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ABSTRACT  

Progress in gene therapy has been hampered by the absence of a suitable delivery 

vector that is both easy to produce and delivers genetic payloads efficiently and 

specifically to the targeted disease cells. Cell-targeting proteins, primarily monoclona l 

antibodies, already exist in abundance but there is currently no robust and reproducibly 

effective way to functionalize viral vectors with these proteins. In the case of antibodies, 

non-covalent approaches to incorporate antibody onto a lentivirus surface leaves the 

linkage vulnerable to interference from serum immunoglobulins in immune-competent 

individuals.  

This dissertation focuses on enabling facile reprogramming of lentiviral vectors to 

deliver genetic payloads to specific cell types through in vitro covalent functionalizat ion 

with cell-binding proteins. Two covalent-bond forming protein-protein pairs were 

explored to conjugate a HER2-binding protein to lentivirus pseudotyped with a binding-

deficient, fusion-competent Sindbis virus envelope protein. Both the strategies resulted in 

functionalization of lentivirus and the titers were significantly higher compared to the 

naked virus. A receptor dependent retargeting was observed with functionalized virions. 

Lastly, the covalent bond was observed to be stable during prolonged dialysis and in 

presence of serum complement. A chemical conjugation approach was successfully 

exploited to functionalize the virions with an antibody fragment.  

In another project, we aim to develop a new platform technology, building upon 

the antibody-guided chicken vaccine technology and the single emulsion technology, for 
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the discovery of chicken IgY antibodies against target cancer antigens. The antibody-

guided chicken vaccine technology approach was successfully developed to generate an 

immune response in chickens against the target cancer antigen. 
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ENV Envelope 
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HER2/neu Receptor Tyrosine Protein Kinase erbB-2 
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Ides IgG Degrading Enzyme of Streptococcus Pyrogenes 

DBCO Dibenzocyclootyne  

scFv Single Chain Variable Fragment  

AzF p-acetyl phenylalanine 

TCEP Tris-(2-carboxyl ethyl) phosphine 

BCA Bicinchoninic Acid 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction to gene therapy 

Gene therapy was an idea developed in the early 1980s; however, its application was 

riddled with misses and delays (Cavazzana-Calvo et al. 2000; Friedmann 1992; Scollay 

2001). These obstacles were overcome due to the notion that gene therapy could present 

a real therapeutic alternative to pharmaceuticals. The initial goal for gene therapy was to 

treat monogenic diseases by supplying patients with a wild type gene to compensate for 

the defective gene (Kaufmann et al. 2013; Naldini 2015; Scollay 2001; Sheridan 2011). A 

major setback in gene therapy came during the clinical trials in France were introduction 

of gamma-retroviruses to patients suffering from  X-linked severe combined 

immunodeficiency (X-SCID) resulted in leukemia development (Hacein-Bey-Abina et al. 

2003), halting the use of retroviruses in gene therapy. The mechanism of oncogenesis in 

these patients was  due to insertion and activation of LMO2 T-cell oncogene by the 

gamma-retroviral vector used (Hacein-Bey-Abina et al. 2003). The risk of insertio na l 

mutagenesis is associated with the preferred integration of gamma-retroviruses near the 

promoter regions and CpG islands of DNA (Cattoglio et al. 2010). 

In order to generate an effective and safe vector for gene therapy, both non-viral and 

viral vectors have been extensively studied and used in clinical trials. There are limitat ions 

in each of the vectors, including the fact that non-viral and some viral vectors can 

efficiently transfect/transduce cells but do not integrate their genetic payload into the 

genome of targeted cells, resulting in transient expression (Ramamoorth and Narvekar 
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2015; Yin et al. 2014). On the other side, gamma-retroviruses, lentiviruses, adenovirus (St 

George 2003) and adeno-associated viruses (Daya and Berns 2008) are able to integrate 

their transgenes into targeting cells ensuring long-term expression albeit with different 

degrees of efficiency. 

Among the integrating viral vectors, lentiviral vectors have the largest payload 

capacity for packaging (8-10 kb-long) (Vigna and Naldini 2000), compared to 8 and 5 kb 

size limits in gamma-retroviral vectors and adeno-associated viral vectors, respectively. A 

major limitation of retroviruses is that they can only transduce actively dividing cells 

because the integration step requires the breakdown of the nuclear membrane during 

infection (Miller et al. 1990; Roe et al. 1993). 

1.2 Lentivirus 

Vectors derived from retroviruses such as lentivirus and onco-retroviruses are among 

the most suitable vectors to achieve long-term gene transfer, since they allow stable 

integration of a transgene and its propagation in next generations. Lentiviral vectors (LV)  

were selected over onco-retroviruses as the gene delivery vector due to their ability to 

infect non-dividing target cells (Cockrell and Kafri 2007). Lentivirus belongs to the family 

retroviridae and the genome of lentivirus, such as human immunodeficiency virus (HIV-

1) and oncoretroviruses, such as mouse leukemia virus (MLV), have been extensive ly 

studied in the past three decades because of their clinical relevance and their potential role 

as gene therapy vectors. 
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1.2.1 Lentiviral genome and structure 

Lentivirus include primate and non-primate retroviruses. Examples of the former are 

HIV, SIV (simian immunodeficiency virus) and of the latter FIV (feline 

immunodeficiency virus) (Poeschla et al. 1998), BIV (bovine immunodeficiency virus) 

(Molina et al. 2002), CaEV (caprine arthritis-encephalitis virus) (Mselli-Lakhal et al. 

2006), EIAV (equine infectious anemia virus) and visnavirus.  

Each lentiviral particle genome has two identical copies of a single positive 9 kb RNA 

strand, and each RNA strand contains 9 open reading frames (ORFs), which encode for 

15 viral proteins. The gag gene encodes for capsid, matrix, and nucleocaspid protein. The  

pol gene encodes for viral polymerase, which is comprised of proteases, reverse 

transcriptase and integrase. The env gene encodes for a glycosylated envelope protein and 

transmembrane domain. These are viral capsid proteins that are viral enzymes necessary 

for the reverse transcription and integration steps, and envelope glycoproteins to form new 

viral particles. The remaining six unique lentiviral proteins are accessory and regulatory 

proteins: Vif, Vpr, Vpu, Nef, Tat and Rev (Frankel and Young 1998). 

The following table 1.1 illustrates the function of each of these accessory proteins, and 

each one has been shown to affect the production of new lentiviral particles and their 

virulence. 
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Table 1.1. Functional activity of different accessory proteins 
Gene Name Function Reference 

Vif Viral infectivity 

factor 

Viral infectivity and identified to interact with 

APOBEC3G, which can impair the infectivity of 

virions 

(Mariani et al. 

2003; 

Subbramanian and 

Göttlinger 1996) 

Vpr Viral protein R Nuclear targeting – contains nuclear localization 

signal (NLS) and directs the preintegration complex 

(PIC) to the nucleus without the breakdown of 

nuclear membrane, helping in infecting non-

dividing cells. Responsible to induce cell cycle 

arrest in G2 phase to increase viral protein 

production 

(Emerman 1996; 

Goh et al. 1998) 

Vpu Viral protein 

unique 

Help in virus budding  (Nomaguchi et al. 

2008) 

Nef Negative 

regulatory factor 

Promotes Virus infectivity by down regulating the 

host immune response 

(Piguet and Trono 

1999) 

Tat Transactivator of 

transcription 

Promotes Virus gene expression – binds to the 

5’end of all nascent viral mRNA and enhances 

transcription 

(Giacca 2004) 

Rev Regulator of 

expression of 

virion proteins 

Promotes Structural gene expression – binds to Rev 

responsive element (RRE) of the RNA to transport 

viral mRNA out of nucleus for translating viral 

proteins 

(Pollard and Malim 

1998) 

 
 
 

Within a mature lentiviral particle, two copies of viral genomic RNA surrounded by 

nucleocapsid proteins are enclosed in a conical shell formed by capsid proteins along with 

several viral enzymes (protease, reverse transcriptase, integrase), and the accessory 

proteins, Vif, Vpr and Nef. The viral capsid is wrapped inside a lipid membrane in which 

viral matrix proteins cover the inner side of the lipid membrane and viral envelope proteins 

localize across and outside of it (Briggs et al. 2004). 

1.2.2 Lentiviral lifecycle 

The lentiviral life cycle can be broken down into several steps (Tang et al. 1999): 
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 The lentiviral particle binds to a cognate receptor on the target cells; the viral 

surface protein undergoes a conformational change to reveal secondary binding 

sites. 

 After binding, further conformational changes trigger fusion of the viral and cell 

membranes, which causes the release of the viral core into the target cells.  

 After the viral core gains entry into the cell, it uncoats itself and forms the reverse 

transcription complex. The single stranded RNA molecule is reverse transcribed 

into double stranded cDNA, which can then be integrated into the host genome. 

 Reverse transcription process is initiated by the binding of tRNA to the primer 

binding site on the 5’ end of the viral genome (Abbink and Berkhout 2008). 

 A small fragment of cDNA is synthesized. 

 This cDNA dissociates from the RNA-DNA complex and undergoes first strand 

transfer, in which the cDNA binds to the 3’ end of the viral genome and acts as the 

primer for the negative strand cDNA synthesis. 

 The viral genomic RNA is degraded by RNase H, except at two polypurine tracts 

(PPT) – central region (cPPT) and 3’ end. 

 The fragment of positive strand cDNA beginning from the 3’ PPT undergoes 

second strand transfer, in which the cDNA fragment binds to the primer binding 

site region on the negative strand cDNA.  

 The complete synthesis of the both strands results in the final desired product of 

double stranded cDNA. 
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 The central 99-nucleotide overlap sequence of the positive strand guides the 

nuclear import the pre-integration complex (PIC) in non-dividing cells, which is 

eventually removed by cellular endonucleases (Charneau et al. 1994). 

 Once the PIC enters the nucleus, the provirus is integrated into the cellular genome 

by viral integrase (McDonald et al. 2002).  

 Both spliced viral mRNAs and unspliced viral genomic RNA are transferred to 

cytoplasm by the Rev protein. 

 The viral proteins are synthesized, along with the new viral RNA genome; new 

viral particles are generated and released from the cell surface by budding 

(Stevenson et al. 1990). 

1.3  Basic engineering of lentiviral vectors 

The retroviral gene delivery vectors were introduced in the early 1980s (Friedmann 

1992). The most commonly used retroviral vectors were based on Moloney Mouse 

Leukemia Virus (MLV). The major advantages of retroviral vectors are: (i) their lack of 

viral proteins, which renders them replication deficient and less immunogenic, and (ii) 

their ability to integrate into the host genome, establishing a stable gene expression. 

However, there are some prominent limitations, such as: (i) instability of the viral particles 

(Andreadis et al. 1997), (ii) low viral titers (Andreadis et al. 1999), (iii) inability to 

transduce non-dividing cells, and (iv) insertional mutagenesis. To overcome these 

drawbacks, vectors based on lentiviruses have gained prominence as viral vectors. They 

are capable of transducing quiescent cells and display lower frequencies of insertiona l 

mutagenesis (Korin and Zack 1998). The general strategy for a safe lentiviral vector is 
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similar to that followed for retroviral vector design, namely, separating cis-acting 

sequences (viral noncoding elements necessary for RNA synthesis, packaging, reverse 

transcription and integration) and trans-acting sequences (viral enzymes, along with 

structural and accessory proteins). 

1.3.1 Lentiviral vector packaging system 

1.3.1.1 Different generation of lentiviral vectors 

To avoid the generation of replication-competent lentiviruses (RCL), trans-acting 

elements are put on separate plasmids. The lentiviral particles are divided into 

“generations” according to the packaging plasmid used for production. The first 

generation packaging plasmid includes the entire gag and pol sequences, as well as all of 

the viral accessory genes and regulatory genes. To ensure that it only expresses viral 

proteins and enzymes for viral packaging, the viral long terminal repeat (LTR) promoter 

was replaced with cytomeglovirus (CMV) or rous sarcoma virus (RSV) promoter (Lai and 

Brady 2002). Poly A tail was added to the 3’ end of packaging plasmid (Zaiss et al. 2002). 

In the second-generation packaging system, the four accessory genes (vif, vpr, vpu and 

nef) were removed without affecting the viral infectivity and titer (Zufferey et al. 1997). 

The third generation packaging system put the regulatory gene, rev, on another separate 

plasmid to increase biosafety, and removed tat by replacing the 5’ LTR with a 

constitutively active promoter in the transfer vector (Dull et al. 1998). The combination 

with deletion in U3 region from 3’LTR in self inactivating (SIN) vector, viral LTR can be 

eliminated, thus further reducing the genotoxicity of viral LTR (Sarkis et al. 2008; 

Zufferey et al. 1998). 
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1.3.1.2 Design and improvement of lentiviral transfer vector 

Long-term stable transgene expression due to lentiviral vector integration is very 

useful for the treatment of diseases in which permanent cell correction is required. To 

avoid the possibility of genetic recombination with wild-type lentiviruses, the new 

generation vector should  include only the necessary viral proteins. A major breakthrough 

in lentiviral vector design was developed at the Salk Institute in 1998, (Miyoshi et al. 

1998) by removing the enhancer/promoter sequence in U3 region, thus making the LTR 

inactive during transgene expression. Interestingly, the deletion did not reduce viral titer , 

but and importantly, minimized RCL generation. It also decreases the chances of host gene 

activation around the insertional site. The transduction activity in non-dividing cells was 

enhanced by incorporation of the cPPT element and CTS pol gene, that facilitate PIC entry 

to the nucleus (Follenzi et al. 2000; Zennou et al. 2000). Another improvement in the 

transfer vector was the addition of the woodchuck hepatitis virus posttranscriptiona l 

regulatory element (WPRE). WPRE is added to the 3’ end of the transgene, and has shown 

to enhance mRNA transcript stability and increase the overall transgene expression (Popa 

et al. 2002). 

One of the goals for lentiviral gene therapy is to express the transgene only in the target 

cells while avoiding nonspecific infection. Three different strategies were developed to 

achieve the stringent regulation of transgene expression in desired cells. The first strategy 

is called transductional targeting and relies on the modification of the vector surface either 

by the incorporation of foreign envelope glycoproteins that have restricted tropism, or by 

the insertion of specific ligands often fused to the envelope proteins that will determine 
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the affinity of the vector for a given target cell. In this strategy, the vector specificity is 

determined at entry state and therefore, only the cells that carry the specific receptor will 

be transduced.  

The second strategy is transcriptional targeting which is often achieved by the insertion 

of a tissue-specific promoter, or a fragment of this promoter, upstream of the therapeutic 

transgene. This strategy was very promising but still non-specific targeting occurs due to 

the broad tropism of the envelope for non-target cells. The third strategy takes advantage 

of the microRNA (miRNA) post-transcriptional regulation to increase tissue specificity of 

gene expression. Several studies have shown effective suppression of gene expression in 

certain cells with the lentiviral vector containing sequences matching endogenous 

miRNA. When transduced cells express endogenous miRNA, transgene expression is 

repressed. 

1.4 Surface targeting of lentiviral vectors 

When lentiviral particles exit infected cells, they are surrounded by a lipid membrane, 

termed the envelope (Env), derived from the infected cells. The envelope contains both 

virus-derived and cellular proteins (CP), which may perform distinct functions for the 

virus. The displayed proteins play a role in virus-cell and virus-medium interactions to 

complete their life cycle. Apart from the virus encoded Env proteins, CP are also 

incorporated into the viral envelopes through three processes: (i) interaction of host  

proteins with viral proteins (type 1 incorporation), (ii) incorporation due to directed 

colocalisation (type 2 incorporation) and (iii) random incorporation (type 3 incorporation). 

The proteins associated with the Gag proteins are subsequently incorporated with similar 
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efficiency, the incorporation of protein cyclophilin A to HIV-1 particles is an example of 

type 1 incorporation (Hammarstedt and Garoff 2004). The type 2 incorporation primarily 

happens at the membrane microdomains like lipid rafts. The glycosylphosphatidylinosito l-  

anchored CD55 (decay accelerating factor) and CD50 (protectin) were incorporated into 

viral envelopes through the type 2 incorporation (Breun et al. 1999; Saifuddin et al. 1997).  

This incorporated complement regulatory factors had offered sufficient high enough 

protection from the human complement system, a part of the innate immune system for 

the virion particles. Interestingly, it has been demonstrated that most of the pseudotyping 

events form through the co-localization of molecules at membrane microdomains (Briggs 

et al. 2003; Metzner et al. 2008a; Metzner et al. 2008b). It is hard to distinguish between 

type 2 and type 3 incorporation events as most of these events happen passively, i.e 

concentration of proteins is not increased compared to normal membrane composition. 

The proteomic approaches have identified host proteins found in viral envelopes, have 

concluded a range of molecules involving in cellular adhesion. The viruses may profit 

from these molecules as they provide additional initial anchoring before the specific 

interaction between the envelope and the cognate viral receptor (Chertova et al. 2006; 

Segura et al. 2008). 

1.4.1 Surface modification of lentiviral particles 

Surface modification of lenvitiral particles can be broadly separated into five 

categories: 

 Pseudotyping 

 Generation of fusion proteins 



 

11 

  

 

 Post translational modification of proteins with lipophilic residues 

 Utilization of adapter molecules 

 Direct chemical modifications 

1.4.1.1 Pseudotyping 

The phenomenon that surface proteins (glycoproteins) of one viral species can be 

displayed on the surface of another viral species is termed “pseudotyping”. The primary 

role of viral surface glycoproteins is to mediate binding and entry of host cells. The 

replacement of Env molecules in most cases changes the tropism of the vector. This 

strategy has been exploited in gene therapy, as it allows the broadening or redirecting of 

the virus to a broad range of cells. For example, HIV-1 based LV vectors, can be redirected 

from CD4+ cells by replacing the Env protein with that of the vesicular stomatitis virus 

(VSV), thus generating a vector that targets cells encoding the LDL-R (Bischof and 

Cornetta 2010). VSV-G, the surface glycoprotein of VSV, is probably the most often used 

molecule for pseudotyping applications. Recently, lentiviral vectors have been 

pseudotyped with envelope proteins from Sindbis (Morizono et al. 2010; Yang et al. 

2006), Influenza (Hay et al. 2001) or measles virus (Frecha et al. 2011), as the binding 

activity of these viruses is independent from the fusion activity. In such cases, the native 

binding activity may be abrogated and replaced with a binding function of choice.  

1.4.1.2 Fusion proteins 

Fusion of retroviral envelope proteins with molecules of interest allows for 

modification of viral surfaces. The advantage of this method is that theoretically, no limit 

is placed on the type of amino acid sequence introduced and that incorporation to the viral 



 

12 

  

 

particles is in most cases efficient (Ryu et al. 2008). The fused parts may be ligands 

(Kasahara et al. 1994), peptides (Gollan and Green 2002) or single-chain antibodies 

(Anliker et al. 2010a). However, a major limitation is the loss of infectivity due to the 

disturbance in structural or functional elements in the vector. This issue became apparent 

when insertion of a CD33 specific single-chain antibody to the envelope protein of MLV, 

hindered fusion of the virus and cell membranes during infection (Zhao et al. 1999), likely 

due to the inability of the chimeric protein to undergo a mandatory conformational change, 

which activates the fusion activity.  In some cases, the virion-targeting functions of 

chimeric proteins can also be provided by mixed modifications using fusion proteins of 

other glycoproteins, such as Sindbis virus, Influenza or measles virus with engineered 

novel binding properties. In these cases, the wild type binding specificity was destroyed 

and replaced with molecules conferring specific targeting to molecules such as integrin 

(Morizono et al. 2009a) or the B lymphocyte marker CD20 (Anliker et al. 2010a). 

1.4.1.3 Post translational modification of proteins with lipophilic residues 

Glycosylphosphatidylinositol (GPI) modification is a type of post-translationa l 

modification occurring in eukaryotic cells to attach proteins to lipid membranes.  GPI-

linked proteins are targeted to the outer surface of the cell membrane and are frequently 

associated with dynamic membrane microdomains also known as lipid rafts (Legler et al. 

2005). Due to their hypermobility, these can re-integrate to lipid membranes of the cells 

and viruses, a process termed cellular or viral painting, respectively.  

A range of recombinant GPI-anchored proteins have been produced includ ing 

glypiated GFP and CD4 (Legler et al. 2005). The GPI-anchored proteins can be employed 
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for the modification of lentiviral vectors by: (i) transfection of virus producing cells, where 

their integration in the viral particle is facilitated by the co-localization of glypiated 

proteins at the site of viral budding and (ii) by viral painting, re-introducing purified GPI-

anchored proteins to mature viral particles. In the first approach, viral particles displaying 

GPI-anchored molecules on their envelopes were produced by co-transfection of cells with 

constructs expressing the GPI-anchored proteins and the necessary lentiviral plasmids. In 

one study, the transfection of the murine retroviral producer cell line PALSG/S with the 

human GPI-anchored protein CD59, yielded viral particles that are resistant to the activity 

of complement in human serum (Breun et al. 1999). In other studies, the recombinant GPI-

anchored cytokines such as interleukin-2 (IL-2), and granuolocyte-marcophage colony 

stimulating factor (GM-CSF) were observed to be functional to elicit the cellular responses 

such as differentiation and proliferation (Kueng et al. 2007). In the second approach, GPI-

anchored proteins that have been extracted and purified from cells are inserted into 

lentiviral vectors after incubation with enveloped viruses. This appraoch was first 

described for the GPI-linked model protein CD59his, which associates with MLV and 

HIV-1 viral vectors (Metzner et al. 2008b). 

The major advantage of this approach is that stable transfection of LV producer cell 

lines co-transfected GPI-anchored proteins can provide a reproducible long–term source 

of modified viral particles. The merit of the viral painting approach is flexibility; however, 

as this process is carried out as a post-exit surface modification; the fully formed viral 

particles may lose viral infectivity. 
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1.4.1.4 Adaptor structures 

Another strategy to modify viral particles is to introduce an adaptor molecule onto the 

viral particle, which can mediate association with other molecules. These adaptors can be 

soluble, non-covalently attached molecules or membrane bound factors. The bispecific 

molecules or assemblies were used, specifically contacting a molecule present on the viral 

surface and another on the cells about to become infected. For example, two different 

antibodies, modified with biotin, were linked via avidin or streptavidin (Roux et al. 1989), 

thus providing specificity for viral surface proteins and the target molecule on the cell. 

This highly flexible system was applied to infect major histocompatibity complex (MHC) 

I and II expressing cells with murine retroviruses (Roux et al. 1989). Alternatively, a 

receptor ligand chimeric protein may be used, in which the binding partner of the adaptor 

protein incorporated in the viral vector is coupled to a targeting moiety. This strategy was 

implemented with vectors pseudotyped with avian sarcoma and leucosis virus (ASLV). 

The chimeric bridge protein consisted of the extracellular domains of the cellular receptor 

for ASLV, fused to the ligands such as epidermal growth factor (EGF) or vascular 

endothelial growth factor (VEGF), thus targeting cells expressing the respective receptors  

(Snitkovsky et al. 2000; Snitkovsky et al. 2001; Snitkovsky and Young 2002). 

The main advantage of adaptor structures is their flexibility; however, sometimes post-

exit modification steps may be necessary, which could potentially reduce infectivity of 

lentiviral vectors. In some studies, binding of biotin to vectors is achieved by chemical 

modification or after incorporation of a biotin-adaptor peptide (BAP) (Morizono et al. 

2009b; Nesbeth et al. 2006). Mixing of different strategies like pseudotyping of an LV 
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vector with chimeric envelope molecules containing an adaptor element can and have been 

used to modify LV vectors. One strategy is to incorporate antibody binding adaptor 

molecules to modify viral surfaces. For examples, insertion of immunoglobin G-binding 

domains (the ZZ-domain of staphylococcal protein A) into the Env protein of MLV 

vectors allowed for the binding of specific HER2 specific antibodies thereby redirecting 

the vectors to the receptor positive target cells (Morizono et al. 2001; Pariente et al. 2008). 

In a similar approach, the same antibody-binding domain was fused to the sindbis 

envelope glycoprotein. The main disadvantage of adaptor systems is that an additiona l, 

separate element is necessary for the system to work, thus introducing a new level of 

complexity. Additionally, adaptors may dissociate from their binding partner, due to a 

non-covalent interaction or competition from serum antibodies in vivo (Morizono et al. 

2009a). The adaptor association in most cases requires post-exit procedures, which can 

contribute to a loss of infectivity. 

1.4.1.5 Direct chemical modification 

The direct chemical linkage of substrates to viral surfaces has been successfully 

applied by incorporation or fusion of polymers and polypeptides to adenoviruses and 

adeno-associated viruses (Croyle et al. 2002; Croyle et al. 2000). While limited, this 

approach has proven successful in lentiviral vectors. One successful example is the 

attachment of monomethoxy-poly(ethylene)glycol (PEG) to VSV-G pseudotyped LV 

vectors (Croyle et al. 2004). The activated form of PEG is covalently attached to lysine 

residues on the proteins displayed on the virus. The PEGylated virions were observed to 

be stable when exposed to human and murine complement. In another study, the viral 



 

16 

  

 

tropism was changed by the chemical addition of carbohydrate (galactose) moieties on the 

MLV viral surface (Neda et al. 1991). This study allowed transduction of human cells with 

ecotropic MLV vectors, which normally cannot infect human cells. The chemical display 

of biotin through a metabolic engineering approach has also been exploited in many 

studies. The biotin-adaptor peptides were introduced into the viral surface glycoprote ins 

allowing for the specific biotinylation of these proteins by the secreted biotin ligase, 

conferring the possibility for avidin, streptavidin or neutravidin linkage. These adaptors 

can also be attached with secondary biotinylated compounds. More recently, usage of 

biorthogonal chemistry has been explored for different approaches. Bioorthogona l 

chemistry allows chemical reactions to occur in a controlled and specific manner. Cell 

surfaces can be modified by oxidation of sialic acids present on glycosylated surface 

proteins by periodate, generating reactive aldehyde groups, which in turn, can be modified 

by conjugation of aminooxy-functionalized compounds (Zeng et al. 2009). The chemical 

conjugation between VSV-G pseudotyped MoMLV, carrying the aminooxy-biotin was 

subsequently associated with streptavidin magnetic beads, further facilitating purificat io n 

and concentration of virus preparations (Wong and Kwon 2011). Direct chemical 

modification of herpesvirus particles with radioactive labels has also been demonstrated 

in biodistribution studies (Schellingerhout and Bogdanov 2002). The major advantage of 

chemical modification is lower non-specific targeting, which would contribute to the 

safety of gene therapy. 
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1.5  Transductional targeting 

A key element of successful and efficient gene therapy is the ability to target only the 

subset of cells requiring treatment after systemic administration. The ideal viral vector for 

in vivo gene therapy approaches is that which shows no non-specific infection and less 

risk of insertional mutagenesis. In the case of LV vectors, the viral glycoproteins located 

in the envelope function as recognition and entry devices to allow access to target cells. 

The Env protein consist of two subunits, the surface (SU) and transmembrane (TM), both 

with distinct functions. SU mediates the first contact with the host cells by engaging the 

viral receptor. The binding specificity of the SU subunit therefore determines the host cell 

range of the virus. Upon this first contact, TM fusogenic properties are activated, which 

allow viral and cellular membranes to fuse, resulting in viral entry. Modificat ions 

introduced in the Env proteins are sometimes not tolerated, and may lead to severe 

reduction in infectivity. However, these modifications are crucial to achieve transductiona l 

targeting, with specificity being the most important parameter. 

A range of different strategies have been tested to change the infection tropism 

including the use of glycoproteins from heterologous viral species (pseudotyping) or 

chimeric envelope glycoproteins (Env fusion proteins), as well as bridging molecules 

(adaptors). The application of pseudotyping for transduction targeting is limited by the 

available glycoproteins (King and Daly 2014). An efficient strategy is the use of chimeric 

envelope proteins in which the protein responsible for receptor binding is replaced with 

peptides, ligands or single chain antibodies, thereby redirecting the virus to desired cells. 
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Additionally, adaptors have the capability to associate with both the viral glycoprotein and 

the cellular receptor mediating the linkage between the virus and the target cells. 

Transduction targeting progress has been made by exploiting envelope proteins whose 

binding and fusion properties are independent (Morizono et al. 2006). Among the most 

promising candidates are genetically engineered variants of the Sindbis virus (Sind) 

glycoproteins, the influenza virus hemagglutinin and measles virus glycoprotein. It was 

found that envelope of alphavirus Sindbis virus was able to pseudotype retroviruses and 

lentiviruses. The two integral membrane glycoproteins, E1 and E2, form a heterodimer 

and function as a unit. E2 binds to the host cell receptor. E1 mediates the membrane fusion 

in a low pH-dependent manner (Li et al. 2010). The primary lentiviral-gene targeting 

system was based on the modified Sindbis virus envelope (Sind-ZZ) that encoded the ZZ 

domain of protein A. Monoclonal antibodies were able to functionalize the virions and 

direct them to cell-specific-antigens (Ohno et al. 1997). Although the targeting was 

efficient, the functionalized Sind-ZZ resulted in high levels of infectivity in liver and 

spleen cells during in-vivo targeting, due to the high affinity towards laminin and heparin 

sulfate receptors (Wang et al. 1992). Several E2 mutants with reduced levels of non-

specificity combined with other mutations in other domains R1, R2 and R4 respectively, 

resulted in a pseudotyped virus, termed m168 (Morizono et al. 2005). This pseudotyped 

virus showed enhanced selectivity with high viral titer. This engineered Sindbis envelope 

was used to pseudotype lentivirus to enhance specific targeting through the cell-bind ing 

moiety. By incorporating adaptor molecules, the same basic viral particle can be modified 

with a range of binding properties to suit the specific needs of the targeting application. In 
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summary, combination of LV viral surface glycoproteins capable of inducing virus/ce ll 

fusion independent of binding with a flexible adaptor system represents the most 

promising candidate for targeting applications. 

1.6 Research objectives 

The focus of this research project is to exploit different covalent bond formation 

approaches to create a reprogrammable lentiviral vector to deliver genetic payloads to 

specific cell types. The following chapters contain a detailed description of the 

experimental techniques used to characterize each retargeting approach, and the 

conclusions drawn from the obtained results. 

 

 

 

 

Figure 1.1: Depiction of InaD PDZ1 complex with DARPin-

TEFCA (A) and SpyTag complex with DARPin-

SpyCatcher (B). Green: InaD PDZ1 (pdb: 1IJH) or SpyTag 
(pdb: 2x5p), to be incorporated into viral Env; red: TEFCA or 
SpyCatcher, to be fused to cell-attachment protein; blue: 

DARPin (pdb: 4J7W), a model cell-binding protein; orange 
line: Sindbis Env E2. 
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Chapter II focuses on development of a facile retargeting lentiviral vector, using a 

disulfide bond formation protein-peptide pair from the Drosophila visual system. The N-

terminal PDZ1 domain of InaD protein (PDZ1) and its pentapeptide ligand (TEFCA) from 

NorpA, were exploited to functionalize pseudotyped lentiviruses. Chapter III explores an 

isopeptide bond forming protein-peptide pair from Streptococcus pyogenes to create a 

retargeting lentiviral vector. The N-terminal fragment (SpyCatcher) and C-terminal 

fragment (SpyTag) of the collagen adhesion domain (CnaB2) from the fibronectin binding 

protein (FbaB), were applied to functionalize lentiviruses. The functionalization of virions 

with the cell targeting protein displayed receptor dependent targeting. The bond was 

observed to very stable compared to the previous non-covalent approaches. These 

encouraging results provide a new platform to develop an in-vivo targeting system for 

gene therapy applications (Figure 1.1). 

Chapter IV describes the characterization of the cell surface display of the agonistic 

monoclonal anti-chicken CD-40 (mAb 2C5). The displayed mAb 2C5 was active to 

interact with the purified chicken CD-40 ectodomain. The developed DNA constructs will 

be used to carry out the immunization process in chickens to develop antibodies against 

tumor antigens. 
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CHAPTER II  

RETARGETING LENTIVIRAL VECTORS THROUGH COVALENT 

FUNCTIONALIZATION USING PDZ1-TEFCA PROTEIN-PEPTIDE PAIR 

2.1. Overview 

 

 
 

 

Figure 2.1: Schematic illustration of the retargeting strategy for PDZ1-TEFCA 

protein-peptide pair. TEFCA peptide is genetically fused to the C-terminus of 
DARPin to form DARPin-TEFCA. The PDZ1 was inserted into an extracellular loop of 

E2 on a binding-deficient, fusion-competent Sindbis virus envelope protein (Sind, 
(Morizono et al. 2010)) to form Sind-PDZ1.  Lentiviruses pseudotyped with Sind-PDZ1 
(Sind-PDZ1-pp) was incubated with the TEFCA-functionalized DARPin for a period, 

and was then used to transduce HER2-positive cells. 
 

 
 

Selectivity/specificity is a crucial factor for the safety and efficacy of gene therapy 

vectors. The production of gene therapy vectors programmed to deliver genetic payloads 

efficiently and specifically to cells of interest remains a non-trivial task. In this study, we 

developed a facile strategy to reprogram pseudotyped lentiviral vectors to desired cell 
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types through in vitro covalent functionalization with cell-binding proteins. A disulfide 

bond-forming protein-peptide pair from the Drosophilia visual system, the N-terminal 

PDZ domain of the Inactivation no after potential D (InaD) protein (PDZ1) and its 

pentapeptide ligand (TEFCA) from no-receptor potential A (NorpA), were exploited to 

functionalize pseudotyped lentiviruses incorporating a binding-deficient, fusion-

competent Sindbis virus envelope protein with a HER2/neu-binding designed ankyrin 

repeat protein (DARPin) (Figure 2.1). Functionalized lentiviruses transduced HER2+ cells 

>100-fold more efficiently than the unfunctionalized virions (8.9 x 106 vs 7.4x104 IU/mL). 

The association of the cell binding protein with pseudotyped lentivirus was stable under 

non-reducing conditions. Finally, the transduction efficiency of DARPin-functionalized 

lentiviruses was not compromised in the presence of pooled human serum, pointing to a 

high potential for their in vivo application in human gene therapy. 

2.2. Introduction 

Gene therapy has the potential of treating any genetically caused diseases includ ing 

monogenetic disorders and cancers. A significant barrier to gene therapy is achieving 

delivery of the genetic material in sufficient quantities to the correct target cells to provide 

the desired level of therapeutic effect. Viruses are natural gene delivery machines and have 

been extensively exploited as gene therapy vectors (Kotterman et al. 2015). In particular, 

lentiviral vectors engineered from human immunodeficiency virus (HIV) are capable of 

efficient gene delivery to both mitotic and nondividing cells (Naldini et al. 1996), and have 

emerged as a promising and apparently safe vehicle for clinical gene therapy. Importantly, 

lentiviral vectors integrate into the host cell genome and thus, are duplicated along with 
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the host DNA during mitosis, enabling long-term transgene expression. However, most 

current lentiviral vector-based gene therapies involve ex vivo gene delivery as lentiviruses 

pseudotyped with VSV-G, the most commonly used envelope protein, were found to be 

rapidly neutralized by serum complement (DePolo et al. 2000). In addition, an ideal in 

vivo gene therapy vector should exhibit minimal toxicity to otherwise healthy tissue, while 

efficiently and selectively delivering the therapeutic gene into the desired cells (Escors 

and Breckpot 2010; Naldini 2015). 

A number of strategies has been developed to create cell-targeted lentiviral vectors. 

One strategy used to modulate lentiviral tropism is to incorporate envelope glycoprote ins 

derived from different viruses (Dropulic 2011). However, most clinically relevant cell-

types cannot be specifically targeted by natural viruses directly, and efficient pseudotyping 

often requires extensive protein engineering of the foreign glycoprotein cytoplasmic 

region (Funke et al. 2008; Funke et al. 2009; Girard-Gagnepain et al. 2014; Palomares et 

al. 2013). Another strategy is to incorporate new cell binding proteins onto the virus. Entry 

of enveloped viruses into cells involves two major steps: 1) virus-cell attachment and 2) 

fusion of viral and cellular membrane. Fortunately, for many viruses, abolishment of viral 

attachment through mutation/deletion of the attachment function does not impair the 

fusion function. For viruses with an abolished wild type attachment function (blinded -

envelope protein), incorporation of a new cell-targeting protein can retarget the virus. A 

prominent strategy to incorporate new cell-targeting proteins onto viruses is by fusing the 

cell-targeting protein directly to the viral envelope protein (Anliker et al. 2010b; Bender 

et al. 2016a; Engelstadter et al. 2000; Munch et al. 2011a). This approach proved 
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successful for Buchholz and co-workers where a panel lentiviral vectors targeting different 

cell types was created by fusing different cell-targeting proteins to a binding deficient 

Nipah virus envelope protein and pseudotyping the virus with the new chimeric protein 

(Bender et al. 2016a). However, some cell-binding proteins cannot be genetica lly 

incorporated onto viruses using recombinant approaches, limiting the types of cells 

accessible for gene therapy (Friedel et al. 2015). 

In this study, we developed a facile “plug-and-play” strategy that enables lentiviruses 

to be reprogrammed, thereby delivering genetic payloads to specific cell types. This 

strategy exploited a disulfide bond forming protein-peptide pair from the Drosophilia 

visual system, the N-terminal PDZ domain (PDZ1) of InaD protein and its pentapeptide 

ligand (TEFCA) from NorpA (Kimple et al. 2001; Shieh et al. 1997). The PDZ1 was 

inserted into a previously engineered binding-deficient, fusion-competent Sindbis virus 

envelope protein (Morizono et al. 2005) to form Sind-PDZ1, and the TEFCA tag was 

fused to the C-terminus of a model HER2/neu binding DARPin.X (Zahnd et al. 2007) to 

form DARPin.X-TEFCA. Lentiviruses pseudotyped with Sind-PDZ1 (Sind-PDZ1-pp) 

were efficiently functionalized with DARPin.X-TEFCA and the resulting lentivira l 

vectors efficiently transduced HER2+ human ovaraian carcinoma SKOV3 cells (8.9x106 

IU/mL) >100-fold more efficiently than “naked” Sind-PDZ1-pp (7.4x104 IU/mL). The 

association of DARPin.X-TEFCA and Sind-PDZ1-pp appears to be non-reversible under 

non-reducing conditions. Importantly, the functionalized virions retained full infectivity 

in the presence of human serum, indicating that our engineered lentiviral vectors are not 
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neutralized by human serum complement and pointing to a high potential for their in vivo 

application in human gene therapy. 

2.3. Material and methods 

2.3.1. Cells and chemicals 

HEK 293T cells were purchased from Invitrogen (Carlsbad, CA).  Human ovaraian 

carcinoma SKOV3 cells were kindly provided by Christian Buchholz (Paul-Ehrlich 

Institut; Langen, Germany) (Munch et al. 2011b). All cell lines were grown in Dulbecco’s 

modified Eagle’s medium (DMEM) containing 4,500 mg/liter glucose, 4.0 mM glutamine, 

and 110 mg/liter sodium pyruvate (Thermo Scientific HyClone, Logan, UT) supplemented 

with 10% fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA) and 1X non-

essential amino acids (Thermo Scientific HyClone, Logan, UT). Dulbecco’s phosphate -

buffered saline (DPBS) was purchased from Thermo Scientific HyClone (Logan, UT). 

2.3.2. Plasmids 

Plasmid encoding the N-terminal PDZ domain of Drosophila InaD protein (PDZ1) 

was kindly provided by John Sondek (University of North Carolina, Chapell Hill). 

Plasmids encoding HIV Gag-Pol and vesicular stomatitis virus (VSV) envelope protein 

were kindly provided by Charles Rice (Rockefeller University, NY) (Evans et al. 2007b). 

The pTRIP-eGFP plasmid was constructed as previously described (Chamoun-Emanue lli 

et al. 2015).  Sind-PDZ1 was constructed by replacing the NpuC domain in Sind-C* 

(Chamoun-Emanuelli et al. 2015) with PDZ1. HER2-binding DARPins were provided by 

Andreas Plückthun (University of Zurich; Zurich, Switzerland). A TEFCA or TEFSA 
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penta-peptide tag was fused to the C-terminus of DARPin.X to form DARPin.X-

TEFCA/TEFSA and inserted into pET15b vector between the NdeI and XhoI restriction 

sites. 

2.3.3. Pseudoparticle production 

Lentiviral pseudoparticles were generated by co-transfecting 293T cells with plasmids 

encoding 1) HIV gag-pol (Evans et al. 2007b), 2) pTRIP-eGFP (Chamoun-Emanuelli et 

al. 2015) and 3) the appropriate envelope protein at a 1:1:4 weight ratio using the TransIT 

reagent (Mirus Bio LLC, Madison, WI). The supernatants containing the pseudoparticles 

were collected 48 h later, filtered (0.22 μm pore size) and stored at -80 °C in aliquots. 

2.3.4. Cell surface expression 

To confirm cell surface expression of chimeric envelope proteins, 1.6 x 106 HEK 293T 

cells were transfected with 960 ng of the appropriate plasmid using Trans IT (Mirus Bio 

LLC; Madison, WI) as per manufacturer's protocol. Forty-eight hours post transfection, 

cells were harvested, washed and stained with a 1:1000 dilution of mouse anti-Flag 

(Genscript; Piscataway, NJ) in DPBS supplemented with 1% bovine serum albumin 

(BSA) for 1 h. These cells were then washed and stained with a 1:500 dilution of Dylight 

488 goat anti-mouse (Jackson ImmunoResearch Laboratories, Inc; West Grove, PA) 

diluted in DPBS/1%BSA for 30 min. After removal of excess antibody, samples were 

resuspended in DPBS containing 1% paraformaldehyde (PFA) and analyzed using a BD 

FACScan flow cytometer (BD Biosciences; San Jose, CA). 
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2.3.5. Viral incorporation of chimeric envelope proteins 

Lentiviruses pseudotyped with the indicated envelope proteins were harvested, 

concentrated by ultracentrifugation (90 min; 40000xg; 4°) and resuspended in DPBS prior 

to mixing with 2X SDS loading buffer (0.5 M Tris-HCl, pH 6.8, 20% glycerol, 10% w/v 

SDS, 0.1% w/v bromophenol blue, 2% β-mercaptoethanol). Samples were boiled for 5 

min at 95 °C, resolved by SDS-PAGE and electrotransferred onto a polyvinylidene 

fluoride transfer membrane (Pall Corporation; Pensacola, FL). Immunoblot analysis was 

performed with mouse anti HIV-1 p24 ( NIH AIDS Reagent Program, Division of AIDS, 

NIAID, NIH: Monoclonal Antibody to HIV-1 p24 (No. 71-31) from Dr. Susan Zolla-

Pazner) (Gorny et al. 1989) or mouse anti-Flag (Genscript; Piscataway, NJ) and 

horseradish peroxidase-conjugated goat anti-mouse (Jackson ImmunoResearch; West 

Grove, PA). Protein bands were visualized by chemiluminescence using a ChemiDoc -It 

imager (UVP, LLC; Upland, CA). 

2.3.6. Protein expression and purification 

All DARPin constructs were expressed in Escherichia coli BL21 (DE3) cells. Briefly, 

BL21 DE3 cells were transformed with the appropriate plasmid and plated on agar plates 

containing 50 µg/ml of kanamycin. The next day, 25-50 colonies from each plate were 

harvested and inoculated in 500-1000 ml of 2x LB media supplemented with the same 

antibiotics. The cells were grown at 37°C to an OD600 of ~0.6. Protein expression was 

induced by the addition of 0.2 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and the 

cells were grown at 18°C for 15h. Following expression, cells were harvested by 

centrifugation at 6,000 x g, 4°C for 20 minutes, and stored at -80°C until use. For protein 

http://en.wikipedia.org/wiki/Isopropyl_%CE%B2-D-1-thiogalactopyranoside
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purification, cell pellets were resuspended in lysis buffer (50mM Tris-base, 500mM NaCl, 

pH 8.0) at 10 ml per gram of wet pellet, disrupted by sonication and centrifuged at 14,000 

xg for 20 min. The soluble lysate was loaded onto a gravity column containing 0.5-1 ml 

Ni-NTA slurry (Qiagen, Valencia, CA). The column was washed once with 5 ml lysis 

buffer followed by a second wash with 5 ml lysis buffer containing 10 mM imidazo le. 

Protein was eluted in 3-5 ml lysis buffer supplemented with 150 mM imidazole. Purified 

protein was concentrated to ~20-30 mg/ml using ultra-filtration spin columns (MWCO 10 

kDa, Amicon Ultra, Millipore; Billerica, MA), dialyzed overnight against lysis buffer and 

stored at -80°C until use. For gel analysis, the proteins were mixed with equal volume of 

SDS sample buffer supplemented with 0.5 M β-mercaptoethanol (β-ME) and boiled for 5 

min prior to resolution on 12% SDS-PAGE gels and visualized by molecular imager gel 

doc XR system (BioRad; Hercules, CA).   

2.3.7. Protein sequences 

Amino acid sequences corresponding to DARPin-TEFCA and PDZ1 constructs 

6his-DARPin.9.16-L-TEFCA: 

MGSSHHHHHHSSGLVPRGSHMGSDLGKKLLEAARAGQDDEVRILMANGAD

VNAHDFHGLTPLHLAAGMGHLEIVEVLLKNGADVNAVDTDGITLLHLAAYYG

HLEIVEVLLKHGADVNAHDYAGSTPLHLAANTGHLEIVEVLLKNGADVNAQDK

FGKTAFDISIDNGNEDLAEILQGGGGTEFCA 

6his -DARPin.9.26-L-TEFCA: 

MGSSHHHHHHSSGLVPRGSHMGSDLGKKLLEAARAGQDDEVRILMANGAD

VNAKDFYGITPLHLAAAYGHLEIVEVLLKHGADVNAHDWNGWTPLHLAAKYG
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HLEIVEVLLKHGADVNAIDNAGKTPLHLAAAHGHLEIVEVLLKYGADVNAQDK

FGKTAFDISIDNGNEDLAEILQGGGGTEFCA 

6his -DARPin.9.29-L-TEFCA: 

MGSSHHHHHHSSGLVPRGSHMGSDLGKKLLEAARAGQDDEVRILMANGAD

VNAHDFYGITPLHLAANFGHLEIVEVLLKHGADVNAFDYDNTPLHLAADAGHL

EIVEVLLKYGADVNASDRDGHTPLHLAAREGHLEIVEVLLKNGADVNAQDKFG

KTAFDISIDNGNEDLAEILQGGGGTEFCA 

6his -DARPin.H14R-L-TEFCA: 

MGSSHHHHHHSSGLVPRGSHMGSDLGKKLLEAARAGQDDEVRILMANGAD

VNATDIHGHTPLHLAAAMGHLEIVEVLLKNGADVNANDWRGFTPLHLAALNG

HLEIVEVLLKNGADVNATDTAGNTPLHLAAWFGHLEIVEVLLKNGADVNAQD

KFGKTAFDISIDNGNEDLAEILQGGGGTEFCA 

6his -DARPin.9.26-L-TEFSA: 

MGSSHHHHHHSSGLVPRGSHMGSDLGKKLLEAARAGQDDEVRILMANGAD

VNAKDFYGITPLHLAAAYGHLEIVEVLLKHGADVNAHDWNGWTPLHLAAKYG

HLEIVEVLLKHGADVNAIDNAGKTPLHLAAAHGHLEIVEVLLKYGADVNAQDK

FGKTAFDISIDNGNEDLAEILQGGGGTEFSA 

InaD-PDZ1 (11 to 107 Amino Acids) 

AGELIHMVTLDKTGKKSFGICIVRGEVKDSPNTKTTGIFIKGIVPDSPAHLCGR

LKVGDRILSLNGKDVRNSTEQAVIDLIKEADFKIELEIQTFDK 

Sind env–Flag–PDZ1–Sind env 
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DTTTSGAASANKYRYMAAAAVTDYKDDDDKAGELIHMVTLDKTGKKSFG

ICIVRGEVKDSPNTKTTGIFIKGIVPDSPAHLCGRLKVGDRILSLNGKDVRNS

TEQAVIDLIKEADFKIELEIQTFDKGVTTVKEGTMDDIKISTSGPCR 

2.3.8. In vitro conjugation assay 

Purified DARPin.X-TEFCA/TEFSA and InaD-PDZ1 proteins were incubated at a 1:1 

molar ratio for 4 h at 25°C. For SDS-PAGE analysis, the proteins were mixed with an 

equal volume of 2x SDS sample buffer in the presence or absence 0.5 M β-

mercaptoethanol (β-ME) and boiled for 5 min prior to resolution by 12% SDS-PAGE gel. 

The percentage of reacted PDZ1 with the different DARPin.X-TEFCA constructs was 

quantified using the Trace Quantity module in Quantity One Software (BioRad, Hercules, 

CA, USA). 

2.3.9. Infection assays 

 Unconcentrated supernatant harboring lentivirus pseudotyped Sind-PDZ1 (Sind-

PDZ1-pp) were incubated with the appropriate concentrations of DARPin.X-TEFCA or 

DARPin.9.26-TEFSA at room temperature (RT) for 4 h. The mixture was then diluted 50-

fold in OptiMEM medium and used to transduce SKOV3 cells via spinoculation (300xg 

for 1 h @ RT + 2 h at 37 °C). The cells were washed to remove unbound viruses and 

incubated at 37 °C / 5% CO2. Forty eight hours later, these cells were harvested and the 

percentage of transduced cells (GFP+) was analyzed via flow cytometry. To determine 

viral titers, functionalized virions were serially diluted and used for transduction. The 
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infectious units per milliliter (IU/mL) were calculated from at least three dilutions with 

linear correlation between the dilution factor and the percentage of GFP+ cells. 

2.3.10. Stability assay 

Undiluted lentiviruses pseudotyped with Sind-PDZ1 (Sind-PDZ1-pp) were incubated 

with 2.5 µM DARPin 9.26-TEFCA for 4 h at RT. Functionalized virions were diluted 10- 

fold in dialysis buffer (1x PBS supplemented with 10mM L-glutathione and 0.05% sodium 

azide) and divided in two aliquots. One aliquot was kept at 4°C and the second aliquot 

was subjected to continuous dialysis against dialysis buffer at 4°C. At each time point, the 

appropriate volume of virus from each aliquot was removed, supplemented with BSA 

(2.7mg/ml), and stored at -80°C. Later, equivalent aliquot volumes were used to infect 

SKOV3 cells (4 x 104 cells/well in 48-well plate) seeded the previous day via 

spinoculation as described above.  

2.3.11. Serum complement assay 

Undiluted Sind-PDZ1-pp were incubated with DARPin.9.26-TEFCA (2.5 µM) for 4 

h at 25°C, and mixed with an equal volume of untreated human AB serum (Corning; 

Corning, NY) or heat inactivated human serum for 1 h at 37°C. The preps were diluted 

50-fold in OptiMEM media and used to transduce SKOV3 cells (4 x 104 cells/well; 48-

well plate) via spinoculation. 
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2.4. Results 

2.4.1. In vitro conjugation of DARPin.X.TEFCA and PDZ1 

Using a splicing deficient variant of the natural split intein Nostoc punctiforme 

(Ramirez et al. 2013; Zettler et al. 2009), our laboratory previously developed an approach 

to non-covalently append a cell binding protein to the surface of lentiviruses in vitro. 

Specifically, one half of the split intein – NpuN – was fused to a cell-binding protein, 

while the other half – NpuC*– was displayed on lentiviral vectors as fusion to a binding-

deficient, fusion-competent Sindbis virus envelope protein (Morizono et al. 2005) (Sind-

C*). The split intein functioned as a molecular Velcro linking the cell-binding protein to 

the pseudotyped lentivirus. However, despite low nanomolar affinity between the two 

halves of the split intein (Shah et al. 2011), the cell-targeting protein gradually dissociated 

from the virus during extended periods of dialysis due to the non-covalent intein 

association, reducing the specific transduction efficiency of the virus over time.  

In this study, we replaced the intein system with a covalent-bond-forming protein-

peptide pair – the N-terminal PDZ domain (PDZ1) of InaD protein and its pentapeptide 

ligand (TEFCA) from NorpA (Kimple et al. 2001; Shieh et al. 1997) – to conjugate a cell-

binding protein to the lentiviral vector. Proteins containing a C-terminal TEFCA tag can 

be selectively pulled-down by PDZ1-functionalized resin with a Kon >500 M-1S-1 under 

non-reducing conditions (there is no Koff due to the covalent linkage) (Kimple and Sondek 

2002). 
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We first fused the TEFCA tag to a panel of HER2/neu-binding designed ankyrin repeat 

protein (DARPin.X) (Munch et al. 2011a), and confirmed the ability of these fusion 

proteins to form a disulfide bond with purified PDZ1 in vitro (Figure 2.2 A). As negative 

control, we mutated the Cys in TEFCA to Ser to form TEFSA penta-peptide, and fused it 

to DARPin.9.26. Surprisingly, despite sharing the same overall structure, the efficiency of 

disulfide bond formation was quite different for the different DARPins (Figure 2.2 B). For 

 

Figure 2.2: In vitro conjugation of DARPin.X-TEFCA and PDZ1. (A) PDZ1 (100 

µM) was incubated with various DARPin.X-TEFCA or control DARPin.9.26-TEFS A 
(100 μM) at room temperature for 4 h. The mixture was then loaded on 12% SDS-PAGE 

gel under reducing or non-reducing conditions. The conjugation product (indicated by 
black arrow) can only be seen under non-reducing condition (lane 3). ‘+’ denotes 
unidentified band. (B) The percentage of PDZ1 reacted with different DARPin.X.TEFCA 

was calculated by the ratio of the PDZ1 band intensity in presence (lane 3 and 7) and 
absence of DARPin.X-TEFCA (lane 1), with respect to the specific DARPin-TEFCA 

constructs. Values and error bars represent the average and standard deviation, 
respectively, of at least two independent experiments. 
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DARPin.9.26 and .H14R, ~50% of the input protein formed disulfide complex with PDZ1 

after 4 h incubation at room temperature, while <20% of DARPin.9.16 and .9.29 formed 

disulfide bonds under the same condition. It is unclear what caused the different disulfide 

bond formation efficiency, as the TEFCA tag was fused to the C-terminus of each DARPin 

via the same short GGGG linker. 

2.4.2. Cell surface expression and virion incorportation of PDZ1 

Next, we replaced the NpuC* in Sind-C* with PDZ1 to form Sind-PDZ1, and 

confirmed the high cell surface expression of the new chimeric Sind-PDZ1 and its ability 

to be incorporated onto lentivirus, it is worth nothing that both Sind-C* and Sind-PDZ1 

transduced cells contain a small subpopulation exhibiting a very high surface expression 

level of the chimera protein. The significance of this subpopulation is unknown (Figure 

2.3 B). Significant amount of PDZ1 was detected on the lentiviral virions, albiet at a much 

lower band intensity than that of Sind-C* (Figure 2.3 C). The reduced intensity of Sind-

PDZ1 band than Sind-C* may be an artifact due to the different antibody binding 

efficiency between the 3xFlag-tag and the Flag-tag present on Sind-C* and SinD-PDZ1, 

respectively. However, it is also possible that less Sind-PDZ1 is incorporated into the 

virions due to its reduced cell surface display efficiency. Never theless, a significant 

amount of PDZ1 can be detected on lentiviral virion, confirming the ability of lentiviruses 

to be pseudotypes with Sind-PDZ1. 
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Figure 2.3: (A) Schematic representation of different Sindbis envelope proteins. Sind-C* 

contains the C-intein from a splicing deficient DnaE intein from Nostoc punctiforme 
inserted between amino acids 71 and 74 of the Sindbis E2 protein. In Sind-PDZ1, the 

PDZ1 domain of Drosophila InaD protein was inserted by replacing the C*. (B) Cell 
surface expression of Sind-PDZ1. HEK 293T cells were transfected with plasmids 
encoding Sind-C* (Blue) or Sind-PDZ1 (Red), unstained 293T cells (Gray) and 293T 

stained with primary and secondary antibody (Green) served as negative controls. (C) 
Virion incorporation of Sind-PDZ1-pp. Virus containing supernatants were harvested, 

concentrated 100-fold by ultracenfrifugation, and loaded onto a 12% SDS-PAGE gel. 
After separation, the protein bands were transferred to a PVDF membrane and detected 
using mouse anti-HIV p24 (1:250) or mouse anti-Flag (1:1000) and goat anti-mouse-HRP 

secondary antibody (1:1000). 
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Figure 2.4: Transduction of HER2+ SKOV3 cells by DARPin-functionalized Sind-PDZ1-pp. (A) Bar diagram of the 
percentage of cells transduced with Sind-PDZ1-pp functionalized with different concentrations of DARPin.9.26-TEFCA or 
–TEFSA. The presence of intracellular GFP indicates successful transduction. (B) Infectious titer of Sind-PDZ1-pp 

functionalized with the different DARPins (2.5 µM) in SKOV3 cells. Values and error bars represent the average and 
standard deviation, respectively, of three independent experiments. 
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2.4.3. Retargeting Sind-PDZ1-pp with DARPin.X-TEFCA 

Since DARPin.9.26 exhibited the highest disulfide-bond forming efficiency with 

PDZ1, and was able to most efficiently retarget lentivirus pseudotyped with Sind-C* in 

our previous study (Chamoun-Emanuelli et al. 2015), we first carried out a dose-response 

experiment to determine the ability of DARPin.9.26-TEFCA to retarget Sind-PDZ1-

pseodutyped lentivirus (Sind-PDZ1-pp) harboring a GFP reporter gene. Sind-PDZ1-pp 

was incubated with increasing concentrations of DARPin.9.26-TEFCA at room 

temperature for 4 h, diluted 50-fold in OptiMEM medium and used to transduce 

HER2/neu+ ovarian cancer cell line SKOV3. DARPin.9.26-TEFSA was used as negative 

control. As shown in Figure 2.4 A, DARPin.9.26-TEFCA was able to efficiently and dose-

dependently retarget Sind-PDZ1-pp, with an optimal concentration of 2.5 µM (achieved 

>50% GFP+ cells). In contrast, only background transduction (~2% GFP+ cells) was 

observed for Sind-PDZ1-pp incubated with DARPin.9.26-TEFSA, confirming that the 

specific interaction between TEFCA penta-peptide and PDZ1 is responsible for the virus 

retargeting. However, the lower transduction observed at higher protein concentrations is 

likely attributed to the competition of excess unconjugated DARPin with the 

functionalized virions for the HER/neu receptor. 

To determine the infectious titers (IU/mL) of the retargeted lentivirus, Sind-PDZ1-pp 

was incubated with 2.5 µM of different DARPin.X-TEFCA at room temperature for 4 h, 

serially diluted and used to transduce SKOV3 cells. The average infectious titer for each 

DARPin construct was calculated from at least three dilutions that showed linear 

correlation between the dilution factor and the percentage of GFP+ cells. Unfunctionalized 
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and DARPin.9.26-TEFSA (TEFSA) functionalized Sind-PDZ1 pp were included as 

controls. As shown in Figure 2.4 B, virions functionalized with DARPin.9.26-TEFCA 

(8.9x106 IU/mL) displayed a~100-fold higher transduction efficiency, compared to 

unfunctionalized naked (7.4x104 IU/mL) or DARPin.9.26-TEFSA functionalized Sind-

PDZ1-pp (1.1x105 IU/mL). Lentiviruses functionalized with DARPin.9.16 and 

DARPin.9.29 achieved intermediate infectious titer of 106 and 1.3x106 IU/mL, 

respectively, possibly in part due to the less efficient disulfide bond formation between 

these DARPins and PDZ1 (Figure 2.2 B). Conversely, despite high disulfide bond forming 

efficiency, Sind-PDZ1-pp loaded with DARPin.H14R was least infectious against 

SKOV3 cells with a titer of 4.8x105 IU/mL.  

Recently, Buchholz and coworkers fused the same set of DARPins to Nipah virus 

(NiV) envelope protein and used them to retarget NiV-pseudotyped lentivirus (NiV-pp) 

(Bender et al. 2016b). Contrary to our findings, they showed that NiV-pp displaying 

DARPin.H14R exhibited the highest transduction efficiency, ~100-fold higher than those 

displaying DARPin.9.26. As proposed by the authors, fusion between viral and host 

membrane requires that these membranes be brought sufficiently close to each other by 

the viral envelope protein and the cell surface receptor. The threshold distance required 

for viral fusion is expected to be viral envelope protein dependent, and it is <100 Å for 

NiV. Unlike the other DARPins used in this study, which all bind to domains I-III of 

HER2/neu receptor, DARPin.H14R associates with domain IV (Steiner et al. 2008), which 

is located in close proximity to the cell membrane. HER2/neu receptor Domain I and II 

are located at the tip of the receptor, farthest away from the cell membrane, while Domain 
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III is in between domain IV and domain I/II. DARPin.H14R, through interaction with 

domain IV, likely was able to reduce the distance between the viral and host membrane to 

below a threshold value, resulting in high transduction efficiency of DARPin.H14R-

displaying NiV-pp.  

On the other hand, DARPin.9.26, which interacts with a more distal domain on HER2, 

was unable to do so, resulting in lower transduction efficiency of NiV-pseudotyped 

lentiviruses displaying DARPin.9.26 than those displaying DARPin.H14R. The close 

proximity of domain IV also means that, to interact with domain IV, the viral protein needs 

to reach pass domains I-III. In the NiV study, different DARPins are tethered to the C-

terminus of NiV-G protein via a flexible linker ((G4S)3), enabling these DARPins to freely 

reach out to the cell receptor. In our study, the DARPins are fused to TEFCA ligand via a 

short linker (G4) and are anchored onto the lentiviruses through interaction with PDZ1, 

which was inserted into a surface-exposed loop on the E2 glycoprotein of the Sindbis 

virus. Thus, our DARPins likely exhibit much reduced flexible on the virions, and are 

likely unable to efficiently interact with Domain IV due to steric hindrances, resulting in 

reduced transduction efficiency of DARPin.H14R-functionalized Sind-PDZ1-pp. 
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Figure 2.5: PDZ1/TEFCA-mediated functionalization of Sind-PDZ1-pp is stable. 

Sind-PDZ1-pp was incubated with DARPin.9.26-TEFCA (2.5 µM) at RT for 4h, divided 
into two groups. Group 1 was continuously dialyzed in dialysis buffer (1x PBS 

supplemented with 10mM L-glutathione and 0.05% sodium azide) at 4 °C while group 2 
was stored at 4 °C without dialysis. The infectivity of these samples at indicated time 
points was quantified in SKOV3 cells, and normalized to the corresponding value at time 

0. Values and error bars represent the average and standard deviation, respectively, of two 
independent experiments. 

 
 
 

2.4.4. Stability of DARPin.X-TEFCA-functionalized Sind-PDZ1-pp 

Since PDZ1 forms a covalent intermolecular disulfide bond with the TEFCA peptide  

(Kimple et al. 2001; Kimple and Sondek 2002; Lu et al. 2014), the complex of PDZ1-

TEFCA should be stable under non-reducing conditions, such as human serum (Paulson 

1996). To assess the stability of the retargeted lentivirus, Sind-PDZ1-pp was loaded with 

DARPin.9.26-TEFCA and then dialyzed in >1,000-fold of dialysis buffer (1x PBS 

supplemented with 10mM L-glutathione and 0.05% sodium azide) at 4 °C for >3 days. 

We reasoned that, if the functionalization is stable, we should observe minimum 

infectivity change between the dialyzed and undialyzed viruses. On the other hand, if the 
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conjugation is not stable (reversible), any DARPin.9.26-TEFCA molecules that dissociate 

from the Sind-PDZ1-pp should be removed during the dialysis, leading to reduced virus 

infectivity of the dialyzed virus compared to undialyzed virus overtime. In our previous 

study, the reversible interaction between the two halves of the split intein, despite of a low 

nanomolar Kd, led to significantly reduced infectivity of the functionalized virion after 24 

h of dialysis (Chamoun-Emanuelli et al. 2015). Sind-PDZ1-pp was conjugated with 

DARPin.9.26-TEFCA (2.5 µM) at RT for 4 h, diluted 10-fold in dialysis buffer and divide 

into two samples; sample A was kept intact  at 4 °C while sample B was extensive ly 

dialyzed at 4 °C. Aliquots from both samples were harvested at different times and used 

to infect SKOV3 cells. As shown in Figure 2.5, similar infectivity was observed between 

the dialyzed and undialyzed virus sample even after 84 h of continuous dialysis, 

confirming that the PDZ1-TEFCA complex can be used to stably functiona lize 

pseudotyped lentivirus. The reduced infectivity seen in both virus samples is likely due to 

intrinsic virion inactivation at 4 °C. 
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Figure 2.6: DARPin-functionalized Sind-PDZ1-pp is not inactivated by human 

complement. Sind-PDZ1-pp functionalized with DARPin.9.26-TEFCA were incubated 

with an equal volume of untreated, heat-inactivated human serum or OptiMEM medium 
at 37°C for 1 hr. Each virus was diluted 50-fold with OptiMEM medium and used to 
infect SKOV3 cells. Values and error bars represent the average and standard deviation, 

respectively, of at least three independent experiments.  

 

 
 

Finally, for in vivo application in humans, the gene therapy vector should not be 

inactivated by serum complements, which attack pathogens by several mechanisms such 

as lectin, classical and alternative pathways (Roozendaal and Carroll 2006; Schauber-

Plewa et al. 2005). To investigate this, DARPin.9.26-TEFCA-functionalized Sind-PDZ1-

pp was mixed with an equal volume of normal or complement- inactivated (heat 

inactivated) human serum and incubated at 37 °C for 1 h. The mixture was diluted 50-fold 

in OptiMEM medium and used to transduce SKOV3 cells. As shown in Figure 2.6, similar 

infectivity was observed for virions incubated with normal and complement- inactivated 

human serum, indicating that our virus retargeting strategy is compatible with 

immunocompetent hosts. This result is expected, as our envelope protein (Sind) was 

0

10

20

30

40

50

60

70

0 2.5

DARPin.9.26.TEFCA (µM)

G
F

P
 +

 c
e
ll

s
 [

%
]

Human Serum

Heat inactivated Human serum

OptiMEM



 

43 

  

 

derived from 2.2, which was previously found to exhibit reduced sensitivity toward human 

serum (Morizono et al. 2010), and the functionalization moiety – PDZ1 – is a Drosophila 

protein. 

2.5. Discussion 

In summary, we developed a new, modular platform for retargeting lentivirus through 

functionalization of a cell-binding protein. A pair of disulfide-bond forming protein-

peptide pair, the N-terminal PDZ domain (PDZ1) of InaD protein and its pentapeptide 

ligand (TEFCA) from NorpA, was exploited as a molecular Velcro to retarget 

pseudotyped lentivirus to a desired cell type. Her2/neu-specific DARPins were fused to 

the N-terminus of TEFCA, and loaded onto lentiviruses pseudotyped with a receptor-

blinded Sindbis virus envelope protein harboring the PDZ1 in an exposed extracellular 

loop. Chimeric envelope protein Sind-PDZ1 can be efficiently displayed on the cell 

surface and be incorporated onto the lentivirus. Pseudotyped lentivirus functionalized with 

HER2/neu-specific DARPin.9.26-TEFCA was highly infectious and specific to HER2 + 

cells achieving an infectious titer of 8.9x106 IU/mL in SKOV3 cells, a >100-fold higher 

than that of the unfunctionalized naked lentivirus (7.4x104 IU/mL). Functionalization of 

lentivirus with DARPins targeting different domains of HER2/neu resulted in varying 

degrees of infectivity. The highest infectivity was observed with DARPin.9.26, which 

targets a distal domain on HER2/neu, while functionalization with DARPin.H14R, which 

binds to a domain closest to the cell membrane (domain IV) displayed the lowest 

infectivity (4.8x105 IU/mL). This result is in disagreement to that previously published 

where DARPin.H14R-displaying Nipah virus envelope protein pseudotyped lentivirus 
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(NiV-pp) achieved a much higher infectivity than the same virus displaying the 

DARPin.9.26 (Bender et al. 2016b). This discrepancy likely stems from the poor ability 

of DARPin.H14R on Sind-PDZ1-pp to interact with the HER2/neu domain IV due to steric 

hindrance. It is important to note that the interaction between PDZ1 and TEFCA penta-

peptide is covalent and stable under non-reducing condition, leading to low infectivity loss 

of functionalized virions during prolonged dialysis (Figure 2.5), confirming that Sind-

PDZ1-pp can be stably functionalized with a TEFCA-tagged cell-targeting protein. 

Finally, unlike lentivirus pseudotyped with VSV-G (DePolo et al. 2000) or full- length 

antibody (Morizono et al. 2010), our retargeted lentivirus was insensitive to serum 

complement, pointing to the potential of these viral vectors to be applied in vivo. Taken 

together, our work establishes a new facile lentivirus retargeting strategy that avoids the 

dependence of “surface compatibility” of intracellularly expressed fusion constructs and 

allows any cell-binding protein to be appended onto pseudotyped lentivirus via a facile 

“plug-and-play” fashion. We envision that this technology should provide a convenient 

and powerful tool for the engineering of a new generation of cell-specific lentiviral vectors 

for in vivo gene therapy. 
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CHAPTER III  

VERSATILE RETARGETING LENTIVIRAL SYSTEM BEARING THE 

ISOPEPTIDE BOND PAIR SPYTAG-SPYCATCHER 

3.1. Overview 

 

 
 

 

Figure 3.1: Schematic representation of the retargeting strategy for SpyTag-

SpyCatcher protein-peptide pair. (A) DARPin was genetically fused to SpyCatcher 
protein on the N-terminal, (B) SpyCatcher is chemically conjugated to HER-specific 
fragment antigen binding (Fab) through click chemistry reaction to form Fab-SpyCatcher. 

The fused protein were allowed to interact with lentivirus pseudotyped with chimeric 
Sindbis envelope protein with the c-terminal fragment of collagen adhesion domain 

(CnaB2) protein (SpyTag). The functionalized virions were allowed to transduce HER2+ 
cells. 
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isopeptide bond forming protein-peptide pair, the N-terminal fragment (SpyCatcher) and 

C-terminal fragment (SpyTag) of the collagen adhesion domain (CnaB2) from the 

fibronectin binding protein (FbaB) in Streptococcus pyogenes. The SpyTag protein was 

genetically incorporated into the extracellular loop of a binding deficient, fusion 

competent Sindbis envelope protein and the SpyCatcher was genetically and chemica lly 

fused to a HER2 targeting protein or fragment antigen binding (Fab) (Figure 3.1). 

Functionalized Sind-SpyTag virions were able to target and transduce the HER2+ SKOV3 

cells (8 x 106 IU/mL) with a 100-fold higher efficiency compared to the naked SpyTag 

virions (5.8 x 104 IU/mL), and exhibited higher HER2-receptor-specific selectivity index 

in a mixed cell population. The isopeptide bond was observed to be stable during 

prolonged dialysis and in presence of serum complement, supporting its potential use in 

in vivo applications. Finally, the chemically conjugated HER2 specific Fab functionalized 

virions were able to target HER2+ cells in a dose dependent manner, allowing this plug 

and play retargeting system to accommodate the plethora of commercially available 

antibodies.    

3.2. Introduction 

Lentiviral vectors can infect both dividing and non-dividing cells and integrate their 

transgene into the host cell chromosome for sustained gene expression, which is favorable 

for therapy of chronic and malignant diseases (Gunzburg et al. 1996; Kotterman et al. 

2015). The gene therapy approaches through ex vivo transduction have obtained success 

in hematopoietic diseases, such as X-linked SCID, but the same approach is not suitable 

for gene transduction of solid organs or most body tissues. However, these limitations can 
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be overcome by intravenous administration of gene therapy vectors that specifically home 

in on and transduce desired cells and tissues in vivo (Kaufmann et al. 2013; Kotterman et 

al. 2015; Naldini 2015). 

Development of robust targeting vectors remains a major drawback in gene therapy. 

To date, different approaches have been adopted including pesudotyping lentiviral vectors 

with chimeric envelope proteins, where targeting molecules are genetically fused to the 

envelope protein (Boeckle and Wagner 2006; Waehler et al. 2007) and conjugating viruses 

with adaptor molecules that function as bridges between the targeting moiety and the viral 

vector (Larochelle et al. 2002). However, each approach possesses its own limitations in 

the first approach, as the targeting molecule is genetically fused to the envelope protein, 

it is necessary to generate a new chimeric envelope for each new target, which sometimes 

may destroy the function and structure of the chimeric protein. In the second approach, 

however, the adaptor molecule should display high affinity and stability to maintain the 

conjugation between the viral vector and the targeting moiety.  

Previously, Morizono et.al, developed targeting lenitiviral vectors using the second 

approach. These targeting vectors were conjugated with monocloncal antibodies via the 

interaction between the Fc-binding region of protein A (ZZ domain) inserted into the 

envelope protein and the Fc region of the antibodies (Morizono et al. 2001; Morizono et 

al. 2005; Pariente et al. 2008). However, its use was limited to immunocompromised 

species. Using a similar principal, our group developed another targeting lentiviral vector 

using a splicing deficient DnaE intein from Nostoc puntiforme (Npu). The splicing 

deficient variant C-Intein, NpuC*, was inserted into the extracellular loop region of an 
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attachment-deficient Sindbis E2 envelope protein. The other intein fragment, N-intein 

(NpuN), was fused to a cell targeting protein. The electrostatic interaction between inteins 

mediated the conjugation of the targeting moiety to the virus thereby redirecting the vector 

to the intended cell (Chamoun-Emanuelli et al. 2015; Ramirez et al. 2013; Zettler et al. 

2009). However, in both approaches, the conjugation between the virus and the cell 

targeting protein was observed to be unstable due to the non-covalent interaction.  

To stabilize the conjugation between the targeting molecule and the vector, we 

employed an isopeptide bond forming pair, the N-terminal fragment (SpyCatcher) and C-

terminal fragment (SpyTag) of the collagen adhesion domain (CnaB2) from the 

fibronectin binding protein (FbaB) in Streptococcus pyogenes (Kang et al. 2007; Li et al. 

2014; Zakeri et al. 2012; Zakeri and Howarth 2010). First, the ZZ domain in the envelope 

protein was replaced with the SpyTag peptide, and its partner, SpyCatcher, was genetica lly 

fused to a cell targeting protein.  Through the isopeptide bond, the SpyTag virions were 

conjugated with the SpyCatcher construct, producing a viral vector displaying a cell 

targeting protein. To accommodate the use of commercially available antibodies as 

targeting moieties in our system, a non-natural amino acid was introduced upstream of the 

SpyCatcher protein allowing chemical conjugation of cell targeting proteins via click 

chemistry. Through this approach, a HER2 specific Fab fragment was chemica lly 

conjugated to SpyCatcher, and used to functionalize the virions. Virions functionalized 

with targeting moieties fused or chemically conjugated to SpyCatcher displayed a receptor 

specific targeted gene transduction. 
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3.3. Materials and methods 

3.3.1. Cells and chemicals 

HEK 293T cells were purchased from Invitrogen (Carlsbad, CA).  SKOV3, chinese 

hamster ovary cells (CHO-K1) cells and selected clone was kindly provided by Christian 

Buchholz (Paul-Ehrlich Institut; Langen, Germany) (Munch et al. 2011b). Unless 

otherwise stated, all cell lines were grown in Dulbecco’s modified Eagle’s medium 

(DMEM) containing 4,500 mg/liter glucose, 4.0mML-glutamine, and 110 mg/liter sodium 

pyruvate (Thermo Scientific HyClone, Logan, UT) supplemented with 10% fetal bovine 

serum (Atlanta Biologicals, Lawrenceville, GA) and 1X non-essential amino acids 

(Thermo Scientific HyClone, Logan, UT). For the selected clone, CHO-HER2-K6, growth 

media was supplemented with 1.2mg/mL of the antibiotic G418. Dulbecco’s phosphate-

buffered saline (DPBS) was purchased from Thermo Scientific HyClone (Logan, UT). 

3.3.2. Plasmids 

Plasmids encoding HIV Gag-Pol and vesicular stomatitis virus (VSV) envelop protein 

were kindly provided by Charles Rice (Rockefeller University, NY) (Evans et al. 2007a). 

The pTRIP-eGFP plasmid was constructed by replacing the Gaussia luciferase gene in 

pTRIP-Gluc (Chockalingam et al. 2010) with eGFP (Chamoun-Emanuelli et al. 2015). 

The plasmid encoding the 2.2 envelope protein was purchased from Addgene (Addgene 

plasmid 34885) (Pariente et al. 2007). Sind-SpyTag was constructed by overlap extension 

PCR, using the primers ST1 and ST2 (Table 2). The amplified insert was digested with 

the BstEII restriction enzyme and cloned into the BstEII digested 2.2 plasmid.  pET28-
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SUMO-SpyTag (Fierer et al. 2014) and pDEST14-SpyCatcher (Addgene plasmid # 

35044) (Zakeri et al. 2012) constructs were kindly provided by Mark Howarth (Oxford 

university, UK). The truncated version SpyCatcher2 was constructed by removing the 23 

N-terminal and 9 C-terminal residues from the wild-type SpyCatcher. The truncated 

version has comparable efficiency as the full length SpyCatcher to react with SpyTag 

(Zhang et al. 2013). pI-SpyCatcher2 was generated by PCR amplification of the insert 

from the construct pDEST14-SpyCatcher, using the primers SC1 and SC2. To construct 

pI-DARPin.9.26-SpyCatcher2 and pI-AzF-SpyCatcher2, inserts were PCR amplified 

from the construct pDEST14-SpyCatcher, using the primers DSC1 and DSC2, and AS1 

and AS2, respectively (Table 2). The amplified inserts were digested by NdeI and XhoI 

restriction enzymes and inserted into the pI vector digested with the same enzymes.  

 

 

 
Table 3.1 List of primers used for cloning SpyTag-SpyCatcher constructs 

Label Primer sequence 

ST1 

5’-

GGTAACCGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGACTAC-

3’ 

ST2 

5’-

ACGATGTGGGCACCGCCCTTGTCGTCGTCGTCTTTGTAGTCGATGTCATGATCTTTA

TAA-3’ 

SC1 5’- CATATGAGCGGCGATAGTGCTACCCATATTAAATTCTCAAAAC-3’ 

SC2 5’- CTCGAGGCCATTTACAGTAACCTGACCT-3’ 

DSC

1 
5’- GCTAGC GATTACGACATCCCAACGACC-3’ 

DSC

2 
5’-CTCGAGTTAAATATGAGC GTCACCTTTAGTTGC-3’ 

AS1 
5’-ATT ATA CAT ATG TGG GAA CTG CAG CAG AGC TAG GGT GGC AGC GGC GAT 

AGT GCT ACC-3’ 

AS2 5’-ATT ATA CTC GAG TTA GCC ATT TAC AGT AAC CTG-3’ 
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3.3.3. Protein expression and purification 

All the SpyCatcher2 and SpyTag constructs were expressed in Escherichia coli BL21 

(DE3) cells. Briefly, BL21 DE3 cells were transformed with the appropriate plasmid and 

plated on LB-agar plates containing 50 µg/ml of kanamycin. The next day, 25-50 colonies 

from each plate were used to inoculate 500-1000 ml of 2x LB media supplemented with 

the same antibiotics. The cells were grown at 37°C to an OD600 of ~0.6. Protein expression 

was induced by the addition of 0.2 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) 

and the cells were grown at 18°C for 15h. Following expression, cells were harvested by 

centrifugation at 6,000x g, 4°C for 20 minutes, and stored at -80°C until use. For protein 

purification, cell pellets were resuspended in lysis buffer (50mM Tris-base, 500mM NaCl, 

pH 8.0) at 10 ml per gram of wet pellet, disrupted by sonication and centrifuged at 

14,000xg for 20 min. The soluble lysate was loaded onto a gravity column containing 0.5-

1 ml Ni-NTA slurry (Qiagen, Valencia, CA). The column was washed once with 5 mL 

lysis buffer followed by a second wash with 5 mL lysis buffer containing 10 mM 

imidazole. Protein was eluted in 3-5 mL of lysis buffer supplemented with 150 mM 

imidazole. Purified protein was concentrated to ~10-20 mg/ml using ultra-filtration spin 

columns (MWCO 10 kDa, Amicon Ultra, Millipore; Billerica, MA), dialyzed overnight 

against lysis buffer and stored at -80°C until use. For SDS-PAGE analysis, the proteins 

were mixed with an equal volume of SDS sample buffer supplemented with 0.5 M β-

mercaptoethanol (β-ME)  and boiled for 5 min prior to resolution on 12% SDS-PAGE gels 

and visualized by molecular imager gel doc XR system (BioRad; Hercules, CA).   

http://en.wikipedia.org/wiki/Isopropyl_%CE%B2-D-1-thiogalactopyranoside
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3.3.4. Protein sequences 

Amino acid sequences corresponding to the SpyTag and SpyCatcher2 constructs  

Myc-tag-DARPin.9.26-L-SpyCatcher2-6His 

MEQKLISEEDLGSDLGKKLLEAARAGQDDEVRILMANGADVNAKDFYGITP

LHLAAAYGHLEIVEVLLKHGADVNAHDWNGWTPLHLAAKYGHLEIVEVLLKH

GADVNAIDNAGKTPLHLAAAHGHLEIVEVLLKYGADVNAQDKFGKTAFDISID

NGNEDLAEILQEACGGGGSGGGGSASSGDSATHIKFSKRDEDGKELAGATME

LRDSSGKTISTWISDGQVKDFYLYPGKYTFVETAAPDGYEVATAITFTVNEQ

GQVTVNGLEHHHHH 

6His-SUMO-L-SpyTag 

MGSSHHHHHHGSDSEVNQEAKPEVKPEVKPETHINLKVSDGSSEIFFKIKKTT

PLRRLMEAFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIG

GGAHIVMVDAYKPTKGY 

SpyCatcher2-6His 

MSGDSATHIKFSKRDEDGKELAGATMELRDSSGKTISTWISDGQVKDFYLYP

GKYTFVETAAPDGYEVATAITFTVNEQGQVTVNGLEHHHHHH 

6His-WELQ-AzF-L-SpyCatcher2 

MGSSHHHHHHSSGLVPRGSHNYHMWELQQSazFGGSGDSATHIKFSKRDED

GKELAGATMELRDSSGKTISTWISDGQVKDFYLYPGKYTFVETAAPDGYEVAT

AITFTVNEQGQVTVNG 
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3.3.5. Protein expression, purification and activity of AzF-SpyCatcher2 

For the AzF-SpyCatcher2 construct, the BL21 (DE3) cells were co-transformed with 

pEVOL-AzFRS (Chin et al. 2002; Guan et al. 2015) expression construct for 

tRNACUA(Tyr) and tyrosyl-tRNA synthetase specific for azido-L-Phenylalanine from 

Methanococcus jannaschii (which incorporate unnatural amino acid azido-L-

Phenylalanine (AzF) at the amber codon site), and plated on LB-agar plates containing 

100 µg/ml of ampicillin and 34 µg/ml of chloramphenicol. The next day, 5-10 colonies 

from each plate were used to inoculate 50 ml of 2x LB media supplemented with the same 

antibiotics. The cells were grown at 37°C to an OD600 of ~0.6. Protein expression was 

induced by the addition of 0.2 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), 0.02% 

arabinose and 5 mM 4-azido-L-phenylalanine (VWR, Radnor, PA). The cells were grown 

at 18°C for 15 h and protein purification was carried out as described above. Purified 

protein was concentrated and dialyzed against PBS buffer pH 7.4 using ultra-filtration spin 

columns (MWCO 10 kDa, Amicon Ultra, Millipore; Billerica, MA), stored at -80°C until 

use. For SDS-PAGE analysis, the proteins were mixed with an equal volume of SDS 

sample buffer supplemented with 0.5 M β-mercaptoethanol (β-ME) and boiled for 5 min 

prior to resolution on 12% SDS-PAGE gels and visualized by molecular imager gel doc 

XR system (BioRad; Hercules, CA).  

The activity of incorporated AzF was determined by interacting the purified AzF-

SpyCatcher2 with DBCO-PEG4-TAMRA dye (Sigma-Aldrich, St.Louis, MO) at a 1:50 

molar ratio for 1 h at 22°C. The product was resolved by SDS-PAGE and visualized by 

UV light using the molecular imager gel doc XR system (BioRad; Hercules, CA).  

http://en.wikipedia.org/wiki/Isopropyl_%CE%B2-D-1-thiogalactopyranoside
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3.3.6. Cell surface expression 

To confirm cell surface expression of chimeric envelope proteins, 1.6 x 106 HEK 293T 

cells were transfected with 960 ng of the appropriate plasmid using Trans IT (Mirus Bio 

LLC; Madison, WI) as per manufacturer's protocol. Forty-eight hours post transfect ion; 

cells were harvested, washed and stained with a 1:1000 dilution of mouse anti-Flag 

(Genscript; Piscataway, NJ) in DPBS supplemented with 1% bovine serum albumin 

(BSA) for 1 h. These cells were then washed and stained with a 1:500 dilution of Dylight 

488 goat anti-mouse (Jackson ImmunoResearch Laboratories, Inc; West Grove, PA) 

diluted in DPBS/1%BSA for 30 min. After removal of excess antibody, samples were 

resuspended in DPBS containing 1% paraformaldehyde (PFA) and analyzed using a BD 

FACScan flow cytometer (BD Biosciences; San Jose, CA). 

3.3.7. Viral incorporation of chimeric envelope proteins 

Lentiviruses pseudotyped with the indicated envelope proteins were harvested, 

concentrated by ultracentrifugation (90 min; 40000 xg; 4°) and resuspended in DPBS prior 

to mixing with 2X SDS loading buffer (0.5 M Tris-HCl, pH 6.8, 20% glycerol, 10% w/v 

SDS, 0.1% w/v bromophenol blue, 2% β-mercaptoethanol). Samples were boiled for 5 

min at 95 °C, resolved by SDS-PAGE and electrotransferred onto a polyvinylidene 

fluoride transfer membrane (Pall Corporation; Pensacola, FL). Immunoblot analysis was 

performed with mouse anti HIV-1 p24 ( NIH AIDS Reagent Program, Division of AIDS, 

NIAID, NIH: Monoclonal Antibody to HIV-1 p24 (No. 71-31) from Dr. Susan Zolla-

Pazner) (Gorny et al. 1989) or mouse anti-Flag (Genscript; Piscataway, NJ) and 

horseradish peroxidase-conjugated goat anti-mouse (Jackson ImmunoResearch; West 
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Grove, PA). Protein bands were visualized by chemiluminescence using a ChemiDoc -It 

imager (UVP, LLC; Upland, CA). 

3.3.8. In vitro conjugation 

Purified DARPin.9.26-SpyCatcher2/SpyCatcher2 and SUMO-SpyTag proteins were 

incubated at a 1:1 molar ratio for different time-periods at 25°C. For SDS-PAGE analysis, 

the proteins were mixed with an equal volume of SDS sample buffer supplemented with  

0.5 M β-mercaptoethanol (β-ME) and boiled for 5 min prior to resolution on 12% SDS-

PAGE gels. 

3.3.9. Infection assays 

Undiluted Sind-SpyTag pseudotyped lentiviruses were incubated with the indicated 

concentrations of DARPin.9.26-SpyCatcher2/SpyCatcher2 for 1 h at 25°C. Preps were 

diluted 50-fold and used to spin-transduced naïve SKOV3 cells (4 x 104 cells/well in 48-

well plates) for 3 h (1 h for 300xg at 25°C and 2 h at 37°C). Percent of transduced cells 

(GFP+) was determined 48 h later using a BD FACScan flow cytometer (BD Biosciences; 

San Jose, CA). 

For titer determination, undiluted lentivirus pseudotyped with Sind-SpyTag were 

incubated with 10 µM  DARPin.9.26-SpyCatcher2 for 1 h at 25°C. Preps were diluted 50-

fold in OptiMEM media and a serial amount of functionalized virions were used to spin-

transduced naïve SKOV3 cells (4 x 104 ; 48-well plate) for 3 h  (1 h for 300xg at 25°C and 

2 h at 37°C). Percent of transduced cells was determined 48 h later as described above. 

The infection units per milliliter (IU/ml) were calculated by selecting the dilut ions 
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showing linear correlation between the dilution factor and the number of GFP-positive 

cells. 

For selective transduction assays, five-fold diluted lentiviruses pseudotyped with 

Sind-SpyTag were incubated with 20 µM DARPin.9.26-SpyCatcher2 for 1 h at 25°C. 

Preps were used to infect target cells (4 x 104 cells/well; 48-well plate) seeded the previous 

day for 3 h at 37°C. Forty-eight hours post infection; cells were harvested and analyzed 

using a BD FACScan flow cytometer (BD Biosciences; San Jose, CA). 

For mixed cell population studies, CHO-K1 and CHO-HER2-K6 cells were mixed at 

the indicated ratios and 4 x 104 cells were seeded in each well of a 48-well plate. The next 

day, cells were infected with five-fold diluted lentiviruses pseudotyped with Sind-SpyTag 

conjugated to 20 µM DARPin.9.26-SpyCatcher2 for 3 h at 37 °C.  Forty-eight hours post 

transduction, cells harvested from each well were stained with anti-HER-2/neu PE (BD 

Biosciences; San Jose, CA) as per manufacturer’s protocol. Samples were analyzed using 

BD FACScan flow cytometer (BD Biosciences; San Jose, CA). 

3.3.10.  Stability assay 

For the SpyTag-SpyCatcher2 stability assay, five-fold diluted lentiviruses 

pseudotyped with Sind-SpyTag were incubated with 10 µM DARPin.9.26-SpyCatcher2 

for 2 h at RT. Functionalized Sind-SpyTag virions were divide in two aliquots. The first 

aliquot (undialyzed) was kept at 4°C for the indicated amount of time. The second aliquot 

(dialyzed) was subjected to continuous dialysis against dialysis buffer (1x PBS buffer pH 

7.4) for 12, 36, 60 or 84 h at 4°C. At each time point, the appropriate volume of virus from 

each aliquot was removed, supplemented with BSA (2.7mg/ml), and stored at -80°C. 
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Later, the aliquots were used to infect SKOV3 cells (4 x 104 cells/well; 48-well plate) 

seeded the previous day for 1 h with spinoculation@300 xg at 25°C followed by a 2 h 

incubation at 37°C. Forty eight hours post infection, cells were harvested and analyzed 

using BD FACScan flow cytometer (BD Biosciences; San Jose, CA). 

3.3.11.  Serum complement assay 

For the serum complement assay, undiluted lentivirus pseudotyped with Sind-SpyTag 

were incubated with 10 µM DARPin.9.26-SpyCatcher2 for 1 h at 25°C. Functionalized 

Sind-SpyTag were incubated with an equal volume of human AB serum (Corning; 

Corning, NY) or heat inactivated human serum for 1 h at 37°C. The preps were diluted 

50-fold in OptiMEM media and functionalized virions were used to spin-transduced naïve 

SKOV3 cells (4 x 104 ; 48-well plate) for 3 h  (1 h at 300xg and 25°C and 2 h at 37°C). 

Percent of transduced cells was determined 48 h later using BD FACScan flow cytometer 

(BD Biosciences; San Jose, CA). 
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3.3.12.  Conjugation of Trastuzumab Fab to AzF-SpyCatcher2 

The HER2 full- length antibody (Trastuzumab) was digested by IgG degrading enzyme 

of streptococcus pyogenes (Ides) in 1% (wt/wt) ratio for 1 h at 37°C to generate Fc and 

Fab fragments. The Fc fragments were removed by interacting the mixture with magnetic 

protein A binding beads (Pierce, Waltham, MA). The purified Fab fragment was mildly 

reduced by Tris (2-carboxyethyl) phosphine (TCEP) (Sigma-Aldrich, St. Louis, MO) for 

30 min at 37°C. The reduced Fab fragments containing reactive thiols were allowed to 

interact with Sulfo-dibenzocyclooctyne (DBCO)-PEG4-maleimide (DBCO-maleimide) 

(Click Chemistry tools, Scottsdale, AZ) at a 1:5 molar ratio for 14 h at 4°C to create DBCO 

modified-Fab. The unreacted DBCO-maleimide was removed by size exclusion 

chromatography. Later, the azide-functionalized SpyCatcher2 (AzF-SpyCatcher2) was 

reacted with DBCO modified-Fab, at a 1:8 molar ratio for 16 h at 22°C to produce Fab-

SpyCatcher2. The unreacted AzF-SpyCatcher2 was removed through size exclusion 

chromatography. The concentration of the conjugate Fab-SpyCatcher2 was determined 

using the bicinchoninic acid (BCA) assay kit (Thermo Fisher Scientific, Waltham, MA). 

3.4. Results 

3.4.1. Construction and cell surface expression of Sind SpyTag 

Previously, our lab developed a split-intein-mediated approach to non-covalently 

append a cell-binding proteins to the surface of lentiviruses in vitro (Chamoun-Emanue lli 

et al. 2015). This approach exploited a splicing-deficient variant of the naturally split 

intein from Nostoc punctiforme (Ramirez et al. 2013). One half of the split intein – NpuN 

– was fused to a cell-binding protein, while the other half – NpuC*– was displayed on 
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lentiviral vectors as fusion to a binding-deficient, fusion-competent Sindbis virus envelope 

protein (Morizono et al. 2005) to form Sind-C*. The split intein functioned as molecular 

Velcro and links the cell-binding protein to the pseudotyped lentivirus. However, despite 

the low nanomolar affinity between the two halves of the split intein (Shah et al. 2011), 

the complex of cell-targeting protein and the virus gradually dissociates during extended 

periods of dialysis due to the non-covalent intein association, reducing the selective 

transduction efficiency of the virus over time. 

In the current study, we exploit an isopeptide bond forming protein–peptide pair to 

retarget lentiviruses. The N-terminal fragment (SpyCatcher) and C-terminal fragment 

(SpyTag) of the collagen adhesion domain (CnaB2) from the fibronectin binding protein 

(FbaB) in Streptococcus pyogenes were used to covalently functionalize pseudotyped 

lentiviruses with a targeting protein (Zakeri et al. 2012). The SpyTag peptide 

(AHIVMVDAYKPTK) was inserted into the binding deficient, fusion-compe tent 

Sindbis virus envelope protein and the SpyCatcher was genetically or chemically fused to 

a cell binding protein (e.g. DARPin, antibody). 
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Figure 3.2: (A) Schematic representation of Sindbis envelope protein (pINTRON) 
and different chimeric sindbis envelope proteins created by inserting the following 

proteins, IgG binding domain of protein A (Sind-ZZ) (Morizono et al. 2001) and c-
terminal fragment of collagen adhesion domain (CnaB2) protein (Sind-SpyTag) (Zakeri 

et al. 2012). The chimeric proteins were inserted between the amino acids 71 and 74 of 
E2 envelope protein. (B) Sind-SpyTag can be efficiently expressed on the cell 

surface. Plasmids expressing sindbis envelope proteins (Sind-C* (Blue) and SpyTag 

(Green)) were transfected into HEK 293 T cells. Surface expression was monitored after 
48 h using flag-specific antibody followed by Dylight 488 anti-mouse. Samples were 

analyzed using flow cytometry.  Unstained naïve cells (Gray) and naïve cells stained 
with primary and secondary antibody (Pink) served as negative controls and staining 
for Sind-C* served as positive control (Chamoun-Emanuelli et al. 2015).   

 
 

 

We replaced the ZZ domain in Sind-ZZ (Morizono et al. 2001) with the SpyTag 

peptide to form Sind-SpyTag (Figure 3.2 A). A 3xFlag tag was inserted to the N-terminus 
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of SpyTag to facilitate downstream analysis. We first evaluated the cell surface expression 

level of Sind-SpyTag as it is critical for the efficient pseudotyping. HEK 293T cells were 

transiently transfected with a plasmid encoding Sind-SpyTag or Sind-C* (positive 

control). The cell surface protein expression level was assesed 48 h later by 

immunostaining with mouse anti-Flag antibody and Dylight 488 goat anti-mouse 

secondary antibody using flow cytometry (Chamoun-Emanuelli et al. 2015). High 

expression of Sind-SpyTag was detected on the cell surface, similar to that attained for 

Sind-C*, suggesting that incorporation of SpyTag into the envelope protein does not 

hinder its cell surface expression (Figure 3.2 B).  

3.4.2. Virion incorporation of SpyTag 

Next, we assayed the ability of Sind-SpyTag to be incorporated into the lentivirus. 

Lentiviruses pseudotyped with Sind-C* or Sind-SpyTag were subjected to western 

blotting and probed using the anti-flag antibody. As shown in Figure 3.3, SpyTag was 

efficiently incorporated into the lentiviruses, albeit at a lower efficiency than Sind-C*.  
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Figure 3.3: Sind-SpyTag is efficiently incorporated into the virion. HEK 293T cells 

were transiently co-transfected with 1) Sind-SpyTag/NpuC*, 2) HIV-gag-pol, 3) a 
reporter pTRIP-eGFP plasmids. Virus containing supernatants were harvested 48 h later. 

Western blot analysis was carried out with 100 fold concentrated samples by 
ultracentrifugation (90 min; 40000 x g; 4°) of the indicated LVs. After separation on a 
12% SDS gel and transferred to a PVDF membrane, proteins NpuC* (~57kDa) and 

SpyTag (~54kDa) were detected using mouse anti-Flag and horseradish peroxidase-
conjugated secondary goat anti-mouse antibody and mouse anti HIV-1 p24 (Gorny et al. 

1989). 
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Figure 3.4: Protein expression and IMAC purification of DARPin-SpyCatcher2, 

SpyCatcher2, SUMO-SpyTag and AzF-SpyCatcher2. The target protein is indicated in 

black arrow. The collected samples during the purification process were mixed with equal 
volume of 2x SDS sample buffer + 0.5 M β-mercaptoethanol (β-ME) and boiled for 5 min 

prior to resolution on 12% sodium dodecyl sulphate-polycarylamide gel (SDS-PAGE). 
 
 

 

3.4.3. In vitro conjugation of SpyTag with SpyCatcher2 and DARPin.9.26–

SpyCatcher2 protein 

For the current retargeting strategy, we used the truncated version of SpyCatcher 

(SpyCatcher2), lacking the first 23 aa of the N-terminal and the last 9 C-terminal residues 

(Zhang et al. 2013). We choose to use this truncated version of SpyCatcher, because the 

full- length SpyCatcher showed significant non-specific interaction with an unknown cell 

surface receptor(s), leading to strong background transduction of SpyCatcher-alone 
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functionalized lentiviruses (data not shown). Since DARPin.9.26 exhibited the highest 

retargeting efficiency in our previous study (Chamoun-Emanuelli et al. 2015), we 

genetically fused the SpyCatcher2 protein to the C-terminal of this designed ankyrin repeat 

protein (DARPin.9.26) previously engineered to bind the HER2 receptor with nanomolar 

affinity to create DARPin.9.26- SpyCatcher2 (Steiner et al. 2008). As control, we used the 

SpyCatcher2 protein lacking any targeting moiety. We also expressed and purified the 

fusion protein as well as a SpyTag containing protein (6xHis-SUMO-SpyTag) by IMAC. 

All proteins exhibited high protein expression levels (Figure 3.4). 

 

 
 

 

Figure 3.5: SpyTag and SpyCatcher2 associate spontaneously through an isopeptide  

bond. (A) SpyCatcher2 (2)  or (B) DARPin.9.26-SpyCatcher2 (3) were mixed with 

SUMO-SpyTag (1) at  a 1:1 ratio (10 μM) for the indicated amount of time (4-8 in A and 
B) and the amount of product at each time point was assessed via SDS-PAGE. The 

conjugated product is indicated by the black arrow. 
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with SUMO-SpyTag at a 1:1 molar ratio for the indicated amount of time (1-180 min) and 

the resulting products was analyzed by SDS-PAGE  under reducing conditions. As shown 

in Figure 3.5, more than 90% reaction completion was achieved within the first minute for 

both constructs, suggesting that fusion of a DARPin to the N-terminal of SpyCatcher2 

does not hinder its interaction with SpyTag. 

3.4.4. Retargeting Sind-SpyTag via DARPin.9.26- SpyCatcher2 

To assess the ability of DARPin.9.26-SpyCatcher2 to functionalize Sind-SpyTag-pp 

and retarget the virions to HER2+ SKOV3 cells, undiluted Sind-SpyTag-pp was interacted 

with increasing concentrations of DARPin.9.26- SpyCatcher2 or SpyCatcher2 (0 - 40µM) 

for 1 h at room temperature, diluted 50-fold in OptiMEM media and used to transduce 

HER2+ SKOV3 cells. The DARPin-loaded Sind-SpyTag-pp displayed a dose dependent 

transduction of HER2/neu+ SKOV3 cells (Figure 3.6 A). A similar transduction efficiency 

was observed for virions functionalized with either 10 or 20μM DARPin 9.26-SpyCatcher, 

suggesting complete saturation of the available SpyTag in the virions. The lower 

transduction observed at 40µM is likely attributed to the competition of excess 

unconjugated DARPin with the functionalized virions for the HER2/neu receptor. In 

contrast, virions loaded with SpyCatcher2 lacking any cell attachment protein exhibited 

only background levels of transduction (SpyCatcher2) at all tested concentrations. This 

was comparable to that of unconjugated Sind-SpyTag-pp (0 µM). Since virions conjugated 

with 10 and 20 μM DARPin 9.26-SpyCatcher2 displayed similar transduction efficiency, 

these concentrations were selected for subsequent experiments. 
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Figure 3.6: DARPin functionalized Sind-SpyTag-pp transduce HER2+ SKOV3 cells in dose dependent manner. (A) 

Undiluted Sind-SpyTag-pp was conjugated with increasing concentrations of DARPin.9.26-SpyCatcher2 or SpyCatcher2 (0 - 40 
µM) for 1 h at room temperature. The functionalized virions were diluted 50 fold in OptiMEM media and used to spin-transduced 

HER2+SKOV3 cells. The percentage of transduced cells (GFP+) was measured 48 h later by flow cytometry. Values and error 
bars represent the average and standard deviation, respectively of two independent experiments. (B) Unconcentrated screening 

titers of DARPin.9.26-SpyCatcher2 functionalized Sind-SpyTag-pp. Viral infectivities were determined by titration of at least 

five serial dilutions of DARPin-functionalized Sind-SpyTag-pp on HER2+SKOV3 cells. After 48 h, the percentage of GFP-
positive cells was determined by flow cytometry and the infectious units per milliliter (IU/mL) were calculated by selecting the 

dilutions showing a linear correlation between the dilution factor and the number of GFP-positive cells. Values and error bars 
represent the average and standard deviation, respectively of at least three independent experiments. 

0

10

20

30

40

50

60

70

40 20 10 5 2.5 1.25 0.65 0

G
F

P
 +

 c
e

ll
s

 [
%

]

Protein Concentration (µM)

DARPin.9.26-SpyCatcher2

SpyCatcher2

1.0E+04

1.0E+05

1.0E+06

1.0E+07

Naked DARPin.9.26

Sind-SpyTag virions

T
it

e
r 

(I
U

/m
l)

104

105

106

107

A B



 

67 

  

 

To determine the infectious titers (IU/mL), unconcentrated Sind-SpyTag-pp was 

incubated with 10 µM of DARPin.9.26-SpyCatcher2 at room temperature for 1 h, serially 

diluted and used to transduce SKOV3 cells. The average infectious titer for DARPin 

construct was calculated from at least three dilutions that showed linear correlation 

between the dilution factor and the percentage of GFP+ cells. As shown in Figure 3.6 B, 

functionalization with DARPin.9.26-SpyCatcher2 resulted in an infectious titer of 8x106 

IU/mL, ~ 100-fold higher than that of the control naked Sind-SpyTag-pp (5.8x104 IU/mL). 

3.4.5. HER2/neu receptor dependent transduction 

Next, we determined if the transduction ability of DARPin functionalized Sind-

SpyTag-pp is mediated by the HER2 receptor. The functionalized virions were used to 

transduce HER2- (CHO-K1) and HER2+ (SKOV3 and CHO-K6) cells. As anticipated, the 

transduction efficiency of DARPin loaded virions appeared to be proportional to the levels 

of cell surface HER2 receptor, displaying a 5 to 6 fold higher transduction in HER2+ 

(SKOV3 and CHO-K6) cells compared to the HER2- CHO-K1 cells (Figure 3.7). In 

contrast, control VSV-Gpp, whose entry is mediated by the LDL receptor, exhibited 

similar transduction efficiency in all the cell lines. Only background transduction levels 

were attained for non-functionalized virions (0 µM). 
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Figure 3.7: DARPin functionalized Sind-SpyTag selectively transduce HER2/neu+ 

cells. Five-fold diluted Sind-SpyTag virions were conjugated with 20 µM DARPin.9.26-

SpyCatcher2 at room temperature for 1 h. Mixture was used to transduce the indicated cell 
for 3 h at 37ºC.  Flow cytometry analysis was performed 48 h later to assess transduction 

efficiency (GFP+). VSV-Gpp and naked Sind-SpyTag-pp were used as control.  Values 
and error bars represent the average and standard deviation, respectively, of at least 3 
independent experiments. 
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Next, we investigated whether the DARPin functionalized Sind-SpyTag-pp could 

specifically target HER2+ cells in a mixed cell population experiment.  CHO-K1 and 

CHO-HER2-K6 cells mixed at different ratios 0:1, 1:1 and 1:0 were transduced with 

functionalized Sind-SpyTag virions. To distinguish the CHO-HER2-K6 cells from CHO-

K1 cells, the infected cells were stained with an anti-HER2 antibody. At 1:1 ratio of the 

cells, DARPin functionalized Sind-SpyTag virions displayed higher transduction 

selectivity towards HER2/neu+ cells (Figure 3.8, middle panels). Furthermore, across the 

cell ratios, the calculated HER2 receptor specific selectivity index for DARPin 

functionalized SpyTag-pp for CHO-K6 cells was observed to be significantly higher in 

mixed cell culture (6.79) compared to individual cell culture (2.3) (Figure 3.9). On the 

other hand, VSV-Gpp transduced both HER2+ and HER2- cells, indicating their relative 

lack of specificity. In sum, our data suggest that DARPin functionalized SpyTag virions 

can selectively target HER+ cells in mixed culture. 
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Figure 3.8: Functionalized SpyTag virions display higher selectivity for HER2 expressing cells . Functionalized Sind-SpyTag 

virions selectively transduce HER2+ cells in co-culture. CHO-K1 (HER2 –low) and CHO-HER2-K6 (HER2 – High) cells, either 
in isolation or at a 1:1 ratio, were transduced with functionalized Sind-SpyTag-pp, Sind-SpyTag-pp or VSV-Gpp at 37°C for 3 h. 

Forty-eight hours post transduction, cells were analyzed for GFP and HER2 expression by flow cytometry. Representative flow 
cytometry plots of four independent experiments are shown. 
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Figure 3.9: HER2 receptor-specific selectivity index. The “cell specific selectivity 

index” for mixed population of CHO cells was calculated as follows [(SI) = Q4/ (Q3+Q4) 
/ Q2 / (Q2+ Q1)], where Q4 and Q2 represent the % infected cells (+GFP) cells and Q3 

and Q1 represent the % uninfected cells. Later, we calculated the HER2 receptor specific 
selectivity index by Sind Env CHO-K6 SI / VSV-G CHO-K6 SI for mixed population and 
isolated cells. This formulation allowed us to evaluate the selectivity of functionalized 

Sind-SpyTag-pp for infecting HER2+ CHO-K6 cells relative to that of VSV-Gpp. Values 
and error bars represent the average and standard deviation, respectively, of at least 3 

independent experiments. 
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Figure 3.10: The association of SpyTag with SpyCatcher2 is irreversible. Sind-
SpyTag-pp (5-fold diluted) was incubated with DARPin.9.26-SpyCatcher2 (20 µM) at 

RT for 2 h in dialysis buffer (1x PBS buffer, pH 7.4). The mixture was divided into two 
aliquots. Aliquot 1 (Undialyzed) was kept intact at 4°C while aliquot  2 (Dialyzed) was 
continuously dialyzed against dialysis buffer at 4°C. An aliquot was collect from sample 

2 at the indicated time points, mixed with BSA (2.7 mg/ml) and stored at -80°C. Later, 
these aliquots were used to infect SKOV3 cells and the percentages of transduced cells 

were quantified by flow cytometry 48 h later, and normalized to the corresponding 
values taken on day 0.Values and error bars represent the average and standard 
deviation, respectively of at least two independent experiments. 
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the infectivity of DARPin-functionalized Sind-SpyTag-pp subjected to extensive dialysis 

in 1000-fold excess dialysis buffer. If the conjugation is reversible, all the DARPin.9.26-

SpyCatcher2 that dissociates from Sind-SpyTag-pp would be removed during dialysis, 

leading to reduced infectivity. On the other hand, the ability of the functionalized virions 

to retain infectivity after dialysis would confirm the irreversibility of the interaction. 

Sind-SpyTag-pp were diluted 5-fold and incubated with 20 µM DARPin.9.26-

SpyCatcher2 for 1 h at 22°C. The mixture was then divided in two aliquots. Aliquot 1 was 

kept at 4ºC without dialysis (undialyzed sample). Aliquot 2 was extensively dialyzed in a 

Spectra/Por Float-A-Lyzer dialysis device (300kDa cut off, spectrum lab) against 1000-

fold excess dialysis buffer (1x PBS buffer, pH 7.4) at 4ºC. An aliquot from each sample 

was collected at 12, 36, 60 and 84 h after the initiation of dialysis, mixed with BSA (2.7 

mg/ml) and stored at -80°C. The infectivity of these viruses was later quantitated in 

SKOV3 cells. The isopeptide bond stability was confirmed by the retained infectivity of 

the conjugated virions in the dialyzed sample (Sample 2) at different time periods. The 

dialyzed sample retained significant infectivity during the first 60 h of dialysis but 

exhibited infectivity loss at 84 h (Figure 3.10). The loss of infectivity was comparable to 

the undialyzed sample (Sample 1) saved at 4°C; suggesting viral inactivation. Thus, the 

lack of infectivity loss during the first 60 h of dialysis supports the irreversible association 

of the SpyTag-SpyCatcher isopeptide bond.  
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Figure 3.11: Functionalized SpyTag virions retain infectivity in the presence of 

human serum. Functionalized (10 µM) and naked (0 µM) SpyTag virions were incubated 

with an equal volume of serum or heat-inactivated serum at 37°C for 1 h, OptiMEM media 
was used as control. Each virus was diluted 50-fold with OptiMEM media and used to 

spin-transduced HER2+SKOV3 cells. EGFP expression was assayed by flow cytometry 
48 h post transduction. Values and error bars represent the average and standard deviation, 
respectively of at least three independent experiments. 

 
 

 

We further examined whether the DARPin functionalized Sind-SpyTag-pp became 

inactivated in the presence of human serum complement. The DARPin functionalized and 

naked Sind-SpyTag-pp were incubated with heat-inactivated human serum or normal 

human serum at a 1:1 ratio for 60 min prior to infection. OptiMEM media incubation was 

used as control. As shown in Figure 3.11, DARPin functionalized Sind-SpyTag virions 

incubated in human serum displayed similar transduction efficiency as those incubated in 

OptiMEM. Thus, the functionalized virions were not inactivated by human serum 

complement and can be potentially applied as an in vivo delivery vector in 

immunocompetent hosts.   
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3.4.7. Retargeting Sind-SpyTag-pp through chemical conjugation 

Antibodies, most commonly IgGs, have been widely used as targeting moieties in 

research and therapeutic applications due to their high specificity and efficacy (Hui et al. 

2014). An intrinsic property of the full- length IgG format is it’s binding capacity to Fc 

receptors on immune cells, thereby increasing its circulation half-life and hence antigen 

targeting (Mitragotri et al. 2014). The disadvantage of full- length antibody IgG is the lack 

of deep penetration into the tumor environment, which can be solved by using smaller 

protein scaffolds. Fab and single chain variable fragment (scFv) have been engineered for 

drug conjugation and several IgG fragments are currently under preclinical evaluation for 

targeting different diseases (Deonarain et al. 2015). Introduction of non-natural amino-

acids is a strategy currently used to link drug conjugates to the antibody. Many 

applications require antibodies to be conjugated onto surfaces (e.g. nanoparticles, beads 

and microplates); however, most conventional bioconjugation techniques exhibit several 

limitations including low crosslinking (Wagner et al. 2014), reduced functionality due to 

non-site-specific labeling and random surface orientation (Wagner et al. 2014). In order 

to overcome these limitations and to favorably expand our lentiviral retargeting system, 

we have taken advantage of the recently developed azide-alkyne copper-free click 

reactions. These reactions form covalent bonds, are highly efficient, and are biorthogona l, 

as they do not react with endogenous molecules (Baskin et al. 2007; Chang et al. 2010).   

Axup et.al recently generated a highly potent Fab-auristatin through the incorporation of 

an unnatural amino p-acetyl phenylalanine (AzF) into an anti-Her2 antibody Fab fragment 

and full length IgG and oxime ligation for drug conjugation (Axup et al. 2012). To 



 

76 

 

 

incorporate the chemical conjugation approach into our system, the non-natural amino 

acid AzF was introduced upstream of the SpyCatcher2 protein. Briefly, the SpyCatcher2 

protein was genetically modified to incorporate an azide-containing unnatural amino acid 

AzF into the amber codon encoded in the linker region using an orthogonal amber 

suppressor tRNA/aaRS pair, derived from the corresponding tyrosyl Methanococcus 

jannaschii pair (Chin et al. 2002; Guan et al. 2015; Wan et al. 2010). The activity of the 

incorporated AzF was confirmed by the reaction with DBCO-PEG4-TAMRA dye (Sigma-

Aldrich, St.Louis, MO) and visualized under UV light (Figure 3.12 B). Later, the anti-

HER2 antibody Fab was conjugated with dibenzocyclooctyne (DBCO)-maleimide to form 

Fab-DBCO through the thiol-maleimide coupling reaction. Briefly, the HER2 full- length 

antibody (Trastuzumab) was digested by IgG degrading enzyme of streptococcus 

pyogenes (Ides) at 1% (wt/wt) ratio for 1 h at 37°C to generate Fc and Fab fragments (von 

Pawel-Rammingen et al. 2002). The Fc fragments were removed by interacting with 

magnetic protein A binding beads. The purified Fab fragment was mildly reduced with 

Tris (2-carboxyethyl) phosphine (TCEP) for 30 min at 37°C. The reduced Fab fragments, 

containing reactive thiols were allowed to interact with Sulfo-DBCO-PEG4-maleimide 

(DBCO-maleimide) at a 1:5 molar ratio for 14 h at 4°C to create DBCO modified-Fab 

fragment (Humphreys et al. 2007). The unreacted DBCO-maleimide was removed by size 

exclusion chromatography. Later, the azide-functionalized SpyCatcher2 (AzF-  

SpyCatcher2) was reacted with DBCO modified-Fab, at a 1:8 molar ratio for 16 h at 22°C 

via copper-free click chemistry to produce Fab-SpyCatcher2. The unreacted AzF-

SpyCatcher2 was removed through size exclusion chromatography. 
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Figure 3.12: The functionalized groups were active to form conjugated product. (A) 

The conjugated DBCO to the Fab was active to interact with the azide group. To confirm 

the conjugation of Fab-DBCO through the thioester reaction, conjugated Fab-DBCO (10 
µM) was incubated with azide-fluoro 488 (500 µM) in PBS buffer (pH 7.4) for 1 h at room 
temperature. The bands were first visualized under UV light, and then stained with 

Coomassie Blue and analyzed again under white light. (B) The incorporated AzF was 
active to interact with DBCO. To confirm the formation of DBCO-SpyCatcher2, purified 

AzF-SpyCatcher2 (10 µM) was incubated with DBCO-TAMRA (500 µM) in DPBS 
buffer (pH 7.4) for 1 h at room temperature and resolved by 12% SDS-PAGE. Untreated 
Azf-SpyCatcher2 was used as the negative control.  .The samples were resolved and 

visualized as previously described in (A). 
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Figure 3.13: SpyTag-pp can be functionalized with a HER2 specific fragment 

antibody (Fab) SpyCatcher2 and efficiently transduce HER2+ cells. Transduction of 
Fab-SpyCatcher2- functionalized Sind-SpyTag-pp. Sind-SpyTag-pp was incubated with 

increasing concentrations of Fab-SpyCatcher2 in OptiMEM at 22°C for 1 h. The 
functionalized virions were diluted 50-fold in OptiMEM media and used to spin-transduce 
HER2+SKOV3 cells. The cells were washed 3 h later and the percentages of transduced 

cells (GFP+) were analyzed by flow cytometry 48 h later. Sind-SpyTag-pp functionalized 
with fusion protein DARPin.9.26-SpyCatcher2 (10 µM) was used as the positive control. 

Values and error bars represent the average and standard deviation, respectively of at least 
three independent experiments. 

 

 
 

We next determined the ability of Sind-SpyTag-pp to transduce HER2+ SKOV3 cells 

upon functionalization with Fab-SpyCatcher2. Undiluted Sind-SpyTag-pp harboring a 

pTRIP-eGFP expression cassette were incubated with different concentrations of Fab-
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was determined using a BD FACScan flow cytometer. For comparison, the transduction 

efficiency of DARPin functionalized to the Fab-functionalized SpyTag-pp was assessed. 

As shown in Figure 3.13, similar transduction efficiencies were observed for both 

constructs at a concentration of 10µM. Conjugation of SpyTag-pp with increasing 

concentrations of Fab-SpyCatcher resulted in a dose dependent transduction, suggesting 

the efficient interaction of Fab-SpyCatcher2 with incorporated SpyTag on the virion 

surface.  In summary, the HER2-specific Fab-SpyCatcher2 was able to efficient ly 

functionalize SpyTag-pp and retarget the functionalized virions to HER2+ SKOV3 cells. 

3.5. Discussion 

Modification of the lentivirus surface for each gene therapy application can be 

laborious and time-consuming, requiring cloning, production and evaluation of the new 

virus. Thus, developing a standard virus platform that could be applicable for many 

different purposes would represent an advantage. To address this challenge, we have 

developed a versatile receptor targeting lentivirus platform that can be coupled to different 

cell targeting proteins through a “plug and play” fashion. Our design takes advantage of a 

previously engineered sindbis virus envelope protein, mutated to abolish its natural 

tropism as well as to reduce non-specific transduction (Froelich et al. 2010; Morizono et 

al. 2010; Morizono et al. 2005; Yang et al. 2008), and an isopeptide bond forming protein-

peptide pair, SpyTag-SpyCatcher from the fibronectin binding protein (FbaB) in 

Streptococcus pyogenes. The SpyTag peptide was introduced into the engineered sinbis 

envelope protein by replacing the ZZ domain. Incorporation of the SpyTag peptide into 

the E2 envelop protein did not hinder the expression and cell surface translocation of the 
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chimeric protein or its incorporation into mature virions (Figure 3.2 B and 3.3) (Munch et 

al. 2011a). Fusion of targeting moieties to the SpyCatcher protein did not obstruct its 

interaction with the SpyTag peptide, with more than 90% of the product formed within 

the first minute (Figure 3.5).  

Conjugation of SpyTag-pp with SpyCatcher2 fused to a HER2 targeting protein 

(DARPin 9.26) granted its entry into HER2+ cells, with the highest transduction attained 

for virions decorated with 10 and 20 μM DARPin 9.26-SpyCatcher2 (Figure 3.6 A). 

Transduction of functionalized virions was mediated by the conjugated DARPin as naked 

or virions conjugated to SpyCatcher2-only displayed a low transduction efficiency. The 

calculated titer of functionalized SpyTag-pp (8x106 IU/mL) was observed to be 100 fold 

higher than that of naked SpyTag-pp (5.8x104 IU/mL) (Figure 3.6 B).  

To assess the influence of cell surface HER2/neu density on vector targeting, the 

transduction efficiency of functionalized SpyTag-pp against a panel of cell lines 

expressing different levels of HER2/neu was evaluated. The functionalized SpyTag-pp 

exhibited a gene transfer efficiency relative to the level of HER2/neu expression, with a 

five-fold higher transduction in CHO-HER2-K6 and SKOV3 cells compared to CHO-K1 

cells (Figure 3.7). Thus, targeting specificity of the functionalized SpyTag-pp was 

critically dependent on the receptor density. Importantly, in a mixed cell population assay, 

functionalized SpyTag-pp efficiently discriminated between receptor positive and 

negative cells, displaying higher selectivity for high HER2 expressing cells (Figure 3.8). 

The calculated HER2 receptor specific selectivity index for CHO-HER2-K6 cells in mixed 

and individual demonstrated a higher selective targeting of functionalized SpyTag-pp in 
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mixed culture setting (Figure 3.9). Our data, suggests the applicability of functionalized 

virions in mixed cell cultures can exhibit receptor specific targeting. 

The success of the targeting vector depends on its stable conjugation to the targeting 

moiety until  transduction of the targeted cells for gene delivery is achieved. The rapid 

degradation of the targeting vector or detachment of the targeting moiety due to a non-

covalent conjugation are among the major obstacles encountered in virus-based gene 

therapy. We found that our functionalized SpyTag-pp exhibited stable conjugation under 

continues dialysis for 5 days representing the stability of the isopeptide bond (Figure 3.10). 

Interestingly, the little loss in the infectivity of the functionalized SpyTag-pp observed 

after extended dialysis was primarily due to the inactivation of SpyTag-pp in both the 

dialyzed and undialyzed samples. Previously, it was shown that virions pseudotyped with 

VSV-G were cleared from the circulation within an 8 h period due to the activation of 

innate immunity (Geraerts et al. 2006; Schauber-Plewa et al. 2005). Our current system 

takes advantage of a previously engineered sindbis envelope demonstrated to retain 

activity in presence of human serum complement (Morizono et al. 2010). In line with 

previous studies, functionalized SpyTag-pp retained a comparable infectivity to the media 

control in the presence of human serum. Altogether, the exhibited long-term stability and 

uncompromised nature in presence of serum complement makes the functionalized 

SpyTag-pp highly attractive for in vivo targeting applications. 

One novel application of this targeting vector is the ability to accommodate 

commercially available antibodies as targeting moieties (Sanz et al. 2005). In the current 

study, we successfully conjugated a HER2 specific Fab derived from the Trastuzumab 
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antibody onto the Sind-SpyTag virions by exploiting the azide-alkyne cycloaddit ion 

reaction. The covalent bond formed between the AzF incorporated upstream of the 

SpyCatcher2 protein and the dibenzocyclooctyne (DBCO) group conjugated to the 

reduced cysteine on the HER2 specific Fab fragment helped to generate the Fab-

SpyCatcher2 conjugate. Strikingly, the chemically coupled Fab-SpyCatcher2 efficient ly 

functionalized  SpyTag-pp, with the resulting virions displaying receptor specific 

retargeting (Figure 3.13). Previous successful work of several groups showed that the 

azide-alkyne click chemistry for virus envelope modification with different ligands did 

not alter the functionality of the virus. In one study, surface functionalization of virus like 

particles with antibody fragment and granulocyte-macrophage colony stimulating factor 

(GM-CSF) through azide-alkyne chemistry resulted in stimulation and proliferation of 

immune cells (Patel and Swartz 2011). In another study, the vaccinia virus and avian 

influenza A virus envelopes were labeled through the cycloaddition reaction with quantum 

dots to identify the infectivity and single virion tracking (Hao et al. 2012). One more 

advantage of the cycloaddition approach is the lack of laborious molecular cloning to 

create fusion constructs. 

In conclusion, this work provides proof of principle of the utility of an isopeptide bond 

forming protein-peptide pair (SpyTag-SpyCatcher) as a versatile tool for targeting of 

lentivirus vectors. This peptide tagging based strategy is readily adaptable to different 

targets. Consequently, the facile “plug and play” model will further enhance the potential 

of lentiviral vectors as widely used gene delivery vehicles for functional genomics and 

gene therapy purposes. 
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CHAPTER IV  

DEVELOPMENT OF CHICKEN ANTIBODIES AGAINST TUMOR ANTIGENS 

4.1. Overview 

In this section, we propose to develop a novel platform technology that enables 

isolation of antibodies targeting highly conserved regions of cancer-specific-receptors. 

Antibodies are considered important therapeutic candidates against cancer due to their 

ability to bind the target with high affinity and specificity. As most of the cancer antigens 

are considered to be self-antigens, they are not immunogenic for the host. The need to 

develop new antibodies against these self-antigens has increased. Chickens are considered 

better immune hosts because of their evolutionary distance from mammals. The proposed 

new technology platform will facilitate the engineering of chicken monoclonal antibodies 

(IgY) against human cancer receptors. In this preliminary work, we constructed a plasmid 

that expresses an agonistic anti-chicken CD40 single chain variable fragment (2C5 scFv) 

as the N-terminal fragment of the eB7 display domain, which consists of transmembrane 

and cytosolic tail of murine CD80. The cell surface expression was confirmed through 

immunostaining. The activity of the displayed 2C5 scFv was identified by the interaction 

between purified the 2C5 scFv and chicken CD-40 ectodomain. This DNA vaccine will 

be utilized to carry out chicken immunization experiments to generate IgY antibodies 

against the model human cancer receptor hCD20. 

4.2. Introduction 

Monoclonal antibodies (mAbs) are widely used for the treatment of cancer, 

inflammatory diseases and other disorders. Their ability to target antigens with high 
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affinity and specificity has rendered them particularly useful in precision cancer therapy. 

Currently, most of the monoclonal antibodies are generated from mice using the 

hydridoma technology, which immortalizes mouse B-cell clones producing specific 

mAbs. However, both humans and mice are mammals and we share many conserved 

regions in our proteins. These homologous regions are likely preserved through evolution 

due to their important cellular functions. However, since self-antigens are not 

immunogenic for the host, it is difficult to obtain murine antibodies against homologous 

regions from human proteins.  

It is a well-known concept that the further the evolutionary distance between the 

antigen source and the immune host, the more potent is the immune response. Therefore, 

to obtain antibodies against a human protein, chickens are far better immune host than any 

mammal (Camenisch et al. 1999; Schade et al. 2005; Tini et al. 2002; Williams et al. 2001). 

Chickens have been shown to develop robust immune responses and produce antibodies 

against different antigens (Murata et al. 1996). In addition, chicken IgY antibodies are 

sufficiently similar to human IgG antibodies, making it possible to be easily humanized 

via complementarity-determining regions (CDR) grafting (Chen et al. 2010; Chen et al. 

2012). However, it is currently difficult to obtain monoclonal chicken antibodies due to 

the lack of a hybridoma-equivalent technology for chickens. Although the Gel 

Encapsulated Microenvironment (GEM) technology, developed by Crystal Bioscience, 

has been successfully used to isolate chicken B cells producing a desired antibody, it 

requires highly specialized tools and is proprietary, and cannot be easily used by the 

general research community. 
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Figure 4.1: Antibody-guided vaccine technology. (A) Antigen 
protein (green line) functionalized with a CD40 mAb (blue) is able 
to elicit much stronger immune response than antigen mixed with 

adjuvant. (B) In this study, chicken cells will display the membrane 
localized antigen protein (green line) and CD40 scFv (red) or full 

length CD40 mAb (blue-yellow). 
 
 
 

In this study, we will develop a new technology to facilitate the engineering of chicken 

monoclonal antibodies (IgY) against a human cancer receptor. We will first elicit chicken 

polyclonal antibodies against the ectodomains of a receptor protein using the antibody-

guided vaccine technology developed by collaborator Dr. Luc Berghman, in which a target 

antigen is chemically conjugated to the agonistic anti-chicken CD40 mAb (mAb 2C5) to 

be targeted to CD40-rich chicken dendritic cells (DCs) for antigen presentation (Chen et 

al. 2010). mAb 2C5-functionalized antigens were found to elicit significantly stronger and 

much more rapid (4 days) immune responses than unconjugated antigens mixed with 

adjuvant. Since most of the cancer receptors are membrane proteins and are difficult to 

purify and functionalize with an antibody directly, in the current study, we will expand 

Cell

A B



 

86 

 

 

this antibody-guided vaccine technology to cells displaying a desired membrane protein 

antigen (Figure 4.1). 

DNA encoding the target antigen and CD40 single chain antibody (scFv) or CD40 

mAb will be delivered to chicken muscle cells via electroporation. DNA vaccination has 

emerged as a promising alternative to conventional protein-based vaccination and was 

found to induce both humoral and cellular immune responses (Meunier et al. 2016). In one 

study, a single injection of plasmids expressing the hemagglutinin (HA) protein from 

avian influenza virus (AIV) protected chickens from severe subsequent challenge of AIV 

(Ogunremi et al. 2013). In another study, immunization with a DNA vaccine successfully 

induced neutralizing antibodies and protected the chickens against chicken anemia virus 

(CAV) (Moeini et al. 2011). We choose to use a DNA vaccine to induce the expression of 

the desired antigen in chicken muscle cells.  We hypothesized that the co-expression of 

CD40 scFv or CD40 mAb should enhance the immune response through specific 

recruitment and/or activation of dendritic cells. 
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Figure 4.2: Single cell emulsion technology. An axisymmetric flow-focusing nozzle 
will isolate single cells and poly(dT) magnetic beads into emulsions of predictable size 

distributions. An aqueous solution of cells (orange circles) in PBS (blue) and cell lysis 
buffer (green) with poly(dT) beads (blue circles) exit an inner and outer needle and this 
surrounded by a rapidly moving annular oil phase (red arrows). Aqueous streams focus 

into a thin jet, which coalesce the emulsion droplet into predictable sizes. Cells are in 
contact with the lysis buffer only at the point of droplet formation. 

 
 
 

Upon development of a polyclonal antibody response, a mammalian cell-based screen 

will be developed and used to isolate chicken monoclonal antibodies against the desired 

membrane protein antigen. Mammalian cell display is superior to microbial display for 

antibody engineering, because antibodies displayed on mammalian cells exhibit reduced 

aggregation, correct glycosylation patterns, and are more amenable to future large-scale 

antibody production in mammalian cells (Doerner et al. 2014). However, a significant 

shortcoming of mammalian cell display technology is the poor transfection efficiency of 

mammalian cells, limiting its application in single chain antibody (scFv) library screening, 

which typically requires the screening of a large library due to the low probability of a 
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heavy chain to be paired with a light chain derived from the same B-cells. To overcome 

this limitation, a simple and efficient single-cell emulsification technology (Figure 4.2), 

developed by Georgiou and co-workers in early 2016, will be used to enable the 

construction of correctly paired heavy-light chain (VH-VL) libraries from chicken B-cells 

(DeKosky et al. 2013; DeKosky et al. 2015). This approach will significantly reduce the 

number of clonal variants that need to be screened for scFv selection and will be used to 

construct a paired VH-VL cDNA library from immunized chickens and display this library 

on mammalian cells.  

In the current study, human CD20 (hCD20) will be used as a model membrane protein 

antigen (Stashenko et al. 1980). hCD20 plays an important role in B-cell activation and 

proliferation, is highly expressed on normal and malignant B-cells (Cragg et al. 2005), and 

has been extensively explored to treat B-cell lymphomas (Link and Friedberg 2008). The 

anti-CD20 mAb, rituximab, a chimeric mouse-human antibody, was able to deplete B-

cells mainly through complement-dependent cytotoxicity (CDC) and antibody-dependent 

cellular cytotoxicity (ADCC) (Scott 1998). However, about 30% of the B-cells in non-

Hodgkin lymphoma patients are refractory to rituximab (Stolz and Schuler 2009). 

Recently, a few newer anti-CD20 antibodies have been developed. Ofatumumab a fully 

human antibody generated from transgenic mice that binds a distinct epitope on CD20 

from rituximab and induce killing via CDC (Cheson 2010).  
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Figure 4.3: Sequence alignment of CD20 of human (h) and mouse 

(m) origin. Included for comparison is the protein (cS2536) that most 

closely resembles CD20 from chickens. Ectodomains are shaded in 
gray. The regions that interact with the antibody are boxed (Binder et al. 

2006; Cheson 2010). 
 
 
 

A high sequence homology is shared between human and mouse CD20 (Figure 4.3). 

Since all the current therapeutic anti-CD20 antibodies were derived from mouse, only 

antibodies targeting non-identical regions on the protein have been developed (Binder et 

al. 2006; Klein et al. 2013). Given the potentially important role of highly 

conserved/identical regions, and the tendency of antibodies that bind different epitopes to 

induce different cell-killing mechanisms, the discovery of mAb binding to new epitopes 

on hCD20, including highly conserved protein regions, would be highly desirable for 

continued therapeutic development.  

In this study, we aimed to develop a new platform technology, building upon the 

antibody-guided chicken vaccine technology and the single cell emulsion technology, for 

the discovery of chicken scFv targeting conserved ectodomains of hCD20 protein. This 

hCD20  MTTPRNSVNGT--FPAEPMKGPIAMQSGPKPLFRRMSSLVGPTQSFFMRESKTLGAVQIM 

mCD20  -------MSGP--FPAEPTKGPLAMQPAPKVNLKRTSSLVGPTQSFFMRESKALGAVQIM 

cS2536 -MSQRDTLVHLFAGGCGGTVGAILTCPLEVVKTRLQSSSVTLYISEVHLNTVNGASVNRV 
 

     Ofatmumab 

hCD20  NGLFHIALGGLLMIPAG-----IYAPICVTVWYPLWGGIMYIISGSLLAAT-EKNSRKCL 

mCD20  NGLFHITLGGLLMIPTG-----VFAPICLSVWYPLWGGIMYIISGSLLAAAAEKTSRKSL 

cS2536 TRVSPGPLHCLKMILQKEGPRSLFRGLGPNLVGVAPSRAIYFAAYSNCKEKLNNIFNPDS 
 

           Rituximab 

hCD20  VKGKMIMNSLSLFAAISGMILSIMDILNIKISHFLKMESLNFIRAHTPYINIYNCEPANP 

mCD20  VKAKVIMSSLSLFAAISGIILSIMDILNMTLSHFLKMRRLELIQTSKPYVDIYDCEPSNS 

cS2536 TQVHMISAGVAGFTAIT--MTNPIWLVKTRLQLDARNRGEKRMSAFECVRKVYRSDGIKG 
 

      Rituximab 

hCD20  SEKNSPSTQYCYSIQSLFLGILSVMLIFAFFQELVIAGIVENEWKRTCSRPKSNIVLLSA 

mCD20  SEKNSPSTQYCNSIQSVFLGILSAMLISAFFQKLVTAGIVENEWKRMCTRSKSNVVLLSA 

cS2536 FYRGMSASYAGISETVIHFVIYESIKRKLLEHKTASAMDSEDESAKEASDFVGMMMAAAT 

 

hCD20  EEKKEQTIEIKEEVVGLTETSSQPKNEEDIEIIPIQEEEEEETETNFPEPPQDQESSPIE 

mCD20  GEKNEQTIKMKEEIIELSGVSSQPKNEEEIEIIPVQEEEEEEAEINFPAPPQEQESLPVE 

cS2536 SKTCATSIAYPHEVVRTRLREEGTKYRSFFQTLSLLVREEGYGSLYRGLTTHLVRQIPNT 

 

hCD20  NDSSP----------- 

mCD20  NEIAP----------- 

cS2536 AIMMSTYEVVVYLLDG 
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technology should facilitate the identification of new chicken antibodies targeting other 

human cancer receptors, creating an opportunity for the development of new anti-cancer 

mAbs and a new anti-hCD20 mAb to treat lymphoma.   

4.3. Material and methods 

4.3.1. Cell and chemicals 

Cell cultures were maintained at 37°C in a humidified atmosphere of 5% CO2. HEK 

293T cells were purchased from Invitrogen (Carlsbad, CA) and were grown in Dulbecco’s 

modified Eagle’s medium (DMEM) containing 4,500 mg/liter glucose, 4.0 mM glutamine, 

and 110 mg/liter sodium pyruvate (Thermo Scientific HyClone, Logan, UT) supplemented 

with 10% fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA) and 1X non-

essential amino acids (Thermo Scientific HyClone, Logan, UT).  Chicken HD11 

macrophages cells (Crippen et al. 2003) and were kindly provided by Luc R. Berghman 

(Texas A&M University; College Station, TX), were cultured in DMEM medium 

containing 8% fetal bovine serum and 5% chicken serum (Sigma, St.Louis, MO). 

Dulbecco’s phosphate-buffered saline (DPBS) was purchased from Thermo Scientific 

HyClone (Logan, UT). 

4.3.2. Plasmids 

The plasmid encoding the single chain variable fragment (scFv) of agonistic anti-

chicken CD-40 (2C5) was custom synthesized by Addgene (Cambridge, MA). The pLPns 

vector contains the eB7 display domain, which consists of the IgG like C-type domain, 

transmembrane domain and the cytoplasmic tail of murine CD80. The insert was digested 
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with sfiI restriction enzyme and cloned into the SfiI digested pLPns backbone. The 2C5 

was inserted at the N-terminal of the eB7 display domain.     

4.3.3. Cell surface display  

To confirm cell surface expression of 2C5-scFv display proteins, 5 x 105 HEK 293T 

cells were transfected with 1000 ng of the appropriate plasmid using Trans IT (Mirus Bio 

LLC; Madison, WI) as per the manufacturer's protocol. Forty-eight hours post 

transfection, cells were harvested, washed and treated with 0.5 % sodium azide (Sigma, 

St.Louis, MO) for 30 min. The fixed cells were stained with a 1:10 dilution of anti-HA-

biotin (Miltenyi Biotec, Bergisch Gladbash, Germany) in DPBS supplemented with 1% 

bovine serum albumin (BSA) for 1 h. The cells were then washed and stained with a 1:200 

dilution of FITC-streptavidin (BD Biosciences, San Jose, CA) and diluted in 

DPBS/1%BSA for 30 min. After removal of excess antibody, samples were resuspended 

in DPBS containing 1% paraformaldehyde (PFA) and analyzed using a BD FACScan flow 

cytometer (BD Biosciences; San Jose, CA). 

4.3.4. Activity assay for expressed 2C5 scFv 

To confirm the activity of cell surface expressed 2C5-scFv display proteins, 5 x 105 

HEK 293T cells were transfected with 1000 ng of the appropriate plasmid using Trans IT 

(Mirus Bio LLC; Madison, WI) as per the manufacturer's protocol. Forty-eight hours post 

transfection, cells were harvested, washed and treated with 0.5 % sodium azide (Sigma, 

St.Louis, MO) for 30 min. The fixed cells were incubated with a 1 µg/ml of purified 

chicken CD-40 ectodomain for 1 h. These cells were washed and stained with a 1:1000 
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dilution of mouse anti-his (R&D systems, Inc, Minneapolis, MN) in DPBS supplemented 

with 1% bovine serum albumin (BSA) for 1 h. These cells were then washed and stained 

with a 1:500 dilution of Dylight 488 goat anti-mouse (Jackson ImmunoResearch 

Laboratories, Inc; West Grove, PA) diluted in DPBS/1%BSA for 30 min. After removal 

of excess antibody, samples were fixed in DPBS containing 1% paraformaldehyde (PFA) 

and analyzed using a BD FACScan flow cytometer (BD Biosciences; San Jose, CA). 

4.4. Results 

4.4.1. Cell surface display of 2C5 

In the current study, we initially planned to display the anti-CD-40 antibody 2C5 as 

scFv on the N-terminus of the eB7 display domain. A HA-tag was inserted to the N-

terminus of the 2C5 to facilitate downstream analysis. We evaluated the cell surface 

expression level of 2C5 on 293T cells, as it is critical for the interaction with the chicken 

CD-40 ectodomain for immune activation against the antigen. The 2C5 scFv was 

displayed on the cell surface, which was confirmed using flow cytometry. The presence 

of positive cells in the 2C5 transfected sample after immunostaining with anti-HA-biot in 

antibody and FITC-streptavidin secondary antibody (Figure 4.4). 
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Figure 4.4: The 2C5-scFv was efficiently displayed on the cell surface. Plasmids 
expressing the 2C5-eB7 display were transfected into HEK 293T cells. Surface display 

was monitored after 48h using anti-HA biotin antibody followed by FITC-streptavidin. 
Samples were analyzed using flow cytometry. 

 
 
 

4.4.2. Activity of display 2C5-scFv 

To confirm the ability of cell surface displayed 2C5-scFv to activate the immune 

response through CD-40 rich chicken dendritic cells, the transfected cells were incubated 

with 1µg/ml of native chicken CD-40 ectodomain protein. As shown in figure 4.5, the 

cells transfected with 2C5-scFv had slightly higher positive staining compared to the naïve 

cells in the presence of primary and secondary antibodies. Surprisingly, the untransfected 

cells also had positive staining. The staining may be due to non-specific interaction with 

the primary anti-his antibody or the native chicken CD-40 ectodomain protein. 
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Optimization experiments have to be conducted, but overall, the slightly higher staining 

in transfected cells support the presence of the cell surface expressed 2C5-scFv.  

 
 
 

 

Figure 4.5: The cell surface displayed 2C5-scFv was active to interact with native 

chicken CD-40 protein. Plasmids expressing the 2C5-eB7 display were transfected into 
HEK 293T cells. After 48h, the fixed transfected cells were interacted with 1µg/ml of 
native chicken CD-40 protein for 1h. The activity was determined using a mouse anti-

His antibody followed by goat anti-mouse 488-dylight. The interaction was determined 
using flow cytometry. 

 
 
 

4.5. Discussion 

In this section, we report the preliminary results of experiments aimed at developing a 

new platform technology, building upon the antibody-guided chicken vaccine technology 

(Chen et al. 2010) and the single cell emulsion technology (DeKosky et al. 2015), for 

discovery of new antibodies in chickens targeting human tumor antigens. A DNA vaccine 
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strategy was adopted to develop the polyclonal antibodies against the tumor antigen 

hCD20. Initially, we constructed a plasmid encoding the single chain variable fragment 

(scFv) of agonistic anti-chicken CD-40 at the N-terminal of the eB7 display domain (Liao 

et al. 2003). A higher surface expression of scFv was achieved on eB7 than on other 

commercial vectors, such as human platelet-derived growth factor receptor (PDGFR) and 

the GPI signal peptide from decay accelerating factor (DAG) (Cheng and Roffler 2008; 

Lin et al. 2013). A higher 293T cell surface expression was confirmed by immunostaining 

(figure 4.4). The important advantage of this strategy is that it required only one plasmid 

to display 2C5-scFv. Further, the activity of the displayed 2C5-scFv was confirmed to 

interact with native chicken CD-40 ectodomain protein. Surprisingly, positive staining 

was observed in both the control and 2C5 transfected cells, but transfected cells had 

slightly higher staining (figure 4.5). The lack of definitive evidence from the activity assay 

can be due to the non-specific interaction of the mouse anti-his antibody or the native 

chicken CD-40 ectodomain protein. 

In conclusion, in these preliminary results, we were able to confirm the cell surface 

expression, but we were unable to determine the activity of the displayed 2C5-scFv. As 

the lack of activity of displayed 2C5-scFv can result in weak immune response, we plan 

to develop an engineered cell line of chicken fibroblasts, which will display both the 2C5-

scFv and the tumor antigen. Later, these cells will be used to immunize chickens to 

develop polyclonal antibodies against the tumor antigen. As another strategy, we will 

clone and display the full- length mAb 2C5 through the associated proteins – human Igα 

and Igβ. The variable regions of 2C5-scFv will be grafted onto the constant heavy and 
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light chain to form 2C5-mAb to be displayed on the chicken macrophages. We anticipate  

that 2C5-mAb will retain full activity to provide the required immune response. 
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CHAPTER V  

CONCLUSIONS AND RECOMMENDATIONS 

Retargeting of lentiviral vectors entry to cell types of interest is a key factor in 

improving the safety and efficacy of gene transfer. Lentiviral vectors allow stable long-

term transgene expression in non-dividing cells and in tissues. These properties have made 

them ideal gene therapy vectors for research and clinical applications (Cockrell and Kafri 

2007). A lot of attention has been provided for vector design for improving the safety and 

efficacy of lentiviral vector-mediated gene therapy (Vigna and Naldini 2000). Restricted 

gene therapy has gained interest by using tissue-specific promoters (transcriptiona l 

targeting) and detargeting of irrelevant cell types from gene types for gene expression by 

inserting target sequences from tissue specific miRNAs (Frecha et al. 2008). The ideal 

way to restrict gene transfer would be at the cell entry itself (transductional targeting), 

Lentiviral vectors are usually pseudotyped with glycoprotein (G) of vesicular stomatit is 

virus (VSV) and other retroviruses and non-lentivirial envelope proteins (Levy et al. 

2015). Several previous attempts to engineer receptor usage have been unsuccessful due 

to the close activity of receptor binding and membrane fusion function, such as the VSV-

G. Recently, lentiviral vectors have been pesudotyped with engineered Sindbis virus 

glycoproteins without the ability to recognize their natural receptor and have been 

modified to either noncovalently bind to monoclonal antibody directed against a surface 

antigen (Morizono et al. 2005). Further mutations in the Sindbis glycoprotein made a 

binding-deficient and fusion competent molecule. For the current study, the mutated 

Sindbis glycoprotein was engineered to incorporate one of the protein partner obtained 
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from naturally occurring covalent bond protein pairs. Later the other protein partner was 

fused to a cell-targeting moiety.  

 In the first approach, we evaluated the disulfide bond forming protein-peptide pair 

PDZ1 -TEFCA from the Drosophila visual system (Kimple and Sondek 2002). Our results 

show the development of a covalent bond lentiviral vector that can be applied for gene 

therapy applications. The retargeting of the functionalized virions was observed to be 

dependent on the protein concentration and receptor of entry. The titer of functionalized 

virions was observed to be higher compared to the unfunctionalized and mutant 

functionalized virions. The disulfide bond was observed to be stable in prolonged dialysis 

and in presence of serum complement.  

In the second approach, we explored the isopeptide bond forming protein-protein pair 

SpyTag-SpyCatcher from the Streptococcus pyogenes (Zakeri et al. 2012). We 

successfully demonstrated building up another covalent bond retargeting lentiviral vector. 

The functionalized SpyTag virions exhibited a nice protein and HER2 dependent 

transductional acitivity compared to unfunctionalized virions. The high target versus non-

target cell discrimination was demonstrated in mixed cell populations by the 

functionalized virions. The isopeptide bond was observed to stable during prolonged 

dialysis and in presence of serum complement. The application of different antibodies for 

retargeting lentiviral vectors was made possible through click chemistry approaches. The 

chemically conjugated Fab-SpyCatcher was able to functionalize SpyTag virions and was 

able to transduce the specific cells in a dose dependent manner. 
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In comparison between both the developed retargeting approaches, both the strategies 

can be optimized to develop novel lentiviral vectors for clinical consideration. There are 

several reasons the SpyTag-SpyCatcher approach will be ideal for optimization to apply 

in clinical settings. These reasons include, the spontaneous bond forming capability of 

SpyTag-SpyCatcher, the observed low immunogenicity against SpyTag and SpyCatcher 

in in vivo setting (Brune et al. 2016) and the optimized application of antibody fragments 

with SpyCatcher through click chemistry approaches. Although my work primarily 

focused on developing covalent retargeting methodologies, the other hurdles include the 

vector production for clinical use, other immune system barriers and questions of systemic 

application and dosage are still to be addressed through future work. However, instead of 

these hurdles, our results demonstrate the development of plug and play lentiviral vector 

retargeting models through covalent functionalization for gene therapy applications. 

Lastly, we have built up the strategy to develop antibodies against human tumor 

antigens in chickens.  Through our preliminary work, we demonstrated the surface 

expression of mouse anti-chicken CD40 scFv (2C5). This cell surface expression plays 

role in activation of adaptive immune response. The ultimate goal of this research will be 

to utilize the potential of antibody guided vaccine technology and single cell emulsion 

technology to isolate and optimize the selected antibodies against hCD20 antigen. 
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