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ABSTRACT 

 

This thesis provides a fundamental understanding of the unsteady aerodynamic 

phenomena on a cycloidal rotor blade operating at ultra-low Reynolds numbers 

(Re~18,000) by utilizing a combination of experimental (force and flowfield 

measurements) and computational (CFD) studies. For the first time ever, the instantaneous 

blade fluid dynamic forces on a rotating cyclorotor blade were measured, which, along 

with PIV-based flowfield measurements revealed the key fluid dynamic mechanisms 

acting on the blade. A 2D CFD analysis of the cycloidal rotor was developed and 

systematically validated using both force and flowfield measurements. Studies were 

performed with static pitching, and dynamic blade pitching for symmetric and asymmetric 

kinematics. Direct comparison of the static and dynamic pitch experimental results helped 

isolate the unsteady phenomena (such as dynamic stall, unsteady virtual camber, etc.) from 

the steady effects.  

The dynamic blade force coefficients for symmetric pitching were almost double 

the static ones, clearly indicating the role of unsteady mechanisms on force production on 

cyclorotor blades. The blade lift monotonically increased even up to ±45° pitch amplitude 

due to dynamic stall phenomenon; however, as expected, for the static case, the flow 

separated from the leading edge after around 15° with a large laminar separation bubble 

(LSB) and eventually completely separated at higher pitch angles. For both static and 

dynamic pitching cases, there was significant asymmetry in the lift and drag coefficients 

between positive and negative pitch angles due to the flow curvature effects (virtual 
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camber). CFD flow solution and PIV measured flowfield correlated well, and both showed 

the formation and shedding of strong dynamic stall or leading edge vortices, especially at 

higher pitch amplitudes, which is the reason for the stall delay and force enhancement. 

Also, the dynamic stall process for symmetric and asymmetric pitching during the upper 

half of the trajectory was significantly different from the lower half even with symmetric 

blade pitch kinematics because of the reversal of dynamic virtual camber from the upper 

to the lower half. Even at such low Reynolds numbers the pressure forces, as opposed to 

viscous forces, were found to be dominant on the cyclorotor blade. The power required 

for rotation (rather than pitching power) was the domineering component of the total blade 

power for the dynamic pitching case. For asymmetric pitching, implementing higher pitch 

at the top and lower pitch at the bottom could counteract the inherent virtual camber effect 

and significantly improve the performance of a cyclorotor. CFD and the experimental 

forces and flowfield correlated well for asymmetric pitching, but there were some 

differences in the lower half where CFD seemed to overpredict the forces for reasons yet 

to be identified. The Reynolds number affects the dynamic stall processes and the forces 

produced by the blades. 
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NOMENCLATURE 

 

A Rectangular projected rotor area 

b blade span 

AR Aspect ratio 

c Blade chord length 

CL Coefficient of lift 

CD Coefficient of drag 

CMZ Pitching moment coefficient 

CP Power coefficient 

CT Thrust coefficient 

d Cyclorotor diameter 

D Drag force 

FM Figure of merit 

L Lift force 

LE Leading edge of blade 

MZ Pitching moment 

PIV Particle image velocimetry 

PIDEAL Ideal power 

PPITCH Pitching power 

PROT Rotational power 

PTOTAL Total power 
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R Rotor radius 

T Thrust 

TE Trailing edge of blade 

vi Induced velocity 

β Angle between chord and resultant force 

Ω Rotational speed of rotor 

φ Phase angle 

Ψ Azimuthal position of blade 

θ Blade pitch angle 

𝜃̇ Blade pitch rate 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

The development of efficient, maneuverable, gust tolerant, and sustained hover-

capable micro air vehicle (MAV) platforms with expanded flight envelope is the key to 

the success of many missions in both military and civilian scenarios. In a military setting, 

MAVs can be used to perform reconnaissance missions by surveying enemy forces or 

dangerous areas, all the while remaining undetected and sparing a human life. For civilian 

applications, MAVs can be adapted to assist with fire and rescue missions, border 

surveillance, aerial photography, traffic monitoring, and many other scenarios.  

During the past decade, there have been many studies on the experimental 

optimization of MAV-scale conventional rotors (Refs. 1 and 2). These studies helped 

improve the hover figure of merit of a micro-rotor from an initial value of 0.42 to 0.65. 

However, this maximum figure of merit is still far below the full-scale helicopter value 

(~0.85) and is attributed to low Reynolds number (104–105) aerodynamics, especially the 

low airfoil lift-to-drag ratios and the complex induced wake distribution below the rotor 

(Ref. 2). Therefore, the vehicles developed using these optimized rotors could only 

achieve a maximum hover endurance of 10 minutes which would make them incapable of 

any realistic missions (Refs. 1 and 2). This clearly indicates the need for a step 

improvement in hover efficiency, which could only be achieved through a radically 

different concept to fly at these low Reynolds numbers.  
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Fig. 1: 29-gram meso-scale cyclocopter. 

 

 

 

 A new revolutionary concept of a cyclocopter or a cycloidal rotor based aircraft 

(Fig. 1) is being investigated. A cycloidal rotor (or cyclorotor) is a rotating-wing system 

(Fig. 1) where the span of the blades runs parallel to the axis of its rotation. The pitch 

angle of each blade is varied cyclically by mechanical means such that each blade 

experiences positive geometric angles of attack at both the top and bottom halves of its 

circular trajectory (Fig. 2). The resulting time-varying lift and drag forces produced by 

each blade is resolved into the vertical and horizontal directions, as shown in Fig. 2. With 

this kind of cyclic blade kinematics, the blades produce a net thrust. Varying the amplitude 
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and phase of the cyclic blade pitch is used to change the magnitude and direction of the 

net thrust vector produced by the cyclorotor. 

 

 

 

 

Fig. 2: Cyclorotor blade kinematics. 

 

 

 

Pioneering research on the cyclorotor concept for micro air vehicle (MAV) 

applications has been conducted over the last ten years (Ref. 3 – 15). This body of work 

represents one of the most comprehensive evaluations ever conducted on cyclorotors at 

MAV scales and involved systematic performance measurements in both hover (Ref. 3 – 
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7) and in a wind tunnel (Refs. 8 – 10), flowfield studies using Particle Image Velocimetry 

(PIV) (Refs. 3 – 5), computational fluid dynamic (CFD) analysis (Refs. 8 and 9), and 

aeroelastic modeling (Ref. 11). These studies established a fundamental understanding of 

a cyclorotor’s performance, and helped in formulating a set of design principles for an 

efficient cyclorotor operating at MAV-scale Reynolds numbers (Re<40,000).  

Benedict performed extensive research on hover-capable MAVs though both 

experiments and analysis (Ref. 3). The experimental work consisted of both performance 

and flowfield measurements, and the analysis conducted was an unsteady aeroelastic 

analysis to predict the average aerodynamic performance and blade loads of a cyclorotor 

(Ref. 3). Systematic performance measurements resulted in the identification of an 

optimized cyclorotor, and the aeroelastic analysis emphasized the influence that blade 

pitch kinematics, unsteady aerodynamics and blade deflections have on blade loads (Ref. 

3). 

In Ref. 4 an optimized cyclorotor configuration was obtained through systematic 

experimental parametric studies. This study investigated the effects of rotational speed, 

amplitude of blade pitch, blade airfoil profile, and blade flexibility on cyclorotor 

performance, and PIV studies were conducted to gain understanding of the flowfield 

around the cyclorotor (Ref. 4). They found that a cyclorotor generates high values of thrust 

at very high blade pitch amplitudes. The PIV flowfield showed a pitch-rate induced stall 

delay on the blades at high pitch angles, and the formation of a leading edge vortex similar 

to a dynamic stall vortex which can increase the amount of thrust produced. 
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Further work on improving the aerodynamic performance of cyclorotors was 

performed by Benedict, Ramasamy, and Chopra (Ref. 5). They conducted more detailed 

parametric and flowfield studies, and found that power loading and rotor efficiency can 

be increased by using more blades (Ref. 5). The study showed that regardless of the 

number of blades used, a cyclorotor’s performance improves at higher blade pitch angles 

(Ref. 5). The PIV measurements showed significant rotational flows inside the rotor, and 

wake interactions between the upper and lower halves of the rotor (Ref. 5). A key inference  

from this study was that blade camber and optimized blade kinematics, such as asymmetric 

pitching, can help mitigate the losses (Ref. 5). 

Benedict, Jarugumilli, and Chopra performed additional parametric studies and 

compared the performance of a cyclorotor with a conventional rotor (Ref. 6). They found 

that an optimized cyclorotor has significantly higher power loading (almost 50% higher) 

when compared to a conventional rotor (Fig. 3) operating at the same disk loading (Ref. 

6). The possible reasons for the improved performance could be the uniform spanwise 

load distribution on the cyclorotor blades and the favorable unsteady aerodynamic 

mechanisms. The parametric studies also involved an investigation into the dependence 

of a cyclorotor’s performance on blade pitching amplitude for both symmetric and 

asymmetric pitching (Ref. 6). It was found that the power loading was higher for an 

asymmetric pitching case where the pitch angle was higher at the top than the bottom, 

when compared to symmetric pitching (Ref. 6). The highest power loading case was for a 

total peak-to-peak pitching angle of 70°, with a 45° pitch angle at the top and a 25° pitch 

angle at the bottom (Ref. 7). They also found that by shifting the pitching axis location 
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away from the leading edge, the performance improved (Ref. 7). For rotors with large 

chord-to-radius ratio in general, asymmetry in pitch angle and location of pitching axis 

significantly affect the aerodynamic performance due to flow curvature effects (virtual 

camber from curvilinear flow) (Ref. 7). 

 

 

 

 

Fig. 3: Thrust/power of cyclorotor versus conventional rotor. (Ref. 6) 

 

 

 

Systematic forward flight studies were also performed on a cyclorotor in an open-

jet wind tunnel, where the pitching axis location and chord-to-radius radio were varied 
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(Ref. 8).  One goal of these studies was to understand the effect that these parameters have 

on virtual camber (Ref. 8). Virtual camber is highly dependent on the two parameters, and 

is a key factor which affects the lift, thrust, and power consumed for a pitching blade (Ref. 

8). It was shown that increasing the chord-to-radius ratio (which increases the virtual 

camber) and pitching the blade closer to the leading edge will increase the lift per unit area 

in a mostly linear fashion for constant rotational speed and wind speed (Ref. 8).  

The forward flight studies also utilized a combination of time-resolved PIV 

measurements, time-averaged force measurements, and 2D CFD predicted flowfield to 

understand the flow physics for a cyclorotor (Ref. 9). Observations from the measured 

flowfield were compared with CFD predicted instantaneous forces and power to identify 

the role of periodic flow features in lift generation (Ref. 9). It was found that the upper 

half of the rotor experiences a region of power extraction, which is seen in the time-

averaged flowfield where the magnitude of the flow velocity decreases (Ref. 9). This 

extraction region also appeared in the 2D CFD predicted instantaneous power (Ref. 9).  

Forward flight studies conducted by Jarugumilli, Benedict, and Chopra involved an 

investigation into the effects of blade pitch amplitude and pitch phase angle on rotor lift, 

power, and propulsive force (Ref. 10). These studies provided a fundamental 

understanding of cyclorotor performance in steady and level flight (Ref. 10). For the 

maximum forward speed tested (13 m/s), the rotor operated at 1740 RPM (advance ratio 

= 0.94), and maintained sufficient lift for the twin-cyclocopter MAV used in the study 

(Ref. 10). In Fig. 4, one can see that the power required decreased by almost 40% from 
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hover to an advance ratio close to unity, which is remarkable for an MAV-scale rotor (Ref. 

10). 

 

 

 

 

Fig. 4: Forward flight performance of a cyclorotor. (Ref. 10) 

 

 

 

In another study conducted by Benedict, Chopra, Mattaboni, and Masarati, an 

aeroelastic model was used to predict the blade loads and averaged thrust of a MAV-scale 

cyclorotor (Ref. 11). The model utilized a beam-based finite element analysis with radial 

bending, tangential bending, and torsional degrees of freedom, and a multibody based 



 

9 

 

 

analysis for large deformations (Ref. 11). The goal of the study was to understand the 

effect of unsteady aerodynamics, blade kinematics, and blade flexibility on cyclorotor 

performance (Ref. 11). A key conclusion from the study was the need for a coupled 

aeroelastic analysis for predicting blade loads on a cyclorotor with flexible blades (Ref. 

11). Blade deformations are influenced mainly by inertial forces, but aerodynamic forces 

still have a significant impact on them (Ref. 11). It was also found that lateral forces 

produced by a cyclorotor blade are due to mechanical lag in the blade kinematics and 

aerodynamic phase lag from the unsteady aerodynamics (Ref. 11). 

This work, along with innovative vehicle design techniques and the development 

of novel autonomous flight control strategies, led to the first flying cyclorotor-based 

aircraft (Ref. 12). Benedict, Gupta, and Chopra designed, built, and successfully flight 

tested a twin-rotor cyclocopter in hover; this was the first stable flight of an untethered 

cyclocopter reported in literature (Ref. 12). The cyclocopter used a lightweight cyclorotor 

design that produced three times more thrust than its own weight (Ref. 12). The cyclorotor 

utilized a novel blade pitching mechanism that allowed for instantaneous thrust vectoring 

though phasing of the cyclic pitch with a servo and linkage system (Ref. 12).  

Since this milestone, a wide range of hover-capable cyclorotor aircraft ranging in 

size from 29 to 800 grams were developed (Refs. 12 – 15), demonstrating conclusively 

the feasibility of the cyclorotor concept for MAV applications (Figs. 1 and 5).  
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 Further research focused on expanding the flight envelope of the cyclocopter to 

stable, high-speed, and level forward flight (Ref. 13). Forward flight control strategies 

were developed using independent pitch phasing and cyclorotor rotational speed control 

without relying on additional control through a traditional empennage system (Ref. 13). 

Although the cyclocopter is inherently unstable, a proportional-derivative (PD) controller 

for a feedback control system was developed and can successfully stabilize the vehicle 

(Ref. 13). It was found that phasing the cyclic pitch angle, which tilts the cyclorotor thrust 

vector, provides enough change in the propulsive force to increase forward flight speed 

(Ref. 13). Therefore, instead of pitching the vehicle forwards, tilting the cyclorotor thrust 

vector provides complete control authority of the forward velocity (Ref. 13). 

 

Fig. 5: Hover-capable cyclocopters developed in the past. (Refs. 12-15) 
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 Another study performed by Benedict, Mullins, Hrishikishavan, and Chopra 

detailed the vehicle design, control system development, and autonomous hover flight 

testing of a cyclocopter with a quad-rotor configuration using four cyclorotors in an axi-

symmetric plus-shaped orientation where each rotor axis was orthogonal to its neighbor 

(Ref. 14). Each cyclorotor had independent rotational speed control and thrust vectoring 

capability, and the control strategy was implemented on a 3-gram autopilot which 

autonomously stabilized the vehicle using a feedback PD controller (Ref. 14).  

 Much of the prior research utilized a linkage pitching mechanism to actuate the 

blade kinematics in hover. Another mechanism was developed that used the pitching 

moment from the centrifugal force to pitch the blades along with a novel cam design to 

achieve the desired pitch kinematics (Ref. 15). A twin-rotor cyclocopter instrumented with 

this mechanism was designed and built by Adams, Benedict, Hrishikishavan, and Chopra 

(Ref. 15). Their experiments demonstrated that the new pitching mechanism could be 

adapted to generate cyclic pitching schedules needed for different advance ratios by 

altering the cam profile (Ref. 15). The mechanism was designed to actively vary the pitch 

amplitude and phasing during flight by translating the cam in orthogonal directions (Ref. 

15). Through this study, the first flight-capable cyclocopter with cyclorotors having 

control over pitch amplitude and phase was reported in literature (Ref. 15). 

 It has been shown that a cyclorotor is more aerodynamically efficient than a 

conventional rotor at the same disk loading, and has benefits such as instantaneous thrust 

vectoring capability and the ability to transition from hover to high-speed forward flight 

seamlessly. There are several other advantages to a cyclorotor-based aircraft. For instance, 
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a twin-rotor cyclocopter (Fig. 1) has 5 control degrees of freedom (three RPMs and two 

thrust directions) (Refs. 13). As a result, the cyclocopter has greater actuation potential 

than a typically under-actuated system such as a quad-rotor. In other words, the 

cyclocopter can potentially command instantaneous accelerations in more directions than 

a quad-rotor. Another potential advantage of a cyclorotor, especially for indoor 

reconnaissance missions, is its lower acoustic signature when compared to conventional 

quad-rotors owing to the lower rotational speed. The only drawback of a cyclorotor is the 

rotor structural weight, which needs to be significantly reduced in the next generation of 

cyclocopter designs. 

 It is important to note that the key focus of the previous cyclorotor research was to 

understand the time-averaged rotor performance (lift, thrust, and power) in both hover and 

forward flight at moderately low Reynolds numbers (Re ~ 40,000) (Refs. 3 – 10). 

However, there is a significant dearth in the understanding of the unsteady blade 

aerodynamics, which is even more important at the ultra-low Reynolds numbers at which 

the next generation of meso-scale cyclocopters would operate. For a meso-scale 

cyclocopter shown in Fig. 1 (radius = 1 inch, weight = 29 grams), the operating Reynolds 

number is around 18,000. At these ultra-low Reynolds numbers, the steady airfoil 

performance (lift/drag) would be significantly lower compared to moderately low 

Reynolds numbers (Re ~ 40,000). Additionally, the flow will be extremely susceptible to 

separation and therefore, even the smallest perturbation could stall conventional rotor 

blades. In these types of conditions, we expect the unique unsteady aerodynamics of a 

cyclorotor to greatly enhance performance, similar to that of a flapping wing. This means, 
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understanding and utilizing the potential of blade unsteady aerodynamics becomes 

important at these extremely low Reynolds numbers. Therefore, if the focus of the 

previous research was on time-averaged performance, the goal of the present study is to 

understand unsteady blade aerodynamic loads in hover at much lower Reynolds numbers 

(Re < 20,000). Knowing the forces and flowfield at each instant of the blade trajectory can 

reveal key information about how the blade lift, drag and pitching moment are affected by 

blade pitching kinematics and unsteady flow curvature effects, which forms the motivation 

for the present work. 

Obtaining the instantaneous unsteady forces is extremely challenging if the 

experiments are conducted in air because at high rotational speeds, the aerodynamic forces 

are corrupted by the large inertial forces. Therefore, the present study conducted at Texas 

A&M University utilizes a unique experimental setup to measure the instantaneous blade 

fluid dynamic forces and flowfield (PIV) on a hovering cyclorotor blade in water at 

matched Reynolds numbers. The experimental study is complemented by a 2D CFD 

analysis, which is systematically validated with both force and flowfield measurements. 

The goal of the proposed research is to measure, for the first time ever, the instantaneous 

blade forces on a cyclorotor blade at ultra-low Reynolds numbers (Re~18,000) and high 

reduced frequencies (k~0.3), and to utilize these results along with PIV flowfield 

measurements and CFD simulations to unravel the key fluid dynamic mechanisms on a 

cyclorotor blade. 

The second chapter of this thesis will consist of an explanation of the methodology 

used for both the experimental and computational aspects of the study. The experimental 
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methodology will describe the setup and procedures used to carry out the tests, and the 

computational methodology will discuss the numerical methods utilized for the CFD 

calculations. Chapter 3 will include a discussion of the concept known as dynamic virtual 

camber, which is a phenomenon unique to a cyclorotor. Chapter 4 will consist of the results 

from the static pitch and symmetric dynamic pitching experiments, and Chapter 5 will 

include results from the asymmetric dynamic pitching and Reynolds number effect 

studies. The last chapter will contain a summary of the thesis work and the major 

conclusions drawn from the study. 
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CHAPTER II 

METHODOLOGY 

 

This chapter includes a discussion on the various methodologies used to conduct 

the research for this thesis. The experimental setup for both the force and flowfield 

measurements will be presented, and the procedure and calculations performed to obtain 

the final experimental results will be explained. The chapter will then conclude with a 

description of the computational methodology used to obtain the 2D CFD results for both 

force and flowfield.  

 

Experimental Methodology 

 

In order to gain understanding of the unsteady flow phenomena on a cyclorotor 

blade, the instantaneous blade forces are measured in water at matched Reynolds numbers. 

The reason for conducting these experiments in water is due to the ability to match the 

Reynolds numbers at significantly lower rotor speeds and higher fluid dynamic to inertial 

force ratio when compared to experiments in air. The forces are directly measured at the 

blade root using a miniature 6-component force balance.  
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Fig. 6: Blade radial force versus azimuthal location. 

 

 

 

To obtain just the fluid dynamic forces acting on the cyclorotor blade, the 

following procedure is followed: first, the total forces are acquired by performing the 

experiment in water; next, the inertial forces are obtained by repeating the same 

experiment in air; finally, to calculate the pure fluid dynamic forces, the inertial forces are 

subtracted from the total forces. Figure 6 shows the three forces in the radial direction as 

a function of blade azimuthal position. It can be seen that the inertial forces are only a 

small fraction of the total forces in water. 
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Fig. 7: Single-bladed cyclorotor test rig in water tank. 

 

 

 

Experimental Setup 

The experimental setup is shown in Fig. 7. For this experiment, the forces and 

moments are directly measured at the blade root using a miniature 6-component force 

balance (ATI Mini 27 Titanium). Instead of using the conventional four-bar based blade 

pitching mechanism, individual blade control (IBC) is implemented using an analog 

feedback servo. This allows to electronically couple the blade pitch angle with its 

azimuthal location (obtained using an encoder) by commanding the servo to provide the 

required blade pitch kinematics based on the feedback from the blade azimuthal position.  
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The electronic blade pitch control greatly simplifies the blade pitch mechanism. 

The cyclorotor is 1-bladed with a radius of 3.43 inches, and is rotated by a Maxon EC 22 

brushless motor that is equipped with Hall-effect sensors for precise rpm control. The 

motor is mounted in series with a Maxon Planetary Gearhead with a reduction ratio of 

370:1. A 12-channel slip ring is used to transmit the signals from the balance and servo in 

the rotating frame to the data acquisition equipment in the stationary frame. The tests are 

performed in a 3.2 ft X 1.6 ft X 2.4 ft rectangular tank, and with a rapid prototyped printed 

blade. The blade airfoil is a NACA 0015, and has a 12-inch span and 2-inch chord resulting 

in an effective aspect ratio of 12 (since there is only one free tip). The blade has been 

coated with shellac to seal any pores in the ABS plastic blade material resulting in water 

absorption that could corrupt the inertial force measurements. 

 

 

 

 

Fig. 8: PIV setup. 
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Fig. 9: Schematic of PIV setup. 

 

 

 

For conducting detailed flowfield measurements, the same cyclorotor test-rig is 

implemented with a state-of-the-art PIV system shown in Fig. 8. This system includes an 

EverGreen dual pulsed laser and power supply, which have been positioned next to the 

tank. An LaVision Imager sCMOS scientific camera with 5.5 megapixel resolution has 

been mounted underneath the tank, and pointed normal to the blade tip. The laser has been 

mounted such that the laser sheet hits midspan on the blade, which allows for visualization 

of mostly 2-dimensional flow (schematic of the PIV setup shown in Fig. 9). The images 

are captured and processed using the LaVision DaVis 8 data acquisition and visualization 

software. 
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Blade Force and Moment Measurements 

Blade forces and moments were measured for both static and dynamic pitch cases. 

For the static cases, as shown in Fig. 10, the blade pitch angle with respect to the tangent 

of its circular trajectory was held constant. The purpose of these tests was to understand 

the effect of static angle of attack and steady flow curvature effects such as virtual camber 

(explained in subsequent sections), due to the curvilinear nature of the flow experienced 

by the cyclorotor blades.  

 

 

 

 
Fig. 10: Blade kinematics for static pitch case. 

 

 

 

A static pitch angle sweep from -45° to +45° was performed at 20, 40, and 60 RPM 

in water, which corresponds to Reynolds numbers of 9,232, 18,465, and 27,697. The next 
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step was to conduct symmetric and asymmetric dynamic blade pitch experiments on the 

cyclorotor, meaning that the blade was actively pitched using the blade pitch servo to 

replicate the cyclic blade pitching kinematics shown in Fig. 2. For symmetric pitching, a 

pitching amplitude sweep from ±5° to ±45° in steps of 5° was tested at 20, 40, and 60 

RPM similar to the static case. For asymmetric pitching, the blade kinematics were similar 

to that shown in Fig. 2, except that the pitch amplitudes were different between the top 

and the bottom. One asymmetric pitching amplitude of 60° peak-to-peak was selected, and 

tests were run at 40 RPM for the following kinematic orientations: 15° Top/ 45° Bottom, 

20° Top/ 40° Bottom, 25° Top/ 35° Bottom, 30° Top/ 30° Bottom, 35° Top/ 25° Bottom, 

40° Top/ 20° Bottom, and 45° Top/ 15° Bottom.  

For each test case, data was recorded for 3 minutes: about 20 seconds of tare data 

(rotor not rotating), 2 minutes of rotor operating at desired RPM, and the rest of the time 

duration was used for increasing and decreasing the rotor speed. The data was then 

processed and analyzed using MATLAB. Each time-history curve presented in this thesis 

is an average of 40, 80, and 120 waveforms (from the consecutive cycles after the rotor 

has reached the steady state for each blade RPM tested). Figs. 11 and 12 show the radial 

and tangential force data for the symmetric pitching case of ±30° at 40 RPM. The red lines 

represent the cyclic data for 80 revolutions, and the blue line represents the average of the 

data. Each test case was also performed 3 times, and an average of the three was calculated. 

This cyclic averaging and test repetition helped minimize any random errors associated 

with the data. 
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Fig. 12: Tangential force for ±30° symmetric pitch at 40 RPM. 

 

 

Fig. 11: Radial force for ±30° symmetric pitch at 40 RPM. 
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The purpose of doing both static and dynamic pitch experiments was to compare 

the measured blade forces and flowfield from the two cases and then isolate the unsteady 

aerodynamic force production mechanisms from the steady ones especially in a curvilinear 

flow environment, which will be discussed more in the subsequent sections. In this thesis, 

blade radial force, tangential force and pitching moment are presented. Radial force will 

be referred to as lift, and is positive when pointed away from the center. Tangential force 

is drag, and is positive by convention when opposite to the direction of blade motion. The 

reason for such a terminology is the fact that the inflow velocity is much smaller than the 

blade speed due to very low disk loading and therefore, the radial force and lift would be 

approximately in the same direction. 

 

PIV Flowfield Measurements 

As mentioned before, the cyclorotor test-rig has been instrumented with a state-of-

the-art PIV system, which is used to conduct high resolution flowfield measurements 

around the blade. The water in the tank is seeded with ~10 µm diameter glass beads. When 

the laser sheet hits the glass particles, the light is reflected and illuminates the flow. A 

mirror is also mounted at the back of the tank to reflect the laser light onto the backside of 

the blade so that the blade shadow is diminished (Fig. 9).  

PIV measurements were performed at rotor speeds of 20, 40, and 60 RPM for static 

pitch cases of 15°, 30° and 45° and dynamic pitch cases with amplitudes of ±15°, ±30° 

and ±45° to correlate with the force and moment measurement experiments. Phase-locked 

PIV measurements were conducted around the blade, when the blade reached different 
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azimuthal locations. Azimuthal resolution for the PIV measurements was 10°, which 

means flowfield measurements around the blade were made at 36 azimuthal locations in 

one rotor revolution. The size of the interrogation window around the blade was 80 mm 

X 66 mm. For each azimuthal location (or phase), 70 phase-locked images of the flowfield 

were taken at a rate of 2/3 Hz (same as the rotational speed); therefore, one image was 

taken per rotation. These images were processed using the LaVision DaVis 8 data 

acquisition and visualization software. An average of the 70 images was computed, and a 

velocity component representing the rotational velocities (ΩR) of 0.183, 0.365, and 0.547 

m/s (corresponding to 20, 40, and 60 RPM) was subtracted, so that the resulting flow 

vectors are in the rotating frame (as seen by the blade). This is how the flowfield is 

presented in the paper. 

 

Computational Methodology 

 

Two-dimensional Computational Fluid Dynamic (2D CFD) simulations of the 

cyclorotor were performed using a Reynolds-averaged Navier–Stokes (RANS) solver 

called OVERTURNS (Ref. 16). This overset structured mesh solver uses the diagonal 

form of the implicit approximate factorization method (Ref. 17) with a preconditioned 

dual time scheme to solve the compressible RANS equations. Computations were 

performed in the body frame in a time-accurate manner. A third-order MUSCL scheme 

(Ref. 18) with Roe flux difference splitting (Ref. 19) and Koren’s limiter (Ref. 20) was 

used to compute the inviscid terms, and second-order central differencing was used for the 
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viscous terms. Due to the low operating Mach numbers of the present cyclorotor, the 

inclusion of a low Mach preconditioner based on Turkel’s method (Ref. 21) helped 

accelerate convergence and ensure accuracy of the solution. The Spalart–Allmaras (SA) 

turbulence model (Ref. 22) was employed for RANS closure. This one-equation model is 

considered advantageous for its ease of implementation, numerical stability, and 

computational efficiency.  

CFD simulations were performed for the static pitch as well as the dynamic pitch 

cases. The output included radial and tangential force predictions, which were compared 

with the force and moment measurements, and the flowfield solution, which was 

compared with the PIV-measured flowfield. The comparison was used to provide insight 

into the blade loads and flow phenomena around the rotor’s azimuth. 
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CHAPTER III 

DYNAMIC VIRTUAL CAMBER 

 

Before the results of the study are presented, a unique phenomenon known as 

dynamic virtual camber needs to be discussed. This chapter contains an explanation of the 

virtual camber effect, its dynamic nature, and its dependencies such as azimuthal location, 

geometry, and pitch rate.  

The virtual camber effect occurs due to the chord-wise variation of the incident 

velocity angle (or angle of attack) on the airfoil. This effect is very predominant in 

cyclorotors because the flow over a cyclorotor blade is characterized by a pitching airfoil 

in a curvilinear flow in the presence of inflow that varies along with azimuth.  

 

 

 

 

Fig. 13: Negative virtual camber effect due to curvilinear flow. 
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Fig. 14: Chord-wise variation of incidence due to inflow distribution. 

 

 

 

An airfoil in a curvilinear flow experiences different flow velocity magnitude and 

direction along the chord due to geometry and the curvilinear nature of the flow; this 

manifests as an effective camber and incidence. Figure 13 shows how curvilinear flow 

geometry creates a negative virtual camber effect for a blade at 0° pitch angle. Therefore, 

a symmetric blade immersed in a curvilinear flow will behave like a cambered blade in a 

rectilinear flow as shown in Fig. 13. This phenomenon is more significant for cyclorotors 

with a large chord-to-radius ratio (c/R). 

Flow over a cyclorotor is not purely curvilinear when it is producing thrust because 

of the induced flow velocity, which also effects virtual camber and incidence (Fig. 14).  
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Additionally, the blade pitch angle and pitch rate also affect the chord-wise velocity 

distribution and therefore, virtual camber. Figure 15 shows pitch rate causing chord-wise 

variation of virtual incidence which is manifested as a positive virtual camber effect. An 

opposite pitch rate (nose-down pitch) causes a negative virtual camber effect. 

 

 

 

 
Fig. 15: Positive virtual camber effect due to pitch rate. 

 

 

 

Since blade pitch and pitch rate changes with azimuthal location, corresponding 

virtual camber also changes with azimuth, hence ‘dynamic’ virtual camber. In essence, 

the virtual camber experienced by the cyclorotor is a function of chord/radius, blade pitch 

angle, pitch rate and inflow. Note that on the cyclorotor blade the virtual camber would 

be apparent in the blade forces as additional lift. Considering all these effects, we have 

derived a generalized expression (discussed in detail in Ref. 23) to obtain not only the 

virtually cambered shape of the airfoil but also the additional lift. Figure 16 (i) shows the 

variation of this additional lift coefficient due to virtual camber versus azimuthal position 

for a cyclorotor rotating at 40 RPM with 30° pitch amplitude and Figs. 16 (ii) and (iii) 

show the corresponding prescribed pitch and pitch rate respectively, as blade goes through 
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various azimuthal locations. Figure 16 (i - iii) shows the effects of virtual camber due to 

several underlying physical phenomena. It can be observed that virtual camber effect due 

to only curvilinear geometry (or flow curvature) is static in nature (magenta line) and it 

always causes negative virtual camber. Pitch and pitch rate create time-dependency of 

virtual camber effect making it a dynamic virtual camber.  

Figure 16 reveals an important result that pitch and especially pitch rate creates a 

very dominant and characteristic virtual camber effect. Figure 16 (i) shows that blade pitch 

(black line) decreases negative virtual camber and opposes the effects of curvilinear 

geometry. The effect of blade pitch is more prominent near 90° and 270° azimuth since 

pitch angle reaches at its peak at those locations (Fig. 16 (ii)). 

 

 

 

 

(i) Variation of additional lift coefficient due to virtual camber. 

Fig. 16: Effect of curvilinear flow, pitch and pitch rate on virtual camber. 
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(ii) Prescribed pitch along azimuth. 

 

(iii) Prescribed pitch rate along azimuth. 

Fig. 16 (continued) 
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It is also observed that pitch rate (blue line) creates positive virtual camber effect 

near 0° azimuth, which almost nullifies the effects of curvilinear geometry; while at 180°, 

it creates negative virtual camber which together with curvilinear effect produces even 

larger negative lift. For this reason, it will be shown later in the paper that the net lift 

coefficient is very small at 0° azimuth, while it is much below zero at 180° azimuth, 

although pitch angle is near 0° at both azimuth locations (Fig. 16 (ii)). Pitch rate effect on  

virtual camber is dominant at 0° and 180° azimuth because pitch rate reaches its peak near 

these two locations (Fig. 16 (ii)).  

 

 

 

 

 

(i) Pitch rate effect at 0° azimuth 

 
 

(ii) Pitch rate effect at 180° azimuth 

Fig. 17: Effect of pitch rate on dynamic virtual camber at two extreme azimuth 

locations (0° and 180°). 
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Figure 17 shows graphically how pitch rate is creating opposite virtual camber 

effects at different azimuth locations. This phenomenon is also clearly observed in Fig. 

18, which shows the actual chord-line of cyclorotor blade and virtual chord-line due to 

virtual camber effect along different azimuth positions. 

 

 

 

 

Fig. 18: Virtual chord-line due to virtual camber effect along azimuth. 

 

 

 

It can be observed again at 0° azimuth, virtual camber is minimum producing 

almost negligible negative lift while at 180° azimuth it has huge negative virtual camber 

producing large negative lift. Based on the convention followed in the paper, lift force 

directed radially inwards is negative lift. The discussion section of the paper would utilize 

the virtual shape along with the physical airfoil to understand the physics of force 

production. 
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CHAPTER IV 

RESULTS: SYMMETRIC PITCHING 

 

This chapter contains the experimental results for the symmetric pitching cases. A 

comparison of CFD predicted forces and experimental data will be completed for both the 

static and dynamic pitching cases. The lift, drag, and moment coefficients from the force 

measurements and the flowfield from the PIV measurements will be compared with CFD. 

Next, the dynamic pitching experimental results will be discussed, with both force and 

flowfield measurements presented for several pitching amplitudes. A study comparing the 

steady and dynamic pitching flowfields will be performed. The chapter will then conclude 

with an analysis of the physics of force production and the power consumption of a 

dynamic pitching blade. 

 

Comparison of Experiment and CFD 

 

Force Comparison (Experiment versus CFD) 

The first step was to compare the CFD predicted forces with experimental data for 

both static and dynamic pitch cases. 

Static Pitch Case 

Figure 19 shows the measured lift coefficient as a function of static pitch angle 

plotted along with CFD results obtained from the 2D unsteady RANS (Reynolds Averaged 
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Navier Stokes) simulation for the 40 RPM case. There is good correlation between CFD 

predicted lift and experimental data especially at positive angles of attack.  

 

 

 

 

Fig. 19: Lift coefficient versus fixed pitch angle from experiment and CFD. 

 

 

 

A key observation from Fig. 19 is that lift curve is highly asymmetric between 

positive and negative pitch angles even though the airfoil is symmetric. A 0° pitch angle 

produces a non-zero lift force (CL = -0.75) towards the center of the rotor because of the 

virtual camber effect (refer Fig. 13) explained in the previous section. Both experiment 
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and CFD is able to capture this effect even though CFD slightly over-predicts the lift due 

to virtual camber. 

 

 

 

 

Fig. 20: Drag coefficient versus fixed pitch angle from experiment and CFD. 

 

 

 

The drag coefficient as a function of static pitch angle for 40 RPM is shown in Fig. 

20. As before, the experimental results are plotted along with the CFD prediction and there 

is a good correlation between the both, especially for positive pitch angles as in the case 

of lift. The asymmetry in drag between the positive and negative pitch angles (negative 

pitch angle causing more drag that positive ones) is due to the virtual camber effect. The 
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CFD results show the same trend as experimental data. The maximum drag produced is 

larger for negative pitch angles (CD = 0.75) than for positive pitch angles (CD = 0.6). These 

results clearly show the role of virtual camber effect on the lift and drag production on a 

static blade experiencing a curvilinear flow. Additionally, these results are also very 

relevant to a fixed-pitch vertical axis wind turbine blade. 

Dynamic Pitch Case 

The measured and CFD predicted lift and drag coefficients as a function of 

azimuthal location for dynamic pitching angles of ±15°, ±30°, and ±45° and a blade RPM 

of 40 are shown in Figure 21. For all the three cases the CFD results correlate well with 

the experimental data for the upper half of the azimuth (Ψ = 0° - 180°); however, CFD 

over-predicts both lift and drag in the lower half (Ψ = 180° - 360°). The reasons for this 

are not fully understood yet; however, it may be due to 3D effects which are not captured 

in the 2D CFD simulation. It can be seen from Fig. 21 that as expected, as the pitching 

amplitude increases, both the lift and drag coefficients also increase. Similar to the static 

pitch experimental results, there is lift asymmetry between the upper and lower halves of 

the azimuth for the dynamic case. The reason for this asymmetry even though the pitch 

kinematics is identical in the upper and lower halves (only the sign is different) can be 

attributed to the dynamic virtual camber effect. As shown in Fig. 18, in the upper half, the 

blade experiences a negative camber and hence smaller lift compared to the lower half, 

where the blade experiences a positive camber. As explained before, on a pitching blade 

the virtual camber is dynamic in nature and arises predominantly because of two reasons: 

(1) finite chord/radius ratio and the curvilinear nature of the flow, and also (2) the pitch-
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rate. Along with the blade pitch angle the dynamic camber plays a key role in the force 

production on a cyclorotor blade. The subsequent sections would utilize both the measured 

instantaneous blade forces and flowfield to understand the role of pitch angle and camber 

on force production on a cyclorotor blade. 

 

 

 

  

(i)  CL for ±15° pitching (ii)  CD for ±15° pitching 

  

(iii)  CL for ±30° pitching (iv)  CD for ±30° pitching 

Fig. 21: Lift and drag coefficients versus azimuth for ±15°, ±30°, and ±45° 

dynamic pitching. 
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(v) CL for ±45° pitching (vi)  CD for ±45° pitching 

Fig. 21 (continued) 

 

 

 

Flowfield Comparison (PIV versus CFD) 

The next step was to compare the CFD predicted flowfield around the blade at 

different azimuthal locations with the PIV measured flowfield. 

Dynamic Pitch Comparison 

Figure 22 shows a comparison of flow velocity vectors and vorticity contours 

obtained using PIV with the flow solution predicted by CFD for the dynamic pitching case 

with an amplitude of ±45°. The images correspond to azimuthal locations of 50°, 60°, 70°, 

80°, 90°, 100°, 260°, and 270°. These azimuthal values were chosen because these are the 

locations where the blade attains high pitch angles and hence leads to significant growth 

and shedding of dynamic stall vortices. From Fig. 22, it is significant to note that, overall, 

there is very good correlation between PIV measured flowfield and CFD even for such 

high pitch amplitudes (±45°). When the blade is operating in the upper half of its circular 

trajectory (shown in Figs. 22 (i) – (xii)), there is the formation and shedding of a strong 
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dynamic stall or leading edge vortex (LEV). The azimuthal location of the blade is shown 

on the schematic on each PIV figure. As the blade pitch angle increases, the vortex 

increases in size. At Ψ = 100° (Fig. 22 (xi) and (xii)), the vortex begins to separate from 

the leading edge and convect over the blade. As the vortex disturbance moves along the 

chord there is an increase in the nose-down pitching moment, which is due to the aft 

moving center of pressure. 

 

 

 

PIV CFD 

   

(i) Ψ = 50° for PIV (ii) Ψ = 50° for CFD 

  

(iii) Ψ = 60° for PIV (iv) Ψ = 60° for CFD 

Fig. 22: PIV versus CFD flowfield for ±45° pitching. 
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(v) Ψ = 70° for PIV (vi) Ψ = 70° for CFD 

  

(vii) Ψ = 80° for PIV (viii) Ψ = 80° for CFD 

  

(ix) Ψ = 90° for PIV (x) Ψ = 90° for CFD 

  

(xi) Ψ = 100° for PIV (xii) Ψ = 100° for CFD 

Fig. 22 (continued) 
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(xiii) Ψ = 260° for PIV (xiv) Ψ = 260° for CFD 

  
(xv) Ψ = 270° for PIV (xvi) Ψ = 270° for CFD 

Fig. 22 (continued) 
 

 

 

Figures 22 (xiii) –  (xvi) show the blade in the lower half of the trajectory where 

the blade is pitched in the opposite direction (as seen by an observer in the rotating frame). 

In the lower half, the correlation between PIV and CFD is not as good as the upper half. 

As expected, the differences between the measured and predicted forces (Fig. 21) in the 

lower half will also manifest in the flowfield. However, overall flowfield comparison 

seems good. Even in the lower half, it can be seen from both the CFD and PIV images that 

a similar vortex disturbance is building up on the leading edge. The colors of the vortex 

here (fuscha and blue) are different from those of the vortex on the upper half of the cycle 

(red and orange) due to the change in the sign of the vorticity. The rolling-up of the shear 
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layer has switched directions which results in vorticity of opposite sense and hence, 

opposite sign. It is also important to note that, even though the blade is symmetric, the 

flow phenomena during the nose-up and nose-down pitching is very dissimilar primarily 

because of the dynamic virtual camber, which is in opposite direction for nose-up and 

nose-down pitching because of the fact that the flow curvature is always in one direction 

(refer to Fig. 18). 

 

 

 

PIV CFD 

  
i) Ψ = 80° for PIV ii) Ψ = 80° for CFD 

  

iii) Ψ = 90° for PIV iv) Ψ = 90° for CFD 

Fig. 23: PIV versus CFD flowfield for ±30° pitching. 
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v) Ψ = 100° for PIV vi) Ψ = 100° for CFD 

  
vii) Ψ = 110° for PIV viii) Ψ = 110° for CFD 

Fig. 23 (continued) 

 

 

 

The PIV and CFD flowfield comparison for the dynamic pitching case for an 

amplitude of ±30° is shown in Fig. 23. The images correspond to azimuthal locations of 

80°, 90°, 100°, and 110°. Again in this case there is very good correlation between CFD 

and PIV measured flowfield, which is notable considering the complexity in the flowfield. 

As in the ±45° dynamic pitching case, a vortex disturbance is seen building on the leading 

edge in images from Fig. 23 (i) – (iv). It should be noted that the dynamic stall vortex for 

the ±30° case does not reach the strength nor develop the same way as the vortex in the 

±45° case. For example, at the azimuthal location of 90°, the ±45° case (Fig. 22 (ix) and 

(x)) shows a vortex that is just starting to separate from the leading edge, whereas the ±30° 

case for the same azimuthal location (Fig. 23 (iii) and (iv)), shows a vortex that is still 
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building up at the leading edge. Dynamic stall in a curvilinear flow, especially at such high 

pitch amplitudes, has never been investigated before at any scales. This finding is not 

intuitive because one would expect the blade to be fully stalled at a pitch angle of 30° and 

the flow to just separate from the leading edge. However, due to the unique unsteady flow 

mechanisms at ultra-low Reynolds numbers in a dynamic pitching environment, the flow 

remains more or less attached with a strong leading edge vortex even when the blade pitch 

angle reaches 30° (Fig. 23 (iii) and (iv)) greatly enhancing the lift coefficient as shown in 

Fig. 21. 

 

Dynamic Pitching Experimental Results 

 

The force and moment results from the dynamic blade pitch experiments are shown 

in Figs. 24 – 27. The measured blade pitch angle and lift coefficient as a function of the 

azimuth for a pitching amplitude sweep of ±5° to ±45° are shown in Figs. 24 and 25, 

respectively. Similar to the static experiments lift asymmetry can be seen between upper 

(0° - 180°) and lower (180° - 360°) halves (Fig. 25) due to the virtual camber effect. As 

shown in Fig. 18, the blade pitch is positive in the upper half resulting in reverse or 

negative virtual camber and hence smaller lift compared to the lower half where the 

camber is positive (due to negative pitch). The most significant finding from these results 

is the large values of the dynamic lift coefficients shown in Fig. 25 when compared to the 

static lift values shown Fig. 19. The maximum static CL value for positive pitch is around 

0.5 (Fig. 19); whereas the maximum dynamic CL value for positive pitch is around 1.25 
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(±45° pitching case), which is more than double. The same effect happens for negative 

pitch where the maximum static CL is around -1.2 (Fig. 19), whereas the maximum 

dynamic CL during negative pitch is around -2 (±45° pitching case). It is significant to note 

that the lift coefficient monotonically increases all the way up to a pitching amplitude of 

±45°, which, as mentioned previously, is not intuitive because one would expect the blade 

to stall completely at amplitudes much lower than 45°.  

 

 

 

 

 

Fig. 24: Measured blade pitch versus azimuth for ±0° to ±45° dynamic 

pitching. 

Upper Half Lower Half 
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Fig. 25: Measured lift coefficient versus azimuth for ±0° to ±45° dynamic 

pitching. 

 

 

 

The measured drag coefficient as a function of azimuth for the same pitch 

amplitudes is plotted in Fig. 26. Even the drag coefficient is asymmetric between the upper 

and lower halves and the magnitude is significantly higher than the static cases shown in 

Fig. 20. To understand the reason for this huge increase in dynamic lift and drag 

coefficients on a pitching blade as opposed to a static blade in a curvilinear flow, it is 

important to look at the flowfield around the blade at different azimuthal locations, which 

is presented in the subsequent sections.  

 

 

Upper Half Lower Half 
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Fig. 26: Measured drag coefficient versus azimuth for ±0° to ±45° dynamic 

pitching. 

 

 

 

Figure 27 shows the variation of the pitching moment coefficient as a function of 

the azimuth. As mentioned previously, as the blade pitches nose-up and -down, the 

dynamic-stall vortex is swept downstream and the center of pressure shifts along the 

chord. This causes a large nose-down pitching moment on the blade. From Fig. 27 it can 

be seen that the blade experiences moment stall at azimuthal locations of approximately 

120° in the upper half and in the lower half at approximately 190°. From the flowfield 

measurements it can be seen that the local maximum in the upper half is indicative of 

moment stall due to the formation of a spilled vortex and the local maximum in the lower 

Upper Half Lower Half 
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half occurs during a state of full separation. 

 

 

 

 

 

Fig. 27: Measured pitching moment coefficient versus azimuth for ±0° to 

±45° dynamic pitching. 

 

 

 

To better understand the source of lift and drag forces on a cyclorotor blade 

operating at ultra-low Reynolds numbers (Re~18,000), it is helpful to identify whether the 

dominating forces are due to pressure or viscous forces. If there are only pressure forces, 

the resultant force (denoted by R in Fig. 28) would be normal to the blade chord. In Fig. 

28, β represents the angle between the resultant of the lift and drag forces (R) and blade 

Upper Half Lower Half 
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chord. If the forces are indeed dominated by the pressure force, R would be more or less 

normal to the chord and β would be close to 90°.   

 

 

 

 

Fig. 28: Schematic showing blade forces. 

 

 

 

The lift and drag shown in the diagram can be defined as: 

𝐿 = 𝑅 𝑐𝑜𝑠 𝜑 (Eq 1) 

𝐷 = 𝑅 𝑠𝑖𝑛 𝜑 (Eq 2) 

where φ, the phase angle between the lift vector and the resultant vector is the following: 

𝜑 =  𝑡𝑎𝑛−1(𝐷/𝐿) (Eq 3) 

Finally, the angle β can be computed using Equation 4: 

𝛽 = 90 + (𝜑 −  𝜃) (Eq 4) 
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If the forces are dominated mainly by the pressure forces, the difference between 𝜑 and 

𝜃 will be small, and the angle 𝛽 will be close to 90°. Deviations from 90° will indicate the 

presence of viscous forces acting on the blade. 

Figure 29 shows the variation of 𝛽 as a function of the azimuth for all of the 

dynamic pitching amplitudes. As seen from the figure, for all of the amplitudes, the angle 

remains close to 90°, which confirms the domineering role of pressure forces as opposed 

to the shear viscous forces acting parallel to the blade. This is a significant finding 

considering the ultra-low Reynolds numbers the blade is operating where viscous forces 

are relatively large.  

 

 

 

 

 

Fig. 29: β versus azimuth for ±0° to ±45° dynamic pitching. 
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Static Versus Dynamic Pitching 

 

Since there are significant differences in the lift and drag coefficients between the 

static and dynamic pitching cases, it is important to compare the flowfield for the two 

cases at the exact same pitch angles to understand the key reason for the lift enhancement 

for the dynamic case. Figure 30 shows a comparison of PIV measured velocity vectors 

and vorticity contours for static and dynamic pitching cases at 40 RPM. The static pitch 

angles include 15°, 30°, and 45°, and the dynamic cases include ±15°, ±30°, and ±45°. For 

the dynamic pitch case, the flowfield at the azimuthal location of 90° is compared because 

that is where the blade pitch angle reaches +15°, +30°, and +45°, respectively for the three 

cases. Therefore, in this comparative study the flowfields are compared at the same pitch 

angle, but one subjected to steady flow and the other to unsteady flow conditions. 

 

 

 

  

i) Static Pitch = 15° 
ii)  Dynamic Pitch = ±15° 

at Ψ = 90°  

Fig. 30: Static versus dynamic PIV comparison for 15°, 30°, and 45° pitch angles. 
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iii) Static Pitch = 30° 
iv)  Dynamic Pitch = ±30° 

at Ψ = 90°  

  

v) Static Pitch = 45° 
vi)  Dynamic Pitch = ±45° 

at Ψ = 90°  

Fig. 30 (continued) 

 

 

 

In Figs. 30 (i) and (ii) the blade is at a low angle of attack of 15°; even then, for 

the static case, as seen from Fig. 30 (i)), the flow has already separated from the leading 

edge and re-attaches close to the trailing edge forming a large laminar separation bubble 

(LSB), which is typical on steady airfoil at very low Reynolds numbers. However, for the 

dynamic case shown in Fig. 30 (ii), when the blade reaches +15° angle of attack the flow 

is still fully attached showing no signs of stall. The static and dynamic cases for the 30° 

pitch angle is compared in Figs. 30 (iii) and (iv), respectively. For the 30° static case (Fig. 

30 (iii)), as expected, the flow is fully separated from the leading edge denoting deep stall; 
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however, for the dynamic case (Fig. 30 (iv)), at the same pitch angle of 30°, one can see 

the initiation of the dynamic stall vortex and the flow is still more or less attached. For the 

45° static case shown in Fig. 30 (v), the flow is fully separated from the leading edge. 

However, for the dynamic case (Fig. 30 (vi)), the dynamic stall vortex has reached the full 

strength and is in the process of shedding. Comparing Fig. 30 (ii), (iv) and (vi) would 

provide insight into how the pitching amplitude affects the dynamic stall process on a 

cyclorotor blade at ultra-low Reynolds numbers. These PIV results clearly explain the 

reason for the large lift coefficients measured on a dynamic pitching blade at high 

amplitudes (Figs. 21 and 25). 

 

Understanding Physics of Force Production on Cyclorotor Blade 

 

The variation of lift and drag coefficients as a function of azimuth on a blade 

operating at ±30° pitch amplitude is shown in Figs. 31 and 32. As mentioned before the 

lift is the force in the radial direction (positive lift is radially outward) and drag is the force 

in the tangential direction (positive drag is opposite to the direction of blade motion). Fig. 

33 shows the measured flowfield around the azimuth (Ψ) at a 10° resolution. On Figs. 31 

and 32 the corresponding PIV figure numbers (Figs. 33 (i) – (xxxvi)) are provided at a 

resolution of 10°. Also, to improve clarity in the discussion, each of the flowfield images 

include the lift vector where the magnitude is proportional to the measured magnitude 

(Fig. 31 and 33) and the direction depends on the sign. Similar to what is shown in Fig. 
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18, the computed virtual camber chord-line is superimposed on the physical airfoil in Fig. 

33 to aid in the explanation of the physics.  

 

 

 

 

Fig. 31: Measured lift coefficient versus azimuth for ±30° dynamic pitching. 

 

 

 

At 0° azimuth (Fig. 33 (i)), even though the airfoil is symmetric and pitch is zero, 

the small negative virtual camber shown in the figure creates a small negative lift. This 

can also be seen in Fig. 31. The direction of lift is also very evident from the flowfield 

around the airfoil. As seen from Fig. 32, the drag is very small and positive. 
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Fig. 32: Measured drag coefficient versus azimuth for ±30° dynamic pitching. 

 

 

 

   
i) Ψ = 0° ii) Ψ = 10° iii) Ψ = 20° 

   

iv) Ψ = 30° v) Ψ = 40° vi) Ψ = 50° 

Fig. 33: PIV measurements at different azimuths for ±30° dynamic pitching. 

Virtual airfoil 

Physical airfoil 

Lift 
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vii) Ψ = 60° viii) Ψ = 70° ix) Ψ = 80° 

   

x) Ψ = 90° xi) Ψ = 100° xii) Ψ = 110° 

   
xiii) Ψ = 120° xiv) Ψ = 130° xv) Ψ = 140° 

   
xvi) Ψ = 150° xvii) Ψ = 160° xviii) Ψ = 170° 

   
xix) Ψ = 180° xx) Ψ = 190° xxi) Ψ = 200° 

   

xxii) Ψ = 210° xxiii) Ψ = 220° xxiv) Ψ = 230° 

Fig. 33 (continued) 
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xxv) Ψ = 240° xxvi) Ψ = 250° xxvii) Ψ = 260° 

   
xxviii) Ψ = 270° xxix) Ψ = 280° xxx) Ψ = 290° 

   
xxxi) Ψ = 300° xxxii) Ψ = 310° xxxiii) Ψ = 320° 

   
xxxiv) Ψ = 330° xxxv) Ψ = 340° xxxvi) Ψ = 350° 

Fig. 33 (continued) 

 

 

 

In Fig. 33 (ii), since the pitch is increasing in the positive direction, the negative 

lift is decreasing. It is interesting because the lift is downwards or negative due to the 

virtual camber as shown in the figure. In other words, here the virtual camber is in the 

reverse direction of the conventional camber and hence it will be called ‘negative camber’. 

Typically, because of the positive pitch angle, the lift should be upwards or positive. 

However, in Fig. 33 (ii), the negative camber effect is more dominating than the effect of 
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positive pitch angle and hence results in a negative lift. Again, as before, the direction of 

lift is evident from the flowfield as well. The drag increases due to the increase in pitch 

angle (Fig. 32).   

At the 20° azimuth location (Fig. 33 (iii)), the pitch angle has increased further and 

the lift is close to zero because the negative lift from negative virtual camber is nullified 

by positive pitch. This could be thought of as the zero-lift angle of attack for the virtually 

cambered airfoil. It is important to note that, as shown in Figs. 16 (i) and 18, the camber 

of the virtual airfoil changes from one azimuthal location to another. At 30° azimuth (Fig. 

33 (iv)), the blade pitch is further increased and now positive lift is generated, which means 

the pitch is high enough to dominate negative virtual camber. As shown in Fig. 33 (v), the 

lift increases for the 40° azimuth because of the increase in blade pitch angle. At 50° 

azimuth (Fig. 31, 32 and Fig. 33 (vi)), both lift and drag reach a local maximum value. 

The blade camber has also increased significantly from the 0° azimuth.  

Starting at 60° azimuth, the lift starts dropping even though the pitch angle is 

increasing. This may be because of the large increase in negative virtual camber and 

negative virtual incidence, which is reducing the effective angle of attack and the lift 

produced. However, more prominent than the drop in lift is the sudden local drop in drag. 

The reason for this can be traced back to the flowfield shown in Fig. 33 (vii), which shows 

the initiation of a vortex at the leading edge causing leading edge suction, which could 

reduce the net profile drag. Lift further decreases for the 70° azimuth (Fig. 33 (viii)) even 

though the pitch is increasing. Again, this occurs because of the large negative virtual 

camber and incidence from the reduced pitch rate. Drag drops further because of the 
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increased leading edge suction as seen from the vorticity contours in the flowfield. From 

the 70° to 80° azimuth (Fig. 33 (ix)), the lift stays almost constant (refer to Fig. 31). 

However, from the flowfield, a strong dynamic stall vortex can be seen. At this point it is 

unclear why the vortex lift does not significantly increase the blade lift (Fig. 31). However, 

there is a slight increase in drag (Fig. 32). At the 90° azimuthal location (Fig. 33 (x)), the 

blade reaches its maximum pitch angle. At this point, there is significant negative virtual 

camber and incidence, as well as a strong dynamic stall vortex forming on the leading 

edge. The flow remains more or less attached on the top even at such high pitch angles. 

The lift drops slightly, possibly due to the negative camber and incidence that is more 

effective than the additional vortex lift. 

In Figures 33 (xi) – (xv), the 100° to 140° azimuthal locations show the shedding 

of the dynamic stall vortex and a reduction in the lift and drag (Figs. 31 and 32). It is also 

significant to note the large negative virtual camber and incidence for these cases. From 

the 110° to 120° azimuth, the direction of lift and drag changes from positive to negative 

(refer Figs. 30, 32, 33 (xii) and 33 (xiii)). This is because the negative virtual camber and 

incidence have increased to such an extent that it dominates even large positive pitch 

angles. This clearly shows the strong effect of dynamic virtual camber on the force 

production of a cyclorotor blade. Interestingly the drag (tangential force) becomes 

negative, indicating power extraction from the 115° to 170° azimuthal locations. From 

150° (Fig. 33 (xvi)) to 180° (Fig. 33 (xix)), there is large negative lift, which continues to 

increase due to the strong negative virtual camber. 
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As seen from Figs. 16 (i), 18, and 33 (xix), the maximum virtual camber occurs at 

the 180° azimuth, causing a huge negative lift force, even with a symmetric airfoil and 

physical pitch angle of zero. Again, the direction of lift is evident from the flowfield. The 

drag also increases as shown in Fig. 32.  At the 190° azimuth, as seen from Fig. 33 (xx), 

the camber is consistent with the blade pitch angle and is called ‘positive camber’. In the 

entire lower half (180° to 360°) the camber will not oppose the pitch angle, which is the 

case in the upper half (0° to 180°). In the entire lower half, the lift will be negative because 

it will be acting radially inwards towards the center of the rotor. From the 190° to 220° 

azimuthal locations (Figs. 31, 33 (xx) – (xxiii)) the magnitude of negative lift keeps 

increasing due to the positive camber. Also, from the flowfield, a strong trailing edge 

separation can be seen, which increases with increasing pitch angle.  

From the 220° to 270° azimuth, the magnitude of negative lift starts decreasing but 

the drag coefficient keeps increasing until it reaches a maximum value of 0.6 at the 270° 

azimuth. At this position the blade attains the maximum pitch angle. The 230° azimuth 

(Fig. 33 (xxiv)) shows a weak dynamic stall vortex beginning to appear on the leading 

edge. It is weaker in nature mostly because virtual camber is positive and hence decreases 

flow separation (unlike the upper half where the camber was negative or reverse camber). 

For azimuths of 240° – 260° (Figs. 33 (xxv) – (xxvii)) the dynamic stall vortex builds up 

strength. There is a mild shedding at approximately 270° (Fig. 33 (xxviii)). The vortex is 

fully separated at the 290° azimuth (Fig. 33 (xxx)). During this time, the magnitude of 

effective angle of attack is very high causing large lift and drag. It is also important to note 

that even though the pitching is symmetric, the dynamic stall process in the upper and 
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lower half of the circular trajectory is completely different because of the complete 

reversal of dynamic virtual camber from the upper to lower half. From the 300° to 320° 

azimuth (Fig. 33 (xxxi) – (xxxiii)), the flow again starts re-attaching as pitch decreases. 

The magnitude of lift and drag decreases as seen from Figs. 31 and 32. However, from the 

330° to 350° azimuth (Figs. 33 (xxxiv) – (xxxvi)), the shedding of a secondary leading 

edge vortex can be seen. The reason for this is not completely understood at this point. 

Finally, at 360° (Fig. 33 (i)), the flow reattaches again.  

A key insight gained from these measurements is the interplay of blade pitch 

angle and dynamic virtual camber in the blade force production. In the entire upper half, 

the pitch angle and virtual camber oppose each other, unlike the lower half where they 

act in the same direction. This leads to completely different dynamic stall process in the 

upper and lower halves. This can also explain why a huge improvement in cyclorotor 

performance is obtained using asymmetric blade pitching (Ref. 6), where the pitch angle 

in the upper half increased and decreased in the lower half. 

 

Power Calculations 

 

Also of interest is the power consumption of a dynamic pitching cyclorotor blade. 

Figure 34 shows the measured instantaneous blade power breakdown for the ±45° 

dynamic pitching case at 40 RPM as a function of azimuth. Included in the plot are the 

power required for the blade to rotate, the power required for the blade to pitch, and the 

total power.  



 

62 

 

 

 

Fig. 34: Measured blade power versus azimuth for ±45° pitching. 

 

 

 

These are calculated using the following equations:  

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑤𝑒𝑟  (𝑃𝑅𝑂𝑇) = 𝐷𝛺𝑅 (Eq 5) 

𝑃𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟 (𝑃𝑃𝐼𝑇𝐶𝐻) =  𝑀𝑍𝜃̇ (Eq 6) 

Total power = PROT + PPITCH (Eq 7) 

where D is the measured tangential force, which is referred to as the drag force in this 

paper, 𝛺𝑅 is the rotational velocity, 𝑀𝑍 is the measured pitching moment, and 𝜃̇ is the 

measured pitch rate. 
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It is clear from Fig. 34 that most of the power is required for the blade rotation and 

not pitching. The present study conclusively proves that it only takes up a very small 

fraction of the total aerodynamic power to dynamically pitch the blades at least at such 

low Reynolds numbers. Figure 35 shows the instantaneous total blade power versus the 

azimuth for all of the dynamic pitching cases. It can be seen that, as expected, the power 

continues to increase as the dynamic pitching amplitude increases. In fact for a small part 

of the azimuthal cycle the blade power is negative or blade is extracting power. 

 

 

 

 

 

Fig. 35: Measured blade power versus azimuth for ±0° to ±45° dynamic 

pitching. 
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The cycle-averaged power versus the pitching amplitude for all the dynamic 

pitching cases is plotted in Fig. 36. As seen from the figure, the power increases 

quadratically with the pitching amplitude. For the pitching amplitudes of 5° and 10° the 

power is slightly negative denoting power extraction or negative induced power in a cycle-

averaged sense. Similarly, for 0°, the average power is close to zero may be because the 

component of lift vector in the forward direction (causing negative induced power) cancels 

out the profile power. From 20° to 45° the power increases rapidly until it reaches a 

maximum of about 0.24 Watts. 

 

 

 

 

Fig. 36: Cycle-averaged blade power versus blade pitching amplitude. 
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In Figure 37 the cycle-averaged thrust is plotted against the dynamic pitching 

amplitude. The cycle-averaged thrust (T) is computed as follows: 

𝑇 =  √𝐹𝑍
2 + 𝐹𝑌

2 (Eq 8) 

where 𝐹𝑍 and 𝐹𝑌 are vertical and horizontal components (in the fixed frame, refer Fig. 2) 

of measured radial and tangential forces. As seen from the figure, there is a nonlinear 

relationship between the average thrust produced by the rotor and the dynamic pitching 

amplitude. 

 

 

 

 

Fig. 37: Cycle-averaged thrust versus blade pitching amplitude. 
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Figure 38 has the cycle-averaged thrust to power ratio as a function of pitching 

amplitudes of 25° to 45°. It can be seen that the power loading decreases with respect to 

the pitching amplitude. The unusually high power loading values can be attributed to 

extremely low disk loading at which the present rotor is operating. For the 45° pitching 

amplitude, based on the rectangular projected area of the rotor, the disk loading is around 

16 N/m2 (0.33 lb/ft2), which is extremely low.   

 

 

 

 

Fig. 38: Cycle-averaged power loading (T/P) versus blade pitching amplitude. 
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The decrease in power loading with pitch amplitude can be attributed to the fact 

that the disk loading is increasing and the figure of merit is decreasing with pitch 

amplitude. The figure of merit (FM) is defined as following: 

𝐹𝑀 =  
𝑃𝐼𝐷𝐸𝐴𝐿

𝑃𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷
 (Eq 9) 

PIDEAL, the ideal power, is given as: 

𝑃𝐼𝐷𝐸𝐴𝐿  =  𝑇𝑣𝑖 (Eq 10) 

where vi, the induced velocity calculated as follows: 

𝑣𝑖  =  √
𝑇

2𝜌𝐴
 (Eq 11) 

where ρ is the density of water and A is the rectangular projected area of the rotor 

(𝐴 = 𝑏×𝑑), where 𝑏 is the blade span and d is the cyclorotor diameter. 

The figure of merit is plotted as a function of pitch amplitude in Fig. 39. It can be 

seen that FM drops with pitch amplitude; however, for a pitch amplitude of ±25°, the FM 

is around 0.65, which is very high considering the ultra-low Reynolds numbers 

(Re~18,000) at which the blade is operating. However, as seen from Fig. 39, for a pitch 

amplitude of ±45°, the FM is around 0.34. This decrease in FM is mainly due to the higher 

drag coefficient (Fig. 26) which the blade experiences at larger blade pitching angles. 
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Fig. 39: Figure of merit versus blade pitching amplitude. 
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CHAPTER V 

RESULTS: ASYMMETRIC PITCHING AND REYNOLDS NUMBER EFFECT 

 

In the previous sections, the cyclorotor performance with symmetric pitching 

kinematics was studied. As shown in the previous sections there are considerable 

dissimilarities in aerodynamic environment experienced by the blade between the upper 

and lower halves due to the flow curvature effects (virtual camber and incidence) and the 

differences in inflow velocities. Therefore, it is logical to have different blade pitch 

kinematics in the upper and lower halves, which is referred to as ‘asymmetric pitching’ in 

this section. 

Figures 40 – 42 show the measured blade pitch angle, lift coefficient, and drag 

coefficient versus the azimuth, respectively, for the following 60° peak-to-peak amplitude 

cases: 15° Top/ 45° Bottom, 20° Top/ 40° Bottom, 25° Top/ 35° Bottom, 30° Top/ 30° 

Bottom, 35° Top/ 25° Bottom, 40° Top/ 20° Bottom, and 45° Top/ 15° Bottom. As seen 

previously in Fig. 18, the blade pitch is positive in the upper half which results in reverse 

or negative virtual camber, and pitch is negative in the lower half resulting in positive 

camber. In the symmetric 30° Top/ 30° Bottom pitch case, as shown previously, 

asymmetry between the upper and lower halves could be seen clearly for both the lift and 

drag coefficients (Figs. 41 and 42). The lift and drag are lower in the upper half due to the 

negative camber and higher in the lower half due to positive camber. 
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Fig. 40: Measured blade pitch versus azimuth for 60° peak-to-peak 

asymmetric pitching. 

  

 

 

Now, as seen from Figs. 41 and 42, when the pitch angle at the upper half is 

decreased and lower half increased from the symmetric case (15° Top/ 45° Bottom, 20° 

Top/ 40° Bottom, 25° Top/ 35° Bottom), the asymmetry grows even further. Therefore, 

with the goal of making the force distribution more uniform across the azimuth, the pitch 

angle at the top was increased and the bottom was decreased from the symmetric case (35° 

Top/ 25° Bottom, 40° Top/ 20° Bottom, and 45° Top/ 15° Bottom), which, as expected, 

increased the lift and drag on the top and decreased it on the bottom resulting in a more 

uniform force production between the upper and lower halves. The 40° Top/ 20° Bottom 

case produced an approximately symmetric lift distribution between the upper and lower 
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halves (Fig. 41) and the 35° Top/ 25° Bottom case produced similar drag coefficients in 

upper and lower halves (Fig. 42). This clearly shows the significant role of asymmetric 

pitching on the force production on a cycloidal rotor blade. To better examine and compare 

the performance of the asymmetric cases it is important to look at the power calculations, 

which is presented in the next section. 

 

 

 

 

 

Fig. 41: Measured lift coefficient versus azimuth for 60° peak-to-

peak asymmetric pitching. 
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Fig. 42: Measured drag coefficient versus azimuth for 60° peak-to-

peak asymmetric pitching. 

 

 

Asymmetric Pitching Power Calculations 

 

Figure 43 shows the instantaneous total blade power versus the azimuth for the 60° 

peak-to-peak symmetric and asymmetric pitching cases. The power includes both the 

roational power and blade pitching power and the methodology for calculating power is 

discussed in the previous sections. As shown before, since the power for a cycloidal rotor 

blade is dominated by the rotational power, the the azimuthal power distribution shown in 

Fig. 43 would strongly correlate with the drag distribution in Fig. 42. Increasing the blade 
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pitch in the upper half and decreasing the pitch in the lower half would make the power 

distribution more uniform. Similar to the drag case, the 35° Top/ 25° Bottom case required 

almost the same power in the upper and lower halves (Fig. 43). 

 

 

 

 

 

Fig. 43: Measured instantaneous blade power versus azimuth for 

60° peak-to-peak asymmetric pitching. 

 

 

 

The cycle-averaged blade power is plotted in Fig. 44 for each of the 60° peak-to-

peak asymmetric pitching cases. As can be seen in the figure, the power required is 

maximum for the 15° Top/ 45° Bottom case (Fig. 44), which had the most asymmetric 

distribution of power between the upper and lower halves. The large amount of power 
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required for this case can be attributed to the high drag coefficients seen in the lower half 

of the trajectory (Fig. 42). On the other hand, the power required is minimum for the 35° 

Top/ 25° Bottom case (Fig. 44). 

 

 

 

 

Fig. 44: Cycle-averaged blade power for each 60° peak-to-peak asymmetric 

pitching case. 

 

 

 

Figure 45 has the cycle-averaged thrust to power ratio for each of the asymmetric 

pitching cases. Unlike the symmetric cases where the power loading decreased with 

respect to the pitching amplitude (Fig. 38), the asymmetric power loading varies with the 

asymmetric pitching cases in a quadratic manner. It is clear from the figure that the 35° 

Top/ 25° Bottom case has the highest power loading of approximately 7.6 (Fig. 45). 
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Fig. 45: Cycle-averaged power loading (T/P) for each 60° peak-to-peak 

asymmetric pitching case. 

 

 

 

The figure of merit is plotted as a function of the asymmetric pitching cases in Fig. 

46. It can be seen that the FM shows a similar trend to the power loading, where it varies 

quadratically with the asymmetric pitching cases.  The maximum FM occurs for the 35° 

Top/ 25° Bottom case with a value of about 0.54. As mentioned for the symmetric pitching 

FM results, this value is especially high considering the ultra-low Reynolds numbers the 

cyclorotor is operating at. The lowest FM occurs for the 15° Top/ 45° Bottom case, which 

can be attributed to the large amount of drag present in the lower half (Fig. 42). 
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Fig. 46: Figure of merit for each 60° peak-to-peak asymmetric pitching case. 

 

 

 

To further understand why the 15° Top/ 45° Bottom and 35° Top/ 25° Bottom 

cases have the worst and best performance, respectively, it is important to look at the 

flowfield for specific azimuthal locations. Figs. 47 and 48 show the lift and drag 

coefficients as a function of azimuth for the 30° Top/ 30° Bottom case (symmetric 

pitching), in addition to the two asymmetric cases in question, namely, 15° Top/ 45° 

Bottom and 35° Top/ 25° Bottom. Fig. 49 shows the measured flowfield around the blade 

at some key azimuthal locations where the blade reaches maximum positive and negative 

pitch angles, resulting in dynamic stall and therefore produces the maximum forces. The 

locations included 80°, 90°, 100°, 110°, 240°, 250°, 260°, 270°, 280°, 290°, and 300°. To 
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aid in the analysis, Figs. 47 and 48 are also labelled with the figure number for the 

corresponding flowfield image at each azimuth (Figs. 49 (i) – (xxxiii)). 

 

 

 

 
Fig. 47: Measured lift coefficient versus azimuth for 60° peak-to-peak 

asymmetric pitching. 

 

Upper Half Lower Half 
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Fig. 48: Measured drag coefficient versus azimuth for 60° peak-to-peak 

asymmetric pitching. 

 

 

 

Azimuthal 

Location 
15° Top | 45° Bottom 30° Top | 30° Bottom 35° Top | 25° Bottom 

Ψ = 80° 

   

(i) (ii) (iii) 

Fig. 49: PIV measured flow velocity vectors and vorticity contours at different 

azimuthal locations for 60° symmetric and asymmetric pitching. 

Upper Half Lower Half 
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Azimuthal 

Location 
15° Top | 45° Bottom 30° Top | 30° Bottom 35° Top | 25° Bottom 

Ψ = 90° 

   
(iv) (v) (vi) 

Ψ = 100° 

   
(vii) (viii) (ix) 

Ψ = 110° 

   
(x) (xi) (xii) 

Ψ = 240° 

   
(xiii) (xiv) (xv) 

Ψ = 250° 

   
(xvi) (xvii) (xviii) 

Ψ = 260° 

   

(xix) (xx) (xxi) 

Fig. 49 (continued) 
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At the 80° azimuth, the lift coefficient for symmetric pitching and the 35° Top/ 25° 

Bottom case is positive, and for the 15° Top/ 45° Bottom case is zero (Fig. 47 (i – iii)). 

Similarly, the drag coefficient is small and positive for symmetric pitching and the 35° 

Top/ 25° Bottom case, but is zero for the 15° Top/ 45° Bottom case (Fig. 48 (i – iii)). This 

can be seen in the flowfield as well, for the flow is fully attached for the 15° Top/ 45° 

Azimuthal 

Location 
15° Top | 45° Bottom 30° Top | 30° Bottom 35° Top | 25° Bottom 

Ψ = 270° 

   
(xxii) (xxiii) (xxiv) 

Ψ = 280° 

   
(xxv) (xxvi) (xxvii) 

Ψ = 290° 

   
(xxviii) (xxix) (xxx) 

Ψ = 300° 

   

(xxxi) (xxxii) (xxxiii) 

Fig. 49 (continued) 
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Bottom case, whereas slight vortex development can be seen on the leading edge for the 

symmetric and 35° Top/ 25° Bottom cases (Fig. 49 (i – iii)). This is expected because the 

blade pitch angle is smallest for the 15° Top/ 45° Bottom case in the upper half of the 

azimuth, and the negative camber will counteract the small positive pitch angle resulting 

in almost zero lift. At the 90° azimuth, the blade pitch angle has increased and is at its 

maximum in the upper half of the trajectory. The vortex has grown slightly for the 

symmetric and 35° Top/ 25° Bottom cases, and the flow is still fully attached for the 15° 

Top/ 45° Bottom case (Fig. 49 (iv – vi)). The lift and drag has also increased for all three 

cases (Figs. 47 and 48 (iv – vi)), which is indicative of the blade force production being 

influenced by the blade pitch angle.  

From the 100° to 110° azimuth, the lift and drag decrease for all three cases ((Figs. 

47 and 48 (vii – xii)), which is expected as the blade pitch angle has reached its maximum 

and is beginning to decrease. The dynamic stall phenomena can be seen for the symmetric 

and 35° Top/ 25° Bottom case (Fig. 49 (vii – xii)); however, the flow stays fully attached 

for the 15° Top/ 45° Bottom case ((Figs. 47 and 48 (iv – vi)). As discussed in prior sections, 

positive pitch angles should result in positive lift for a symmetric blade. However, due to 

negative virtual camber, the blade produces negative lift even in positive pitch. Therefore, 

the negative virtual camber effect dominates the effect of blade pitch angle in the force 

production during the upper half for the 15° Top/ 45° Bottom case.  

In the bottom half, the azimuthal range of 240° to 300° was selected for the 

flowfield measurements because the blade attains the maximum negative pitch angle at 

270° azimuth resulting in unique flow characteristics in this range. At 240°, the lift 
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coefficients for all three cases are negative because lift the vector is pointing inwards 

toward the center of the rotor (Fig. 47 (xiii – xv)) and this is a negative force by convention. 

The 15° Top/ 45° Bottom case has the greatest negative lift, due to its much larger blade 

pitch angle in the bottom half of the azimuth. The drag coefficient has also increased 

significantly from the upper half for all three cases, with the 15° Top/ 45° Bottom case 

having the largest magnitude (Fig. 48 (xiii – xv)). This increase is due to a combination of 

the blade pitch angle and positive virtual camber. As was discussed in the symmetric 

pitching section, the blade pitch angle and virtual camber act in the same direction in the 

lower half of the cycle, which further increases the lift and drag coefficients in that region. 

The flowfield for the 35° Top/ 25° Bottom and symmetric pitching cases are very similar 

in that they both display mild flow separation at the leading edge, and then flow re-

attachment towards the trailing edge (Fig. 49 (xiv - xv)). The flowfield for the 15° Top/ 

45° Bottom case, however, exhibits a strong dynamic stall vortex (shown in blue) 

developing off the leading edge (Fig. 49 (xiii)). At 250° the vortex appears to weaken and 

begins shedding over the blade (Fig. 49 (xvi)), which corresponds to the decreased 

negative lift coefficient seen in Fig. 47 (xvi). The symmetric case at this azimuth shows a 

small vortex developing on the leading edge, with the flow re-attaching towards the 

trailing edge (Fig. 49 (xvii)). A much smaller vortex is also seen developing on the leading 

edge for the 35° Top/ 25° Bottom case, with some minor flow separation towards the 

trailing edge (Fig. 49 (xviii)). The difference in leading edge vortex size between the 

symmetric and 35° Top/ 25° Bottom case is evident in the lift and drag coefficient plots 

((Figs. 47 and 48 (xvii – xviii)), with the larger vortex case resulting in the largest negative 
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lift and largest drag of the two. This magnitude difference is due to the effect of blade 

pitch angle; in this case, the larger vortex was present for the case with the larger blade 

pitch angle in the lower half. 

From 260° to 270°, the lift coefficients decrease in magnitude for all three cases 

((Fig. 47 (xix – xxiv)). This is fascinating because one expects the lift to continue to 

increase in magnitude as the blade pitch angle increases. The drag coefficient does appear 

to increase slightly, however, which is due to the blade pitch angle increase ((Fig. 48 (xix 

– xxiv)). For the 15° Top/ 45° Bottom case, the dynamic stall vortex is seen to increase in 

size but is weak in nature (Fig. 49 (xix and xxii)), which could explain the reason for the 

decrease in negative lift. The symmetric pitching case shows further development of the 

vortex on the leading edge, with the flow remaining mostly attached throughout (Fig. 49 

(xx and xxiii)), and the 35° Top/ 25° Bottom case has mostly constant and attached flow 

(Fig. 49 (xxi and xxiv)) because it has the lowest pitch angle in the lower half among the 

three cases.  

Finally, for azimuths 280° to 300°, the lift coefficient continues to decrease in 

magnitude for all three cases ((Fig. 47 (xxv – xxxiii)). The drag also increases until it 

peaks at 290° azimuth, and then decreases for the remainder of the cycle ((Fig. 48 (xxv – 

xxxiii)). For the 15° Top/ 45° Bottom case, the vortex is still developing at the 280° 

azimuth, but is fully separated from the blade from 290° to 300° (Fig. 49 (xxv, xxvii, 

xxxi)), which is reflective of the peak and eventual decrease of the drag coefficient for this 

range. The flow for the 35° Top/ 25° Bottom case remains mostly attached throughout, 

with the exception of the 290° azimuth where the drag is maximum and there is slight 
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trailing edge separation (Fig. 49 (xxvii, xxx, xxxiii)). The symmetric pitching case 

displays a very similar pattern, with the vortex being fully separated at the 290° azimuth, 

but fully attached flow by 300° (Fig. 49 (xxvi, xxix, xxxii)). 

It is clear from these asymmetric pitching results that, once again, the dynamic 

stall process is highly dependent on the virtual camber effect and blade pitch angle. As 

mentioned in the previous section, the most aerodynamically efficient case of the three 

examined is the 35° Top/ 25° Bottom case. In the upper half, the lift coefficient was 

largest, but did not have a very large drag coefficient when compared to the other cases. 

This is because, as seen from the flowfield (Fig. 49 (iii, vi, ix, and xii)), even though the 

flow separated from the leading edge it was getting reattached.  Furthermore, in the lower 

half where the blade pitch angle was smaller, the lift coefficient was not significantly lower 

than the 15° Top/ 45° Bottom case, which had a much larger blade pitch angle. However, 

the drag for the 35° Top/ 25° Bottom case was almost 1/4th of the 15° Top/ 45° Bottom 

case resulting in a much higher aerodynamic efficiency in the lower half. The reason for 

this could be clearly seen from the flowfield (Fig. 49 (xxii – xxxiii)), which shows deep 

stall for the 15° Top/ 45° Bottom case from azimuthal locations of 270° - 300°, however, 

the flow was still attached for the 35° Top/ 25° Bottom case with only minor separation at 

the trailing edge. All these components combined indicate that asymmetric pitching with 

higher pitch at the top and lower pitch at the bottom could counteract the inherent virtual 

camber effect and significantly improve the performance of a cyclorotor. 
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Comparison of Experiment and CFD for Asymmetric Pitching 

 

Force Comparison 

2D CFD simulations of the asymmetric pitch cases were conducted with the same 

CFD solver (OVERTURNS) mentioned in the symmetric pitch section and the results 

were correlated with the asymmetric pitching experimental data. The measured and CFD 

predicted lift and drag coefficients are plotted against the azimuth in Figure 50. The 

asymmetric pitching cases selected are the same as those studied in the previous section: 

15° Top/ 45° Bottom (worst performance) and 35° Top/ 25° Bottom (best performance). 

 

 

 

  

(i)  CL for 15° Top/ 45° Bottom. (ii)  CD for 15° Top/ 45° Bottom. 

Fig. 50: Lift and drag coefficients versus azimuth for 15° Top/ 45° Bottom and 

35° Top/ 25° Bottom asymmetric pitching. 
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(iii) CL for 35° Top/ 25° Bottom. (iv)  CD for 35° Top/ 25° Bottom. 

Fig. 50 (continued) 

 

 

 

For both cases, the measured and CFD predicted forces correlate well, especially 

for the upper half of the trajectory. In the lower half, CFD appears to overpredict the 

forces, which is similar to what was observed for the symmetric pitching comparison as 

well. The reasons for the differences between the two are not full identified at this point, 

but are in the process of being investigated. 

 

Flowfield Comparison 

The next step was to compare the CFD predicted flowfield with the PIV measured 

flowfield at the same key azimuthal locations that were studied in the previous section. 

Fig. 51 shows the comparison for the 15° Top/ 45° Bottom case at azimuthal locations of 

80°, 90°, 100°, 110°, 240°, 250°, 260°, 270°, 280°, 290°, and 300°.  
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PIV CFD 

   

(i) Ψ = 80° for PIV (ii) Ψ = 80° for CFD 

  

(iii) Ψ = 90° for PIV (iv) Ψ = 90° for CFD 

  
(v) Ψ = 100° for PIV (vi) Ψ = 100° for CFD 

  

(vii) Ψ = 110° for PIV (viii) Ψ = 110° for CFD 

Fig. 51: PIV versus CFD flowfield for 15° Top/ 45° Bottom. 
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(ix) Ψ = 240° for PIV (x) Ψ = 240° for CFD 

  

(xi) Ψ = 250° for PIV (xii) Ψ = 250° for CFD 

  

(xiii) Ψ = 260° for PIV (xiv) Ψ = 260° for CFD 

  

(xv) Ψ = 270° for PIV (xvi) Ψ = 270° for CFD 

Fig. 51 (continued) 
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(xvii) Ψ = 280° for PIV (xviii) Ψ = 280° for CFD 

  

(xix) Ψ = 290° for PIV (xx) Ψ = 290° for CFD 

  

(xxi) Ψ = 300° for PIV (xxii) Ψ = 300° for CFD 

Fig. 51 (continued) 

 

 

 

In the upper half, the PIV and CFD predicted flowfield solutions correlate well. 

The flow is attached throughout and the magnitudes of vorticity are very similar for both 

(Figs. 51 (i – viii). In the lower half beginning at 240°, a leading edge vortex is developing 

on the bottom of the blade (Figs. 51 (ix – xxii)). Both CFD and PIV capture the vortex 
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growth, shedding, and separation over the blade. The CFD vortex appears to be slightly 

smaller compared to the experiment. 

The comparison for the 35° Top/ 25° Bottom case is shown in Fig. 52 below. 

Similarly, the azimuthal locations of 80°, 90°, 100°, 110°, 240°, 250°, 260°, 270°, 280°, 

290°, and 300° are displayed for both the PIV measured and CFD predicted flowfields. 

 

 

 

PIV CFD 

   

(i) Ψ = 80° for PIV (ii) Ψ = 80° for CFD 

  

(iii) Ψ = 90° for PIV (iv) Ψ = 90° for CFD 

Fig. 52: PIV versus CFD flowfield for 35° Top/ 25° Bottom. 
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(v) Ψ = 100° for PIV (vi) Ψ = 100° for CFD 

  

(vii) Ψ = 110° for PIV (viii) Ψ = 110° for CFD 

  

(ix) Ψ = 240° for PIV (x) Ψ = 240° for CFD 

  

(xi) Ψ = 250° for PIV (xii) Ψ = 250° for CFD 

Fig. 52 (continued) 
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(xiii) Ψ = 260° for PIV (xiv) Ψ = 260° for CFD 

  

(xv) Ψ = 270° for PIV (xvi) Ψ = 270° for CFD 

  

(xvii) Ψ = 280° for PIV (xviii) Ψ = 280° for CFD 

  

(xix) Ψ = 290° for PIV (xx) Ψ = 290° for CFD 

Fig. 52 (continued) 
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(xxi) Ψ = 300° for PIV (xxii) Ψ = 300° for CFD 

Fig. 52 (continued) 

 

 

 

From 80° - 110°, a small leading edge vortex is seen developing on the leading 

edge (Figs. 52 (i – viii)). This development is captured by both PIV and CFD, with the 

CFD showing a vortex that is slightly larger in size. In the lower half from 240° to 270°, 

the PIV measured flowfield shows mild flow separation at the leading edge and then flow 

re-attachment at the trailing edge (Figs. 52 (ix, xi, xiii, xv)). The CFD predicted flowfield 

shows only attached flow over the blade for this range (Figs. 52 (x, xii, xiv, xvi)). Again, 

this discrepancy is mirrored in the lift and drag coefficients (Figs. 50 (iii – iv)), where the 

CFD overpredicts the lift and drag in the lower half for reasons yet to be identified. 

 

Reynolds Number Effect Experimental Results 

 

The last experimental analysis to be discussed is regarding the effect of Reynolds 

number on both static and dynamic pitch cases.  
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Static Pitch Case 

The static lift and drag coefficients as a function of the static pitch angle have been 

plotted for three different Reynolds numbers in Figs. 53 and 54. The Reynolds numbers 

include 9,232, 18,465, and 27,697, which correspond to 20, 40, and 60 RPM, respectively.  

 

 

 

 

Fig. 53: Lift coefficient versus fixed pitch angle for different Reynolds numbers 

and static blade pitch angles. 
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Fig. 54: Drag coefficient versus fixed pitch angle for different Reynolds numbers 

and static blade pitch angles. 

   

 

 

The static results are similar in magnitude for all three Reynolds numbers. The 

largest deviation appears for negative pitch angles, where the lift and drag coefficients are 

largest for Re = 9,232 (Figs. 53 and 54). This is expected because of the more prevalent 

effect of viscosity at lower Reynolds numbers leading to the formation of laminar 

separation bubbles and more skin-friction drag. 

To complement the force measurements at different Reynolds numbers, measured 

flowfield for several static blade pitch angles are shown in Fig. 55. The static blade pitch 

angles presented include 10°, 25°, and 45° at the three different Reynolds numbers. 
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From Fig. 55 it can be seen that for a static pitch angle of 10°, the flow remains 

mostly attached at all the three Reynolds numbers (Fig. 55 (i – iii)) without any significant 

differences. However, at higher pitch angles (Fig. 55 (iv – ix)), the flow separates from 

the leading edge; however, there is more vorticity being shed from both leading and 

trailing edges with increasing Reynolds number.   

 

 

Blade 

Pitch 

Angle  

= 10° 
   

(i) Re = 9,232. (ii) Re = 18,465. (iii) Re = 27,697. 

Blade 

Pitch 

Angle 

= 25° 
   

(iv) Re = 9,232. (v) Re = 18,465. (vi)  Re = 27,697. 

Blade 

Pitch 

Angle 

= 45° 
   

(vii) Re = 9,232. (viii) Re = 18,465. (ix)  Re = 27,697. 

Fig. 55:  PIV measured flow velocity vectors and vorticity contours for different 

Reynolds numbers and static blade pitch angles. 
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Dynamic Pitch Case 

The dynamic lift coefficients for the dynamic pitching cases of ±15°, ±30°, and 

±45° are plotted for Re = 9,232, Re = 18,465, and Re = 27,697 in Fig. 56. For the ±15° 

pitching case, the Re = 9,232 case produces the maximum lift coefficient in the upper half, 

and maximum for the drag coefficient during the entire cycle (Fig. 56 (i – ii)).  

 

 

 

   

(i)  CL for ±15° pitching. (ii)  CD for ±15° pitching. 

  

(iii)  CL for ±30° pitching. (iv)  CD for ±30° pitching. 

Fig. 56: Lift and drag coefficients versus azimuth for 15° Top/ 45° Bottom and 

35° Top/ 25° Bottom asymmetric pitching. 
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(v)  CL for ±45° pitching. (vi)  CD for ±45° pitching. 

Fig. 56 (continued) 

 

 

 

In the ±30° pitching case, the Re = 18,465 case results in maximum lift and drag 

in the upper half of the cycle (Fig. 56 (iii – iv)). However, the Re = 9,232 case appears to 

dominate the lift and drag in the lower half. This is reflective of the dynamic stall process 

being distinctive in the upper and lower halves of the azimuth. In the previous sections, it 

was found that the dynamic stall process differs in the two halves due to an interplay of 

blade pitch angle and virtual camber. For the ±45° pitching case, the same pattern is seen 

where the Re = 18,465 case produces the greatest lift and drag in the upper half, and the 

Re = 9,232 case produces the greatest lift and drag in the lower half (Fig. 56 (v – vi)). 

From these results, it is evident that the Reynolds number also effects the dynamic stall 

process, and thus, the force produced by the blades. 
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CHAPTER VI 

CONCLUSIONS 

 

This thesis provides an in-depth understanding of the unsteady aerodynamic 

mechanisms on a cyclorotor blade operating at ultra-low Reynolds numbers (Re~18,000). 

This is accomplished by utilizing a combination of force and flowfield measurements in 

conjunction with CFD simulations. This is the first time the instantaneous blade fluid 

dynamic forces on a cyclorotor blade were measured, which, along with PIV-based high 

resolution flowfield measurements around the blade at different azimuthal locations, 

revealed the key fluid dynamic mechanisms acting on the blade. A 2D CFD analysis of 

the cyclorotor was developed, which correlated well with experiments for both the force 

and flowfield. Studies were performed with static pitch, and dynamic blade pitching for 

symmetric and asymmetric kinematics. Direct comparison of the static and dynamic pitch 

experimental results helped isolate the unsteady aerodynamic phenomena from the steady 

effects. 

Specific conclusions from this study are as follows: 

1. Large dynamic virtual camber induced by the inherent flow curvature and blade 

pitch rate caused asymmetry in lift and drag coefficients between positive and 

negative pitch for both the static and dynamic pitching cases. 

2. The unsteady blade force coefficients were almost double the static ones clearly 

indicating the role of unsteady aerodynamic mechanisms on the force production 

on cyclorotor blades. This explains the ability of a cyclorotor to produce large 



 

100 

 

 

thrust at relatively lower rotational speeds, which was a key inference from the 

previous performance studies.  

3. For the dynamic case, the blade lift coefficient monotonically increased even up 

to ±45° pitch amplitude due to dynamic stall phenomenon, which kept the flow 

attached until higher pitch angles. On the other hand, for the static case, the flow 

separated from the leading edge after around 15° with a large laminar separation 

bubble (LSB) and eventually completely separating at higher pitch angles.  

4. The CFD flow solution and PIV measured flowfield correlated very well and both 

showed the formation and shedding of strong leading edge or dynamic stall 

vortices, especially at higher pitch amplitudes, which is the reason for the stall 

delay and force enhancement.  

5. Dynamic stall processes in the upper and lower halves of the circular blade 

trajectory were completely different because of the reversal of the virtual blade 

camber from upper to lower half. 

6. The measured resultant forces were mostly normal to the chord for the dynamic 

pitch cases indicating that the pressure force, as opposed to viscous force, is 

dominant on a cyclorotor blade (even at these ultra-low Reynolds numbers). 

7. The power required for blade rotation (rather than pitching power) is the significant 

component of the total power required for dynamic pitching cyclorotor blade. 

8. The cyclorotor figure of merit (FM) drops at higher pitch amplitudes due to higher 

dynamic drag coefficients. 
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9. For asymmetric pitching, the 35° Top/ 25° Bottom case required the least power, 

evidenced by the large lift in the upper half, and relatively small drag produced in 

the lower half. The 15° Top/ 45° Bottom case, on the other hand, required the most 

power. This was apparent in the lower half, especially, where the drag was 4 times 

that of the drag for the 35° Top/ 25° Bottom case.  It was concluded that 

asymmetric pitching with higher pitch at the top and lower pitch at the bottom 

could counteract the inherent virtual camber effect and significantly improve the 

performance of a cyclorotor. 

10. The CFD predicted forces and flowfield correlated well with the measured forces 

and PIV measured flowfield for asymmetric pitching. There were some 

discrepancies in the lower half where CFD seemed to overpredict the forces. The 

reasons for this are still being investigated.  

11. Reynolds number effects dynamic stall processes and thus the force produced by 

the blades. 
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