

$$
\begin{equation*}
\left\|u_{h}-u_{H}^{(m+1)}\right\|_{A}^{2} \leq\left\|u_{h}-u_{H}^{(m)}\right\|_{A}^{2}-\frac{\left(R_{i}^{(m)}(\phi)\right)^{2}}{\|\phi\|_{A}^{2}} . \tag{4.16}
\end{equation*}
$$

From (4.16), we see that the quantity $\left(R_{i}^{(m)}(\phi)\right)^{2} /\|\phi\|_{A}^{2}$ measures the amount of reduction in error when the basis function ϕ is added in $V_{H}^{(m)}$ to form $V_{H}^{(m+1)}$. We will construct the
function $\phi \in V_{0}^{h}\left(\omega_{i}\right)$ to obtain the most reduction in error. Thus, we find $\phi \in V_{0}^{h}\left(\omega_{i}\right)$ that maximizes $R_{i}^{(m)}(\phi) /\|\phi\|_{A}$. Equivalently, we find $\phi \in V_{0}^{h}\left(\omega_{i}\right)$ by solving

$$
a_{\omega_{i}}(\phi, v)=R_{i}^{(m)}(v), \quad \forall v \in V_{0}^{h}\left(\omega_{i}\right) .
$$

Notice that, we have used the fact that $\|\phi\|_{A}=\|\phi\|_{\omega_{i}}$ when $\phi \in V_{0}^{h}\left(\omega_{i}\right)$.
Next, we summarize our online GMsDGM:

- Initialization: We will construct the initial space $V_{H}^{(0)}$. For each coarse neighborhood ω_{i}, we solve the following spectral problem in the space $V^{h}\left(\omega_{i}\right)$:

$$
a_{\omega_{i}}(u, v)=\lambda s_{\omega_{i}}(u, v) .
$$

Then we obtain the eigenfunctions $\psi_{k}^{\omega_{i}}$ by (4.8), and we will consider the restriction of $\psi_{k}^{\omega_{i}}$ in each coarse element in ω_{i} as an individual function. Using the first L_{i} of these eigenfunctions, we obtain the basis functions $I_{K}\left(\chi_{i}^{L} \psi_{k}^{\omega_{i}}\right)$.

- Iteration: For each $m \geq 0$, we perform the following iterations.

1. Find $u_{H}^{(m)} \in V_{H}^{(m)}$ by solving

$$
a_{\mathrm{DG}}\left(u_{H}^{(m)}, v\right)=(f, v), \quad \forall v \in V_{H}^{(m)} .
$$

2. Choose non-overlapping coarse neighborhoods ω_{i} and find new basis functions $\phi \in V_{0}^{h}\left(\omega_{i}\right)$ by

$$
a_{\omega_{i}}(\phi, v)=R_{i}^{(m)}(v), \quad \forall v \in V_{0}^{h}\left(\omega_{i}\right) .
$$

3. Add those basis functions to $V_{H}^{(m)}$ to form $V_{H}^{(m+1)}$.

4.2.3 Convergence of the adaptive procedure

In this section, we analyze the convergence of the above online enrichment procedure. Before proving the convergence, we need the following lemma which will can be proved by standard techniques.

Lemma 4.2.1. There exists a positive constant C_{I} such that

$$
\begin{equation*}
\|I(v)\|_{\mathrm{DG}} \leq C_{I}\|v\|_{\mathrm{DG}}, \quad \forall v \in V_{h}^{D G} \tag{4.17}
\end{equation*}
$$

where $\left.I(v)\right|_{K}=I_{K}(v)$ for all $K \in \mathcal{T}^{H}$.

We begin the convergence analysis at the inequality (4.16). Notice that, this inequality can be written as

$$
\begin{equation*}
\left\|u_{h}-u_{H}^{(m+1)}\right\|_{A}^{2} \leq\left\|u_{h}-u_{H}^{(m)}\right\|_{A}^{2}-\left\|R_{i}^{(m)}\right\|^{2}, \tag{4.18}
\end{equation*}
$$

when the basis function ϕ is obtained as in (4.11).
On the other hand, we will show that the error $\left\|u_{h}-u_{H}^{(m)}\right\|_{A}$ can be controlled by the residual norm $\left\|R_{i}^{(m)}\right\|$. To do so, we consider an arbitrary function $v \in V_{h}^{\mathrm{DG}}$. Let $v_{i} \in V^{h}\left(\omega_{i}\right)$ be the restriction of v in ω_{i}, and let $v_{i}^{(0)} \in V_{\text {off }}^{(i)}$ be the component of v_{i} in the offline space $V_{\text {off }}^{(i)}$. By the GMsDGM (4.1), the fine-grid problem (4.4) and the Galerkin orthogonality (4.12), we have

$$
a_{\mathrm{DG}}\left(u_{h}-u_{H}^{(m)}, v\right)=a_{\mathrm{DG}}\left(u_{h}-u_{H}^{(m)}, v-v^{(0)}\right), \quad \forall v^{(0)} \in V_{H}^{(0)},
$$

where we define $v^{(0)}=\sum_{i=1}^{N_{c}} v_{i}^{(0)} \in V_{H}^{(0)}$ and use the fact that $V_{H}^{(0)} \subset V_{H}^{(m)}$ for all $m \geq 0$. By (4.4), we have

$$
a_{\mathrm{DG}}\left(u_{h}-u_{H}^{(m)}, v\right)=\left(f, v-v^{(0)}\right)-a_{\mathrm{DG}}\left(u_{H}^{(m)}, v-v^{(0)}\right) .
$$

Using the property $\sum_{j=1}^{4} \chi_{(j)}^{K}=1$ for all $K \in \mathcal{T}^{H}$ and the linearity of interpolation operator I,
$a_{\mathrm{DG}}\left(u_{h}-u_{H}^{(m)}, v\right)=\sum_{K \in \mathcal{T}^{H}} \sum_{j=1}^{4}\left(\left(f, I_{K}\left(\chi_{(j)}^{K}\left(v-v_{i}^{(0)}\right)\right)\right)-a_{\mathrm{DG}}\left(u_{H}^{(m)}, I_{K}\left(\chi_{(j)}^{K}\left(v-v_{i}^{(0)}\right)\right)\right)\right)$.

Writing the above sum over coarse neighborhoods ω_{i}, we have
$a_{\mathrm{DG}}\left(u_{h}-u_{H}^{(m)}, v\right)=\sum_{i=1}^{N_{c}} \sum_{K \subset \omega_{i}}\left(\left(f, I_{K}\left(\chi_{i}^{K}\left(v-v_{i}^{(0)}\right)\right)\right)-a_{\mathrm{DG}}\left(u_{H}^{(m)}, I_{K}\left(\chi_{i}^{K}\left(v-v_{i}^{(0)}\right)\right)\right)\right)$.
For each coarse neighborhood ω_{i}, we define the following modified local residual by

$$
\begin{equation*}
\widetilde{R}_{i}^{(m)}(v)=\sum_{K \subset \omega_{i}}\left(\left(f, I_{K}\left(\chi_{i}^{K} v\right)\right)-a_{\mathrm{DG}}\left(u_{H}^{(m)}, I_{K}\left(\chi_{i}^{K} v\right)\right)\right), \quad v \in V^{h}\left(\omega_{i}\right) . \tag{4.19}
\end{equation*}
$$

The modified residual $\widetilde{R}_{i}^{(m)}$ can be seen as a linear functional defined on $V^{h}\left(\omega_{i}\right)$ with norm $\left\|\widetilde{R}_{i}^{(m)}\right\|$ defined in the following way

$$
\left\|\widetilde{R}_{i}^{(m)}\right\|=\sup _{v \in V^{h}\left(\omega_{i}\right)} \frac{\left|\widetilde{R}_{i}^{(m)}(v)\right|}{\left\|\sum_{K \subset \omega_{i}} I_{K}\left(\chi_{i}^{K} v\right)\right\|_{\omega_{i}}}
$$

In the above definitions, χ_{i}^{K} is considered to be defined only on K, and has zero value outside K.

Using the definition of the modified residual $\widetilde{R}_{i}^{(m)}$, we have

$$
\begin{equation*}
a_{\mathrm{DG}}\left(u_{h}-u_{H}^{(m)}, v\right) \leq \sum_{i=1}^{N_{c}}\left\|\widetilde{R}_{i}^{(m)}\right\|\left\|\sum_{K \subset \omega_{i}} I_{K}\left(\chi_{i}^{K}\left(v-v_{i}^{(0)}\right)\right)\right\|_{A} \tag{4.20}
\end{equation*}
$$

where we used the fact that $\sum_{K \subset \omega_{i}} I_{K}\left(\chi_{i}^{K}\left(v-v_{i}^{(0)}\right)\right)$ is zero on $\partial \omega_{i}$. Using Lemma 3.1.1,

$$
\begin{equation*}
\left\|\sum_{K \subset \omega_{i}} I_{K}\left(\chi_{i}^{K}\left(v-v_{i}^{(0)}\right)\right)\right\|_{A} \leq a_{1}^{\frac{1}{2}}\left\|\sum_{K \subset \omega_{i}} I_{K}\left(\chi_{i}^{K}\left(v-v_{i}^{(0)}\right)\right)\right\|_{\mathrm{DG}} \tag{4.21}
\end{equation*}
$$

By the definition of the DG-norm and Lemma 4.2.1,

$$
\begin{align*}
\left\|I_{K}\left(\chi_{i}^{K}\left(v-v_{i}^{(0)}\right)\right)\right\|_{\mathrm{DG}}^{2} \leq & C_{I}^{2}\left\|\chi_{i}^{K}\left(v-v_{i}^{(0)}\right)\right\|_{\mathrm{DG}}^{2} \tag{4.22}\\
= & C_{I}^{2}\left(\sum_{K \subset \omega_{i}} \int_{K} \kappa\left|\nabla\left(\chi_{i}^{K}\left(v-v_{i}^{(0)}\right)\right)\right|^{2}\right. \tag{4.23}\\
& \left.+\frac{\gamma}{h} \sum_{e} \int_{e} \bar{\kappa} \llbracket \chi_{i}^{K}\left(v-v_{i}^{(0)}\right) \rrbracket^{2}\right) . \tag{4.24}
\end{align*}
$$

For each $K \subset \omega_{i}$, we have

$$
\begin{equation*}
\int_{K} \kappa\left|\nabla\left(\chi_{i}^{K}\left(v-v_{i}^{(0)}\right)\right)\right|^{2} \leq 2 \int_{K} \kappa \chi_{i}^{2}\left|\nabla\left(v-v_{i}^{(0)}\right)\right|^{2}+2 \int_{K} \kappa\left|\nabla \chi_{i}^{K}\right|^{2}\left(v-v_{i}^{(0)}\right)^{2} . \tag{4.25}
\end{equation*}
$$

For each $e \in \mathcal{E}_{i}^{H}$, we have

$$
\begin{equation*}
\int_{e} \bar{\kappa} \llbracket \chi_{i}^{K}\left(v-v_{i}^{(0)}\right) \rrbracket^{2} \leq 2 \int_{e} \bar{\kappa}\left\{\chi_{i}^{K}\right\}^{2} \llbracket v-v_{i}^{(0)} \rrbracket^{2}+2 \int_{e} \bar{\kappa} \llbracket \chi_{i}^{K} \rrbracket^{2}\left\{v-v_{i}^{(0)}\right\}^{2} . \tag{4.26}
\end{equation*}
$$

Combining inequalities (4.25) and (4.26) in (4.24), we have

$$
\begin{align*}
& \left\|I_{K}\left(\chi_{i}^{K}\left(v-v_{i}^{(0)}\right)\right)\right\|_{\mathrm{DG}}^{2} \tag{4.27}\\
\leq & 2 C_{I}^{2}\left\|v-v_{i}^{(0)}\right\|_{A_{i}}^{2} \tag{4.28}\\
& +2 C_{I}^{2}\left(\int_{\omega_{i}} \bar{\kappa}\left|\nabla \chi_{i}^{K}\right|^{2}\left(v-v_{i}^{(0)}\right)^{2}+\frac{\gamma}{h} \sum_{e \in \mathcal{E}_{i}^{H}} \int_{e} \bar{\kappa} \llbracket \chi_{i}^{K} \rrbracket^{2}\left\{v-v_{i}^{(0)}\right\}^{2}\right) \tag{4.29}
\end{align*}
$$

where $\|v\|_{A_{i}}^{2}=a_{\omega_{i}}(v, v)$. Using the spectral problem (4.6), we have

$$
\left\|v-v_{i}^{(0)}\right\|_{A_{i}}^{2}=a_{\omega_{i}}\left(v_{i}-v_{i}^{(0)}, v_{i}-v_{i}^{(0)}\right) \leq a_{\omega_{i}}\left(v_{i}, v_{i}\right)=\|v\|_{A_{i}}^{2}
$$

and

$$
\begin{aligned}
& \int_{\omega_{i}} \bar{\kappa}\left|\nabla \chi_{i}^{K}\right|^{2}\left(v-v_{i}^{(0)}\right)^{2}+\frac{\gamma}{h} \sum_{e \in \mathcal{E}_{i}^{H}} \int_{e} \bar{\kappa} \llbracket \nabla \chi_{i}^{K} \rrbracket^{2}\left\{v-v_{i}^{(0)}\right\}^{2} \\
= & s_{\omega_{i}}\left(v_{i}-v_{i}^{(0)}, v_{i}-v_{i}^{(0)}\right) \leq \frac{1}{\lambda_{L_{i}+1}^{\omega_{i}}}\|v\|_{A_{i}}^{2} .
\end{aligned}
$$

Thus, (4.29) and (4.21) impleis

$$
\left\|I_{K}\left(\chi_{i}^{K}\left(v-v_{i}^{(0)}\right)\right)\right\|_{A}^{2} \leq 2 a_{1} C_{I}^{2}\left(1+\frac{1}{\lambda_{L_{i}+1}^{\omega_{i}}}\right)\|v\|_{A_{i}}^{2}
$$

Hence, (4.20) becomes

$$
a_{\mathrm{DG}}\left(u_{h}-u_{H}^{(m)}, v\right) \leq\left(\sum_{i=1}^{N_{c}} 2 a_{1} C_{I}^{2}\left(1+\frac{1}{\lambda_{L_{i}+1}^{\omega_{i}}}\right)\left\|\widetilde{R}_{i}^{(m)}\right\|^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{N_{c}}\|v\|_{A_{i}}^{2}\right)^{\frac{1}{2}}
$$

We remark that the above inequality holds for any $v \in V_{h}^{\text {DG }}$. Taking $v=v_{h}-v_{H}^{(m)}$ and using Lemma 3.1.1, we finally obtain

$$
\begin{equation*}
\left\|u_{h}-u_{H}^{(m)}\right\|_{A}^{2} \leq 2 a_{0}^{-1} a_{1} C_{0} C_{I}^{2} \sum_{i=1}^{N_{c}}\left(1+\frac{1}{\lambda_{L_{i}+1}^{\omega_{i}}}\right)\left\|\widetilde{R}_{i}^{(m)}\right\|^{2} \tag{4.30}
\end{equation*}
$$

where $C_{0}=\max _{K \in \mathcal{T}^{H}} n_{K}$ and n_{K} is the number of vertices of the coarse grid block K.
We define

$$
\begin{equation*}
\theta=\left\|R_{i}^{(m)}\right\|^{2} / \eta^{2}, \quad \text { and } \quad \eta^{2}=2 a_{0}^{-1} a_{1} C_{0} C_{I}^{2} \sum_{i=1}^{N_{c}}\left(1+\frac{1}{\lambda_{L_{i}+1}^{\omega_{i}}}\right)\left\|\widetilde{R}_{i}^{(m)}\right\|^{2} \tag{4.31}
\end{equation*}
$$

From (4.18) and (4.30), we see that the following convergence holds

$$
\left\|u_{h}-u_{H}^{(m+1)}\right\|_{A}^{2} \leq(1-\theta)\left\|u_{h}-u_{H}^{(m)}\right\|_{A}^{2}
$$

We summarize the above results in the following theorem.
Theorem 4.2.2. Let u_{h} be the solution of (4.4) and $u_{H}^{(m)}, m \geq 0$, be the solution of (4.1) in the m-th iteration. Then the following residual bound holds

$$
\begin{equation*}
\left\|u_{h}-u_{H}^{(m)}\right\|_{A}^{2} \leq 2 a_{0}^{-1} a_{1} C_{0} C_{I}^{2} \sum_{i=1}^{N_{c}}\left(1+\frac{1}{\lambda_{L_{i}+1}^{\omega_{i}}}\right)\left\|\widetilde{R}_{i}^{(m)}\right\|^{2} . \tag{4.32}
\end{equation*}
$$

Moreover, the following convergence holds

$$
\begin{equation*}
\left\|u_{h}-u_{H}^{(m+1)}\right\|_{A}^{2} \leq(1-\theta)\left\|u_{h}-u_{H}^{(m)}\right\|_{A}^{2} \tag{4.33}
\end{equation*}
$$

where θ is defined in (4.31).

We remark that one can derive a priori error estimate for the error $\left\|u_{h}-u_{H}^{(m)}\right\|_{\mathrm{DG}}$, for every $m \geq 0$. Since the purpose of this chapter is an a posteriori error estimate (4.32) and the convergence of an adaptive enrichment algorithm (4.33), we will not derive a priori error estimate.

Finally, we remark that by using more basis functions in the initial space $V_{H}^{(0)}$, the values of the eigenvalues $\lambda_{L_{i}+1}^{\omega_{i}}$ are larger. Thus, the value of θ is further away from zero, and this fact enhances the convergence rate. In particular, the convergence rate is affected by the quantity $\Lambda_{\min }=\min _{1 \leq i \leq N_{c}} \lambda_{L_{i}+1}^{\omega_{i}}$. The convergence is slow when $\Lambda_{\min }$ is small (cf. $[45,46]$). We also remark that one can add online basis functions in multiple coarse neighborhoods to speed up the convergence. Let S be the index set for which online basis
functions are added in ω_{i} for $i \in S$. By using similar arguments as above, we obtain

$$
\left\|u_{h}-u_{H}^{(m+1)}\right\|_{A}^{2} \leq(1-\widetilde{\theta})\left\|u_{h}-u_{H}^{(m)}\right\|_{A}^{2}
$$

where

$$
\widetilde{\theta}=\sum_{i \in S}\left\|R_{i}^{(m)}\right\|^{2} / \eta^{2}
$$

4.3 Numerical Results

In this section, we will present some numerical examples to show the performance of the proposed method. The implementation procedure of online adaptive GMsDGM is described below. First, we choose a fixed number of functions for every coarse neighborhood by solving the local spectral problem. This fixed number for every coarse neighborhood is called the number of initial basis. After that, we split these functions into the basis functions of the offline space such that each basis function is supported in one coarse grid block. We denote this offline space as $V_{\text {off }}$ and set $V_{H}^{(0)}=V_{\text {off }}$.

The coarse neighborhoods are denoted by $\omega_{i, j}$, where $i=1,2, \cdots, N_{x}$ and $j=$ $1,2, \cdots, N_{y}$ and N_{x} and N_{y} are the number of coarse nodes in the x and y directions respectively. We consider $I_{x, \text { odd }}$ and $I_{x, \text { even }}$ as the set of odd and even indices from $\left\{1,2, \cdots, N_{x}\right\}$. Similarly, $I_{y, \text { odd }}$ and $I_{y, \text { even }}$ are the set of odd and even indices from $\left\{1,2, \cdots, N_{y}\right\}$. In each iteration of our online adaptive GMsDGM, we will perform 4 sub-iterations which add online basis functions in the non-overlapping coarse neighborhoods $\omega_{i, j}$ with $(i, j) \in I_{x, \text { odd }} \times I_{y, \text { odd }},(i, j) \in I_{x, \text { odd }} \times I_{y, \text { even }},(i, j) \in I_{x, \text { even }} \times I_{y, \text { odd }}$ and $(i, j) \in I_{x, \text { even }} \times I_{y, \text { even }}$ respectively.

We will take $\gamma=2$ and $D=[0,1]^{2}$. The domain is divided into 10×10 uniform square coarse blocks. Each coarse block is then divided into 10×10 fine blocks consisting of uniform squares. Namely, the whole domain is partitioned by 100×100 fine grid blocks.

The medium parameter κ is shown in Figure 4.2. The source function f is taken as the constant 1. To compare the accuracy, we will use the following error quantities

$$
e_{2}=\frac{\left\|u_{h}-u_{H}\right\|_{L^{2}(D)}}{\left\|u_{h}\right\|_{L^{2}(D)}}, \quad \text { and } \quad e_{a}=\frac{\left\|u_{h}-u_{H}\right\|_{\mathrm{DG}}}{\left\|u_{h}\right\|_{\mathrm{DG}}} .
$$

4.3.1 Comparison of using different number of initial basis

In Table 4.1, we present the convergence history of our algorithm for using one, two, three, four initial basis per coarse neighborhood. Notice that, in the presentation of our results, DOF means the total number of basis functions used in the whole domain and m denotes the number of iterations. We use the continuous multiscale basis functions as the initial partition of unity. In the tables, we obtain a fast error decay which give us a numerical solution with error smaller than 0.1% in two or three iterations. We can see the error decay of using one initial basis is slower than the error decay of using two or more initial basis since $\Lambda_{\text {min }}$ for using one initial basis is too small.

m	DOF	e_{a}	e_{2}
0	324	44.50%	24.88%
1	648	9.92%	2.18%
2	972	0.78%	$7.54 \mathrm{e}-2 \%$
3	1296	$3.24 \mathrm{e}-2 \%$	$2.13 \mathrm{e}-3 \%$
4	1620	$2.42 \mathrm{e}-4 \%$	$1.10 \mathrm{e}-5 \%$
m	DOF	e_{a}	e_{2}
0	972	11.30%	1.72%
1	1296	0.45%	$2.44 \mathrm{e}-2 \%$
2	1620	$3.05 \mathrm{e}-3 \%$	$1.37 \mathrm{e}-4 \%$
3	1944	$1.06 \mathrm{e}-5 \%$	$4.08 \mathrm{e}-7 \%$
4	2240	$4.59 \mathrm{e}-8 \%$	$2.14 \mathrm{e}-9 \%$

m	DOF	e_{a}	e_{2}
0	648	17.73%	3.58%
1	972	0.31%	$1.80 \mathrm{e}-2 \%$
2	1296	$3.52 \mathrm{e}-3 \%$	$1.62 \mathrm{e}-4 \%$
3	1620	$1.81 \mathrm{e}-5 \%$	$8.58 \mathrm{e}-7 \%$
4	1948	$1.04 \mathrm{e}-7 \%$	$4.68 \mathrm{e}-9 \%$
m	DOF	e_{a}	e_{2}
0	1296	8.38%	1.00%
1	1620	$7.98 \mathrm{e}-2 \%$	$3.13 \mathrm{e}-3 \%$
2	1944	$9.93 \mathrm{e}-4 \%$	$3.57 \mathrm{e}-5 \%$
3	2268	$1.39 \mathrm{e}-5 \%$	$5.15 \mathrm{e}-7 \%$
4	2540	$4.23 \mathrm{e}-8 \%$	$1.55 \mathrm{e}-9 \%$

Table 4.1: Top-left: One initial basis $\left(\Lambda_{\min }=4.89 e-4\right)$. Top-right: Two initial basis ($\Lambda_{\min }=0.9504$). Bottom-left: Three initial basis ($\Lambda_{\min }=1.4226$). Bottom-right: Four initial basis $\left(\Lambda_{\min }=2.2045\right)$.

To further study the importance of the initial basis, we will present another example with a different medium parameter κ shown in Figure 4.3. The domain D is divided into 5×5 coarse blocks consisting of uniform squares. Each coarse block is then divided into 40×40 fine blocks also consisting of uniform squares. The convergence history for the use of one, two, three, four initial basis and the corresponding total number of degrees of freedom (DOF) are shown in Table 4.2, Table 4.3, Table 4.4, Table 4.5 respectively. We consider two different contrasts. On the right table, we increase the contrast by 100 times. More precisely, the conductivity of inclusions and channels in Figure 2 (left figure) is multiplied by 100 . In this case, the first 4 eigenvalue that are in the regions with channels become 100 times smaller. The decrease in the eigenvalues will slow down the error decay. In Table 4.2, we can observe that the error decay for the lower contrast case is much faster than the higher contrast case. In the higher contrast case, the error stop decreasing in some iterations. Similar observations are obtained when we use 2 or 3 initial basis. For using four initial basis, we observe a rapid convergence for both higher and lower contrast case.

m	DOF	e_{a}	e_{2}	m	DOF	e_{a}	e_{2}
0	64	25.44%	6.67%	0	64	25.45%	6.67%
1	128	1.20%	0.23%	1	128	1.45%	0.27%
2	192	0.47%	0.10%	2	192	1.39%	0.27%
3	256	0.26%	$5.79 \mathrm{e}-2 \%$	3	256	0.84%	0.15%
4	320	0.10%	$2.30 \mathrm{e}-2 \%$	4	320	0.34%	$7.98 \mathrm{e}-2 \%$
5	384	$6.22 \mathrm{e}-2 \%$	$1.02 \mathrm{e}-2 \%$	5	384	0.34%	$7.91 \mathrm{e}-2 \%$
6	448	$3.70 \mathrm{e}-4 \%$	$1.57 \mathrm{e}-5 \%$	6	448	0.15%	$3.71 \mathrm{e}-2 \%$

Table 4.2: One initial basis. Left: Lower contrast(1e4) $\left(\Lambda_{\min }=0.0062\right)$. Right: Higher contrast $(1 \mathrm{e} 6)\left(\Lambda_{\text {min }}=6.22 e-5\right)$.

m	DOF	e_{a}	e_{2}
0	128	18.22%	4.42%
1	192	1.14%	0.12%
2	256	0.50%	$4.95 \mathrm{e}-2 \%$
3	320	$4.17 \mathrm{e}-2 \%$	$2.06 \mathrm{e}-3 \%$
4	384	$5.73 \mathrm{e}-3 \%$	$5.38 \mathrm{e}-4 \%$
5	448	$7.12 \mathrm{e}-4 \%$	$2.89 \mathrm{e}-5 \%$

m	DOF	e_{a}	e_{2}
0	128	18.56%	4.62%
1	192	1.37%	0.16%
2	256	1.25%	0.14%
3	320	1.23%	0.13%
4	384	0.41%	$3.22 \mathrm{e}-2 \%$
5	448	$3.63 \mathrm{e}-2 \%$	$3.56 \mathrm{e}-3 \%$

Table 4.3: Two initial basis. Left: Lower contrast $(1 \mathrm{e} 4)\left(\Lambda_{\min }=0.027\right)$. Right: Higher contrast $(1 \mathrm{e} 6)\left(\Lambda_{\min }=2.72 e-4\right)$.

m	DOF	e_{a}	e_{2}	m	DOF	e_{a}	e_{2}
0	192	10.69%	1.86%	0	192	11.55%	2.14%
1	256	0.80%	$6.66 \mathrm{e}-2 \%$	1	256	1.13%	0.10%
2	320	0.34%	$2.24 \mathrm{e}-2 \%$	2	320	0.98%	$8.85 \mathrm{e}-2 \%$
3	384	$1.51 \mathrm{e}-2 \%$	$6.24 \mathrm{e}-4 \%$	3	384	0.96%	$8.95 \mathrm{e}-2 \%$
4	448	$2.25 \mathrm{e}-4 \%$	$1.61 \mathrm{e}-5 \%$	4	448	0.30%	$1.39 \mathrm{e}-2 \%$
5	508	$1.72 \mathrm{e}-6 \%$	$6.70 \mathrm{e}-8 \%$	5	508	$2.00 \mathrm{e}-3 \%$	$8.39 \mathrm{e}-5 \%$

Table 4.4: Three initial basis. Left: Lower contrast $(1 \mathrm{e} 4)\left(\Lambda_{\min }=0.0371\right)$. Right: Higher contrast $(1 \mathrm{e} 6)\left(\Lambda_{\min }=3.75 e-4\right)$.

4.3.2 Setting tolerance for the residual

In this section, we will show the performance for the online enrichment implementing it only for regions with a residual error bigger than a certain threshold. We consider the medium parameter shown in Figure 4.2. We show the results for using three different tolerances $(t o l) 10^{-3}, 10^{-4}$ and 10^{-5}. We will enrich for the coarse regions with residual larger than the tolerance. In Table 4.6, we show the errors when using 1 initial basis function for tolerances $10^{-3}, 10^{-4}$ and 10^{-5}. We can see that the convergence history in the first few iteration is similar to the result shown in previous section. Moreover, the energy error of the multiscale solution is in the same order of the tolerance and the error will stop decreasing even if we perform more iterations. Therefore, we can compute a

m	DOF	e_{a}	e_{2}	m DOF e_{a} e_{2} 0 248 7.92% 1.14% 0 242 9.63% 1.59% 1 312 0.25% $2.42 \mathrm{e}-2 \%$ 2 376 $5.09 \mathrm{e}-3 \%$ $2.72 \mathrm{e}-4 \%$ 1 306 0.51% 2 370 $1.38 \mathrm{e}-2 \%$ $9.40 \mathrm{e}-2 \%$ 3 440 $5.18 \mathrm{e}-5 \%$ $2.62 \mathrm{e}-6 \%$ 4 484 $1.39 \mathrm{e}-6 \%$ $6.40 \mathrm{e}-8 \%$	4	434	$2.10 \mathrm{e}-4 \%$

Table 4.5: Four initial basis. Left: Lower contrast(1e4)($\left.\Lambda_{\min }=0.4472\right)$. Right: Higher contrast $(1 \mathrm{e} 6)\left(\Lambda_{\text {min }}=0.3844\right)$.
multiscale solution with a prescribed error level by choosing a suitable tolerance in the adaptive algorithm. In Table 4.7 and Table 4.8, we show the errors for the last three iterations when using 2 and 3 initial basis functions respectively for tolerances $10^{-3}, 10^{-4}$ and 10^{-5}. We have the same observation that the energy errors have the same magnitude as the tolerances.

m	DOF	e_{a}	e_{2}
0	324	44.50%	24.88%
1	648	9.92%	2.18%
2	924	0.81%	$7.72 \mathrm{e}-2 \%$
3	976	0.29%	$2.49 \mathrm{e}-2 \%$

m	DOF	e_{a}	e_{2}
0	324	44.50%	24.88%
1	648	9.92%	2.18%
2	972	0.78%	$7.54 \mathrm{e}-2 \%$
3	1176	$4.12 \mathrm{e}-2 \%$	$2.88 \mathrm{e}-3 \%$
4	1184	$2.65 \mathrm{e}-2 \%$	$1.57 \mathrm{e}-3 \%$

m	DOF	e_{a}	e_{2}
0	324	44.50%	24.88%
1	648	9.92%	2.18%
2	972	0.78%	$7.54 \mathrm{e}-2 \%$
3	1284	$3.24 \mathrm{e}-2 \%$	$2.13 \mathrm{e}-3 \%$
4	1364	$2.56 \mathrm{e}-3 \%$	$1.55 \mathrm{e}-4 \%$

Table 4.6: One initial basis. Left: $t o l=10^{-3}$. Middle: tol $=10^{-4}$. Right: tol $=10^{-5}$.

m	DOF	e_{a}	e_{2}	m	DOF	e_{a}	e_{2}
0	648	17.73%	3.58%	0	648	17.73%	3.58%
1	964	0.33%	$1.85 \mathrm{e}-2 \%$	1	972	0.31%	$1.80 \mathrm{e}-2 \%$
2	972	0.30%	$1.63 \mathrm{e}-2 \%$	2	1136	$2.53 \mathrm{e}-2 \%$	$1.24 \mathrm{e}-3 \%$
m DOF e_{a} e_{2} e_{2} 0 972 0.31% $1.80 \mathrm{e}-2 \%$ 1 1248 $3.99 \mathrm{e}-3 \%$ $1.85 \mathrm{e}-4 \%$ 2 1276 $2.49 \mathrm{e}-3 \%$ $1.19 \mathrm{e}-4 \%$							

Table 4.7: Two initial basis. Left: $t o l=10^{-3}$. Middle: tol $=10^{-4}$. Right: tol $=10^{-5}$.

Table 4.8: Three initial basis. Left: tol $=10^{-3}$. Middle: tol $=10^{-4}$. Right: tol $=10^{-5}$.

4.3.3 Adaptive online enrichment

In this section, we will show the performance for the online enrichment implementing it only for regions that have a cumulative residual that is θ fraction of the total residual. We consider the medium parameter shown in Figure 4.3 (4 channels medium).

Assume that the local residuals are arranged such that

$$
r_{1} \geq r_{2} \geq r_{3} \geq \cdots
$$

where r_{i} is the norm of the local residual $\left\|R_{i}\right\|$. We only add the basis $\phi_{1}, \cdots, \phi_{k}$ for the
coarse neighborhoods $\omega_{1}, \cdots, \omega_{k}$ such that k is the smallest integer with

$$
\theta \sum_{i=1}^{N_{c}} r_{i}^{2} \leq \sum_{i=1}^{k} r_{i}^{2}
$$

We will also consider two ways to compute the local residual r_{i}, one is based on L_{2} norm and the other is based on an energy norm. For the L_{2} norm based approach, we will compute $r_{i}=\left\|R_{i}\right\|$ where the norm is the L_{2} norm. This is an inexpensive way to compute r_{i}. The energy norm based residual is to compute $r_{i}=\left\|R_{i}\right\|$ using an energy norm, which is defined in (4.10). In particular, we will solve a local problem to compute this norm. This requires a larger computational cost, but it provides a better solution.

In Table 4.3.3, we present the error for the last 5 iterations when using 1 initial basis functions with the tolerance 10^{-5} and $\theta=0.5$. We also present a comparison of using the L_{2} based residual and the energy norm based residual. Comparing the result to the previous case, we can observe that this can use less number of basis functions to achieve a similar error. We also see that the energy norm based residual produces better solutions. In Figure 4.4, we present the distribution of number of basis functions in coarse blocks, and see that the number of basis functions is larger near the channels (c.f. Figure 4.3). Thus, online basis functions can be adaptively added in some regions using an error indicator.

m	DOF	e_{a}	e_{2}
0	336	0.35%	$3.80 \mathrm{e}-2 \%$
1	352	0.27%	$1.74 \mathrm{e}-2 \%$
2	368	$7.71 \mathrm{e}-3 \%$	$5.88 \mathrm{e}-4 \%$
3	384	$2.47 \mathrm{e}-3 \%$	$2.15 \mathrm{e}-4 \%$
4	396	$8.77 \mathrm{e}-4 \%$	$6.94 \mathrm{e}-5 \%$

m	DOF	e_{a}	e_{2}
0	348	0.16%	$5.19 \mathrm{e}-2 \%$
1	368	0.10%	$4.03 \mathrm{e}-2 \%$
2	392	$7.13 \mathrm{e}-2 \%$	$9.34 \mathrm{e}-3 \%$
3	412	$6.04 \mathrm{e}-3 \%$	$6.60 \mathrm{e}-4 \%$
4	424	$1.51 \mathrm{e}-3 \%$	$1.25 \mathrm{e}-4 \%$

Table 4.9: The results using cumulative errors with $\theta=0.5$, tol $=10^{-5}$ and 1 initial basis. Left: using energy norm based residual. Right: using L_{2} norm based residual.

Figure 4.1: Illustration of the initial basis construction. Left: An eigenfunction $\chi_{i}^{K} \psi_{k}^{\omega_{i}}$ is defined in ω_{i}. Right: 4 basis functions are obtained by splitting $\chi_{i}^{K} \psi_{k}^{\omega_{i}}$ into 4 pieces, and each has support in $K \subset \omega_{i}$.

Figure 4.2: Permeability field κ for first case.

Figure 4.3: Permeability field κ for second case.

Figure 4.4: Distribution of number of basis functions in coarse blocks.

5. GENERALIZED MULTISCALE FINITE ELEMENT METHODS FOR WAVE PROPAGATION IN HETEROGENEOUS MEDIA

5.1 Overview

Numerical modeling of wave propagation is important in many applications that include geophysics, material science, and so on. For example, in geophysics applications, wave propagation simulations play an important role in determining subsurface properties [47, 48, 49, 50, 51, 52]. These approaches include finite difference methods, finite element methods, and spectral methods that use polynomials basis [53, 54, 55, 56, 57, 58, $59,60,61,62,63,64]$. While these methods have different strengths and weaknesses, all of them tend to have limitations associated with discretization, especially in 3-D applications as frequency content of the simulated wavefield increases. Though the solutions to the wave equation have been shown to be accurate when the grid is fine enough [65], the practical limitations in discretization caused by limitations in computational power restrict this accuracy. An example of an application where this may be important is in the modeling of fractured media, where establishing reliable and accurate relationships between the properties of reflected seismic wavefields and variations in the density, orientation and compliance of fractures may help provide important constraints for hydrocarbon production. While more general finite element and spectral element methods may be able to address some problems by adapting grids to conform to heterogeneous structures, there are basic limitations associated with representing fine-scale features, and there is therefore a need to find approaches that reliably and accurately incorporate fine-scale features in a coarsely gridded model.

[^1]In this chapter, we present GMsDGM for wave propagation simulations on a coarse grid. We will focus our discussions on two-dimensional problems. The methodology can be applied to three-dimensional problems without significant conceptual difference. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain of two dimensions. The aim is to develop a multiscale method for the following wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\nabla \cdot(a \nabla u)+f \quad \text { in } \quad[0, T] \times \Omega \tag{5.1}
\end{equation*}
$$

with the homogeneous Dirichlet boundary condition $u=0$ on $[0, T] \times \partial \Omega$. The function $f(x, t)$ is a given source. The problem (5.1) is supplemented with the following initial conditions

$$
u(x, 0)=g_{0}(x), \quad u_{t}(x, 0)=g_{1}(x) .
$$

We assume that the coefficient $a(x)$ is highly oscillatory, representing the complicated model in which the waves are simulated. It is well-known that solving (5.1) by standard methods requires a very fine mesh, which is computationally prohibited. Thus a coarse grid solution strategy is needed. Next we present our fine scale solver. The fine scale solution is considered as the exact solution when we discuss the convergence of our multiscale method in the following sections. We assume that the domain Ω is partitioned by a set of rectangles, called fine mesh, with maximum side length $h>0$. We denote the resulting mesh by \mathcal{T}^{h} and the set of all edges and vertices by \mathcal{E}^{h} and \mathcal{N}^{h} respectively. We assume that the fine-mesh discretization of the wave equation provides an accurate approximation of the solution. The fine scale solver is the standard conforming bilinear finite element method. Let V_{h} be the standard conforming piecewise bilinear finite element space. We find $u_{h} \in V_{h}$ such that

$$
\begin{equation*}
\left(\frac{\partial^{2} u_{h}}{\partial t^{2}}, v\right)+a\left(u_{h}, v\right)=(f, v), \quad \forall v \in V_{h} \tag{5.2}
\end{equation*}
$$

where the bilinear form a is defined by

$$
\begin{equation*}
a(u, v)=\int_{\Omega} a \nabla u \cdot \nabla v, \quad \forall u, v \in V_{h} \tag{5.3}
\end{equation*}
$$

and (\cdot, \cdot) represents the standard L^{2} inner product defined on Ω.
The numerical results are presented for several representative examples. We investigate the GMsDGM's accuracy and, in particular, how choosing modes from different snapshot spaces can affect the accuracy. Our numerical results show that choosing the basis functions from interior modes can improve the accuracy of GMsDGM substantially for wave equations. These results differ from those we observe for flow equations [27].

The chapter is organized as follows. In Section 5.2, we will present the multiscale method. Numerical results are shown in Section 5.3. Stability and spectral convergence of the semi-discrete scheme are proved in Section 5.4. In Section 5.5, the convergence of the fully-discrete scheme is also proved. Finally, conclusions are presented.

5.2 The generalized multiscale discontinuous Galerkin method

In this section, we will give a detailed description of our generalized multiscale discontinuous Galerkin method for wave equation. The method gives a numerical solver on a coarse grid, providing an efficient way to simulate waves in complicated media.

5.2.1 Global IPDG solver

We will apply the standard symmetric IPDG approach as in Chapter 3 to solve (5.1) on the coarse grid \mathcal{T}^{H}. The method follows the standard framework as discussed in [67, 44], but the finite element space will be replaced by the space spanned by our multiscale basis functions. We emphasize that the use of the IPDG approach is an example of the global coupling of our local multiscale basis functions, and other choices of coarse grid methods are equally good. The key to our proposed method's success of is the construction of our
local multiscale basis functions.
Let V_{H} be a finite dimensional function space which consists of functions that are smooth on each coarse grid blocks but are in general discontinuous across coarse grid edges. We can then state the IPDG method as: find $u_{H}(t, \cdot) \in V_{H}$ such that

$$
\begin{equation*}
\left(\frac{\partial^{2} u_{H}}{\partial t^{2}}, v\right)+a_{D G}\left(u_{H}, v\right)=l(v), \quad \forall v \in V_{H}, \tag{5.4}
\end{equation*}
$$

where the bilinear form $a_{D G}(u, v)$ and the linear functional $l(v)$ are defined by

$$
\begin{aligned}
a_{D G}(u, v)= & \sum_{K \in \mathcal{T}^{H}} \int_{K} a \nabla u \cdot \nabla v+\sum_{e \in \mathcal{E}^{H}}\left(-\int_{e}\{a \nabla u \cdot n\}_{e}[v]_{e}\right. \\
& \left.-\int_{e}\{a \nabla v \cdot n\}_{e}[u]_{e}+\frac{\gamma}{h} \int_{e} a[u]_{e}[v]_{e}\right) \\
l(v)= & (f, v)
\end{aligned}
$$

where $\gamma>0$ is a penalty parameter and n denotes the unit normal vector on e. The jump and average operator are defined as Chapter 3. The initial conditions for the problem (5.4) are defined by $u_{H}(0)=P_{H}\left(g_{0}\right)$ and $\left(u_{H}\right)_{t}(0)=P_{H}\left(g_{1}\right)$, where P_{H} is the L^{2}-projection operator into V_{H}.

Let $T>0$ be a fixed time and $\Delta t=T / N$ be the time step size. The time discretization is done in the standard way, we find $u_{H}^{n+1} \in V_{H}$ such that

$$
\begin{equation*}
\left(u_{H}^{n+1}, v\right)=2\left(u_{H}^{n}, v\right)-\left(u_{H}^{n-1}, v\right)-\Delta t^{2}\left(a_{D G}\left(u_{H}^{n}, v\right)-l(v)\right), \quad \forall v \in V_{H} \tag{5.5}
\end{equation*}
$$

in each time step. Throughout the chapter, the notation u^{n} represents the value of the
function u at time t_{n}. The initial conditions are obtained as follows

$$
\begin{aligned}
& u_{H}^{0}=P_{H}\left(g_{0}\right), \\
& u_{H}^{1}=u_{H}^{0}+\Delta t P_{H}\left(g_{1}\right)+\frac{\Delta t^{2}}{2} \tilde{v},
\end{aligned}
$$

where $\tilde{v} \in V_{H}$ is defined by

$$
(\tilde{v}, v)=(f(0), v)-a_{D G}\left(g_{0}, v\right), \quad \forall v \in V_{H} .
$$

We will use the offline space defined in Chapter 3 to be our multiscale finite element space V_{H}. We recall that the basis construction process follows the offline construction in Chapter 3 in Section 3.1.2. That is, we will construct V_{H} as a sum of two spaces $V 1$, off and $V_{2, \text { off }}$, namely,

$$
V_{H}=V_{1, \mathrm{off}}+V_{2, \mathrm{off}}
$$

where $V_{1, \text { off }}$ and $V_{2, \text { off }}$ are the sum of the local offline space $V_{1, \text { off }}^{(i)}$ and $V_{2, \text { off }}^{(i)}$, where

$$
\begin{aligned}
& V_{1, \text { off }}^{(i)}=\operatorname{span}\left\{\widetilde{w}_{l, K_{i}}, \quad l=1,2, \cdots, l_{1, i}\right\}, \\
& V_{2, \text { off }}^{(i)}=\operatorname{span}\left\{z_{l, K_{i}}, \quad l=1,2, \cdots, l_{2, i}\right\} .
\end{aligned}
$$

with $\phi_{k}^{(i)}$ and $\xi_{k}^{(i)}$ satisfying the spectral problem in (3.5) and (3.6). That is,

$$
\begin{equation*}
\int_{K_{i}} \kappa \nabla \widetilde{w}_{l, K_{i}} \cdot \nabla v=\frac{\lambda_{k, K}}{H} \int_{\partial K_{i}} \widetilde{\kappa} \widetilde{w}_{l, K_{i}} v, \quad \forall v \in V_{1, \text { snap }}^{(i)} \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{K_{i}} \kappa \nabla z_{l, K_{i}} \cdot \nabla v=\frac{\mu_{k, K}}{H^{2}} \int_{K_{i}} \kappa z_{l, K_{i}} v, \quad \forall v \in V_{2, \text { snap }}^{(i)} . \tag{5.7}
\end{equation*}
$$

Given a function $w \in V_{1, \text { off }}^{(i)}$, we can define a discrete normal flux $a \frac{\partial w}{\partial n} \in \partial \mathcal{T}^{h}\left(K_{i}\right)$ on ∂K_{i} by

$$
\begin{equation*}
\int_{\partial K_{i}} a \frac{\partial w}{\partial n} v=\int_{K_{i}} a \nabla w \cdot \nabla \hat{v}, \quad v \in \partial \mathcal{T}^{h}\left(K_{i}\right) \tag{5.8}
\end{equation*}
$$

where \hat{v} is any a-harmonic extension of v in K_{i}. This is well-defined since w is also obtained by an a-harmonic extension.

Quasi-orthogonality of $V_{1, \text { off }}^{(i)}$ and $V_{2, \text { off }}^{(i)}$. Finally, we point out the following quasiorthogonality condition which will be used in our analysis. For any $v \in V_{1, \text { off }}^{(i)}$ and $u \in$ $V_{2, \text { off }}^{(i)}$, we conclude by (3.4) that

$$
\begin{equation*}
\int_{K_{i}} a \nabla v \cdot \nabla u=0 . \tag{5.9}
\end{equation*}
$$

5.3 Numerical Results

In this section, we will present some numerical examples to show the performance of our multiscale method. The media that we will consider is a heterogeneous field which is a modified Marmousi model (see the left plot of Figure 5.1). We have also considered more regular periodic highly heterogeneous fields and observed similar results. We will compare both the accuracy and efficiency of our method with the direct fine scale simulation defined in (5.2). To compare the accuracy, we will use the following error quantities

$$
e_{2}=\frac{\left\|u_{H}-u_{h}\right\|_{L^{2}(\Omega)}}{\left\|u_{h}\right\|_{L^{2}(\Omega)}}, \quad \overline{e_{2}}=\frac{\sqrt{\sum_{K}\left|\int_{K} u_{H}-\int_{K} u_{h}\right|^{2}}}{\sqrt{\sum_{K}\left|\int_{K} u_{h}\right|^{2}}}, \quad e_{H^{1}}=\frac{\left\|\nabla\left(u_{H}-u_{h}\right)\right\|_{L^{2}(\Omega)}}{\left\|\nabla u_{h}\right\|_{L^{2}(\Omega)}}
$$

which are the relative L^{2} norm error, the relative L^{2} norm error for coarse grid averages and the relative L^{2} norm error of the gradient. We will also consider the jump error on
coarse grid edges defined by

$$
e_{J u m p}=\sum_{e \in \mathcal{E}^{H}} \int_{e}\left[u_{H}\right]_{e}^{2} .
$$

Moreover, we let $t_{o f f}$ be the time needed for offline computations and $t_{o n}$ be the online computational time. These quantities are used to compare the efficiency of our method with direct fine scale simulation. To perform a fair comparison, we will use the same time step size for both of our GMsFEM and the fine scale method, since we only consider spatial upscaling in this chapter. However, we note that multiscale basis functions can be used for different source terms and boundary conditions which will provide a substantial computational saving. Furthermore, we will take $\gamma=2$ and $\Omega=[0,1]^{2}$ for all of our examples. The initial conditions g_{0} and g_{1} are zero. Throughout the chapter, all computational times are measured in seconds.

The Ricker wavelet with frequency $f_{0}=20$

$$
f(x, y, t)=(10)^{2} e^{-10^{2}\left((x-0.5)^{2}+(y-0.5)^{2}\right)}\left(1-2 \pi^{2} f_{0}^{2}\left(t-2 / f_{0}\right)^{2}\right) e^{-\pi^{2} f_{0}^{2}\left(t-2 / f_{o}\right)^{2}}
$$

is used as the source term. We will compute the solution at time $T=0.4$. The coarse mesh size is taken as $H=1 / 16$. Each coarse grid block is divided into a 32×32 grid, that is, $n=32$. Thus, the fine mesh size $h=1 / 512$ and there are totally 128 and 961 local basis functions in the space $V_{1, \text { off }}^{(i)}$ and $V_{2, \text { off }}^{(i)}$ respectively on each coarse grid block. The time step size for both GMsFEM and the fine grid solver is taken as $\Delta t=h / 80$ in order to meet the stability requirement and the computation time for fine grid solution is 55.06. We will compare the accuracy and efficiency of our method using the solution computed at the time $T=0.2$, which is shown in the right figure of Figure 5.1.

In Table 5.1 and Table 5.2, we present the errors and computational times for the case with $m=1$, that is, we only use the first eigenfunction in the space $V_{2, \text { off }}$. We see that if we
use 80% of the total energy, the number of basis functions is between 33 and 40 on each coarse grid while the computational time for the offline procedure is 1019.06 and the time for online computations is 32.43 . Note that the online computational time is about 59% of that of the online computational time of the direct fine grid simulation. The relative L^{2} error and the relative error for cell averages are only 3.92% and 2.74% respectively. In addition, the relative error for the gradient is 14.86% and the jump error is 0.003 . When 75% of the total energy is used, the number of basis functions is reduced to a number between 24 and 29 while the computational time for the offline procedures is 326.83 and the time for online computations is 18.21 . The time for the online computation is 33% of the time required for direct fine grid simulation. The relative L^{2} error and the relative error for cell averages are increased slightly to 4.23% and 3.12%, respectively. In Table 5.1, we also present the values of $\mu_{\text {min }}$ for the space $V_{1, \text { off }}$. Moreover, the eigenvalues are shown in Figure 5.3. The numerical solutions for these cases are shown in Figure 5.2. We note that the error decay is not fast mostly due to the error contribution because of the modes corresponding to the interior. Even though the error between the GMsFEM solution and the solution computed using the entire snapshot space $V_{1, \text { off }}$ is very small, the overall error between the GMsFEM solution and the fine-scale solution may not be small because we have only used one basis function in $V_{2, \text { off }}$. Next, we will add more basis functions from $V_{2, \text { off }}$ and compare the errors.

Next, we will investigate the use of more eigenfunctions in the space $V_{2, \text { off }}$ that will allow reducing the overall error. To do so, we consider the first case where 75% energy in the space $V_{1, \text { off }}$ is used and we consider using various number of eigenfunctions in $V_{2, \text { off }}$. The errors and computational times are shown in Table 5.3 and Table 5.4. In general, we obtain better numerical approximations as more eigenfunctions are used. When two eigenfunctions are used (this corresponds to using less than 3% of the total local degrees of freedom in constructing all GMsFEM basis functions), the relative error is 3.52% and
the online computational time is 18.64 . When five eigenfunctions are used, the relative error is 1.93% and the online computational time is 18.21 . Thus, we see that adding a few eigenfunctions in the space $V_{2, \text { off }}$ will improve the multiscale solution. This indicates that for the multiscale wave simulations, the modes that represent the interior nodes can improve the accuracy of the method and play an important role in obtaining an accurate solution. We also report the largest eigenvalue used in Table 5.3. Furthermore, for the use of the central frequency $f_{0}=20,75 \%$ energy in the space V_{H}^{1} and $m=5$ in the space $V_{2, \text { off }}$, there are about 35 basis functions per coarse-grid block and the number of points per wavelength is approximately 30 , where the number of points per wavelength is computed as $2 \pi \sqrt{N_{\text {total }}} / f_{0}$ and $N_{\text {total }}$ is the total number of basis functions. On the other hand, since the fine grid solution is computed on a 512×512 fine grid, the number of points per wavelength is about 160 . Therefore, the fine grid solution has sufficient resolution.

We would like to remark that the computational gain will be higher when implicit methods are used or we employ finer grids to resolve the problem. In the latter case, the CPU time for coarse-grid simulations will not change.

5.3.1 The use of oversampling

In this section, we present the performance of the method when the basis functions in the space $V_{1, \text { off }}$ are obtained by oversampling. We consider the previous example. The oversampling technique is used and the harmonic extension problems are solved on enlarged coarse grids, which are obtained by extending the original coarse grids by $H / 16$ on each side. The results for using one basis functions in $V_{2 \text {,off }}$ and various number of basis functions in $V_{1, \text { off }}$ are shown in Table 5.5. Moreover, we compute the errors using 73% energy for $V_{1, \text { off }}$ and various number of basis functions in $V_{2 \text {,off }}$. The results are presented in Table 5.6. We observe that there is no improvement in this case. This is due to the error from the modes representing internal nodes.

5.4 Stability and convergence

In this section, we will prove the stability and convergence of the generalized multiscale finite element method constructed in Section 5.2. We will first state and prove some preliminary results, and then prove the main convergence theorem for the semi-discrete scheme (5.4).

5.4.1 Preliminaries

Before we analyze the convergence of our GMsFEM, we first prove some basic results. To do so, we introduce some notations and state the assumptions required in our analysis. For functions $u, v \in H^{1}\left(\mathcal{T}^{H}\right)$, we define the bilinear form $a(\cdot, \cdot)$ by

$$
a(u, v)=\sum_{K \in \mathcal{T}^{H}} \int_{K} a \nabla u \cdot \nabla v
$$

Moreover, for any function $u \in H^{1}\left(\mathcal{T}^{H}\right)$, we define the a-norm by

$$
\|u\|_{a}=\left(a(u, u)+\frac{\gamma}{h} \sum_{e \in \mathcal{E}^{H}}\left\|a^{\frac{1}{2}}[u]_{e}\right\|_{L^{2}(e)}^{2}\right)^{\frac{1}{2}}
$$

and the a-semi-norm by

$$
|u|_{a}=a(u, u)^{\frac{1}{2}} .
$$

Furthermore, the broken H^{1}-norm for $u \in H^{1}\left(\mathcal{T}^{H}\right)$ is defined as

$$
\|u\|_{H^{1}\left(\mathcal{T}^{H}\right)}=\left(\sum_{K \in T^{H}}|u|_{H^{1}(K)}^{2}+\frac{\gamma}{h} \sum_{e \in \mathcal{E}^{H}}\left\|[u]_{e}\right\|_{L^{2}(e)}^{2}\right)^{\frac{1}{2}} .
$$

Assumption 1. The function $a(x)$ is bounded, that is, there exist positive numbers a_{0} and
a_{1} such that

$$
a_{0} \leq a(x) \leq a_{1}, \quad \forall x \in \Omega .
$$

This assumption implies that the norms $\|\cdot\|_{a}$ and $\|\cdot\|_{H^{1}\left(\mathcal{T}^{H}\right)}$ are equivalent.

In the following, we will describe the consistency of the method (5.4). We define the consistency error by

$$
\begin{equation*}
R_{u_{h}}(v)=l(v)-\left(\frac{\partial^{2} u_{h}}{\partial t^{2}}, v\right)-a_{D G}\left(u_{h}, v\right), \quad \forall v \in V_{H} \tag{5.10}
\end{equation*}
$$

where u_{h} is the fine grid finite element solution defined in (5.2). Clearly, we have

$$
\begin{equation*}
R_{u_{h}}(v)=0, \quad \forall v \in V_{2, \text { off }} \tag{5.11}
\end{equation*}
$$

since $V_{2, \text { off }} \subset V_{h}$. Thus, we only need to estimate $R_{u_{h}}(v)$ for $v \in V_{1, \text { off }}$. The following lemma states that the method (5.4) is consistent with the fine grid solution defined by (5.2). The proof will be presented in the Appendix.

Lemma 5.4.1. Let u_{h} and u be the finite element solution defined in (5.2) and the exact solution of the wave propagation problem (5.1) respectively. Assume that $u, u_{t} \in$ $L^{\infty}\left(0, T ; H^{2}(\Omega)\right)$ and that $u \in W^{3,1}\left(0, T ; H^{1}(\Omega)\right)$. We have

$$
\begin{equation*}
\left|R_{u_{h}}(v)\right| \leq C(u) h\|v\|_{a}, \quad v \in V_{1, o f f} \tag{5.12}
\end{equation*}
$$

where $C(u)$ is a constant which depends on the solution u but independent of the fine mesh size h. This inequality gives the consistency of our method.

The coercivity and continuity conditions of the bilinear form $a_{D G}$ are followed from Lemma 3.10 and 3.11 in Chapter 3.

Next, we will prove the convergence of the semi-discrete scheme (5.4). First, we define the following error quantities. Let

$$
\begin{equation*}
\eta=u_{h}-w_{H}, \quad \xi=u_{H}-w_{H}, \quad \text { and } \quad \varepsilon=u_{h}-u_{H} \tag{5.13}
\end{equation*}
$$

where $w_{H} \in V_{H}$ is defined by solving the following elliptic projection problem

$$
\begin{equation*}
a_{D G}\left(w_{H}, v\right)=a_{D G}\left(u_{h}, v\right)+R_{u_{h}}(v), \quad \forall v \in V_{H} \tag{5.14}
\end{equation*}
$$

Notice that ε is the difference between the multiscale solution u_{H} and the fine grid finite element solution u_{h}. Moreover, η measures the difference between the fine grid solution u_{h} as its projection w_{H}. In the following, we will prove estimates for ε. First, we let

$$
\|\varepsilon\|_{L^{\infty}\left([0, T] ; L^{2}(\Omega)\right)}=\max _{0 \leq t \leq T}\|\varepsilon\|_{L^{2}(\Omega)} \quad \text { and } \quad\|\varepsilon\|_{L^{\infty}([0, T] ; a)}=\max _{0 \leq t \leq T}\|\varepsilon\|_{a}
$$

Then we will prove the following two inequalities, which estimate the error for the solution ε by the error for the projection η and the initial errors \mathcal{I}_{1} and \mathcal{I}_{2}, which are defined in the statements of the theorems.

Theorem 5.4.2. Let ε, η and ξ be the error quantities defined in (5.13). Then we have the following error bound

$$
\begin{align*}
& \left\|\varepsilon_{t}\right\|_{L^{\infty}\left([0, T] ; L^{2}(\Omega)\right)}+\|\varepsilon\|_{L^{\infty}([0, T] ; a)} \\
\leq & C\left(\left\|\eta_{t}\right\|_{L^{\infty}\left([0, T] ; L^{2}(\Omega)\right)}+\|\eta\|_{L^{\infty}\left([0, T] ; H^{1}\left(\mathcal{T}^{H}\right)\right)}+\left\|\eta_{t t}\right\|_{L^{1}\left([0, T] ; L^{2}(\Omega)\right)}+\mathcal{I}_{1}\right) \tag{5.15}
\end{align*}
$$

where $\mathcal{I}_{1}=\left\|\xi_{t}(0)\right\|_{L^{2}(\Omega)}+\|\xi(0)\|_{H^{1}\left(\mathcal{T}^{H}\right)}$.

Proof: First, using (5.4) and the definition of ξ, we have

$$
\left(\xi_{t t}, v\right)+a_{D G}(\xi, v)=(f, v)-\left(\left(w_{H}\right)_{t t}, v\right)-a_{D G}\left(w_{H}, v\right) .
$$

Then by (5.12), we have

$$
\begin{equation*}
\left(\xi_{t t}, v\right)+a_{D G}(\xi, v)=\left(\eta_{t t}, v\right) \tag{5.16}
\end{equation*}
$$

Taking $v=\xi_{t}$ in (5.16), we have

$$
\left(\xi_{t t}, \xi_{t}\right)+a_{D G}\left(\xi, \xi_{t}\right)=\left(\eta_{t t}, \xi_{t}\right),
$$

which implies

$$
\frac{1}{2} \frac{d}{d t}\left(\left\|\xi_{t}\right\|_{L^{2}(\Omega)}^{2}+a_{D G}(\xi, \xi)\right) \leq\left\|\eta_{t t}\right\|_{L^{2}(\Omega)}\left\|\xi_{t}\right\|_{L^{2}(\Omega)}
$$

Integrating from $t=0$ to $t=\tau$, we have

$$
\begin{aligned}
\left\|\xi_{t}(\tau)\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\|\xi(\tau)\|_{a}^{2} & \leq\left\|\xi_{t}(0)\right\|_{L^{2}(\Omega)}^{2}+2\|\xi(0)\|_{a}^{2}+2 \int_{0}^{\tau}\left\|\eta_{t t}\right\|_{L^{2}(\Omega)}\left\|\xi_{t}\right\|_{L^{2}(\Omega)} \\
& \leq\left\|\xi_{t}(0)\right\|_{L^{2}(\Omega)}^{2}+2\|\xi(0)\|_{a}^{2}+2 \max _{0 \leq t \leq T}\left\|\xi_{t}\right\|_{L^{2}(\Omega)} \int_{0}^{T}\left\|\eta_{t t}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

Therefore, we obtain

$$
\left\|\xi_{t}\right\|_{L^{\infty}\left([0, T] ; L^{2}(\Omega)\right)}^{2}+\|\xi\|_{L^{\infty}([0, T] ; a)}^{2} \leq C\left(\left\|\xi_{t}(0)\right\|_{L^{2}(\Omega)}^{2}+\|\xi(0)\|_{a}^{2}+\left(\int_{0}^{T}\left\|\eta_{t t}\right\|_{L^{2}(\Omega)} d t\right)^{2}\right)
$$

Finally, (5.15) is proved by noting that $\varepsilon=\eta-\xi$.

Theorem 5.4.3. Let ε, η and ξ be the error quantities defined in (5.13). Then we have the
following error bound

$$
\begin{equation*}
\|\varepsilon\|_{L^{\infty}\left([0, T] ; L^{2}(\Omega)\right)} \leq C\left(\left\|\eta_{t}\right\|_{L^{1}\left([0, T], L^{2}(\Omega)\right)}+\|\eta\|_{L^{\infty}\left([0, T] ; L^{2}(\Omega)\right)}+\mathcal{I}_{2}\right) \tag{5.17}
\end{equation*}
$$

where $\mathcal{I}_{2}=\|\xi(0)\|_{L^{2}(\Omega)}$.

Proof: Integrating by parts with respect to time in (5.16), we have

$$
-\left(\xi_{t}, v_{t}\right)+\partial_{t}\left(\xi_{t}, v\right)+a_{D G}(\xi, v)=\partial_{t}\left(\eta_{t}, v\right)-\left(\eta_{t}, v_{t}\right)
$$

Taking $v(x, t)=\int_{t}^{\gamma} \xi(x, \tau) d \tau$, we have $v_{t}=-\xi$ and $v(\gamma)=0$. So,

$$
\left(\xi_{t}, \xi\right)-\partial_{t}\left(\xi_{t}, v\right)-a_{D G}\left(v_{t}, v\right)=\partial_{t}\left(\eta_{t}, v\right)+\left(\eta_{t}, \xi\right)
$$

which implies that

$$
\frac{1}{2} \frac{d}{d t}\|\xi\|_{L^{2}(\Omega)}^{2}-\partial_{t}\left(\xi_{t}, v\right)-\frac{1}{2} \frac{d}{d t} a_{D G}(v, v)=\partial_{t}\left(\eta_{t}, v\right)+\left(\eta_{t}, \xi\right)
$$

Integrating from $t=0$ to $t=\gamma$, we have

$$
\begin{aligned}
& \frac{1}{2}\|\xi(\gamma)\|_{L^{2}(\Omega)}^{2}-\frac{1}{2}\|\xi(0)\|_{L^{2}(\Omega)}^{2}+\left(\xi_{t}(0), v(0)\right)+\frac{1}{2} a_{D G}(v(0), v(0)) \\
= & \left(\eta_{t}(0), v(0)\right)+\int_{0}^{\gamma}\left(\eta_{t}, \xi\right)
\end{aligned}
$$

Since $\xi_{t}-\eta_{t}=\left(u_{H}-u_{h}\right)_{t}$, we obtain

$$
\left(\xi_{t}(0)-\eta_{t}(0), v(0)\right)=\left(\left(u_{H}-u_{h}\right)_{t}(0), v(0)\right)=0
$$

Using the coercivity of $a_{D G}$, we have

$$
\begin{aligned}
\|\xi(\gamma)\|_{L^{2}(\Omega)}^{2} & \leq\|\xi(0)\|_{L^{2}(\Omega)}^{2}+2 \int_{0}^{\gamma}\left\|\eta_{t}\right\|_{L^{2}(\Omega)}\|\xi\|_{L^{2}(\Omega)} \\
& \leq\|\xi(0)\|_{L^{2}(\Omega)}^{2}+2 \max _{0 \leq t \leq T}\|\xi\|_{L^{2}(\Omega)} \int_{0}^{T}\left\|\eta_{t}\right\|_{L^{2}(\Omega)} .
\end{aligned}
$$

Hence (5.17) is proved by noting that $\varepsilon=\eta-\xi$.

From Theorem 5.4.2 and Theorem 5.4.3, we see that, in order to estimate the error $\varepsilon=u_{h}-u_{H}$, we will need to find a bound for η given that the initial values $\xi_{t}(0)$ and $\xi(0)$ are sufficiently accurate.

5.4.2 Convergence analysis

In this section, we will derive an error bound for $\eta=u_{h}-w_{H}$. Notice that, on each coarse grid block K, we can express u_{h} as

$$
u_{h}=\sum_{i=1}^{n} c_{i, K} \widetilde{w}_{i, K}+\sum_{i=1}^{n_{0}} d_{i, K} z_{i, K}=u_{1, K}+u_{2, K}
$$

for some suitable coefficients $c_{i, K}$ and $d_{i, K}$ determined by a L^{2}-type projection, where n_{0} is the dimension of $V_{h}^{0}(K)$. We write $u_{h}=u_{1}+u_{2}$ with $\left.u_{i}\right|_{K}=u_{i, K}$ for $i=1,2$. Moreover, we recall that $C(u, f)$, defined in (5.38), is the constant appearing in the consistency error estimate in Lemma 5.4.1. In the following theorem, we will give an estimate for the difference between the fine grid solution u_{h} and the projection of u_{h} into the coarse space V_{H} defined in (5.14). The theorem says that such difference is bounded by a best approximation error $\left\|u_{h}-v\right\|_{a}$ and a consistency error $h C(u, f)$. We emphasize that, even though the coarse mesh size H is fixed, but the fine mesh size h can be arbitrary small, and hence the consistency error is small compared with the best approximation error $\left\|u_{h}-v\right\|_{a}$.

Theorem 5.4.4. Let $w_{H} \in V_{H}$ be the solution of (5.14) and u_{h} be the solution of (5.2). Then, for a fixed time $t \in[0, T]$, we have

$$
\begin{equation*}
\left\|u_{h}-w_{H}\right\|_{a} \leq C\left(\left\|u_{h}-v\right\|_{a}+h C(u, f)\right), \quad \forall v \in V_{H} . \tag{5.18}
\end{equation*}
$$

Proof: By the definition of w_{H}, we have

$$
a_{D G}\left(w_{H}, v\right)=a_{D G}\left(u_{h}, v\right)+R_{u_{h}}(v), \quad \forall v \in V_{H} .
$$

So, we have

$$
a_{D G}\left(w_{H}-v, w_{H}-v\right)=a_{D G}\left(u_{h}-v, w_{H}-v\right)+R_{u_{h}}\left(w_{H}-v\right) .
$$

By (3.11), (3.10) and (5.12), we get

$$
\begin{aligned}
\left\|w_{H}-v\right\|_{a}^{2} & \leq 2 a_{D G}\left(w_{H}-v, w_{H}-v\right) \\
& =2 a_{D G}\left(u_{h}-v, w_{H}-v\right)+2 R_{u_{h}}\left(w_{H}-v\right) \\
& \leq C\left(\left\|u_{h}-v\right\|_{a}+h C(u, f)\right)\left\|w_{H}-v\right\|_{a} .
\end{aligned}
$$

Finally, we obtain

$$
\begin{aligned}
\left\|u_{h}-w_{H}\right\|_{a} & \leq\left\|u_{h}-v\right\|_{a}+\left\|w_{H}-v\right\|_{a} \\
& \leq C\left(\left\|u_{h}-v\right\|_{a}+h C(u, f)\right) .
\end{aligned}
$$

From the above theorem, we see that the error $\left\|u_{h}-w_{H}\right\|_{a}$ is controlled by the quantity
$\left\|u_{h}-v\right\|_{a}$ for an arbitrary choice of the function $v \in V_{H}$. Thus, to obtain our final error bound, we only need to find a suitable function $v \in V_{H}$ to approximate the finite element solution u_{h}. In the following theorem, we will choose a specific v in Theorem 5.4.4 and prove the corresponding error estimate.

Theorem 5.4.5. Let $u_{h} \in V_{h}$ be the finite element solution. Then, for a fixed time $t \in$ $[0, T]$, we have

$$
\begin{equation*}
\left\|u_{h}-\phi\right\|_{a}^{2} \leq \sum_{K \in \mathcal{T}^{H}}\left(\frac{H}{\mu_{p+1, K}}\left(1+\frac{2 a_{1} \gamma H}{h \mu_{p+1, K}}\right) \int_{\partial K}\left(a \frac{\partial u_{1}}{\partial n}\right)^{2}+\frac{H^{2}}{\lambda_{m+1, K}}\left\|f-\left(u_{h}\right)_{t t}\right\|_{L^{2}(K)}^{2}\right), \tag{5.19}
\end{equation*}
$$

where the function $\phi \in V_{H}$ is defined as

$$
\left.\phi\right|_{K}=\sum_{i=1}^{p} c_{i, K} \widetilde{w}_{i, K}+\sum_{i=1}^{m} d_{i, K} z_{i, K}=\phi_{1, K}+\phi_{2, K} .
$$

Proof: For a given coarse grid block K, using the orthogonality condition (5.9), we have

$$
\int_{K} a\left|\nabla\left(u_{h}-\phi\right)\right|^{2}=\int_{K} a\left|\nabla\left(u_{1}-\phi_{1}\right)\right|^{2}+\int_{K} a\left|\nabla\left(u_{2}-\phi_{2}\right)\right|^{2}
$$

which implies

$$
\left\|u_{h}-\phi\right\|_{a}^{2}=\left\|u_{1}-\phi_{1}\right\|_{a}^{2}+\left|u_{2}-\phi_{2}\right|_{a}^{2}
$$

where we write $\phi=\phi_{1}+\phi_{2}$ and $\left.\phi_{i}\right|_{K}=\phi_{i, K}$, for $i=1,2$. We will first estimate
$\left\|u_{1}-\phi_{1}\right\|_{a}^{2}$. By the definition of a-norm, we have

$$
\begin{align*}
\left\|u_{1}-\phi_{1}\right\|_{a}^{2} & =\sum_{K \in \mathcal{T}^{H}}\left(\int_{K} a\left|\nabla\left(u_{1}-\phi_{1}\right)\right|^{2}+\sum_{e \in \mathcal{E}^{H}} \frac{\gamma}{h} \int_{e} a\left|\left[\left(u_{1}-\phi_{1}\right)\right]_{e}\right|^{2}\right) \\
& \leq \sum_{K \in \mathcal{T}^{H}}\left(\int_{K} a\left|\nabla\left(u_{1}-\phi_{1}\right)\right|^{2}+\frac{2 \gamma}{h} \int_{\partial K} a\left|\left(u_{1}-\phi_{1}\right)\right|^{2}\right) \tag{5.20}\\
& \leq \sum_{K \in \mathcal{T}^{H}}\left(\int_{K} a\left|\nabla\left(u_{1}-\phi_{1}\right)\right|^{2}+\frac{2 a_{1} \gamma}{h} \int_{\partial K}\left|\left(u_{1}-\phi_{1}\right)\right|^{2}\right)
\end{align*}
$$

Next, we will estimate the right hand side of (5.20) for each K.
We note that the eigenvalue problem (3.5) is motivated by the right hand side of (5.20). In particular, based on the right hand side of (5.20), we consider

$$
\begin{equation*}
\int_{K} a \nabla w_{\mu} \cdot \nabla v+\frac{1}{H} \int_{\partial K} w_{\mu} v=\widehat{\mu} \int_{K} R\left(w_{\mu}\right) \cdot R(v), \quad \forall v \in V_{1, \mathrm{off}}^{(i)}, \tag{5.21}
\end{equation*}
$$

where the choice of R, e.g., $R=\sqrt{a} \nabla w_{\mu}$, depends on how we would like to bound the error. Indeed, choosing the eigenvectors that correspond to the largest L_{K} eigenvalues, one can guarantee that the best L_{K} dimensional space in the space of snapshots is given by the first L_{K} dominant eigenvectors. The choice of $R(\cdot)$ is important and can influence the eigenvalue behavior. For example, the use of oversampling domains both for the snapshot space and the eigenvalue can provide a faster convergence. In this chapter, we take

$$
R=\sqrt{a} \nabla w_{\mu},
$$

which allows estimating the right hand side of (5.20) by the energy norm. Note that, in (3.5), we use the smallest eigenvalues to determine the basis functions which is the same
as choosing the largest eigenvectors that correspond to the largest eigenvalues of (5.21) because $\widehat{\mu}=1+\frac{1}{\mu}$.

Note that the eigenvalue problem (3.5) is equivalent to

$$
a \frac{\partial w_{\mu}}{\partial n}=\frac{\mu}{H} w_{\mu} \quad \text { on } \quad \partial K
$$

where the normal flux $a \frac{\partial w_{\mu}}{\partial n}$ is defined discretely in (5.8). So, for each K,

$$
\begin{align*}
\int_{\partial K}\left(a \frac{\partial u_{1, K}}{\partial n}\right)^{2} & =\int_{\partial K}\left(a \frac{\partial}{\partial n}\left(\sum_{i=1}^{n} c_{i, K} w_{i, K}\right)\right)^{2} \tag{5.22}\\
& =\int_{\partial K}\left(\sum_{i=1}^{n} \frac{\mu_{i, K}}{H} c_{i, K} w_{i, K}\right)^{2}=\sum_{i=1}^{n}\left(\frac{\mu_{i, K} c_{i, K}}{H}\right)^{2} \tag{5.23}
\end{align*}
$$

where we have used the fact that $\int_{\partial K} w_{i, K} w_{j, K}=\delta_{i j}$. Then, by using the eigenvalue problem defined in (3.5), we have

$$
\frac{1}{h} \int_{\partial K}\left|\left(u_{1, K}-\phi_{1, K}\right)\right|^{2}=\frac{1}{h} \sum_{i=p+1}^{n} c_{i, K}^{2} \leq \frac{H^{2}}{h \mu_{p+1, K}^{2}} \sum_{i=p+1}^{n}\left(\frac{\mu_{i, K}}{H}\right)^{2} c_{i, K}^{2}
$$

and

$$
\int_{K} a\left|\nabla\left(u_{1, K}-\phi_{1, K}\right)\right|^{2}=\sum_{i=p+1}^{n} \frac{\mu_{i, K}}{H} c_{i, K}^{2} \leq \frac{H}{\mu_{p+1, K}} \sum_{i=p+1}^{n}\left(\frac{\mu_{i, K}}{H}\right)^{2} c_{i, K}^{2} .
$$

Note that, by using (5.23), we have,

$$
\sum_{i=p+1}^{n}\left(\frac{\mu_{i, K}}{H}\right)^{2} c_{i, K}^{2} \leq \sum_{i=1}^{n}\left(\frac{\mu_{i, K}}{H}\right)^{2} c_{i, K}^{2}=\int_{\partial K}\left(a \frac{\partial u_{1, K}}{\partial n}\right)^{2}
$$

Therefore

$$
\begin{align*}
\left\|u_{1}-\phi_{1}\right\|_{a}^{2} & \leq \sum_{K \in \mathcal{T}^{H}}\left(\frac{H}{\mu_{p+1, K}}\left(1+\frac{2 a_{1} \gamma H}{h \mu_{p+1, K}}\right) \sum_{i=p+1}^{n}\left(\frac{\mu_{i, K}}{H}\right)^{2} c_{i, K}^{2}\right) \tag{5.24}\\
& \leq \sum_{K \in \mathcal{T}^{H}}\left(\frac{H}{\mu_{p+1, K}}\left(1+\frac{2 a_{1} \gamma H}{h \mu_{p+1, K}}\right) \int_{\partial K}\left(a \frac{\partial u_{1}}{\partial n}\right)^{2}\right) .
\end{align*}
$$

Next, we will estimate $\left|u_{2}-\phi_{2}\right|_{a}^{2}$. Since u_{h} satisfies

$$
\int_{K} a \nabla u_{h} \cdot \nabla v=\int_{K}\left(f-\left(u_{h}\right)_{t t}\right) v, \quad \forall v \in V_{h}^{0}(K)
$$

Putting $v=z_{i, K}$, we obtain

$$
\frac{\lambda_{i, K}}{H^{2}} d_{i, K}=\int_{K} a \nabla u_{h} \cdot \nabla z_{i, K}=\int_{K}\left(f-\left(u_{h}\right)_{t t}\right) z_{i, K}
$$

We define $f_{i, K}=\int_{K}\left(f-\left(u_{h}\right)_{t t}\right) z_{i, K}$. Then we have $f_{i, K}=\frac{\lambda_{i, K}}{H^{2}} d_{i, K}$ and

$$
\sum_{i=1}^{n_{0}} f_{i, K}^{2} \leq\left\|f-\left(u_{h}\right)_{t t}\right\|_{L^{2}(K)}^{2}
$$

Hence,

$$
\begin{aligned}
\left|u_{2}-\phi_{2}\right|_{a}^{2} & =\sum_{K \in \mathcal{T}^{H}} \int_{K} a\left|\nabla\left(u_{2}-\phi_{2}\right)\right|^{2} \\
& =\sum_{K \in \mathcal{T}^{H}} \sum_{i \geq m+1} \frac{\lambda_{i, K}}{H^{2}} d_{i, K}^{2} \\
& \leq \sum_{K \in \mathcal{T}^{H}} \frac{H^{2}}{\lambda_{m+1, K}} \sum_{i \geq m+1} \frac{\lambda_{i, K}^{2}}{H^{4}} d_{i, K}^{2} \\
& =\sum_{K \in \mathcal{T}^{H}} \frac{H^{2}}{\lambda_{m+1, K}} \sum_{i \geq m+1} f_{i, K}^{2} \\
& \leq \sum_{K \in \mathcal{T}^{H}} \frac{H^{2}}{\lambda_{m+1, K}}\left\|f-\left(u_{h}\right)_{t t}\right\|_{L^{2}(K)}^{2} .
\end{aligned}
$$

We note that, by the technique in [66], we can also derive a bound for $\left\|u_{1}-\phi_{1}\right\|_{a}$ as follows

$$
\left\|u_{1}-\phi_{1}\right\|_{a}^{2} \leq \sum_{K \in \mathcal{T}^{H}} \sum_{i \geq p+1} c_{i, K}^{2} .
$$

This bound shows the decay of the error when more basis functions are used.
The bound in (5.19) gives the spectral convergence of our GMsFEM. Notice that, the term

$$
H \sum_{K \in \mathcal{T}^{H}} \sum_{\partial K}\left(a \frac{\partial u_{1}}{\partial n}\right)^{2}
$$

is uniformly bounded and can be considered as a norm for u_{1}. Thus, (5.19) states that the error behaves as $O\left(\mu_{p+1, K}^{-1}+\lambda_{m+1, K}^{-1}\right)$. We note that the eigenvalues increase (and go to the infinity as the fine mesh size decreases) and thus the error decreases as we increase the coarse space dimension.

Combining the results in Theorem 5.4.4 and Theorem 5.4.5, we obtain

$$
\begin{align*}
\|\eta\|_{a}^{2} \leq & C \sum_{K \in \mathcal{T}^{H}}\left(\frac{H^{2}}{\lambda_{m+1, K}}\left\|f-\left(u_{h}\right)_{t t}\right\|_{L^{2}(K)}^{2}\right. \tag{5.25}\\
& \left.+\frac{H}{\mu_{p+1, K}}\left(1+\frac{2 a_{1} \gamma H}{h \mu_{p+1, K}}\right) \int_{\partial K}\left(a \frac{\partial u_{1}}{\partial n}\right)^{2}\right)+h^{2} C(u)^{2} . \tag{5.26}
\end{align*}
$$

Similarly, we obtain

$$
\begin{aligned}
\left\|\eta_{t}\right\|_{a}^{2} \leq & C \sum_{K \in \mathcal{T}^{H}}\left(\frac{H^{2}}{\lambda_{m+1, K}}\left\|f_{t}-\left(u_{h}\right)_{t t t}\right\|_{L^{2}(K)}^{2}\right. \\
& \left.+\frac{H}{\mu_{p+1, K}}\left(1+\frac{2 a_{1} \gamma H}{h \mu_{p+1, K}}\right) \int_{\partial K}\left(a \frac{\partial\left(u_{1}\right)_{t}}{\partial n}\right)^{2}\right)+h^{2} C\left(u_{t}\right)^{2} .
\end{aligned}
$$

Finally, using these bounds for η, as well as the estimates proved in Theorem 5.4.2 and Theorem 5.4.3, we obtain estimates for the error ε.

5.5 Convergence of the fully discrete scheme

In this section, we will prove the convergence of the fully discrete scheme (5.5). To simplify the notations, we define the second order central difference operator δ^{2} by

$$
\delta^{2}\left(u^{n}\right)=\frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}} .
$$

By the definition of the consistency error (5.10), at the time t_{n}, we have

$$
\begin{equation*}
\left(\left(u_{h}\right)_{t t}^{n}, v\right)+a_{D G}\left(u_{h}^{n}, v\right)=\left(f^{n}, v\right)-R_{u_{h}^{n}}(v) . \tag{5.27}
\end{equation*}
$$

The fully discrete scheme (5.5) can be written using the operator δ^{2} as

$$
\begin{equation*}
\left(\delta^{2}\left(u_{H}^{n}\right), v\right)+a_{D G}\left(u_{H}^{n}, v\right)=\left(f^{n}, v\right), \quad \text { for } n \geq 1 \tag{5.28}
\end{equation*}
$$

Moreover, we define

$$
r^{n}= \begin{cases}u_{t t}^{n}-\delta^{2}\left(w_{H}^{n}\right), & \text { for } n \geq 1 \tag{5.29}\\ \Delta t^{-2}\left(\xi^{1}-\xi^{0}\right), & \text { for } n=0\end{cases}
$$

and

$$
R^{n}=\Delta t \sum_{i=0}^{n} r^{i}
$$

In order to prove the convergence for the fully discrete scheme, we first prove the following lemma. The result will be needed in the derivation of an upper bound for the time step size Δt.

Lemma 5.5.1. There exists a positive constant $\beta(h)$ such that

$$
a_{D G}(v, v) \leq \beta(h)^{-1}\|v\|_{L^{2}(\Omega)}^{2}, \quad \forall v \in V_{H} .
$$

Moreover, the constant $\beta(h)$ can be taken as $h^{2} a_{1}^{-1}\left(24+32 \sqrt{3 \Lambda}+16 \Lambda a_{1}^{2} a_{0}^{-2}\right)^{-1}$.
Proof: We first note that, if p is a linear function defined on the interval $I=\left[x_{1}-\right.$ $\left.h / 2, x_{1}+h / 2\right]$, then we have

$$
\begin{align*}
\|p\|_{L^{\infty}(I)}^{2} & \leq \frac{4}{h}\|p\|_{L^{2}(I)}^{2} \tag{5.30}\\
|p|_{H^{1}(I)}^{2} & \leq \frac{12}{h^{2}}\|p\|_{L^{2}(I)}^{2} \tag{5.31}
\end{align*}
$$

Then by the definition of $a_{D G}$ and the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
& a_{D G}(v, v) \\
\leq & \sum_{K \in \mathcal{T}^{H}} \int_{K} a|\nabla v|^{2}-2 \sum_{e \in \mathcal{E}^{H}}\left(\int_{e}\{a \nabla v \cdot n\}_{e} \cdot[v]_{e}+\frac{\gamma}{h} \int_{e} a[v]_{e}^{2}\right) \\
\leq & \sum_{K \in \mathcal{T}^{H}} \int_{K} a|\nabla v|^{2}+2\left(\sum_{K \in \mathcal{T}^{H}} h\left\|a \frac{\partial v}{\partial n_{\partial K}}\right\|_{L^{2}(\partial K)}^{2}\right)^{\frac{1}{2}}\left(\sum_{e \in \mathcal{E}^{H}} h^{-1}\|[v]\|_{L^{2}(e)}^{2}\right)^{\frac{1}{2}} \\
& +\frac{\gamma}{h} \sum_{e \in \mathcal{E}^{H}} \int a[v]_{e}^{2} .
\end{aligned}
$$

Then by using the discrete trace inequality, $a \leq a_{1}$ and estimating the jump terms by $L^{2}(\partial K)$ norms, we have

$$
\begin{align*}
& a_{D G}(v, v) \\
\leq & a_{1}\left(\sum_{K \in \mathcal{T}^{H}} \int_{K}|\nabla v|^{2}+2\left(\sum_{K \in \mathcal{T}^{H}} \Lambda \int_{K}|\nabla v|^{2}\right)^{\frac{1}{2}}\left(\sum_{e \in \mathcal{E}^{H}} h^{-1}\|[v]\|_{L^{2}(e)}^{2}\right)^{\frac{1}{2}}+\frac{\gamma}{h} \sum_{e \in \mathcal{E}^{H}} \int[v]_{e}^{2}\right) \\
\leq & a_{1}\left(\sum_{K \in \mathcal{T}^{H}} \int_{K}|\nabla v|^{2}+4\left(\sum_{K \in \mathcal{T}^{H}} \Lambda \int_{K}|\nabla v|^{2}\right)^{\frac{1}{2}}\left(\sum_{K \in \mathcal{T}^{H}} h^{-1}\|v\|_{L^{2}(\partial K)}^{2}\right)^{\frac{1}{2}}\right. \\
& \left.+\frac{2 \gamma}{h} \sum_{K \in \mathcal{T}^{H}}\|v\|_{L^{2}(\partial K)}^{2}\right) . \tag{5.32}
\end{align*}
$$

Thus, it remains to estimate $\|\nabla v\|_{L^{2}(K)}$ and $\|v\|_{L^{2}(\partial K)}$ by the norm $\|v\|_{L^{2}(K)}$. The techniques used are the same as those used for standard finite element inverse inequalities. We include the derivation below for the explicit expression of $\beta(h)$.

We will estimate the term $\|\nabla v\|_{L^{2}(K)}$ first. For a given coarse grid block K, we can write it as the union of fine grid blocks $K=\cup_{F \subset K} F$, where we use F to represent a generic fine grid block. Since the fine grid blocks are rectangles, we can write F as a
tensor product of two intervals, namely, $F=I_{x}^{F} \times I_{y}^{F}$. For any $v \in V_{H}$ we can also write the restriction of v on F as $v(x, y)=v_{F, 1}(x) v_{F, 2}(y)$.

$$
\begin{aligned}
\int_{K}|\nabla v|^{2} & =\sum_{F \subset K} \int_{F}|\nabla v|^{2} \\
& =\sum_{F \subset K}\left(h\left(v_{F, 2}^{\prime}\right)^{2} \int_{I_{x}^{F}}\left(v_{F, 1}(x)\right)^{2}+h\left(v_{F, 1}^{\prime}\right)^{2} \int_{I_{y}^{F}}\left(v_{F, 2}(y)\right)^{2}\right) \\
& =\sum_{F \subset K}\left(\int_{I_{y}^{F}}\left(v_{F, 2}^{\prime}(y)\right)^{2} \int_{I_{x}^{F}}\left(v_{F, 1}(x)\right)^{2}+\int_{I_{x}^{F}}\left(v_{F, 1}^{\prime}(x)\right)^{2} \int_{I_{y}^{F}}\left(v_{F, 2}(y)\right)^{2}\right) .
\end{aligned}
$$

Then, using (5.31), we have

$$
\begin{aligned}
\int_{K}|\nabla v|^{2} & \leq 12 h^{-2} \sum_{F \subset K}\left(\int_{I_{y}^{F}}\left(v_{F, 2}(y)\right)^{2} \int_{I_{x}^{F}}\left(v_{F, 1}(x)\right)^{2}+\int_{I_{x}^{F}}\left(v_{F, 1}(x)\right)^{2} \int_{I_{y}^{F}}\left(v_{F, 2}(y)\right)^{2}\right) \\
& =24 h^{-2} \sum_{F \subset K} \int_{F}|v|^{2} .
\end{aligned}
$$

Next, we estimate the term $\|v\|_{L^{2}(\partial K)}$. For a generic fine grid cell F, we write $I_{x}^{F}=$ $\left[x_{1}, x_{2}\right]$ and $I_{y}^{F}=\left[y_{1}, y_{2}\right]$. Then, we define $B_{y_{1}}=\partial F \cap\left(I_{x} \times\left\{y_{1}\right\}\right), B_{y_{2}}=\partial F \cap\left(I_{x} \times\left\{y_{2}\right\}\right)$, $B_{x_{1}}=\partial F \cap\left(\left\{x_{1}\right\} \times I_{y}\right)$ and $B_{x_{2}}=\partial F \cap\left(\left\{x_{2}\right\} \times I_{y}\right)$. By using (5.30),

$$
\begin{aligned}
& \|v\|_{L^{2}(\partial K)}^{2}=\sum_{F \subset K} \int_{\partial F \cap \partial K}\left(v_{F}\right)^{2} \\
= & \sum_{F \subset K}\left(\int_{B_{y_{1}}}\left(v_{F, 2}\left(y_{1}\right) v_{F, 1}(x)\right)^{2}+\int_{B_{y_{2}}}\left(v_{F, 2}\left(y_{2}\right) v_{F, 1}(x)\right)^{2}\right) \\
& +\sum_{F \subset K}\left(\int_{B_{x_{1}}}\left(v_{F, 1}\left(x_{1}\right) v_{F, 2}(y)\right)^{2}+\int_{B_{x_{2}}}\left(v_{F, 1}\left(x_{2}\right) v_{F, 2}(y)\right)^{2}\right) \\
\leq & \frac{4}{h} \sum_{F \subset K}\left(\int_{B_{y_{1}}} \int_{\left[y_{1}, y_{1}+h\right]} v_{F, 2}(y)^{2} v_{F, 1}(x)^{2}+\int_{B_{y_{2}}} \int_{\left[y_{2}-h, y_{2}\right]} v_{F, 2}(y)^{2} v_{F, 1}(x)^{2}\right) \\
& +\frac{4}{h} \sum_{F \subset K}\left(\int_{B_{x_{1}}} \int_{\left[x_{1}, x_{1}+h\right]} v_{F, 1}(x)^{2} v_{F, 2}(y)^{2}+\int_{B_{x_{2}}} \int_{\left[x_{2}-h, x_{2}\right]} v_{F, 1}(x) v_{F, 2}(y)^{2}\right) \\
\leq & \frac{4}{h} \sum_{F \subset K}\left(\int_{F}\left(v_{F, 2}(y) v_{F, 1}(x)\right)^{2}+\int_{F}\left(v_{F, 1}(x) v_{F, 2}(y)\right)^{2}\right) \\
= & \frac{8}{h}\|v\|_{L^{2}(K)}^{2} .
\end{aligned}
$$

Consequently, combining the above results and using (5.32),

$$
a_{D G}(v, v) \leq \frac{a_{1}}{h^{2}}(24+32 \sqrt{3 \Lambda}+16 \gamma)\|v\|_{L^{2}(\Omega)}^{2}
$$

Furthermore, using the lower bound of γ, we see that we can take $\beta(h)$ as

$$
\beta(h)=h^{2} a_{1}^{-1}\left(24+32 \sqrt{3 \Lambda}+16 \Lambda a_{1}^{2} a_{0}^{-2}\right)^{-1}
$$

Finally, we will state and prove the convergence of the fully discrete scheme (5.5).

Theorem 5.5.2. Assume that the time step size Δt satisfies the stability condition $\Delta t^{2}<$ $4 \beta(h)$. We have

$$
\begin{equation*}
\max _{0 \leq n \leq N}\left\|\varepsilon^{n}\right\|_{L^{2}(\Omega)} \leq C\left(\left\|\varepsilon^{0}\right\|_{L^{2}(\Omega)}+\max _{0 \leq n \leq N}\left\|\eta^{n}\right\|_{L^{2}(\Omega)}+\Delta t \sum_{n=0}^{N}\left\|R^{n}\right\|_{L^{2}(\Omega)}\right) \tag{5.33}
\end{equation*}
$$

Proof: Subtracting (5.28) by (5.27), we have

$$
\left(\delta^{2}\left(u_{H}^{n}\right)-\left(u_{h}\right)_{t t}^{n}, v\right)+a_{D G}\left(u_{H}^{n}-u_{h}^{n}, v\right)=R_{u_{h}^{n}}(v), \quad \text { for } n \geq 1
$$

which implies

$$
\left(\delta^{2}\left(u_{H}^{n}-w_{H}^{n}+w_{H}^{n}\right), v\right)+a_{D G}\left(u_{H}^{n}-u_{h}^{n}, v\right)=\left(\left(u_{h}\right)_{t t}^{n}, v\right)+R_{u_{h}^{n}}(v) .
$$

Using the fact that $\xi=u_{H}-w_{H}$ and the definition of the elliptic projection w_{H} given in (5.14), we have

$$
\left(\delta^{2}\left(\xi^{n}\right), v\right)+a_{D G}\left(\xi^{n}, v\right)=\left(r^{n}, v\right), \quad \text { for } n \geq 1
$$

where r^{n} is defined in (5.29). Using the definition of the operator δ^{2}, we have

$$
\left(\frac{\xi^{n+1}-\xi^{n}}{\Delta t}, v\right)-\left(\frac{\xi^{n}-\xi^{n-1}}{\Delta t}, v\right)+\Delta t a_{D G}\left(\xi^{n}, v\right)=\Delta t\left(r^{n}, v\right)
$$

Summing the above equations, we get for $n \geq 1$,

$$
\begin{equation*}
\left(\frac{\xi^{n+1}-\xi^{n}}{\Delta t}, v\right)-\left(\frac{\xi^{1}-\xi^{0}}{\Delta t}, v\right)+\Delta t \sum_{i=1}^{n} a_{D G}\left(\xi^{i}, v\right)=\Delta t \sum_{i=1}^{n}\left(r^{i}, v\right) \tag{5.34}
\end{equation*}
$$

To simplify the notations, we define

$$
\Xi^{n}=\Delta t \sum_{i=1}^{n} \xi^{i}, \quad \text { for } n \geq 1 ; \quad \text { and } \quad \Xi^{0}=0
$$

Using the above definition and the definition of R^{n}, we can write (5.34) as

$$
\left(\frac{\xi^{n+1}-\xi^{n}}{\Delta t}, v\right)+a_{D G}\left(\Xi^{n}, v\right)=\left(R^{n}, v\right), \quad n \geq 1
$$

Substituting $v=\xi^{n+1}+\xi^{n}$, we have

$$
\left\|\xi^{n+1}\right\|_{L^{2}(\Omega)}^{2}-\left\|\xi^{n}\right\|_{L^{2}(\Omega)}^{2}+\Delta t a_{D G}\left(\Xi^{n}, \xi^{n+1}+\xi^{n}\right)=\Delta t\left(R^{n}, \xi^{n+1}+\xi^{n}\right)
$$

and summing for all $n \geq 1$, we have

$$
\begin{equation*}
\left\|\xi^{n+1}\right\|_{L^{2}(\Omega)}^{2}-\left\|\xi^{1}\right\|_{L^{2}(\Omega)}^{2}+\Delta t \sum_{i=1}^{n} a_{D G}\left(\Xi^{i}, \xi^{i+1}+\xi^{i}\right)=\Delta t \sum_{i=1}^{n}\left(R^{i}, \xi^{i+1}+\xi^{i}\right) \tag{5.35}
\end{equation*}
$$

By the definition of Ξ^{n}, we have $\Xi^{n+1}-\Xi^{n-1}=\Delta t\left(\xi^{n+1}+\xi^{n}\right)$ for $n \geq 1$. So

$$
\begin{aligned}
\Delta t \sum_{i=1}^{n} a_{D G}\left(\Xi^{i}, \xi^{i+1}+\xi^{i}\right) & =\sum_{i=1}^{n} a_{D G}\left(\Xi^{i}, \Xi^{i+1}-\Xi^{i-1}\right) \\
& =\sum_{i=1}^{n} a_{D G}\left(\Xi^{i}, \Xi^{i+1}\right)-\sum_{i=0}^{n-1} a_{D G}\left(\Xi^{i}, \Xi^{i+1}\right) \\
& =a_{D G}\left(\Xi^{n}, \Xi^{n+1}\right) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
a_{D G}\left(\Xi^{n}, \Xi^{n+1}\right) & =a_{D G}\left(\frac{\Xi^{n}+\Xi^{n+1}}{2}, \frac{\Xi^{n}+\Xi^{n+1}}{2}\right)-a_{D G}\left(\frac{\Xi^{n}-\Xi^{n+1}}{2}, \frac{\Xi^{n}-\Xi^{n+1}}{2}\right) \\
& \geq-\frac{\Delta t^{2}}{4} a_{D G}\left(\xi^{n+1}, \xi^{n+1}\right) .
\end{aligned}
$$

So, (5.35) becomes

$$
\left\|\xi^{n+1}\right\|_{L^{2}(\Omega)}^{2}-\frac{\Delta t^{2}}{4} a_{D G}\left(\xi^{n+1}, \xi^{n+1}\right) \leq\left\|\xi^{1}\right\|_{L^{2}(\Omega)}^{2}+\Delta t \sum_{i=1}^{n}\left(R^{i}, \xi^{i+1}+\xi^{i}\right), \quad n \geq 1
$$

Using the assumption $\Delta t^{2}<4 \beta(h)$, we define $C_{s}=1-\frac{\Delta t^{2}}{4 \beta(h)}>0$. By Lemma 5.5.1,

$$
\begin{aligned}
C_{s}\left\|\xi^{n+1}\right\|_{L^{2}(\Omega)}^{2} & \leq\left\|\xi^{1}\right\|_{L^{2}(\Omega)}^{2}+\Delta t \sum_{i=1}^{n}\left(R^{i}, \xi^{i+1}+\xi^{i}\right) \\
& \leq\left\|\xi^{1}\right\|_{L^{2}(\Omega)}^{2}+2 \Delta t \max _{1 \leq i \leq n+1}\left\{\left\|\xi^{i}\right\|_{L^{2}(\Omega}\right\} \sum_{i=1}^{n}\left\|R^{i}\right\|_{L^{2}(\Omega)} \\
& \leq\left\|\xi^{1}\right\|_{L^{2}(\Omega)}^{2}+\frac{C_{s}}{2} \max _{1 \leq i \leq n+1}\left\{\left\|\xi^{i}\right\|_{L^{2}(\Omega)}\right\}^{2}+\frac{2}{C_{s}}\left(\Delta t \sum_{i=1}^{n}\left\|R^{i}\right\|_{L^{2}(\Omega)}\right)^{2} .
\end{aligned}
$$

Therefore, we have

$$
\max _{1 \leq i \leq n+1}\left\{\left\|\xi^{i}\right\|_{L^{2}(\Omega)}\right\} \leq C\left(\left\|\xi^{1}\right\|_{L^{2}(\Omega)}+\Delta t \sum_{i=1}^{n}\left\|R^{i}\right\|_{L^{2}(\Omega)}\right)
$$

Since $\xi^{1}=\xi^{0}+\Delta t^{2} r^{0}$, we have

$$
\max _{1 \leq i \leq n+1}\left\{\left\|\xi^{i}\right\|_{L^{2}(\Omega)}\right\} \leq C\left(\left\|\xi^{0}\right\|_{L^{2}(\Omega)}+\Delta t^{2}\left\|r^{0}\right\|_{L^{2}(\Omega)}+\Delta t \sum_{i=1}^{n}\left\|R^{i}\right\|_{L^{2}(\Omega)}\right)
$$

and using the definition of R^{0},

$$
\max _{1 \leq i \leq n+1}\left\{\left\|\xi^{i}\right\|_{L^{2}(\Omega)}\right\} \leq C\left(\left\|\xi^{0}\right\|_{L^{2}(\Omega)}+\Delta t \sum_{i=0}^{n}\left\|R^{i}\right\|_{L^{2}(\Omega)}\right)
$$

Thus,

$$
\max _{0 \leq i \leq n+1}\left\{\left\|\xi^{i}\right\|_{L^{2}(\Omega)}\right\} \leq C\left(\left\|\xi^{0}\right\|_{L^{2}(\Omega)}+\Delta t \sum_{i=0}^{n}\left\|R^{i}\right\|_{L^{2}(\Omega)}\right)
$$

Finally, by using the relation $\varepsilon=\eta-\xi$, we obtain (5.33).

From Theorem 5.5.2, we see that the error ε^{n} of the fully discrete scheme mainly depends on two quantities, which are η^{n} and R^{n}. Recall that, η^{n} can be estimated as in (5.26). Therefore, it remains to get a bound for R^{n}. To do so, we will prove the following two lemmas for an upper bound of r^{n}.

Lemma 5.5.3. We have

$$
\left\|r^{0}\right\|_{L^{2}(\Omega)} \leq C\left(\Delta t^{-1}\left\|\eta_{t}\right\|_{L^{\infty}\left([0, T] ; L^{2}(\Omega)\right)}+\Delta t\left\|\left(u_{h}\right)_{t t t}\right\|_{C\left([0, T] ; L^{2}(\Omega)\right)}\right) .
$$

Proof: By (5.29), we have $r^{0}=\Delta t^{-2}\left(\xi^{1}-\xi^{0}\right)$ and by the definition of u_{H}^{0}, we have

$$
\left(u_{H}^{0}-u^{0}, v\right)=0, \quad \forall v \in V_{H} .
$$

Then using the definitions of ξ^{1} and ξ^{0}, we have

$$
\begin{aligned}
\left(\xi^{1}-\xi^{0}, v\right) & =\left(u_{H}^{1}-w_{H}^{1}, v\right)-\left(u_{H}^{0}-w_{H}^{0}, v\right) \\
& =\left(u_{h}^{1}-w_{H}^{1}, v\right)+\left(u_{H}^{1}-u_{h}^{1}, v\right)-\left(u_{h}^{0}-w_{H}^{0}, v\right) \\
& =\left(\left(u_{h}^{1}-u_{h}^{0}\right)-\left(w_{H}^{1}-w_{H}^{0}\right), v\right)+\left(u_{H}^{1}-u_{h}^{1}, v\right) .
\end{aligned}
$$

The first term can be estimated in the following way

$$
\begin{aligned}
\left|\left(\left(u_{h}^{1}-u_{h}^{0}\right)-\left(w_{H}^{1}-w_{H}^{0}\right), v\right)\right| & \leq\left|\left(\int_{0}^{t_{1}} \partial_{t}\left(u_{h}-w_{H}\right), v\right)\right| \\
& \leq \Delta t\left\|\eta_{t}\right\|_{L^{\infty}\left([0, T] ; L^{2}(\Omega)\right)}\|v\|_{L^{2}(\Omega)}
\end{aligned}
$$

To estimate the second term, by the Taylor's expansion, we get

$$
u_{h}^{1}=u_{h}^{0}+\Delta t\left(u_{h}\right)_{t}^{0}+\frac{\Delta t^{2}}{2}\left(u_{h}\right)_{t t}^{0}+\frac{\Delta t^{3}}{6}\left(u_{h}\right)_{t t t}(\cdot, s), \quad \text { where } 0<s<t^{1}
$$

By the definition of u_{H}^{1},

$$
\left(u_{H}^{1}, v\right)=\left(u_{h}^{1}, v\right)=\left(u_{h}^{0}+\Delta t\left(u_{h}\right)_{t}^{0}+\frac{\Delta t^{2}}{2}(\tilde{v}, v)\right.
$$

Thus,

$$
\begin{aligned}
\left(u_{H}^{1}-u_{h}^{1}, v\right) & =\frac{\Delta t^{2}}{2}\left(\tilde{v}-\left(u_{h}\right)_{t t}^{0}, v\right)-\frac{\Delta t^{3}}{6}\left(\left(u_{h}\right)_{t t t}(\cdot, s), v\right) \\
& =\frac{\Delta t^{2}}{2}\left[\left(f^{0}, v\right)-a\left(u_{h}^{0}, v\right)+\left(\left(u_{h}\right)_{t t}^{0}, v\right)\right]-\frac{\Delta t^{3}}{6}\left(\left(u_{h}\right)_{t t t}(\cdot, s), v\right) \\
& =-\frac{\Delta t^{3}}{6}\left(\left(u_{h}\right)_{t t t}(\cdot, s), v\right)
\end{aligned}
$$

which proves the Lemma.

Lemma 5.5.4. For $n \geq 1$, we have

$$
\left\|r^{n}\right\|_{L^{2}(\Omega)} \leq C\left(\Delta t^{-1} \int_{t_{n-1}}^{t_{n+1}}\left\|\eta_{t t}(\cdot, \tau)\right\|_{L^{2}(\Omega)}+\Delta t \int_{t_{n-1}}^{t_{n+1}}\left\|\left(u_{h}\right)_{t t t t}(\cdot, \tau)\right\|_{L^{2}(\Omega)}\right)
$$

Proof: By the definition of r^{n},

$$
\begin{aligned}
\left\|r^{n}\right\|_{L^{2}(\Omega)} & =\left\|\left(u_{h}\right)_{t t}^{n}-\delta^{2} w_{H}^{n}\right\|_{L^{2}(\Omega)} \\
& \leq\left\|\delta^{2}\left(w_{H}^{n}-u_{h}^{n}\right)\right\|_{L^{2}(\Omega)}+\left\|\left(u_{h}\right)_{t t}^{n}-\delta^{2} u_{h}^{n}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

Using the identity

$$
v^{n+1}-2 v^{n}+v^{n-1}=\Delta t \int_{t_{n-1}}^{t_{n+1}}\left(1-\frac{\left|\tau-t_{n}\right|}{\Delta t}\right) v_{t t}(\tau) d \tau
$$

the first term can be estimated as follows

$$
\begin{aligned}
\left(\delta^{2}\left(w_{H}^{n}-u_{h}^{n}\right), v\right) & =\frac{1}{\Delta t} \int_{t_{n-1}}^{t_{n+1}}\left(1-\frac{\left|\tau-t_{n}\right|}{\Delta t}\right)\left(\left(\left(w_{H}\right)_{t t}-\left(u_{h}\right)_{t t}\right), v\right)(\tau) d \tau \\
& \leq \frac{1}{\Delta t} \int_{t_{n-1}}^{t_{n+1}}\left\|\eta_{t t}(\cdot, \tau)\right\|_{\tilde{L}^{2}(\Omega)}\|v\|_{\tilde{L}^{2}(\Omega)} d \tau
\end{aligned}
$$

To estimate the term $\left\|\left(u_{h}\right)_{t t}^{n}-\delta^{2} u_{h}^{n}\right\|_{L^{2}(\Omega)}$, we use

$$
\delta^{2} u_{h}^{n}=\left(u_{h}\right)_{t t}^{n}+\frac{1}{6 \Delta t^{2}} \int_{t_{n-1}}^{t_{n+1}}\left(\Delta t-\left|\tau-t_{n}\right|\right)^{3}\left(u_{h}\right)_{t t t t}(\cdot, \tau) d \tau
$$

This implies

$$
\left\|\left(u_{h}\right)_{t t}^{n}-\delta^{2} u_{h}^{n}\right\|_{L^{2}(\Omega)} \leq \frac{\Delta t}{6} \int_{t_{n-1}}^{t_{n+1}}\left\|\left(u_{h}\right)_{t t t t}(\cdot, \tau)\right\|_{L^{2}(\Omega)} d \tau
$$

Using the definition of R^{n} and the above two lemma, we get

$$
\begin{aligned}
& \left\|R^{n}\right\|_{L^{2}(\Omega)} \\
\leq & C\left(\int_{0}^{t_{n}}\left\|\eta_{t t}(\cdot, \tau)\right\|_{L^{2}(\Omega)}+\left\|\eta_{t}\right\|_{L^{\infty}\left([0, T] ; L^{2}(\Omega)\right)}\right. \\
& \left.+\Delta t^{2} \int_{0}^{t_{n}}\left\|\left(u_{h}\right)_{t t t t}(\cdot, \tau)\right\|_{L^{2}(\Omega)}+\Delta t^{2}\left\|\left(u_{h}\right)_{t t t}\right\|_{C\left([0, T] ; L^{2}(\Omega)\right)}\right) .
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
& \Delta t \sum_{n=0}^{N}\left\|R^{n}\right\|_{L^{2}(\Omega)} \\
\leq & 2 T \max _{0 \leq n \leq N}\left\|R^{n}\right\|_{L^{2}(\Omega)} \\
\leq & C\left(\int_{0}^{T}\left\|\eta_{t t}(\cdot, \tau)\right\|_{L^{2}(\Omega)}+\left\|\eta_{t}\right\|_{L^{\infty}\left([0, T] ; L^{2}(\Omega)\right)}+\right. \\
& \left.\Delta t^{2} \int_{0}^{T}\left\|\left(u_{h}\right)_{t t t t}(\cdot, \tau)\right\|_{L^{2}(\Omega)}+\Delta t^{2}\left\|\left(u_{h}\right)_{t t t}\right\|_{C\left([0, T] ; L^{2}(\Omega)\right)}\right) .
\end{aligned}
$$

Combining the estimates of η proved in Section 3 and Theorem 5.5.2, we obtain the error estimate for the fully discrete scheme (5.5).

5.6 Proof of the Lemma 5.4.1

In this section, we will prove Lemma 5.4.1. Let $v \in V_{1, \text { off }}$. By assumption, $u \in H^{2}(\Omega)$ for all time $t \in[0, T]$. Thus $a_{D G}(u, v)$ is well-defined, the normal flux is continuous across coarse edges and we have

$$
\begin{equation*}
\sum_{K \in \mathcal{T}^{H}}\left(\frac{\partial^{2} u}{\partial t^{2}}, v\right)_{L^{2}(K)}+a_{D G}(u, v)=\sum_{K \in \mathcal{T}^{H}}(f, v)_{L^{2}(K)}, \quad \forall v \in H^{1}\left(\mathcal{T}^{H}\right) \tag{5.36}
\end{equation*}
$$

Moreover, the following standard finite element error estimate holds

$$
\begin{aligned}
& \left\|\frac{\partial}{\partial t}\left(u-u_{h}\right)\right\|_{L^{2}(\Omega)}+\left|u-u_{h}\right|_{H^{1}(\Omega)} \\
\leq & C h\left(|u|_{L^{\infty}\left(0, T ; H^{2}(\Omega)\right)}+|u|_{W^{2,1}\left(0, T ; H^{1}(\Omega)\right)}\right), \quad \forall t \in[0, T]
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|\frac{\partial^{2}}{\partial t^{2}}\left(u-u_{h}\right)\right\|_{L^{2}(\Omega)}+\left|\frac{\partial}{\partial t}\left(u-u_{h}\right)\right|_{H^{1}(\Omega)} \\
\leq & C h\left(\left|u_{t}\right|_{L^{\infty}\left(0, T ; H^{2}(\Omega)\right)}+|u|_{W^{3,1}\left(0, T ; H^{1}(\Omega)\right)}\right), \quad \forall t \in[0, T] .
\end{aligned}
$$

We remark that, for simplicity, we assume the initial conditions belong to the fine space V_{h}. In the following derivations, we will fix the time variable t. By the definition of the consistency error and equation (5.36), we have

$$
\begin{equation*}
R_{u_{h}}(v)=\left(\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u_{h}}{\partial t^{2}}, v\right)+a_{D G}(u, v)-a_{D G}\left(u_{h}, v\right), \quad \forall v \in H^{1}\left(\mathcal{T}^{H}\right) \tag{5.37}
\end{equation*}
$$

Next, we define $v_{c} \in V_{h}$ in the following way. For each vertex in the triangulation, the value of v_{c} is defined as the average value of v at this vertex. Then by direct calculations, we have

$$
\sum_{K \in \mathcal{T}^{H}}\left|v-v_{c}\right|_{H^{1}(K)}^{2} \leq C \frac{1}{h} \sum_{e \in \mathcal{E}^{H}}\|[v]\|_{L^{2}(e)}^{2}
$$

and

$$
\sum_{K \in \mathcal{T}^{H}}\left\|v-v_{c}\right\|_{L^{2}(K)}^{2} \leq C h \sum_{e \in \mathcal{E}^{H}}\|[v]\|_{L^{2}(e)}^{2} .
$$

Clearly, we have $\left[v-v_{c}\right]_{e}=[v]_{e}$ for all $e \in \mathcal{E}^{H}$ since $v_{c} \in C^{0}(\Omega)$. Therefore we get

$$
\left\|v-v_{c}\right\|_{H^{1}\left(\mathcal{T}^{H}\right)}^{2} \leq C \frac{1}{h} \sum_{e \in \mathcal{E}^{H}}\|[v]\|_{L^{2}(e)}^{2} .
$$

By (5.37) and (5.2) as well as the fact that $a_{D G}\left(u_{h}, v_{c}\right)=a\left(u_{h}, v_{c}\right)$, we have

$$
R_{u_{h}}(v)=\sum_{K \in \mathcal{T}^{H}}\left(\frac{\partial^{2}\left(u-u_{h}\right)}{\partial t^{2}}, v-v_{c}\right)_{L^{2}(K)}+a_{D G}\left(u-u_{h}, v-v_{c}\right)
$$

Next, we will estimate the two terms on the right hand side. For the first term, we have

$$
\begin{aligned}
& \sum_{K \in \mathcal{T}^{H}}\left(\frac{\partial\left(u-u_{h}\right)}{\partial t^{2}}, v-v_{c}\right)_{L^{2}(K)} \\
\leq & \left\|\frac{\partial^{2}\left(u-u_{h}\right)}{\partial t^{2}}\right\|_{L^{2}(\Omega)}\left(\sum_{K \in \mathcal{T}^{H}}\left\|v-v_{c}\right\|_{L^{2}(K)}^{2}\right)^{\frac{1}{2}} \\
\leq & C h\left\|\frac{\partial^{2}\left(u-u_{h}\right)}{\partial t^{2}}\right\|_{L^{2}(\Omega)}\left(\frac{1}{h} \sum_{e \in \mathcal{E}^{H}}\|[v]\|_{L^{2}(e)}^{2}\right)^{\frac{1}{2}} \\
\leq & C h^{2}\left(\left|u_{t}\right|_{L^{\infty}\left(0, T ; H^{2}(\Omega)\right)}+|u|_{W^{3,1}\left(0, T ; H^{1}(\Omega)\right)}\right)\left(\frac{1}{h} \sum_{e \in \mathcal{E}^{H}}\|[v]\|_{L^{2}(e)}^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

For the second term, by the definition of $a_{D G}$ and the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
& a_{D G}\left(u-u_{h}, v-v_{c}\right) \\
= & \sum_{K \in \mathcal{T}^{H}} \int_{K} a \nabla\left(u-u_{h}\right) \cdot \nabla\left(v-v_{c}\right)-\sum_{e \in \mathcal{E}^{H}} \int_{e}\left\{a \nabla\left(u-u_{h}\right) \cdot n\right\}[v] \\
\leq & \sum_{K \in \mathcal{T}^{H}} a_{1}\left|u-u_{h}\right|_{H^{1}(K)}\left|v-v_{c}\right|_{H^{1}(K)} \\
& +\left(\sum_{K \in \mathcal{T}^{H}} \int_{\partial K}\left(a \nabla\left(u-u_{h}\right) \cdot n\right)^{2}\right)^{\frac{1}{2}}\left(\sum_{e \in \mathcal{E}^{H}} \int_{e}[v]^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

To estimate the flux term above, we let I_{K} be the standard finite element interpolant. Then we have

$$
\begin{aligned}
& \sum_{K \in \mathcal{T}^{H}} \int_{\partial K}\left(a \nabla\left(u-u_{h}\right) \cdot n\right)^{2} \\
\leq & 2\left(\sum_{K \in \mathcal{T}^{H}} \int_{\partial K}\left(a \nabla\left(u-I_{K}(u)\right) \cdot n\right)^{2}\right)+2\left(\sum_{K \in \mathcal{T}^{H}} \int_{\partial K}\left(a \nabla\left(I_{K}(u)-u_{h}\right) \cdot n\right)^{2}\right) \\
\leq & C a_{1}\left(h|u|_{H^{2}(K)}^{2}+\frac{1}{h}\left|I_{K}(u)-u\right|_{H^{1}(K)}^{2}\right) \\
\leq & C a_{1}\left(h|u|_{H^{2}(K)}^{2}+\frac{1}{h}\left|I_{K}(u)-u\right|_{H^{1}(K)}^{2}+\frac{1}{h}\left|u-u_{h}\right|_{H^{1}(K)}^{2}\right) \\
\leq & C a_{1} h|u|_{H^{2}(K)}^{2} .
\end{aligned}
$$

Next we will estimate the term $\sum_{K \in \mathcal{T}^{H}} a_{1}\left|u-u_{h}\right|_{H^{1}(K)}\left|v-v_{c}\right|_{H^{1}(K)}$. We have

$$
\begin{aligned}
& \sum_{K \in \mathcal{T}^{H}} a_{1}\left|u-u_{h}\right|_{H^{1}(K)} \cdot\left|v-v_{c}\right|_{H^{1}(K)} \\
\leq & C a_{1}\left(\sum_{K \in \mathcal{T}^{H}}\left|u-u_{h}\right|_{H^{1}(K)}^{2}\right)^{\frac{1}{2}}\left(\sum_{K \in \mathcal{T}^{H}}\left|v-v_{c}\right|_{H^{1}(K)}^{2}\right)^{\frac{1}{2}} \\
\leq & C a_{1}\left(\frac{1}{h} \sum_{K \in \mathcal{T}^{H}}\left|u-u_{h}\right|_{H^{1}(K)}^{2}\right)^{\frac{1}{2}}\left(\sum_{e \in \mathcal{E}^{H}}\|[v]\|_{L^{2}(e)}^{2}\right)^{\frac{1}{2}} \\
\leq & C a_{1} h|u|_{H^{2}(\Omega)}\left(\frac{1}{h} \sum_{e \in \mathcal{E}^{H}}\|[v]\|_{L^{2}(e)}^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Combining the above estimates, we get

$$
\begin{aligned}
& \left|R_{u_{h}}(v)\right| \\
\leq & \frac{C}{a_{0}} h\left(h\left(\left|u_{t}\right|_{L^{\infty}\left(0, T ; H^{2}(\Omega)\right)}+|u|_{W^{3,1}\left(0, T ; H^{1}(\Omega)\right)}\right)\right. \\
& \left.+a_{1}|u|_{L^{\infty}\left(0, T ; H^{2}(\Omega)\right)}\right)\left(\frac{1}{h} \sum_{e \in \mathcal{E}^{H}}\|a[v]\|_{L^{2}(e)}^{2}\right)^{\frac{1}{2}},
\end{aligned}
$$

for all $t \in[0, T]$. Finally, the constant $C(u)$ in the lemma can be chosen as

$$
\begin{equation*}
C(u) \approx\left|u_{t}\right|_{L^{\infty}\left(0, T ; H^{2}(\Omega)\right)}+|u|_{W^{3,1}\left(0, T ; H^{1}(\Omega)\right)}+|u|_{L^{\infty}\left(0, T ; H^{2}(\Omega)\right)} . \tag{5.38}
\end{equation*}
$$

Figure 5.1: Left: a subset of the Marmousi model. Right: fine grid solution.

Energy	Number of basis	e_{2}	$\overline{e_{2}}$	$e_{H^{1}}$	$e_{\text {Jump }}$	$\mu_{\min }$
75%	$24-29$	0.0423	0.0312	0.1542	$4.7304 \mathrm{e}-04$	1.9414
80%	$33-40$	0.0392	0.0274	0.1486	$3.0671 \mathrm{e}-04$	2.9992

Table 5.1: Errors for various choices of energy for the space $V_{1, \text { off }}$.

Energy	$t_{\text {off }}$	$t_{\text {on }}$
75%	326.83	18.21
80%	1019.06	32.43

Table 5.2: Offline and online computational times.

Figure 5.2: Left: 75% energy. Right: 80% energy.

Figure 5.3: Eigenvalues for the space $V_{1, \text { off }}$.

m	e_{2}	$\overline{e_{2}}$	$e_{H^{1}}$	$e_{\text {Jump }}$	$\lambda_{\min }$
1	0.0423	0.0312	0.1542	$4.7304 \mathrm{e}-04$	$3.4805 \mathrm{e}+04$
2	0.0352	0.0259	0.1346	$4.7030 \mathrm{e}-04$	$3.4873 \mathrm{e}+04$
3	0.0227	0.0187	0.0945	$4.5931 \mathrm{e}-04$	$5.5906 \mathrm{e}+04$
5	0.0193	0.0163	0.0833	$4.5910 \mathrm{e}-04$	$6.9650 \mathrm{e}+04$

Table 5.3: Errors for various number of eigenfunctions in $V_{2, \text { off }}$ for using 75% energy in $V_{1, \text { off }}$.

m	$t_{\text {off }}$	$t_{\text {on }}$
1	326.83	18.21
2	368.89	18.64
3	405.73	19.88
5	528.47	25.96

Table 5.4: Offline and online computational times for various number of eigenfunctions in $V_{2, \text { off }}$ for using 75% energy in $V_{1, \text { off }}$.

Energy	Number of basis	e_{2}	$\overline{e_{2}}$	$e_{H^{1}}$	$e_{\text {Jump }}$	$\mu_{\text {min }}$
73%	$24-30$	0.0673	0.0583	0.1866	$5.2038 \mathrm{e}-04$	1.6755
79%	$33-40$	0.0640	0.0548	0.1827	$3.4797 \mathrm{e}-04$	2.5681
84%	$45-55$	0.0626	0.0534	0.1809	$2.6388 \mathrm{e}-04$	3.7918

Table 5.5: Simulation results with one basis function in $V_{2, \text { off }}$.

m	e_{2}	$\overline{e_{2}}$	$e_{H^{1}}$	$e_{\text {Jump }}$	$\lambda_{\text {min }}$
1	0.0673	0.0583	0.1866	$5.2038 \mathrm{e}-04$	$3.4805 \mathrm{e}+04$
2	0.0596	0.0524	0.1666	$5.1865 \mathrm{e}-04$	$3.4873 \mathrm{e}+04$
3	0.0488	0.0449	0.1332	$5.0929 \mathrm{e}-04$	$5.5906 \mathrm{e}+04$
5	0.0449	0.0419	0.1220	$5.0793 \mathrm{e}-04$	$6.9650 \mathrm{e}+04$

Table 5.6: Errors and computational times for various number of eigenfunctions in $V_{2 \text {,off }}$ for using $E=73 \%$.

6. SUMMARY AND CONCLUSIONS

In this section, we will have a summary of this dissertation. In Chapter 2, we discuss about a residual-based online basis construction for GMsFEM. The main idea of the proposed method is to construct the online basis functions by solving local problems based on a computed residual. In particular, in each coarse region, an online multiscale basis function is constructed by solving local problems with a right hand side that is a residual computed at the current solution iterate. We show that the offline space needs to satisfy ONERP condition in order to guarantee that adding online basis function will decrease the error independent of the contrast and small scales. The online basis functions account for global effects that are missing in local GMsFEM basis functions. However, the first several GMsFEM basis functions are needed in order to guarantee that the online basis functions will decrease the error independent of the contrast. This method is applied in conjunction with an adaptivity where online basis functions are added in selective regions. The overall procedure results to a local multiscale approach where one can adaptively select regions and compute multiscale basis functions without resorting to global solves. We test our approaches on several examples and present some representative numerical results. Our numerical results show that with the offline spaces that satisfy ONERP, one can achieve a rapid decay of the error. We propose some strategies to reduce the computational cost associated with calculating the online basis functions.

In Chapter 3, we an offline adaptive Generalized Multiscale Discontinuous Galerkin Method (GMsDGM) for a class of high-contrast flow problems, and derive a-priori and aposteriori error estimates for the method. Based on the a-posteriori error estimator, we de-

[^2]velop an adaptive enrichment algorithm for our GMsDGM and prove its convergence. The adaptive enrichment algorithm gives an automatic way to enrich the approximation space in regions where the solution requires more basis functions, which are shown to perform well compared with a uniform enrichment. We also discuss an approach that adaptively selects multiscale basis functions by correlating the residual to multiscale basis functions (cf. [40]). The proposed error indicators are L_{2}-based and can be inexpensively computed which makes our approach efficient. Numerical results are presented that demonstrate the robustness of the proposed error indicators.

In Chapter 4, we discuss about the online basis construction for GMsDGM. Though the use of offline basis functions is important for multiscale finite element methods, adding online basis functions in some regions can improve the convergence dramatically. The construction of online basis functions for various applications and discretizations require a careful analysis. In particular, as we have shown earlier [45] for GMsFEM within continuous Galerkin framework that one needs a certain number of offline basis functions in order to guarantee that the online basis functions can result to a convergence independent of physical parameters. In this chapter, we develop an online basis procedure for GMsDGM that can provide a convergence independent of the contrast and small scales. Because multiscale basis functions are discontinuous across coarse-grid boundaries, we construct a special offline space as well as online basis functions. We show that our construction will guarantee a convergence independent of the contrast and small scales if we select a certain number of offline basis functions based on a local spectral problem. Furthermore, we apply an adaptive procedure to add online basis functions in only some selected regions. Numerical results are presented to back up our theoretical findings.

In Chapter 5, we present a multiscale wave simulation method based on GMsDGM for highly heterogeneous media. This wave simulation method is based on GMsDGM which preform a local model reduction by solving a spectral problem in each local snap-
shot space. The local spectral problems is used to select the important modes in that local neighborhood. The local spectral problems are designed to achieve a high accuracy and motivated by the global coupling formulation. The use of multiple snapshot spaces and multiple spectral problems is one of the novelties of this work. Using the dominant modes from local spectral problems, multiscale basis functions are constructed to represent the solution space locally within each coarse block. These multiscale basis functions are coupled via the symmetric interior penalty discontinuous Galerkin method which provides a block diagonal mass matrix, and, consequently, results in fast computations in an explicit time discretization. Numerical examples are presented. In particular, we discuss how the modes from our snapshot spaces can affect the accuracy of the method. Our numerical results show that one can obtain an accurate approximation of the solution with GMsFEM using less than 3% of the total local degrees of freedom.

REFERENCES

[1] M. Hinze and S. Volkwein, "Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control," in Dimension Reduction of Large-Scale Systems (P. Benner, V. Mehrmann, and D. Sorensen, eds.), vol. 45 of Lecture Notes in Computational Science and Engineering, pp. 261-306, Springer Berlin Heidelberg, 2005.
[2] Y. Maday, "Reduced-basis method for the rapid and reliable solution of partial differential equations." Downloadable at http://hal.archives-ouvertes.fr/hal-00112152/, 72006.
[3] M. Ghommem, M. Presho, V. M. Calo, and Y. Efendiev, "Mode decomposition methods for flows in high-contrast porous media. globalï£ i_{i}-local approach," Journal of Computational Physics, Vol. 253., pp. 226ï£ -238.
[4] L. Durlofsky, "Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media," Water Resour. Res., vol. 27, pp. 699-708, 1991.
[5] X. Wu, Y. Efendiev, and T. Hou, "Analysis of upscaling absolute permeability," Discrete and Continuous Dynamical Systems, Series B., vol. 2, pp. 158-204, 2002.
[6] T. Arbogast, "Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems," SIAM J. Numer. Anal., vol. 42, no. 2, pp. 576-598 (electronic), 2004.
[7] C.-C. Chu, I. G. Graham, and T.-Y. Hou, "A new multiscale finite element method for high-contrast elliptic interface problems," Math. Comp., vol. 79, no. 272, pp. 19151955, 2010.
[8] A. Abdulle, "The finite element heterogeneous multiscale method: a computational strategy for multiscale pdes," GAKUTO International Series Mathematical Sciences and Applications, vol. 31, no. EPFL-ARTICLE-182121, pp. 135-184, 2009.
[9] W. E and B. Engquist, "Heterogeneous multiscale methods," Comm. Math. Sci., vol. 1, no. 1, pp. 87-132, 2003.
[10] A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll, F. Thomines, et al., "Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments," Multiscale modeling and analysis for materials simulation, 2011.
[11] P. Henning and M. Ohlberger, "The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains," Numerische Mathematik, vol. 113, no. 4, pp. 601-629, 2009.
[12] G. Allaire and R. Brizzi, "A multiscale finite element method for numerical homogenization," Multiscale Modeling \& Simulation, vol. 4, no. 3, pp. 790-812, 2005.
[13] P. Jenny, S. H. Lee, and H. A. Tchelepi, "Adaptive fully implicit multi-scale finitevolume method for multi-phase flow and transport in heterogeneous porous media," Journal of Computational Physics, vol. 217, no. 2, pp. 627-641, 2006.
[14] P. Jenny, S. Lee, and H. Tchelepi, "Multi-scale finite-volume method for elliptic problems in subsurface flow simulation," Journal of Computational Physics, vol. 187, no. 1, pp. 47-67, 2003.
[15] H. Hajibeygi and P. Jenny, "Adaptive iterative multiscale finite volume method," Journal of Computational Physics, vol. 230, no. 3, pp. 628-643, 2011.
[16] Y. Efendiev, J. Galvis, and X. Wu, "Multiscale finite element methods for highcontrast problems using local spectral basis functions," Journal of Computational

Physics, vol. 230, pp. 937-955, 2011.
[17] Y. Efendiev and T. Hou, Multiscale Finite Element Methods: Theory and Applications, vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences. New York: Springer, 2009.
[18] Y. Efendiev, T. Hou, and V. Ginting, "Multiscale finite element methods for nonlinear problems and their applications," Comm. Math. Sci., vol. 2, pp. 553-589, 2004.
[19] E. Chung and Y. Efendiev, "Reduced-contrast approximations for high-contrast multiscale flow problems," Multiscale Model. Simul., vol. 8, pp. 1128-1153, 2010.
[20] E. Chung and W. T. Leung, "A sub-grid structure enhanced discontinuous galerkin method for multiscale diffusion and convection-diffusion problems," Commun. Comput. Phys., vol. 14, pp. 370-392, 2013.
[21] E. Chung, Y. Efendiev, and R. Gibson, "An energy-conserving discontinuous multiscale finite element method for the wave equation in heterogeneous media," Advances in Adaptive Data Analysis, vol. 3, pp. 251-268, 2011.
[22] E. Chung, Y. Efendiev, and W. T. Leung, "Generalized multiscale finite element method for wave propagation in heterogeneous media," Multiscale Model. Simul, vol. 12, pp. 1691-1721, 2014.
[23] R. Gibson, K. Gao, E. Chung, and Y. Efendiev, "Multiscale modeling of acoustic wave propagation in two-dimensional media," Geophysics, vol. 79, pp. T61-T75, 2014.
[24] Y. Efendiev, T. Hou, and X. Wu, "Convergence of a nonconforming multiscale finite element method," SIAM J. Numer. Anal., vol. 37, pp. 888-910, 2000.
[25] H. Owhadi and L. Zhang, "Metric-based upscaling," Comm. Pure. Appl. Math., vol. 60, pp. 675-723, 2007.
[26] Y. Efendiev, V. Ginting, T. Hou, and R. Ewing, "Accurate multiscale finite element methods for two-phase flow simulations," Journal of Computational Physics, vol. 220, pp. 155-174, 2006.
[27] Y. Efendiev, J. Galvis, and T. Hou, "Generalized multiscale finite element methods," Journal of Computational Physics, vol. 251, pp. 116-135, 2013.
[28] Y. Efendiev, J. Galvis, R. Lazarov, M. Moon, and M. Sarkis, "Generalized multiscale finite element method. Symmetric interior penalty coupling," J. Comput. Phys., vol. 255, pp. 1-15, 2013.
[29] Y. Efendiev, J. Galvis, G. Li, and M. Presho, "Generalized multiscale finite element methods. oversampling strategies," International Journal for Multiscale Computational Engineering, accepted, 2013.
[30] T. Hou and X. Wu, "A multiscale finite element method for elliptic problems in composite materials and porous media," J. Comput. Phys., vol. 134, pp. 169-189, 1997.
[31] E. Chung, Y. Efendiev, and G. Li, "An adaptive GMsFEM for high contrast flow problems," J. Comput. Phys., vol. 273, pp. 54-76, 2014.
[32] S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods. New York: Springer-Verlag, 2007.
[33] K. Mekchay and R. H. Nochetto, "Convergence of adaptive finite element method for general second order elliptic PDEs," SIAM J. Numer. Anal., vol. 43, pp. 1803-1827, 2005.
[34] W. Dorfler, "A convergent adaptive algorithm for poisson's equation," SIAM J.Numer. Anal., vol. 33, pp. 1106 - 1124, 1996.
[35] M. Drohmann, B. Haasdonk, and M. Ohlberger, "Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation," SIAM J. Sci. Comput., vol. 34, no. 2, pp. A937-A969, 2012.
[36] A. Abdulle and Y. Bai, "Adaptive reduced basis finite element heterogeneous multiscale method," Comput. Methods Appl. Mech. Engrg., vol. 257, pp. 203-220, 2013.
[37] D. B. P. Huynh, D. J. Knezevic, and A. T. Patera, "A static condensation reduced basis element method: approximation and a posteriori error estimation," ESAIM Math. Model. Numer. Anal., vol. 47, no. 1, pp. 213-251, 2013.
[38] N. C. Nguyen, G. Rozza, D. B. P. Huynh, and A. T. Patera, "Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs: application to real-time Bayesian parameter estimation," in Large-scale inverse problems and quantification of uncertainty, Wiley Ser. Comput. Stat., pp. 151-177, Chichester: Wiley, 2011.
[39] T. Tonn, K. Urban, and S. Volkwein, "Comparison of the reduced-basis and POD a posteriori error estimators for an elliptic linear-quadratic optimal control problem," Math. Comput. Model. Dyn. Syst., vol. 17, no. 4, pp. 355-369, 2011.
[40] S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev., vol. 43, no. 1, pp. 129-159, 2001. Reprinted from SIAM J. Sci. Comput. 20 (1998), no. 1, 33-61 (electronic) [MR1639094 (99h:94013)].
[41] V. Calo, Y. Efendiev, J. Galvis, and G. Li, "Randomized oversampling for generalized multiscale finite element methods," http://arxiv.org/pdf/1409.7114.pdf. to appear in SIAM MMS.
[42] Y. Efendiev and J. Galvis, "A domain decomposition preconditioner for multiscale high-contrast problems," in Domain Decomposition Methods in Science and Engi-
neering XIX (Y. Huang, R. Kornhuber, O. Widlund, and J. Xu, eds.), vol. 78 of Lect. Notes in Comput. Science and Eng., pp. 189-196, Springer-Verlag, 2011.
[43] E. Chung, Y. Efendiev, and W. T. Leung, "An adaptive generalized multiscale discontinuous galerkin method (GMsDGM) for high-contrast flow problems," arXiv preprint arXiv:1409.3474, 2014.
[44] B. Riviere, Discontinuous Galerkin Methods For Solving Elliptic And parabolic Equations: Theory and Implementation. SIAM, 2008.
[45] E. Chung, Y. Efendiev, and T. Leung, "Residual-driven online generalized multiscale finite element methods," submitted, arXiv:1501.04565.
[46] J. Galvis and Y. Efendiev, "Domain decomposition preconditioners for multiscale flows in high contrast media. reduced dimension coarse spaces," SIAM J. Multiscale Modeling and Simulation, vol. 8, pp. 1621-1644, 2010.
[47] J. Virieux, "P-SV wave propagation in heterogeneous media: Velocity-stress finitedifference method," Geophysics, vol. 51, no. 4, pp. 889-901, 1986.
[48] J. Virieux, "SH-wave propagation in heterogeneous media: Velocity-stress finitedifference method," Geophysics, vol. 49, no. 11, pp. 1933-1942, 1984.
[49] E. H. Saenger, R. Ciz, O. S. Krüger, S. M. Schmalholz, B. Gurevich, and S. A. Shapiro, "Finite-difference modeling of wave propagation on microscale: A snapshot of the work in progress," Geophysics, vol. 72, no. 5, pp. SM293-SM300, 2007.
[50] B. Lombard, J. Piraux, C. Gélis, and J. Virieux, "Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves," Geophysical Journal International, vol. 172, no. 1, pp. 252-261, 2008.
[51] W. Symes, I. S. Terentyev, and T. Vdovina, "Getting it right without knowing the answer: Quality control in a large seismic modeling project," SEG Technical Program Expanded Abstracts, vol. 28, no. 1, pp. 2602-2606, 2009.
[52] Y. J. Masson and S. R. Pride, "Finite-difference modeling of Biot's poroelastic equations across all frequencies," Geophysics, vol. 75, no. 2, pp. N33-N41, 2010.
[53] J. D. De Basabe and M. K. Sen, "New developments in the finite-element method for seismic modeling," The Leading Edge, vol. 28, no. 5, pp. 562-567, 2009.
[54] M. Käser, C. Pelties, C. E. Castro, H. Djikpesse, and M. Prange, "Wavefield modeling in exploration seismology using the discontinuous Galerkin finite-element method on HPC infrastructure," The Leading Edge, vol. 29, no. 1, pp. 76-85, 2010.
[55] C. Pelties, M. Käser, V. Hermann, and C. E. Castro, "Regular versus irregular meshing for complicated models and their effect on synthetic seismograms," Geophysical Journal International, pp. no-no, 2010.
[56] V. Hermann, M. Käser, and C. E. Castro, "Non-conforming hybrid meshes for efficient 2-D wave propagation using the discontinuous Galerkin method," Geophysical Journal International, vol. 184, no. 2, pp. 746-758, 2011.
[57] P. Moczo, J. Kristek, M. Galis, E. Chaljub, and V. Etienne, "3-D finite-difference, finite-element, discontinuous-Galerkin and spectral-element schemes analysed for their accuracy with respect to p-wave to s-wave speed ratio," Geophysical Journal International, vol. 187, no. 3, pp. 1645-1667, 2011.
[58] D. Komatitsch, D. Göddeke, G. Erlebacher, and D. Michéa, "Modeling the propagation of elastic waves using spectral elements on a cluster of 192 GPUs," Computer Science - Research and Development, vol. 25, pp. 75-82, 2010. 10.1007/s00450-010-0109-1.
[59] D. Komatitsch and J. Tromp, "Spectral-element simulations of global seismic wave propagation-I. Validation," Geophysical Journal International, vol. 149, no. 2, pp. 390-412, 2002.
[60] D. Komatitsch and J. Tromp, "Introduction to the spectral element method for three-dimensional seismic wave propagation," Geophysical Journal International, vol. 139, no. 3, pp. 806-822, 1999.
[61] C. Morency, Y. Luo, and J. Tromp, "Acoustic, elastic and poroelastic simulations of CO_{2} sequestration crosswell monitoring based on spectral-element and adjoint methods," Geophysical Journal International, pp. no-no, 2011.
[62] W. Zhang, L. Tong, and E. Chung, "Exact nonreflecting boundary conditions for three dimensional poroelastic wave equations.," Comm. Math. Sci., vol. To appear.
[63] W. Zhang, L. Tong, and E. Chung, "A new high accuracy locally one-dimensional scheme for the wave equation.," J. Comput. Appl. Math., vol. 236, pp. 1343-1353, 2011.
[64] W. Zhang, L. Tong, and E. Chung, "Efficient simulation of wave propagation with implicit finite difference schemes.," Numer. Math. Theor. Meth. Appl., vol. 5, pp. 205-228, 2012.
[65] F. Delprat-Jannaud and P. Lailly, "Wave propagation in heterogeneous media: Effects of fine-scale heterogeneity," Geophysics, vol. 73, no. 3, pp. T37-T49, 2008.
[66] Y. Efendiev, J. Galvis, R. Lazarov, M. Moon, and M. Sarkis, "Generalized multiscale finite element method. IPDG." Submitted, 2013.
[67] M. Grote and D. Schotzau, "Optimal error estimates for the fully discrete interior penalty DG method for the wave equation.," J. Sci. Comput., vol. 40, pp. 257-272, 2009.
[68] E. Chung and W. Leung, "A sub-grid structure enhanced discontinuous Galerkin method for multiscale diffusion and convection-diffusion problems.," Coттит. Comput. Phys., vol. 14, pp. 370-392, 2013.
[69] E. Chung and B. Engquist, "Optimal discontinuous Galerkin methods for wave propagation.," SIAM J. Numer. Anal., vol. 44, pp. 2131-2158, 2006.
[70] E. Chung and B. Engquist, "Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions.," SIAM J. Numer. Anal., vol. 47, pp. 3820-3848, 2009.
[71] H. Chan, E. Chung, and G. Cohen, "Stability and dispersion analysis of staggered discontinuous Galerkin method for wave propagation.," Int. J. Numer. Anal. Model., vol. 10, pp. 233-256, 2013.
[72] E. Chung, P. C. Jr., and T. Yu, "Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell's equations on Cartesian grids.," J. Comput. Phys., vol. 235, pp. 14-31, 2013.
[73] E. Chung, H. Kim, and O. Widlund, "Two-level overlapping Schwarz algorithms for a staggered discontinuous Galerkin method.," SIAM J. Numer. Anal., vol. 51, pp. 4767, 2013.
[74] E. Chung and C. Lee, "A staggered discontinuous Galerkin method for the convection diffusion equation.," J. Numer. Math., vol. 20, pp. 1-31, 2012.
[75] E. Chung and C. Lee, "A staggered discontinuous Galerkin method for the curl-curl operator.," IMA J. Numer. Anal., vol. 32, pp. 1241-1265, 2012.
[76] E. Chung and P. C. Jr., "A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials.," J. Comput. Appl. Math., vol. 239, pp. 189-207, 2013.
[77] E. Chung, Y. Efendiev, and R. Gibson, "An energy-conserving discontinuous multiscale finite element method for the wave equation in heterogeneous media.," $A d$ vances in Adaptive Data Analysis, vol. 3, pp. 251-268, 2011.
[78] R. Gibson, K. Gao, E. Chung, and Y. Efendiev, "Multiscale modeling of acoustic wave propagation in two-dimensional media.," To appear in Geophysics.
[79] F. Nataf, H. Xiang, V. Dolean, and N. Spillane, "A coarse space construction based on local Dirichlet-to-Neumann maps.," SIAM J. Sci. Comput., vol. 33, pp. 1623-1642, 2011.
[80] A. Taflove and S. C. Hagness, Computational Electromagnetics: The finite-difference time-domain method. Artech House, 2005.
[81] Y. Efendiev, J. Galvis, G. Li, and M. Presho, "Generalized multiscale finite element methods. oversampling strategies," to appear in International Journal for Multiscale Computational Engineering.

[^0]: Reprinted with permission from "Residual-driven online generalized multiscale finite element methods" by Eric T Chung, Yalchin Efendiev and Wing Tat Leung, 2015. Journal of Computational Physics, 302, 176190, Copyright [2017] by Elsevier.

[^1]: Reprinted with permission from "Generalized multiscale finite element methods for wave propagation in heterogeneous media" by Eric T Chung, Yalchin Efendiev and Wing Tat Leung, 2014. Multiscale Modeling \& Simulation, 12, 1691-1721, Copyright [2017] by Society for Industrial and Applied Mathematics.

[^2]: Reprinted with permission from "Residual-driven online generalized multiscale finite element methods" by Eric T Chung, Yalchin Efendiev and Wing Tat Leung, 2015. Journal of Computational Physics, 302, 176190, Copyright [2017] by Elsevier.

