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ABSTRACT

A time-linearized CFD solver for analyzing rotordynamics of gas seals is presented

offering an improvement over existing linearized CFD solvers. Previous linearized

solvers required structured grids and axisymmetric domains, limiting the complexity

of the geometries of the seals that could be analyzed. A preexisting, full-order,

in-house CFD solver was available which operated on fully 3D and unstructured

grids and was well suited for complex seal geometries. A linearized version of the

in-house code is developed as a companion to the full-order solver, retaining its

unstructured and fully 3D features. Furthermore, boundary conditions are developed

for the linearized solver allowing it to take advantage of the geometric symmetries

that were required by earlier linearized solvers without necessarily being limited to

them. Additionally, a linearization procedure is presented which is general enough

to be used for the many various features of the full-order solver. As the in-house

code continues to be developed and new features are included, the same linearization

procedure can be used to keep the companion code up to date. The full-order, in-

house solver and the time-linearized companion code combine to become a powerful

CFD-perturbation solver accessible to all complexities of seal geometries.

This dissertation also presents an analytical formula that describes features of

cavity flow as it pertains to annular gas seals in order to progress the fundamental

understanding of the flow physics of roughened seals. An existing semi-empirical

analytical formula, developed to describe the cavity flow of aircraft bomb bays, is

modified using the full-order, in-house CFD solver. The numeric model is validated

against experimental measurements and used to adjust empirical parameters of the

formula to match cavity flow conditions unique to annular seals. The modified ana-
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lytical formula is able to predict features of cavity flows found in annular gas seals

better than existing formulae.

Finally, the companion, time-linearized CFD solver is verified using two simple

cases and the combined full-order and time-linearized CFD-perturbation solver is

used to predict rotordynamic properties for two gas seal geometries. The first case

used to verify the linearized solver is a channel flow with an oscillating back-pressure

and the second is a stationary flow with an oscillating wall. The first gas seal case the

combined CFD-perturbation solver is used for is a straight seal based on the High

Pressure Oxidizer Turbopump (HPOTP) of the Space Shuttle Main Engine (SSME).

The second is a stepped labyrinth seal. The rotordynamic predictions are compared

with established bulk-flow models of the two cases and conclusions are presented.
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1. INTRODUCTION

1.1 Motivation and Background

Gas seals are used in turbines and compressors to isolate internal areas of turbo-

machinery. They are found in areas of the machinery where the rotor and the stator

come in very close proximity to each other. Because of the relative motion between

the rotor and stator, a small gap between the two must remain to permit vibrations.

Unfortunately, leaving a gap also allows unwanted leakage of gas between otherwise

isolated areas of machinery diminishing overall effectiveness of the compressor or

turbine. The primary role of gas seals is to control this leakage flow.

Gas seals are able to control or limit unwanted leakage flow by creating a fric-

tional flow path between the rotor and stator. As large pressure differences force gas

through the gap, large viscous forces dissipate internal energy effectively slowing the

flow of leaked gas. This forces the gas along the intended path within the machinery.

The geometries of gas seals are designed in such a way as to maximize the viscous

losses and act as a hindrance to leakage flow while simultaneously providing enough

clearance for the rotor to travel freely.

The large pressure differences and small length scales seen by gas seals result

in large aerodynamic forces. These forces serve as a major contribution to overall

rotordynamic stability of the machinery leading to a secondary, however, just as

important, role for gas seals. This secondary role is control of rotordynamic stability.

Recent demand for increased power and efficiency has led to higher operating speeds

and working pressures and has further increased the importance of the role of the

gas seals. Consequently, this has lead to an increased interest in analysing the

aerodynamic and rotordynamic properties of different gas seal designs.
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Three general methods are used to predict the aerodynamic and rotordynamic

properties of gas seals. The first method is based on simplifying bulk flow assump-

tions and produces simple, computationally inexpensive analytical equations. How-

ever, under certain operating and testing conditions, bulk flow models fail to ac-

curately predict aerodynamic forces. Because of the bulk flow assumptions, little

insight is provided to why these methods fail. The second method is based on com-

putational fluid dynamic (CFD) methods with small perturbation approximations.

These CFD-perturbation methods use only a time-linearized assumption and are

applicable to a larger range of conditions than bulk flow methods. Solutions must

be found numerically making this method more computationally expensive than the

bulk flow method. However, all of the unsteady dynamics are confined to linear

perturbations and only a single steady, non-linear, solution is needed. This makes

CFD-perturbation methods much less expensive than the third method. This final

method uses time-accurate CFD to generate time dependent flow fields without any

linear or bulk flow assumptions. They are very computationally expensive due to

the need to resolve every step in the time marching procedure as well as needing to

rerun the entire simulation for different conditions. Taking all these arguments into

consideration, a CFD-perturbation method based on time-linearization, based on

its balance between efficiency and accuracy, is used herein to predict rotordynamic

coefficients for annular gas seals.

CFD-perturbation methods were first used to predict rotordynamic coefficients

by Diezen and Nordmann [1]. They developed a quasi-3D method which required

axisymmetric domains and structured grids. The method was further developed by

Kim and Rhode [2] and Xi and Rhode [3] to include more complex geometries. Their

method, however, still required axisymmetric domains and structured grids. They

also introduced an incompressibility assumption.
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Similar CFD-perturbation methods have been used to analyze cascaded air-

foil geometries. The method developed by Hall and Lorence [4] allowed for non-

axisymmetric domains but assumed inviscid and incompressible flows. Viscous effects

in the time-linearization method were introduced by Cizmas and Hall [5] using an

interacting viscous-inviscid method. Clark and Hall [6] applied the time-linearization

method to the RANS equations.

All previous research using CFD-perturbation methods for turbomachinery anal-

ysis required structured grids and nearly all required axisymmetric domains. These

limitations greatly restrict the complexity of the geometries accessible to this method.

The current methods need to be expanded so they may be used to study the rotor-

dynamics of a greater variety gas seals.

The time-linearized, CFD-perturbation method developed herein is based on

an unstructured finite volume method and is fully 3D. This allows for the anal-

ysis of complex seal geometries that were previously inaccessible. It is based on

the Reynolds-averaged Navier-Stokes (RANS) equations and uses the Shear Stress

Transport (SST) model to account for turbulent effects. This time-linearized RANS

solver, being unstructured, fully 3D, and turbulent, can be used to predict rotor-

dynamic coefficients for complex seal geometries that were inaccessible to previous

CFD-perturbation and bulk flow methods.

Numerical simulation of annular seals typically produces good predictions for

the seal rotordynamic coefficients and reasonable predictions for leakage. For flow

conditions where the friction factor decreases with increasing Reynolds numbers, the

numerical models work well, and the seal can be expected to produce a positive static

direct stiffness through the Lomakin effect. The Lomakin effect, however, produces

negative stiffness if the friction factor increases with increasing Reynolds number.

There are reported cases investigated by Childs et al. [7, 8, 9] when an annular seal
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test rig became unstable in the transition regime where the friction factor increased

with increasing Reynolds numbers because of negative direct stiffness.

Highly turbulent flow normally exists in annular seals with Reynolds numbers in

the range of 20,000, well above the transition regime. Although the flow was already

turbulent, in almost half of the tests at elevated Reynolds numbers, the friction factor

experienced a sharp increase while increasing Reynolds numbers [10]. Unsteady pres-

sure measurements showed that flow instabilities in the roughness patterns interferes

with the through flow and causes this apparent increase in friction factor.

The flow/acoustics interaction in these seals seems to be the cause of the fluid

instability that causes the abrupt increase of the friction factor. This phenomenon

is similar to the acoustic instability that occurs in aircraft at certain Mach numbers

when the bomb bay door is open. The sound radiating from the cavity is associated

with shear layer instability over cavity length and with vortex roll-up in the shear

layer. The vortex-acoustic interaction selectively amplifies certain sound tones.

In these cases analysis of the rotordynamic stability still requires a better un-

derstanding of the features of the flow phenomenon. Without a proper a rigorous

analysis of the rotordynamic stability is impossible. Following the insights of ex-

perimental research a deeper study of the culprit cavity flow/acoustic interaction at

conditions found in gas seals is needed. In short, we need to know what the cavity

flow is doing in the gas seals.

The fluid instabilities in the seals are produced when the flow between the rotor

shaft and stator passes over roughness patterns of the seals. The roughness act as

cavities trapping pockets of recirculating fluid. The grazing flow over the opening of

the cavities generates a flow-acoustic feed-back loop within each open cavity which

in turn causes acoustic waves to emanate from the cavities.

The phenomenon of fluid instabilities caused by grazing flow past open cavities
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was first studied by Roshko [11] and Krishnamurty [12]. Formulae to predict the

lock-in frequency of the instability were proposed by Rossiter [13] and Tam and

Block [14]. Further modeling and experimental investigations were reported by sev-

eral researchers [15, 16, 17, 18]. More recently computational approaches have been

used to study flow past open cavities [19, 20, 21, 22]. Grace [23] has compiled an

overview of several of these studies. Reduced order approaches, such as proper or-

thogonal decomposition, have been employed to extract the salient features of the

flow [24, 25].

The majority of the past studies of cavity flows were concerned with open wheel

wells and weapons bays on aircraft. They investigated single, two-dimensional cavi-

ties on an infinite wall with no opposing wall. Flow past annular gas seals, however,

experiences several hundred cylindrical cavities with an opposing wall very near the

opening of the cavities. Dougherty et al. [26] investigated flows in cavities with an

opposing wall. However, the clearance between the cavity and wall was much larger

than what would be seen in seals.

Rotordynamics is an area of the study of vibration and controls which concerns it-

self with the phenomena demonstrated by flexible rotors. Specifically, rotordynamics

is focused on linear resonance phenomena, linear instabilities, parametric instabil-

ities, and forced steady-state and transient nonlinear response. The rotordynamic

system associated with gas seals most commonly takes the following form,

−




Fx

Fy


 =




K k

−k K







X

Y


 +




C c

−c C







Ẋ

Ẏ


 (1.1)

where X and Y are the rotor’s position and Fx and Fy are forces on the rotor in the

radial x and y directions, respectively. K and k are direct and cross coupled stiffness

coefficients, and C and c are direct and cross coupled damping coefficients. Once
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the rotordynamic coefficients K, k, C and c are found, the complete dynamics of the

system is known. With Eq. (1.1), all that is required to analyze the rotordynamics

for a particular gas seal geometry at specified flow conditions, is to determine the

values for the rotordynamic coefficients.

Fluid instabilities generated by the grazing flow past an open cavity occur due to

the interaction of shear layer oscillations within the cavity, vortices within the shear

layer and acoustic waves radiating from the cavity. As shown in Fig. 1.1, a boundary

layer forms along the wall upstream of the cavity and separates from the wall as it

reaches the leading edge of the cavity forming a shear layer across the top of the

cavity. The faster grazing flow in the channel passing over the slower recirculation in

the cavity causes Kelvin-Helmholtz oscillations in the shear layer. These oscillations

cause vortices to be shed from the leading edge of the cavity and also propagate

them along the shear layer. The vortices propagate downstream and impinge on the

trailing edge. The interaction between the vortices and the shear layer warps the

shear layer causing its reattachment point to momentarily move down the cavity wall

below the lip. The shear layer stagnates just below the trailing edge causing a brief

period of higher pressure. As the flow accelerates past the trailing edge of the cavity,

an area of low pressure is momentarily formed along the wall just downstream of

the cavity edge. As a result, an acoustic dipole is generated at the trailing edge,

which radiates acoustic waves in all directions. The acoustic waves that propagate

upstream excite the shear layer at the leading edge of the cavity, which in turn

causes the shedding of additional vortices. This vortex-acoustic interaction forms a

feed-back loop which selectively amplifies a dominant frequency.

Using this understanding of the feed-back loop mechanism described above, Rossiter [13]
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Figure 1.1: Features of cavity flow.

derived a semi-empirical equation that predicts the dominant frequency, f

f =
U

L
· m − γ

M c0
ct

+ 1/κ
(1.2)

where U is the freestream flow velocity, L is the length of the cavity, M is the Mach

number, co and ct are the speed of sound outside and inside the cavity respectively, γ

and κ are empirical terms, and m is the mode of the oscillation. Using experimental

measurements, Rossiter determined that the empirical terms are γ = 0.25 and κ =

0.66. Subsequent studies have reported κ values as low as 0.57 while the value for γ

has remained consistent [27].

It should be noted that Rossiter, as well the majority of researchers utilizing

Rossiter’s formula, studied cavities open to the freestream with no influence of an

opposing wall. Rossiter’s formula and values for the empirical constants were found

using these flow conditions. For flow in gas seals the cavities are located within

a channel where the opposing wall is situated in the proximity of the opening of

the cavities. Consequently, Rossiter’s formula must be modified to account for the
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presence of the opposing wall.

1.2 Objective and Scope

The objective of this research was to further the state of the art in analysis of the

aerodynamic and rotordynamic stability of compressor and turbine annular gas seals.

To achieve the goals, a fully 3D, Reynolds-averaged Navier-Stokes (RANS), unstruc-

tured, finite volume solver was developed. A companion fully linearized version of

the solver was also developed and used as part of a CFD-perturbation solver based on

the time-linearized approximation. The full-order RANS cose is also used to provide

the mean flow conditions about which the linearization of the time-linearized code

is performed. Together, the full-order and time-linearized codes are used to predict

rotordynamic stability coefficients for gas seals.

For seal cases where cavity flow is present, a deeper understanding of the flow

physics is necessary. An existing analytical formula, used to predict features of cavity

flow, is modified such that it may be applied to gas seals. The full-order RANS code,

validated with experimental results, provides insight for the modification.

1.3 Original Contributions of this Dissertation

The time-linearized CFD solver presented in this dissertation offers an improve-

ment over existing linearized CFD solvers developed for turbomachinery. Previous

linearized solvers required structured grids and axisymmetric domains, limiting the

complexity of the geometries of the seals that could be analyzed. Updating these

codes would require major modifications and is impractical. A full-order, in-house

CFD code operated on fully 3D and unstructured grids and was already well suited

for complex seal geometries. This dissertation develops a linearized version of the

full-order, in-house code, retaining its unstructured and fully 3D features. Boundary

conditions are also developed for the linearized code allowing it to take advantage of
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the geometric symmetries that were required by previous codes without necessarily

being limited to them. The linearization procedure is also general enough to be used

for the many various features of the full-order code that were developed to make it a

powerful CFD tool. As the in-house code continues to be developed and new features

are included, the same linearization procedure can be used to keep the linearized code

up to date. The full-order, in-house RANS solver and the time-linearized compan-

ion code combine to become a powerful CFD-perturbation solver accessible to all

complexities of seal geometries.

This dissertation also presents an analytical formula that describes features of

cavity flow as it pertains to annular gas seals in order to progress the fundamental

understanding of the flow physics of roughened seals. An existing semi-empirical

analytical formula, developed to describe the cavity flow of aircraft bomb bays, is

modified using the full-order, in-house RANS solver. The numeric model is validated

against experimental measurements and used to adjust empirical parameters of the

formula to match cavity flow conditions unique to annular seals. The unique con-

ditions taken into consideration include the presence of an opposing wall very near

the opening of the cavity and the interactions of multiple cavities. The modified

analytical formula is able to predict features of cavity flows found in annular gas

seals better than existing formulae.

1.4 Outline of Dissertation

The following dissertation describes the numerical methods used to develop the

full order code and the time linearized code. It also discusses simulations run to study

cavity flow for conditions found in gas seals and how results from those simulations

were used to modify an analytical formula. The report also discusses results gener-

ated by the time-linearized code for simple validation simulations and the prediction
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of rotordynamic coefficients for gas seals.

Chapter 2 presents the Navier-Stokes equations, the Reynolds-averaged Navier-

Stokes equations and the turbulence model used in the present work. Chapter 3

discusses numerical methods used by the full-order and time-linearized solver and is

split into four main sections. The first section describes the spatial discretization of

the Reynolds-averaged Navier-Stokes and the turbulence model. The temporal inte-

gration methods are discussed the second section. Details of the time-linearization

assumptions are discussed in the third section, as well as details on how the assump-

tions are implemented. The fourth and final section of Chapter 3 covers boundary

conditions. The first part of Chapter 4 presents the results of the cavity flow simula-

tions and their applications to gas seals. The second part presents results generated

by the CFD-perturbation code and predictions of gas seal rotordynamic coefficients

as compared to established bulk flow methods and experimental measurements. Fi-

nally, a discussion of the results and the conclusions of the report are presented in

Chapter 8 along with suggested directions for future research.
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2. PHYSICAL MODEL

This chapter introduces the Reynolds-Averaged Navier-Stokes equations, describ-

ing the dynamics of the gas within the annular seals. Methods for solving the equa-

tions are presented in later chapters.

2.1 General Conservation Law

A conservation law can be formulated for any conserved fluid property. The gen-

eral formulation presented here provides a framework that every particular conserved

property follows. Following sections will apply this general from to the conservations

of mass, momentum and energy.

Consider an arbitrary finite region Ω bounded by a closed surface ∂Ω. The

surface is composed of infinitesimal surface elements, dS, along with the associated

unit normals, n̂, conventionally defined pointing out of the region Ω. For a given

conserved quantity φ, defined at all locations of the domain, a conservation law hold

that variation of φ in time within region Ω,

∂

∂t

∫

Ω

φ dΩ (2.1)

is equal to the sum of the net flux of φ into Ω and any source of φ. The flux is

composed of two types, convective and diffusive. The convective flux is defined by

the amount of φ being convected into Ω due to the motion of fluid. It is formulated

as

−
∮

∂Ω

φ (~v · n̂) dS (2.2)
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Ω

∂Ω

dS

n

Figure 2.1: Definition of the geometric terms of an arbitrary control region.

where ~v is the velocity of the fluid.

Diffusive flux acts as a smoothing mechanism. It describes a quantity of φ entering

Ω due to a diffusion of φ and is proportional to the gradient of φ. The diffusive flux

is formulated using a generalized Fick’s law as

∮

∂Ω

κρ (∇(U/ρ) · n̂) dS (2.3)

where κ is the diffusivity coefficient and ρ is the fluid density. The derivation of the

diffusive flux term is formulated for a fluid at rest.

Also considered are contributions due to body sources, ~Gv, and surface sources,

Gs.

∫

Ω

~Gv dΩ +

∮

∂Ω

(Gs · n̂) dS (2.4)

Equating the time variation of φ within Ω with the sum of the convective and
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diffusive fluxes and body and surface sources gives the following general conservation

law formulation for an arbitrary fluid property φ,

∂

∂t

∫

Ω

φ dΩ +

∮

∂Ω

[φ(~v · n̂) − κρ(∇(U/ρ) · n̂)] dS =

∫

Ω

~Gv dΩ +

∮

∂Ω

(Gs · n̂)dS. (2.5)

It is typical to write the flux terms on the same side as the time variation term.

With the formulation for a general conservation law, the following discussions on

the conservations of mass, momentum and energy amount to deriving the convective

and diffusive fluxes and any source terms as they apply to each specific fluid property.

2.2 Conservation of Mass (Continuity Equation)

The simplest of the three conservation laws described in this chapter is the con-

servation of mass. The conserved quantity for this case is density, ρ. Following the

general formulation above, the time variation of total mass within region Ω is

∂

∂t

∫

Ω

ρ dΩ (2.6)

and the convective flux across the surface is

−
∮

∂Ω

ρ(~v · n̂)dS. (2.7)

For the conservation of mass there is no diffusive flux and, for cases within the scope

of this paper, no body or surface sources.

With all terms accounted for the formulation for the conservation of mass is

∂

∂t

∫

Ω

ρ dΩ +

∮

∂Ω

ρ(~v · n̂)dS = 0. (2.8)
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2.3 Conservation of Momentum (Newton’s 2nd Law)

The conserved quantity here, momentum, is a vector quantity defined as the

product of density and velocity, ~m = ρ~v.

The convective flux for momentum, ρ~v, is given by

−
∮

∂Ω

ρ~v (~v · n̂)dS. (2.9)

No diffusive flux exists for the conservation of momentum.

Body sources can occur under certain conditions due to gravity, buoyancy, Coriolis

and centrifugal effects. Most cases within the scope of this paper can neglect body

sources so this term is assumed to be zero.

Surface source terms arise for the conservation of momentum due to forces on the

finite region. The forces considered consist of isentropic pressure and viscous stress

due to friction. With these two forces considered, the surface source term can be

written as

Gs = −pI + τ (2.10)

where p is pressure, I is the identity tensor and τ is the viscous stress tensor. The

surface source term is written as a tensor, as opposed to a vector as seen earlier,

to incorporate the three components of momentum. If we wish, the surface source

tensor may be separated into x, y, and z components,

Gs =




~GT
s,x

~GT
s,y

~GT
s,y




(2.11)
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and applied to the x, y, and z components of momentum separately.

The viscous stress introduced above describes the force felt by the fluid within Ω

due to friction between itself and neighboring fluids or surfaces. It is described by

the tensor, τ , which in Cartesian coordinates, is written

τ =




τxx τxy τxz

τyx τyy τyz

τzx τzy τzz




. (2.12)

By convention, τij refers to the component of stress felt on a face of the defined finite

region perpendicular to the i-axis and felt in the j-axis direction. This means, for

i = j, τij is felt as a normal force and for i 6= j, as a shear force.

For a Newtonian fluid the viscous stresses are proportional to the velocity gradi-

ent. The components of the viscous stress tensor, τ , is defined as

τxx = 2
3
µ
(
2∂u

∂x
− ∂v

∂y
− ∂w

∂z

)

τyy = 2
3
µ
(
2∂v

∂y
− ∂w

∂z
− ∂u

∂x

)

τzz = 2
3
µ
(
2∂w

∂z
− ∂u

∂x
− ∂v

∂y

)

τxy = τyx = µ
(

∂u
∂y

+ ∂v
∂x

)

τxz = τzx = µ
(

∂u
∂z

+ ∂w
∂x

)

τyz = τzy = µ
(

∂v
∂z

+ ∂w
∂y

)

(2.13)

where µ is the dynamic viscosity coefficient where µ = 1.82 × 10−5 kg
m2 s

. Note that τ

is a symmetric matrix so τij = τji.

2.4 Conservation of Energy (1st Law of Thermodynamics)

The conserved quantity for the conservation of energy is the total energy per unit

volume and is written as
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ρE = ρ

(
e +

|v|2
2

)
(2.14)

where e and |v|2/2 are the internal and kinetic energy per unit mass, respectively.

The internal energy, e, for a calorically perfect gas is expressed as

e = cvT (2.15)

where cv is the specific heat at constant volume and T is the temperature of the

fluid. The convective flux, then, is written

−
∮

∂Ω

ρE (~v · n̂)dS. (2.16)

Unlike the conservations of mass and momentum, the conservation of energy has

a diffusive flux. As stated earlier, this term is defined for a fluid at rest so it is

proportional to the gradient of only the internal energy without influence from the

kinetic energy. The contribution, then, to the variation of energy in a finite region

due to diffusive flux can be written as

∮

∂Ω

γρκ (∇e · n̂)dS (2.17)

where γ = cp/cv is the ratio of specific heat (γ = 1.4 for air), and κ is the thermal

diffusivity coefficient.

A more common form for the previous term may be chosen if, instead of the

gradient of internal energy, ∇e, the gradient of total temperature, ∇T , is used. It

can then be written as Fourier’s law of heat transfer,
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∮

∂Ω

k (∇T · n̂)dS (2.18)

where k is thermal conductivity and T is total temperature.

For the cases considered in this paper, no body sources, ~Gv are included for the

conservation of energy. Generally, body sources can be included due to radiation,

chemical reactions along with the body forces outlined in the previous section. None

of these effects, however, are included here.

The last term considered is the surface source, Gs. It is written as,

~Gs = −p~v + τ · ~v. (2.19)

Combining all terms together, the conservation of energy is formulated,

∂

∂t

∫

Ω

ρE dΩ +

∮

∂Ω

ρE(~v · n̂)dS =

∮

∂Ω

k (∇T · n̂) − p(~v · n̂) + (τ · ~v)n̂ dS (2.20)

A more common form of the equation can be written with the total enthalpy, H ,

defined as

H =

(
h +

|~v|2
2

)
= E +

p

ρ
(2.21)

and allows for the consolidation of the convective flux and pressure surface source

term. The internal enthalpy, h, is defined for a calorically perfet gas is expressed as

h = cpT. (2.22)

where cp is the specific heat at constant pressure.
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Using the total enthalpy, H , the conservation of energy can be written as

∂

∂t

∫

Ω

ρE dΩ +

∮

∂Ω

ρH(~v · n̂)dS =

∮

∂Ω

k (∇T · n̂) + (τ · ~v)n̂dS (2.23)

These equations, conservation of mass, momentum and energy, are collectively

referred to as the Navier-Stokes equations.

2.5 Integral Versus Differential Forms

The Navier-Stokes equations have been derived in the previous sections in their

integral, or weak, form. They may also be presented in their differential, or strong

form. This section compares the two forms for the Navier-Stokes equations.

The integral form of the equations may be transformed into the differential form

by shrinking the control volume Ω to an infinitesimal size and applying the divergence

theorem. The divergence theorem is written,

∮

∂Ω

(
~(•) · n̂

)
dS =

∫

Ω

∇ · ~(•) dΩ. (2.24)

Starting from the final form of the conservation of mass equation, Eq.(2.8), and

assuming the control volume is fixed in space, gives

∫

Ω

∂ρ

∂t
dΩ +

∮

∂Ω

ρ(~v · n̂)dS = 0 (2.25)

Applying the divergence theorem to the surface integral leads to,

∫

Ω

∂ρ

∂t
dΩ +

∫

Ω

∇ · (ρ~v) dΩ = 0 (2.26)

or rearranged,
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∫

Ω

[
∂ρ

∂t
+ ∇ · (ρ~v)

]
dΩ = 0. (2.27)

Since the control volume, Ω, is arbitrarily defined, to ensure Eq.(2.27) is satisfied for

any general volume, the bracketed term must always equal zero. This leads to,

∂ρ

∂t
+ ∇ · (ρ~v) = 0 (2.28)

which is the differential form of the conservation of mass equation. Similarly, a

differential form can be found for the conservation of momentum and conservation

of energy equations.

The integral form of the equations are derived directly from the conservation as-

sumptions. Because of this, the integral form holds even across solution discontinu-

ities, such as shock waves or shear layers, satisfying the Rankine-Hugoniot relations.

The differential form requires modifications to remain accurate.

2.6 Turbulence Models

For many engineering applications the flow is in the turbulent regime. Turbu-

lence is a flow characterized by small scale random fluctuations. For most practical

applications, capturing both the large scale fluid features important in engineering

applications and the small scale fluctuations of turbulent flows requires computing

power which is not yet available. Direct Numerical Simulation (DNS) is a numeric

method that uses Navier-Stokes simulations to directly capture the turbulent fluc-

tuations. Currently, it is only possible to simulate very simple flows at very low

Reynolds’ numbers using DNS. It is used for such things as understanding turbulent

fluid structures, transition from laminar (non-turbulent) to turbulent flow and the

development of turbulence models.
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The first level of turbulence model is the Large-Eddy Simulation (LES) method.

LES is based on the observation that the small scales of turbulent flow possess

common characteristics that can be approximated by a carefully chosen model while

larger scales of the flow work to transport the turbulent energy around. Therefore,

only the large scales of the Navier-Stokes equations are captured while the small

scale turbulent effects are modeled. This allows LES to be less computationally

expensive than DNS. However, given current computational capabilities, LES is still

very demanding. An overview of LES applications can be found in [28].

The next level of approximation is called the Reynolds-Averaged Navier-Stokes

equations (RANS). This is the method of turbulence modeling employed here. The

remainder of this section will be used to explain RANS.

The methodology of RANS is based on the decomposition of the flow variables

into a mean and a fluctuating part. Applied to a general variable, q, Reynolds

averaging appears as

q = q + q′ (2.29)

where q is the mean value of q and q′ represents the fluctuations. The mean value

will be defined here as the average value of q over a large time.

q = lim
T→∞

1

T

t+T∫

t

q dt (2.30)

The large time, T → ∞, refers, in a practical sense, to a time period much longer

that the time scale of the fluctuations.

When working with the Navier-Stokes equations it is common to encounter terms

of the form ρq where a given variable is multiplied by density, ρ. For these terms,
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Favre averaging gives simpler results than Reynolds averaging. Favre averaging can

be thought of as a density weighted version of Reynolds averaging and can be written

q = q̂ + q′′ (2.31)

where

q̂ =
1

ρ
lim

T→∞

1

T

t+T∫

t

ρq dt. (2.32)

For both Reynolds and Favre averaging the average of the fluctuating part for a

single quantity is zero.

q′ = 0

q̂′′ = ρq′′ = 0
(2.33)

However, the average of the product of two fluctuating quantities is generally not

zero.

q′q′ 6= 0 q′r′ 6= 0

q̂′′q′′ 6= 0 q̂′′r′′ 6= 0.
(2.34)

Here r is a general variable different from q.

This section will mix Reynolds and Favre averaging. It is therefore useful to point

out the following relationships,

ρ̂q = ρq̂

ρq′′ = 0

q′′ 6= 0

(2.35)

Specifically, components of velocity, u, v, w, total enthalpy, H , and total energy,
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E, appear as products multipied by density, ρ, and are Favre averaged. The other

variables, density and pressure, p, are Reynolds’ averaged. The selective use of Favre

and Reynolds’ averaging allows the resultant equations to avoid density fluctuation

terms. The specified averaging applied to the differential form of the Navier-Stokes

equations yields,

∂ρ
∂t

+ ∂
∂xi

(ρv̂i) = 0

∂
∂t

(ρv̂i) + ∂
∂xi

(ρv̂j v̂i) = − ∂p
∂xi

+ ∂
∂xi

(
τ̂ij − ρv̂′′

i v′′
j

)

∂
∂t

(
ρÊ
)

+ ∂
∂xj

(
ρv̂jĤ

)
= ∂

∂xj

(
k ∂ bT

∂xj
− ρv̂′′

j h
′′ + τ̂ijv′′

i − ρv̂′′
j K
)

+ ∂
∂xj

[
v̂i

(
τ̂ij − ρv̂′′

i v
′′
j

)]

(2.36)

where repeated indices imply summation. The viscous stress tensor, τij , in the

conservation of momentum and energy equations is extended by the Favre-averaged

Reynolds stress tensor,

τF
ij = −ρv̂′′

i v
′′
j . (2.37)

In Eq.(2.36), the Favre-averaged turbulent kinetic energy term, K̂, has been added.

It is defined as

K̂ =
1

2
v̂′′

i v
′′
j . (2.38)

The Favre averaged total energy, Ê, and total enthalpy, Ĥ, use the kinetic energy

term as a result of the averaging.

Ê = ê +
1

2
v̂iv̂i +

1

2
v̂′′

i v
′′
i = Ẽ + K̂ (2.39)
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and

Ĥ = ĥ +
1

2
v̂iv̂i +

1

2
v̂′′

i v′′
i = H̃ + K̂. (2.40)

The individual parts of the RANS equations (2.36) can be physically understood

using the following interpretations [29],

∂
∂xj

(
k ∂ bT

∂xj

)
− molecular diffusion of heat

∂
∂xj

(
ρv̂′′

j h
′′

)
− turbulent transport of heat

∂
∂xj

(
τ̂ijv′′

i

)
− molecular diffusion of K̂

∂
∂xj

(
ρv̂′′

j K
)

− turbulent transport of K̂

∂
∂xj

(v̂iτ̂ij) − work done by the molecular stresses

∂
∂xj

(
v̂iτ

F
ij

)
− work done by the Favre-averaged Reynolds stresses

. (2.41)

To close the RANS equations, six components of the Favre-averaged Reynolds

stress tensor, τF
ij , and three components of the turbulent heat flux vector must be

supplied.

Using the Boussinesq approximation, the Reynolds stress can be linked to the

mean flow taking a form similar to the viscous stress tensor from Eq.(2.13). It is

assumed that the Reynolds stress is related to the gradient of the mean velocity by

−ρv′′
i v′′

j = µT

(
∂v̂i

∂xj
+

∂v̂j

∂xi
− 2

3

∂v̂k

∂xk
δij

)
− 2

3
ρK̂δij (2.42)

where µT is the turbulent eddy viscosity as determined by an accompanying turbu-

lence model. The Reynolds heat flux is related to the gradient of the mean temper-

ature by
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ρh′′v′′
j = −cpµT

PrT

∂T

∂xj
(2.43)

where PrT is the turbulent Prandtl number. For air at standard conditions, PrT =

0.9.

Eq.(2.42) and Eq.(2.43) are substituted into Eq.(2.36) giving,

∂ρ
∂t

+
∂ρbvj

∂xj
= 0

∂ρbvi

∂t
+

∂ρbvibvj

∂xj
= − ∂p

∂xi
+

∂τ ij

∂xj

∂ρẼ
∂t

+
∂ρH̃bvj

∂xj
= ∂

∂xj

(
v̂iτ ij − qj

)
(2.44)

where

τ ij = (µ + µT )

(
∂v̂i

∂xj

+
∂v̂j

∂xi

− 2

3

∂v̂k

∂xk

δij

)
, (2.45)

and

qj = cp

(
µ

Pr
+

µT

PrT

)
∂T

∂xj

. (2.46)

The effect of the turbulence is modeled with the two-equation eddy-viscosity

Shear Stress Transport (SST) model proposed by Menter [30].

2.7 Formulation for a Perfect Gas

The working gas of the turbomachinery is assumed to behave like a calorically

perfect gas. This section discusses the relationships between flow quantities that

arise due to this assumption. The equation of state for perfect gases takes the form

[31],

p = ρRT (2.47)
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where R represents the specific gas constant and equals 287.16m2

s2 K. It is defined as

the difference between the specific heat coefficients for a constant pressure, cp, and

a constant volume, cv,

R = cp − cv. (2.48)

Recalling the definitions for enthalpy, h, and total enthalpy, H , from Eq.(2.22) and

Eq.(2.21), respectively, and using the definition for the specific gas constant, R, along

with the following definition,

γ =
cp

cv
(2.49)

a formulation for pressure, p, can be obtained using only conserved properties. This

formulation has the form,

p = (γ − 1)ρ

[
E − u2 + v2 + w2

2

]
. (2.50)

The equation of state, Eq.(2.47), can then be used to define the temperature, T .

The coefficient of the dynamic viscosity, µ, is strongly dependent on temperature

and only weakly dependent on pressure. To determine µ, the Sutherland formula is

used. It is written as,

µ =
1.45 T 3/2

T + 110
· 10−6 (2.51)

where the temperature, T , is in degrees Kelvin. The temperature dependence of the

thermal conductivity coefficient, k, is very near that of µ. The following relationship

is used for air,
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k = cp
µ

Pr
(2.52)

where the Prandtl number, Pr, is assumed constant throughout the flow field. For

air, the Prandtl number has the value Pr=0.72.
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3. NUMERICAL METHOD

3.1 Spatial Discretization

This chapter discusses the derivation of the discretized form of the Navier-Stokes

equations. The governing equations are discretized so they may be solved using

numerical methods. This chapter outlines the discretization of the domain, the

projection of the governing equations onto the domain and the upwinding, gradient

calculation, and reconstruction methods required for a stable and accurate solution.

3.1.1 Navier-Stokes Equations

The Navier-Stokes equations were derived in the previous chapter. This section

will present those equations in a useful form that eases the mathematical manipula-

tions required for the implementation of numerical methods presented later in this

chapter. Generally, this is done by storing the flow variables as a single vector and

operating on the vector as a whole.

We begin by gathering the Navier-Stokes equations introduced in the previous

chapter. The conserved quantities associated with each equation are stored in a

single vector called the state vector, ~Q. It is written as

~Q =




ρ

ρu

ρv

ρw

ρE




. (3.1)

We choose to present the components of ~Q defined using the primitive variables so

the following discussion can be as conceptually simple to follow as possible. It could
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just as easily be written in terms of the conserved variables, or any other complete

set of flow variables, and retain the same rigor. The primitive variables provide an

intuitive comfort other flow variables do not.

Storing the conserved quantities as a single vector allows the Navier-Stokes equa-

tions to collectively be considered as a system of equations. The system of equations,

then, take the form

∂

∂t

∫

Ω

~Q dΩ +

∮

∂Ω

(~Fc − ~Fv)dS =

∫

Ω

~G dΩ (3.2)

The remainder of this subsection will be used to define the terms of Eq.(3.2).

The vector of convective fluxes, ~Fc, is the collection of the convective flux terms.

For convenience, the source terms containing pressure, p, found in the conservation

of momentum and energy equations are also included. The convective flux vector,

~Fc, can be written

~Fc =




ρV

ρuV + nxp

ρvV + nyp

ρwV + nzp

ρEV + V p




=




ρV

ρuV + nxp

ρvV + nyp

ρwV + nzp

ρHV




(3.3)

Here, nx, ny, and nz represent the components of the direction normal to the in-

finitesimal surface element dS. The term V represents the component of velocity

normal to dS, called the contravariant velocity. It is defined in three dimensions as

V = (~v · n̂) = nxu + nyv + nzw. (3.4)

The vector of viscous fluxes, ~Fv, contains the viscous stress terms found in the

28



surface source terms in the previous chapter. Also, the heat diffusion term is included

in the conservation of energy equation. The viscous flux vector is written

~Fv =




0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxΘx + nyΘy + nzΘz




(3.5)

where the viscous stress tensor, τ , is defined in Eq.(2.3) and

Θx = uτxx + vτxy + wτxz + k ∂T
∂x

Θy = uτyx + vτyy + wτyz + k ∂T
∂y

Θz = uτzx + vτzy + wτzz + k ∂T
∂z

(3.6)

are terms describing work done by the viscous stresses and the heat conduction.

The vector, ~G, represents any source terms that haven’t already been included

in ~Fc or ~Fv. This may include the effects of gravity, buoyancy, Coriolis forces, etc.

For the cases covered here the source vector, ~G, is equal to zero.

3.1.2 Methods for Spatial Discretization

This subsection presents the first preprocessing step before solving the Navier-

Stokes equations, discretizing the equations in space. There are many established

methodologies for spatial discretization. The three most common are finite difference,

finite element and finite volume.

The finite difference method defines the state variables at distinct points through-

out the domain. It operates on the differential form of the governing equations and

uses Taylor series to approximate the gradient terms. In this way, relationships are
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defined between the state variables stored at each point.

The finite element method, however, does operate on the integral form of the gov-

erning equations. The equations are projected onto a set of discrete spatial elements

chosen so they fully cover the domain without overlapping or leaving gaps. Higher

order approximations are achieved by using several higher order basis functions on

each element.

The finite volumes method, like the finite element method, operates on the in-

tegral form of the governing equations. Similar to the finite element method, the

equations are projected onto a set of discrete spatial, in this case, control volumes

which fully span the domain without overlapping and without leaving gaps. With

the finite volumes method a premium is placed on complexity so each control volume

can be efficiently handled by the computer allowing for the use of a very large number

of volumes. The simplicity of the method also eases the development of the more

complicated procedures that are often required when working with the Navier-Stokes

equations such as up-winding and preconditioning. The finite volume method is the

most common procedure used for computational fluid dynamics and is the method

used in this work. The remainder of this subsection will be used to describe it in

more detail.

As was mentioned above, the finite volume method operates on a set of volumes

that fill the domain. This set is referred to as the grid or mesh. Creating quality

meshes can be a very difficult task and has developed into a field of its own. For the

development of the finite volume method presented here, it will be assumed a mesh

already exists.

We introduce a single control volume located somewhere in the domain. The

Navier-Stokes equations consist of two types of terms, the volume integral and the

surface integral. They are written in a general form, respectively, as
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∫

Ω

a dΩ (3.7)

and

∮

∂Ω

(~b · n̂) dS. (3.8)

Assuming that a is constant within the volume gives the following discrete ap-

proximation.

∫

Ω

a dΩ = aiΩi (3.9)

where Ωi on the right hand side represents the area (volume for 3D domains) of the

finite volume.

For the surface integral the assumption is made that ~b is piecewise constant along

the boundary of the control volume. This leads to the discrete approximation

∮

∂Ω

(~b · n̂) dS =

Ni∑

j=1

(~bij · n̂ij)Sij (3.10)

where each discrete face on the boundary is shared with a neighboring control volume.

Here, j represents a neighbor of volume i, and n̂ij and Sij represent the normal

direction and length (area in 3D) of the edge connecting control volumes i and j. Ni

is the set of neighbors of control volume i.

Substituting the volume (3.9) and surface (3.10) approximations into the Navier-

Stokes equations, Eq.(3.2), gives

∂

∂t
( ~Qi Ωi) +

Ni∑

j=1

(~Fc − ~Fv)ij Sij = Ωi Gi (3.11)
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Assuming the control volume is fixed and unchanging in time, Ωi is independent of

time, Eq.(3.11) can be rearranged as

∂ ~Qi

∂t
Ωi = ~Ri (3.12)

where ~Ri is the residual of control volume i and is defined as

~Ri = −
N∑

j=1

(~Fc − ~Fv)ij Sij − Ωi Gi (3.13)

The relationship in Eq.(3.12) is defined for each control volume of the mesh and,

collectively, form a system of ordinary differential equations in time. A solution is

achieved by advancing this system forward in time. The procedure used to advance

the system is covered in the next chapter and discussions on boundary conditions

will be presented in Chapter 6.

3.1.3 Geometric Quantities

Several terms in the discretized governing equations (3.11) are purely geometric.

They depend on the definition of the mesh but not on the current state of the flow

field. These terms include Ωi, Sij and nij . This subsection will describe how these

geometric quantities are calculated.

There are generally two methods for discretizing and storing the mesh, structured

and unstructured. With structured meshes each node is uniquely defined by indices

i, j, k and the corresponding Cartesian coordinates xi,j,k, yi,j,k, and zi,j,k. Neighbors

of the nodes can be found by simply adding or subtracting an integer value to and

from the node index. For unstructured meshes, no such index system exists. The set

of neighboring nodes must be explicitly stored for every node.

Despite the apparent advantages using a structured mesh, generating the ordered
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index system for complex geometries becomes very difficult [32]. To allow more

flexibility in the shape of the domain, unstructured meshes are used. This allows

for arbitrarily shaped control volumes and domains that can be fitted more easily to

complex geometries. Because of the added flexibility, unstructured meshes are used

herein.

When using unstructured meshes, one of two strategies is used to define the

control volumes and decide where to store the state variables. The two methods

are cell-centered and cell-vertex schemes. Cell-centered schemes define the control

volume identical to the cells defined by the mesh. The state variables are stored at the

cell centroid. Cell-vertex schemes store the state variables at the nodes (vertices)

of the mesh. The control volume can either be defined as the union of all cells

adjacent to the node, creating an overlap between neighboring volumes (overlapping)

or defined by connecting the cell centroids of the cells connected to the node (centroid

dual Fig. 3.1), preventing the volume overlap. Alternatively, the volume may be

defined by the edge midpoints and boundary face centroids in addition to the cell

centroids (median dual Fig. 3.2).

The computational cost of the numeric method is closely correlated with the

number of control volumes or nodes. For a typical mesh composed of tetrahedral

cells, the ratio of cells to nodes ranges approximately from 5 to 6. Because cell-vertex

schemes have control volumes defined by the vertices, they are computationally less

costly than the cell-centered schemes. For this reason, a cell-vertex scheme with

median dual meshes are used here.

The boundaries of a 2D median dual control volume runs from the centroid of

a cell to the centroid of a neighboring cell, and pass through the midpoint of the

edge connecting the two. To extend the approach to 3D, a control volume is defined

using the centroids of the cells, the centroids of the faces between the cells, and the
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Figure 3.1: Centroid dual cell. Bold lines indicate the control volume.

Figure 3.2: Median dual cell. Bold lines indicate the control volume.
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Figure 3.3: 3D dual cell. Shaded region indicates the control volume.

midpoints of the edges adjacent to a given node. Figures 3.2-3.3 show examples of

2D and 3D control volumes generated using the median dual approach. Median dual

control volumes can be defined using cells of arbitrary shape. This flexibility makes

this method well suited for mixed element meshes [33].

The volume of a control volume and the areas of its boundary faces are computed

by summing the contributions from the cells adjacent to the node. The following

pseudocode describes the algorithm used to calculate these volumes and areas. The

following connectivity data is provided by the mesh; cells to faces, faces to edges,

and edges to nodes.
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area = 0 ! Area Vector !

volume = 0 ! Control Volume !

do c = 1, cells

do f = 1, faces(c)

do e = 1, edges(c)

v1 = vector(me, cc) ! Mid-Edge to Cell Centroid !

v2 = vector(me, fc) ! Mid-Edge to Face Centroid !

tri area = cross product(v1, v2)

area(e) = area(e) + tri area

n1 = edge to node(1)

n2 = edge to node(2)

volume(n1) = tri area ∗ edge length(e) / 2

volume(n2) = tri area ∗ edge length(e) / 2

end do

end do

end do

(3.14)

Cross products are used to calculate the area of triangles defined by a cell centroid,

a face centroid, and the midpoint of an edge. Generally, the triangles that make up

a face are not coplanar. The areas are therefore stored as spatial vectors where the

magnitude of the vector is equal to the area and the direction is normal to the face.

The positive direction is defined to be from the first node to the second node as

is defined by the mesh connectivity. Unit normals, n̂, are defined for each face by

normalising the area-vectors. In this way, the geometric terms Ω, S, and n̂ are all

uniquely and systematically defined by the mesh.
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3.1.4 Convective Flux

With the geometric terms defined in the previous subsection, we return to the

discretized governing equations, Eq.(3.11). Still remaining to be defined are the

convective flux, ~Fc, and viscous flux, ~Fv. This subsection will address ~Fc while

following subsections will address ~Fv and associated terms.

In the convective flux term in Eq.(3.11),

Ni∑

j=1

~Fc,ij Sij (3.15)

the vector ~Fc is an edge-based term. Values are stored at the edges of the mesh. To

find the edge-based convective fluxes, values are first found at the nodes using the

node-based state vector, ~Qi. The nodal fluxes, then, are used to define the edge-

based fluxes. The most straight forward method would be to average the two nodal

values from either end of an edge. This is called the central scheme and is written as

~Fc,ij =
1

2
(~Fc,i + ~Fc,j) (3.16)

where (•)ij refers to a term stored at the edge connecting nodes i and j.

Unfortunately, this method destabilizes the solution. To prevent this, one of two

general approaches are used to calculate the convective flux. The first starts with

the central scheme presented above and adds artificial dissipation term to stabilize

the scheme. The most common implementation, JST [34], uses a combination of

the 2nd and 4th-order differences to define the dissipation term. This scheme is

computationally inexpensive but can numerically smooth discontinuities in the flow

field due to the added dissipation.

The second group of schemes takes into account the physical properties of the con-
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vective flux to achieve stability. They are able to distinguish between the upstream

and downstream influence to ensure that flow information travels in the direction

dictated by the physics. Because of this, these schemes are called upwind schemes.

They are more computationally expensive than central schemes but are able to cap-

ture shock waves and boundary layers more accurately. Because of their accuracy,

upwind schemes are used in this work. The remainder of the subsection will be used

to describe the implementation of an upwind scheme to discretize the convective flux.

Several versions of upwind schemes are commonly used. They include Flux-Vector

splitting schemes such as Van Leer’s[35, 36, 37], AUSM[38, 39, 40], and CUSP[41,

42, 43] as well as Flux-Difference splitting schemes such as Roe[44] and Osher[45].

An overview of the different upwind schemes can be found in [28]. The current work

uses a flux difference scheme created by Roe which has been shown to have high

accuracy in the boundary layer and good resolution of the shocks.

Roe’s scheme, as with all flux-difference splitting schemes, attempts to solve the

Riemann shock tube problem at each volume boundary for every time step. This

approach was first proposed by Godunov and can be expensive to use. Roe negated

much of the expense by proposing an approximate solution based on the linearization

of the system. Roe’s Riemann solver is based on 1-D approximation of the Riemann

problem and can be easily implemented by defining a 1-D line connecting two neigh-

boring nodes. Roe’s Riemann solver has been shown to be accurate with a relatively

low computational cost.

The convective flux discretized using Roe’s Riemann scheme is defined as

~Fc,ij =
1

2
(~Fc,i + ~Fc,j − |Ã| ∆ ~Qij) (3.17)

where (•)i and (•)j refer to terms associated with the nodes on the left and right
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sides of a given edge, respectively. (•)ij refers to the flux vector associated with the

edge ij connecting nodes i and j. |Ã| is a modified version of the flux Jacobian

with respect to the conserved state variables, and ∆~Qij = ~Qj − ~Qi is the difference

between left and right states.

The modified flux Jacobian, |Ã|, is defined using Roe’s density weighted averages

of the state variables. These averages are defined as

ρ̃ =
√

ρiρj

ũ = (ui
√

ρi + uj
√

ρj) / (
√

ρi +
√

ρj)

ṽ = (vi
√

ρi + vj
√

ρj) / (
√

ρi +
√

ρj)

w̃ = (wi
√

ρi + wj
√

ρj) / (
√

ρi +
√

ρj)

H̃ = (Hi
√

ρi + Hj
√

ρj) / (
√

ρi +
√

ρj)

Ṽ = ũnx + ṽny + w̃nz

q̃2 = ũ2 + ṽ2 + w̃2

c̃ =
√

(γ − 1)(H̃ − q̃2/2).

(3.18)

The dissipative term, |Ã| ∆ ~Qij , can be pre-multiplied to improve computational

efficiency. The result is written as,

|Ã| ∆ ~Qi,j = |∆~F1| + |∆~F2,3,4| + |∆~F5| (3.19)

where
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|∆~F1| = |Ṽ − c̃|
(

∆p − ρ̃c̃ ∆V

2c̃2

)




1

ũ − c̃ nx

ṽ − c̃ ny

w̃ − c̃ nz

H̃ − c̃ Ṽ




, (3.20)

|∆~F2,3,4| = |Ṽ |
(
∆ρ − ∆p

c̃2

)




1

ũ

ṽ

w̃

q̃2/2




+ |Ṽ |ρ̃




0

∆u − ∆V nx

∆v − ∆V ny

∆w − ∆V nz

ũ ∆u + ṽ ∆v + w̃ ∆w − Ṽ ∆V




,

(3.21)

and

|∆~F5| = |Ṽ + c̃|
(

∆p + ρ̃c̃ ∆V

2c̃2

)




1

ũ + c̃ nx

ṽ + c̃ ny

w̃ + c̃ nz

H̃ + c̃ Ṽ




. (3.22)

As noted in [46, 47, 48, 49], numeric stability issues occur near the sonic points

where the eigenvalue, |Λc| = |Ṽ ± c̃| become zero. To avoid this issue, Harten[50]
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suggested the following entropy correction.

|Λc| =





|Λc| if |Λc| > δ

Λ2
c+δ2

2δ
if |Λc| ≤ δ

(3.23)

where δ is a small number chosen as a fraction of the speed of sound.

3.1.5 Viscous Flux

This subsection outlines the discretization of the viscous flux vector, ~Fv, of the

discretized governing equations (3.2). The viscous flux is defined with the gradients

of the state variables as opposed to the state variables themselves. Like the convective

flux, the viscous flux vector is stored at the edges while the state variables and their

gradients are stored at the nodes. The simplest method to define the edge-based

gradients is a central scheme. However, this scheme can lead to a decoupling between

local terms and edge-based gradients severely restricting the overall accuracy [51].

To prevent this decoupling, additional terms are included. The modified edge-based

gradients take the form,

∇φij =
1

2
(∇φi + ∇φj) −

[
1

2
(∇φi + ∇φj) · êij

]
êij +

φj − φi

|~xj − ~xi|
êij (3.24)

where êij is the unit direction vector pointing from node i to node j. With the

gradient terms defined at the nodes, ~Fv is calculated using Eq.(3.5).

3.1.6 Gradient Calculations

Gradients of the state variables are required to calculate the viscous fluxes while

gradients of k and ω are required for the turbulence model. Gradients are also used

for second-order spatial discretization, which will be discussed later. This subsection
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discusses the computation of the gradient of a general field variable, stored at the

nodes, which can be applied to any particular variable.

Two common methods to compute gradients on unstructured meshes are Green-

Gauss and least-squares. Both methods are pointwise methods that can be efficiently

implemented for a dual-volume mesh using element-based operations. This subsec-

tion will discuss both methods.

The Green-Gauss method is based on Gauss’ Theorem, which is written for a

general, continuously differentiable, scalar variable, φ, as

∫

Ω

∇φ dΩ =

∮

∂Ω

φ dS. (3.25)

When Gauss’ Theorem is applied to a control volume and discretized in space,

Eq.(3.25) becomes,

(∇φi) Ωi =

Ni∑

j=1

φij n̂ij Sij (3.26)

where the gradient vector ∇φi =
(

∂φ
∂x

, ∂φ
∂y

, ∂φ
∂z

)T

is associated with node i and φij is

associated with the edge connecting node i and neighboring node j. The term φij is

edge based and is related to the node-based variables with the central scheme.

φij =
1

2
(φi + φj) . (3.27)

The least-squares method is based on a linear Taylor series expansion of a general

variable, φ, about a given node i. The expansion is written

φ(~x) = φi + (~x − ~xi) · ∇φi (3.28)
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where ~xi = (xi, yi, zi)
T is the location of node i and ~x is the location of φ(~x). If

the linear Taylor expansion is carried out for every neighbor of node i the following

system of equations is formed,




~xj1 − ~xi

~xj2 − ~xi

...

~xjN
− ~xi




[∇φi] =




φj1 − φi

φj2 − φi

...

φjN
− φi




(3.29)

where (j1, j2, . . . , jN ) represent the set of neighbors of node i. The gradients, ∇φi,

are found by solving the system above.

If node i has a greater number of neighbors than dimensions, which is likely the

case, then Eq.(3.29) is over defined. The best that can be done is to find the best fit

solution using least-squares.

Least-squares is formulated by multiplying both sides of Eq.(3.29) by the trans-

pose of the system matrix.




~xj1 − ~xi

~xj2 − ~xi

...

~xjN
− ~xi




T 


~xj1 − ~xi

~xj2 − ~xi

...

~xjN
− ~xi




[∇φi] =




~xj1 − ~xi

~xj2 − ~xi

...

~xjN
− ~xi




T 


φj1 − φi

φj2 − φi

...

φjN
− φi




(3.30)

This operation creates a well-defined system the solution which minimizes the L2

norm of the system error.

The system matrix in Eq.(3.29) contains strictly geometric terms and can be

computed once for each mesh and stored. Additionaly, because Eq.(3.30) is relatively

small, the inverse of the system matrix may be symbolically computed producing a
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solution of the form

∇φi = Pi




φj1 − φi

φj2 − φi

...

φjN
− φi




(3.31)

where Pi is a matrix of geometric terms pre-computed for every node. The Pi matrix

is written

Pi =







~xj1 − ~xi

~xj2 − ~xi

...

~xjN
− ~xi




T 


~xj1 − ~xi

~xj2 − ~xi

...

~xjN
− ~xi







−1


~xj1 − ~xi

~xj2 − ~xi

...

~xjN
− ~xi




T

(3.32)

or, more explicitly

Pi =
1

a




ℓyyℓzz − ℓyzℓyz ℓxzℓxz − ℓxxℓzz ℓxyℓyz − ℓxzℓyy

ℓxzℓyz − ℓxyℓzz ℓxxℓzz − ℓxzℓxz ℓxzℓxy − ℓxxℓyz

ℓxyℓyz − ℓxzℓyy ℓxzℓxy − ℓxxℓyz ℓxxℓyy − ℓxyℓxy







~xj1 − ~xi

~xj2 − ~xi

...

~xjN
− ~xi




T

(3.33)

where

a = ℓxxℓyyℓzz + 2ℓxyℓyzℓxz − ℓxxℓyzℓyz − ℓyyℓxzℓxz − ℓzzℓxyℓxy (3.34)

and

44



ℓrs =





rj1 − ri

rj2 − ri

...

rjN
− ri





·





sj1 − si

sj2 − si

...

sjN
− si





. (3.35)

To generalize the least-squares method, weighting coefficients are added to Eq.(3.29)

giving,




wi1 (~xj1 − ~xi)

wi2 (~xj2 − ~xi)

...

wiN (~xjN
− ~xi)




[∇φi] =




wi1 (φj1 − φi)

wi1 (φj2 − φi)

...

wi1 (φjN
− φi)




. (3.36)

The weights, wik , can be defined as functions of the geometry, the current flow field

or a combination of the two [52]. If the definitions are purely geometric, matrix Pi

can be pre-computed. In this work, the weights are defined geometrically as

wik = |~xk − ~xi|−1. (3.37)

For extremely stretched meshes the system in Eq.(3.36) can be singular or nearly

singular. To solve these systems, QR decomposition or singular value decomposition

can be used [53, 54].

3.1.7 Higher-Order Spatial Discretization

The spatial discretization presented in this chapter has been first-order accu-

rate. It has become standard to expect at least second-order spatial accuracy from

computational methods. To achieve second-order accuracy using the finite volume

method, the state variables are assumed to vary linearly across the control volume.
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In addition to the state variables, gradient vectors are stored in the control volumes.

Together, the state variables and their gradients fully define a piecewise, linearly

varying approximation to the continuous flow field. Computation of the gradients is

covered in the previous section.

The assumption of linear variation affects both the convective and viscous fluxes.

As was shown earlier in Eq.(3.17), the computation of the flux vectors require left

and right state variables. To account for the linear variation, the left and right state

variables are reconstructed using the following,

~QL = ~Qi +
1

2
Ψi

{
∇ ~Qi · (~xj − ~xi)

}
, (3.38)

and

~QR = ~Qj −
1

2
Ψj

{
∇ ~Qj · (~xj − ~xi)

}
, (3.39)

where ~Qi and ~Qj refer to the state vector associated with nodes on the left and right

sides of the edge ij, ~xk = (xk, yk, zk)
T is the position vector of node k and Ψk ∈ [0, 1]

acts as a limiter function.

This reconstruction method was first proposed by Barth & Jesperson [55]. In ar-

eas of high gradients, this reconstruction method may produce oscillations and spuri-

ous solutions. The limiter functions provide a method to prevent these oscillations[52,

56] by enforcing a monotonicity preserving scheme. That is, the local maxima must

not increase, the local minima must not decrease and no new extrema may be cre-

ated. Two popular limiter functions for unstructured meshes are those of Barth &

Jespersen [55] and Venkatakrishnan [57, 58].
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3.2 Temporal Discretization

Discussions in the previous section focused on formulating the governing equa-

tions, originally introduced in Chapter 2, as a set of ordinary differential equations

in time. This was achieved by introducing spatial discretization. The next step is

to solve the ODE’s by integrating them forward in time. That is the focus of this

section.

Spatial discretization has left a system of ordinary differential equations in time

of the form

∂

∂t
( ~Qi Ωi) = −

Ni∑

j=1

(~Fc − ~Fv)ij Sij + Gi Ωi (3.40)

where the terms ~Qi, Ωi, Sij , ~Fc, ~Fv and ~Gi have all been defined in the previous

section. Recalling the definition of the residual, ~Ri from Eq.(3.13), Eq.(3.40) can be

written in the form

∂

∂t
( ~Qi Ωi) = ~Ri (3.41)

If we assume the mesh is fixed and the control volumes do not vary in time, then

Ωi is constant and Eq.(3.41) can be written

∂

∂t
~Qi = ~Ri/Ωi (3.42)

This form of the governing equation, with nearly all spatial consideration lumped

into ~Ri, will be used in the remainder of this section to discuss temporal discretiza-

tion.

Equation (3.42) describes a time accurate evolution of the flow field. For cases

that are unsteady in nature, a time accurate integration method is required. For
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these cases, Eq.(3.42) remains unchanged.

For cases where a steady solution is desired, i.e., a flow field unchanging in time,

the time derivative term is set to zero and a solution is sought. For a general code

written to handle both unsteady and steady cases, it is simplest and most straight-

forward to reuse the numerical time integration tools required for the unsteady cases

to solve the steady cases. This can be done by leaving the time derivative term and

integrating the flow field forward in time until the field is unchanging.

The two classes of numerical schemes used to integrate the governing equations

are explicit and implicit. The explicit schemes are computationally cheap and con-

ceptually straightforward. They, however, suffer from numeric stability limitations

and require a large number of time steps to converge to a solution. Implicit schemes,

however, mitigate these stability concerns, offering a quicker route to the solution

by requiring many fewer timesteps. However, they require additional computational

resources and are more complicated to implement. It should be pointed out that, be-

cause of the nonlinearity of the Navier-Stokes and Euler equations, no truly implicit

methods are available. However, as will be shown, approximate implicit methods are

available that offer much of the savings that pure implicit methods promise.

The remainder of this section is split into three subsection. The first will outline

explicit time integration while the second will outline implicit. Both will cover the

implementation of the schemes for steady and unsteady cases. The final subsection

will cover dual-time stepping, a more robust method for solving unsteady flows.

3.2.1 Explicit Time Integration

The formulation of the explicit time integration scheme starts by using a forward,

first-order, finite difference approximation for the time derivative in Eq.(3.42). This

is written
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∂

∂t
~Qi =

∆ ~Qn
i

∆tni
=

~Ri

Ωi
(3.43)

where the superscript n is introduced as an index for time and ∆(•)n = (•)n+1− (•)n

represents the change of a variable between time steps. Using the definition for ∆(•),

the Eq.(3.43) can be rearranged as

~Qn+1
i = ~Qn

i +
∆tni
Ωi

~Rn
i . (3.44)

Equation (3.44) provides a method to update the state vector, ~Qi, at every time

step n + 1 using only information provided in time step n. The method to compute

~Rn
i is provided in the previous section. Finding an adequate time step size, ∆tni , will

be covered later in this subsection. In this way, once an initial value is provided, the

solution for ~Qi can be found for all time.

The method shown above offers only solutions that are first-order accurate in

time. Higher-order solutions can be obtained using Runge-Kutta methods. Runge-

Kutta methods include an entire family of schemes. The specific methods used

in this work are a 3-step and 4-step that have been derived to allow for simple

implementation.

The 3-step Runge-Kutta method is written as

~Q
(0)
i = ~Qn

i

~Q
(1)
i = ~Q

(0)
i + α1 ∆ti ~Ri

(
~Q

(0)
i

)
/Ωi

~Q
(2)
i = ~Q

(0)
i + α2 ∆ti ~Ri

(
~Q

(1)
i

)
/Ωi

~Q
(3)
i = ~Q

(0)
i + α3 ∆ti ~Ri

(
~Q

(2)
i

)
/Ωi

~Qn+1
i = ~Q

(3)
i

(3.45)

where the stage coefficients are
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α1 = 0.1918

α2 = 0.4929

α3 = 1.0000.

(3.46)

The 4-step Runge-Kutta method is written

~Q
(0)
i = ~Qn

i

~Q
(1)
i = ~Q

(0)
i + α1 ∆ti ~Ri

(
~Q

(0)
i

)
/Ωi

~Q
(2)
i = ~Q

(0)
i + α2 ∆ti ~Ri

(
~Q

(1)
i

)
/Ωi

~Q
(3)
i = ~Q

(0)
i + α3 ∆ti ~Ri

(
~Q

(2)
i

)
/Ωi

~Q
(4)
i = ~Q

(0)
i + α4 ∆ti ~Ri

(
~Q

(3)
i

)
/Ωi

~Qn+1
i = ~Q

(4)
i

(3.47)

where the stage coefficients are

α1 = 0.1084

α2 = 0.2602

α3 = 0.5052

α4 = 1.0000.

(3.48)

The three and four step Runge-Kutta methods defined above provide second-

order accurate time integration schemes with minimal memory requirements.

The explicit scheme remains numerically stable only up to some maximum time

step, ∆t. This maximum time step is chosen such that it satisfies the CFL condition.

The CFL condition, formulated by Courant, Friedrichs and Lewy [59], states that

the domain of dependence of the numerical scheme must include the domain of

dependence of the governing equations. The domain of dependence for the governing

equations lies on the characteristic lines dx
dt

= λk, where λk are the eigenvalues of
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the flux Jacobian matrix and quantify the speed at which information flows within

the system. Consequently, the domain of dependence for the governing equations at

point xi includes points x∗
k = xi − λk ∆t. Therefore, to satisfy the CFL condition,

the domain of dependence for the numerical scheme, defined as the discretization

stencil, must enclose all of the points x∗
k.

From the CFL condition, a relationship can be introduced between the time step,

∆t, and the distance between neighboring nodes, ∆x, that must hold for the explicit

scheme to be stable. The eigenvalue, λk, with the largest absolute value is the most

restrictive and is therefore used in the definition.

λk ∆t ≤ ∆x (3.49)

Because ∆x is prescribed by the mesh and λk is dependent on current flow con-

ditions, the time step ∆t is adjusted to fufil Eq.(3.49). A user defined coefficient σ,

referred to as the CFL number, is introduced to offer a simple means to adjust the

time step

∆t = σ
∆x

|λk|
(3.50)

A further discussion of the CFL condition can be found in [28, 60].

Combining (3.50) and the explicit time integration scheme (3.42), along with the

spatial discretization leads to the following condition [28],

∆tni = σ
Ωi

(Λx
c + Λy

c + Λz
c)

n
i + 4(Λx

v + Λy
v + Λz

v)
n
i

(3.51)

where ∆tni is a stable time step for node i and time step n. The convective spectral

radii [61], Λx
c , Λ

y
c , Λ

z
c , are defined as
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Λx
c = (|u| + c)Sx

Λy
c = (|u| + c)Sy

Λz
c = (|u| + c)Sz

(3.52)

and the viscous spectral radii [28], Λx
v , Λ

y
v, Λ

z
v, are defined as

Λx
v = max

(
4
3ρ

, γ
ρ

)(
µ
Pr

+ µT

PrT

)
(Sx)2

Ω

Λy
v = max

(
4
3ρ

, γ
ρ

)(
µ
Pr

+ µT

PrT

)
(Sy)2

Ω

Λz
v = max

(
4
3ρ

, γ
ρ

)(
µ
Pr

+ µT

PrT

)
(Sz)2

Ω

(3.53)

Laminar and turbulent viscosity, µ and µT respectively, as well as laminar and tur-

bulent Prandtl numbers, Pr and PrT respectively, were defined in Chapter 2. The

variables Sx, Sy, and Sz are the projections of the volume Ω on the y− z, z−x, and

x − y planes. They are defined as

Sx
i = 1

2

∑Ni

j=1 |nx,ij Sij |

Sy
i = 1

2

∑Ni

j=1 |ny,ij Sij |

Sz
i = 1

2

∑Ni

j=1 |nz,ij Sij |

(3.54)

where Ni is the number of neighbors of node i.

Following the process above, a stable time step ∆tni can be found for each node

and time step. If the case being simulated is unsteady then a time accurate solution

is required. To enforce time accuracy, the time step for every node in the domain

must be the same. To ensure the computation remains stable everywhere, a time step

is calculated for each node and the smallest time step is then enforced everywhere. If

the case, however, is steady, there is no concern for time accuracy. It is much quicker

to allow each node to use their own local largest stable time step. A steady solution

can then be found with minimal computational effort.
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It should be noted that the CFL condition is derived assuming information travels

at a constant rate. This is not generally the case. The arguments above are taken

as an approximation and used only as a guide. Often it is found that, for the

CFL coefficient, a value less than one is required to keep the solution stable. An

appropriate CFL coefficient must be found for each case.

3.2.2 Implicit Time Integration

To avoid the constraint on the size of the time step inherent in explicit schemes,

an implicit time integration scheme may be used. To begin the formulation of an

implicit scheme we return to the forward approximation of Eq.(3.43).

∆ ~Qn
i

∆tni
=
(
β ~Rn+1

i + (1 − β)~Rn
i

)
/ Ωi (3.55)

but replace residual, ~Rn
i , with an average of residuals between time steps n + 1 and

n. Coefficient β may be adjusted to weight the average.

The solution of Eq.(3.55) requires the evaluation of the residual term, ~Rn+1. This

cannot be done directly because it depends on the, as of yet, unknown state vector,

~Qn+1. An approximation is introduced for ~Rn+1 by linearizing about the current

time step. This is written

~Rn+1 ≈ ~Rn +

[
∂ ~R

∂ ~Q

]n

∆ ~Qn (3.56)

where ∂ ~R

∂ ~Q
is the Jacobian matrix. Using Eq.(3.56), Eq.(3.55) is rearranged to give

the implicit scheme.

(
Ωi

∆tn
[I] − β

[
∂ ~R

∂ ~Q

]n)
∆ ~Qn = ~Rn (3.57)

The term in the square brackets is referred to as the implicit operator. When
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the entire computational domain is taken into consideration, the implicit operator be-

comes a large, sparse, non-symmetric, square, block matrix of size 5×number of nodes.

The system must be solved for ∆ ~Qn
i at every step. Directly inverting the full im-

plicit operator is impractical so various methods have been suggested to iteratively

invert it. These methods attempt to take advantage of the sparse, block structure of

the operator to construct an efficient method. Many practical applications require

very large number of nodes and can cause memory issues for many standard matrix

inversion approaches.

Two general categories of methods are used to iteratively invert the implicit op-

erator. The first category is based on Krylov-subspace methods. Their similarity

to Newton methods leads to them being called Newton-Krylov methods. Several

methods of this type exist, such as Conjugate Gradient Squared [62], Bi-Conjugate

Gradient Stabilized [63], Transpose-Free Quasi-Minimum Residual [64], and the most

popular, Generalised Minimum Residual [65, 66, 67, 68, 69]. The second solution cat-

egory is based on decomposing the implicit operator into several parts, each easier

to invert than the whole. Various decomposition methods include Alternating Di-

rection Implicit (ADI), Lower-Upper Symmetric Gauss-Seidel [70, 71, 72] and Block

Lower-Upper Symmetric Gauss-Seidel [73]. The work here utilizes LU-SGS and

BLU-SGS methods because of their simple implementation and their low memory

requirements. The remainder of this subsection details their implementations for

unstructured meshes.

The derivations of the LU-SGS and BLU-SGS methods both begin with the

formulation of the global Jacobian term, ∂ ~R

∂ ~Q
, in Eq. (3.57). The global Jacobian

can be written as a sparse matrix composed of 5 × 5 blocks of local Jacobians. The

diagonal blocks come from local Jacobians, ∂ ~Ri

∂ ~Qi
, relating the residual at node i, ~Ri,

with the state variables at node i, ~Qi. The off-diagonal blocks come from local
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Jacobians, ∂ ~Ri

∂ ~Qj
, relating the residual at node i, ~Ri, with the state variables at a

neighboring node, ~Qj. To derive the local Jacobian terms, we first return to Eq.

3.13 for the definition of the residual at node i

~Rn
i = −

Ni∑

j=1

(
~Fc,ij − ~Fv,ij

)n

Sij . (3.58)

The source term, Gi, is omitted for simplicity. To derive the local Jacobians on the

diagonal, the derivative of Eq. (3.58) is taken with respect to the state vector at node

i, ~Qi.

[
∂ ~Ri

∂ ~Qi

]n

=

Ni∑

j=1

(
∂ ~Fc,ij

∂ ~Qi

− ∂ ~Fv,ij

∂ ~Qi

)n

Sij (3.59)

The convective and viscous flux Jacobians,
∂ ~Fc,ij

∂ ~Qi
and

∂ ~Fv,ij

∂ ~Qi
are discussed below.

Similarly, to derive the local Jacobians off of the diagonal, the derivative of Eq. (3.58)

is taken with respect to the state vector at a neighboring node j, ~Qj .

[
∂ ~Ri

∂ ~Qj

]n

=

(
∂ ~Fc,ij

∂ ~Qj

− ∂ ~Fv,ij

∂ ~Qj

)n

Sij (3.60)

The two convective flux Jacobian terms,
∂ ~Fc,ij

∂ ~Qi
and

∂ ~Fc,ij

∂ ~Qj
, can be evaluated by

considering Roe’s Riemann upwind scheme presented in Eq. (3.17). The definition

for the convective flux vector is

~F n
c,ij =

1

2

[
~Fc,i + ~Fc,j − |Ãij |( ~Qj − ~Qi)

]n
(3.61)

where ~Fc,k is the flux vector evaluated at node k. It follows that the convective flux

Jacobian terms can be written
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[
∂ ~Fc,ij

∂ ~Qi

]n

=
1

2

[
∂ ~Fc,i

∂ ~Qi

+ |Ãij |
]n

(3.62)

and

[
∂ ~Fc,ij

∂ ~Qj

]n

=
1

2

[
∂ ~Fc,i

∂ ~Qj

− |Ãij |
]n

. (3.63)

Roe’s matrix, |Ãij |, is defined in the spatial discretization section. The local convec-

tive flux Jacobian is defined as [33]

∂ ~Fc

∂ ~Q
=




0 nx ny nz 0

nxφ − uV V − a3nxu nyu − a2nxv nzu − a2nxw a2nx

nyφ − vV nxv − a2nyu V − a3nyv nzv − a2nyw a2ny

nzφ − wV nxw − a2nzu nyw − a2nzv V − a3nzw a2nz

V (φ − a1) nxa1 − a2uV nya1 − a2vV nxa1 − a2wV γV




(3.64)

with the definitions

a1 = γE − φ

a2 = γ − 1

a3 = γ − 2

V = nxu + nyv + nzw

φ = 1
2
(γ − 1) (u2 + v2 + w2) .

(3.65)

Recall that fluxes are associated with a unit direction which, in the unstructured

finite volume formulation, is equal to the unit normal vector of the edge, n̂ij .

The BLU-SGS method retains the flux Jacobians as 5 × 5 matrices while the

LU-SGS method, to lower the total number of calculations required, approximates
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the matrix as a diagonal matrix of eigenvalues. This approximation, while quicker

per iteration, will limit the maximum stable CFL value and can end up being slower

by requiring more total iterations to converge.

The viscous flux Jacobian, ∂ ~Fv

∂ ~Q
, is known to be difficult to derive because of its

strong dependency on gradients. Several methods were implemented to calculate the

Jacobian and a switch was added to allow the user to decide which method to use.

All methods are described below.

The first method, referred to in this dissertation as a diagonalized Jacobian,

is proposed in Kim and Kwon [74]. Similar to how LU-SGS treats the convective

flux Jacobian, only a diagonal matrix is used for the viscous flux Jacobian. The

motivation, besides greatly reducing the numeric expense, is to enhance the diagonal

dominance of the viscous flux Jacobian resulting in a more stable scheme.

The diagonalized Jacobian consists of the eigenvalues of the full Jacobian. The

smallest eigenvalue is used. The value is µ
ρ

1
∆xij

where ∆xij is the distance between

nodes i and j.

For some cases, however, the diagonalized Jacobian destabilized the code to the

point that the implicit scheme gave no advantage over the explicit. What was needed

was a method to calculate the viscous flux Jacobian which has the minimal expensive

of the diagonalized method while retaining the accuracy of the full matrix.

It was determined that, by employing the least squares gradient calculations in the

derivation of the viscous flux Jacobian, a direct viscous flux Jacobian can be derived

that depended directly on the state vector instead of its gradient. The least squares

gradient calculations are inexpensive once the geometric weighting coefficients are

calculated. Because these coefficients are already being used and don’t need to be

recalculated, the additional expense is minimal.

Also, for a third option, it was found that the code could be run accurately
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by eliminating the viscous flux Jacobian altogether and use only the convective flux

Jacobians in the implicit term. This, fortunately, provides a last case scenario option

that can be employed for all cases.

Substituting the definitions for the convective and viscous flux Jacobians into

(3.57) gives

[
Ωi

∆ti
I +

Ni∑

j=1

(
∂ ~Fc,ij

∂ ~Qi

− ∂ ~Fv,ij

∂ ~Qi

)]n

∆ ~Qn
i = ~Rn

i +

[
Ni∑

j=1

{(
∂ ~Fc,ij

∂ ~Qj

− ∂ ~Fv,ij

∂ ~Qj

)
∆ ~Qn

j

}]n

.

(3.66)

Equation (3.66) is written out for the local node i. It can be thought of as a block

of rows in the complete implicit matrix. The bracketed term on the left becomes a

5 × 5 block on the diagonal of the implicit matrix and the bracketed term on the

right becomes the off-diagonal blocks.

The global implicit matrix can factored into three parts for LU-SGS and BLU-

SGS. They are defined as

D =




D1

D2

. . .

DM




(3.67)

where

Dn
i =

[
Ωi

∆ti
I +

Ni∑

j=1

(
∂ ~Fc,ij

∂ ~Qi

− ∂ ~Fv,ij

∂ ~Qi

)]n

, (3.68)
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U =




0 U1,2 U1,3 . . . U1,M

0 U2,3 . . . U2,M

0
. . .

...

. . . UM−1,M

0




(3.69)

where

Ui,j =

(
∂ ~Fc,ij

∂ ~Qj

− ∂ ~Fv,ij

∂ ~Qj

)
, i < j, (3.70)

L =




0

L2,1 0

L3,1 L3,2 0

...
...

. . .
. . .

LM,1 LM,2 . . . LM,M−1 0




(3.71)

with

Li,j =

(
∂ ~Fc,ij

∂ ~Qj

− ∂ ~Fv,ij

∂ ~Qj

)
, i > j, (3.72)

where, for all above, M is the total number of nodes in the system. The matrix D

is made up of the blocks on the diagonal of the global implicit matrix, matrix U is

made up of blocks above the diagonal, and matrix L, of blocks below the diagonal.

The complete system can then be written as

[D + U + L]n ∆ ~Qn = ~Rn, (3.73)
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where ~Qn and ~Rn are conglomerations of the state vector, ~Qn
i , and the residual vector,

~Rn
i , respectively.

Inversion of the implicit operator using LU-SGS or BLU-SGS leads to an iterative

process outlined with the following pseudocode.

∆ ~Qk = ∆ ~Qn−1

do k = 1, kmax

! Forward Sweep

do i = 1, M

∆ ~Q
k+1/2
i = [Dn

i ]−1
{

~Rn
i +

∑Ni

j=1(Ui,jn ∆ ~Qk
j + Ln

i,j ∆ ~Q
k+1/2
j )

}

end do

! Backward Sweep

do i = M, 1,−1

∆ ~Qk+1
i = [Dn

i ]−1
{

~Rn
i +

∑Ni

j=1(U
n
i,j ∆ ~Qk+1

j + Ln
i,j ∆ ~Q

k+1/2
j )

}

end do

Check for Convergence

end do

∆ ~Qn = ∆ ~Qkmax

(3.74)

In the pseudo-code, kmax is the maximum number of iterations, M is the number of

nodes in the domain, and Ni is the set of neighbors of node i.

The process consists of a forward sweep through the nodes solving for ∆Qk+1/2

and a backward sweep solving for ∆Qk+1. These forward and backward sweeps give

the symmetric flavor to the algorithm. Also, consistent with Gauss-Seidel methods,

the most up-to-date value for ∆Qj is used for both sweeps due to matrix U containing
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only terms with i > j and matrix L containing only terms with i < j.

This algorithm reduces the global matrix inversion to a series of local 5 × 5

matrix inversions which are more easily handled. For LU-SGS, the local matrix Dn
i

is diagonal and the inversion is straightforward. For BLU-SGS, Dn
i is fully populated.

Because of its small size, it is best to use a direct solver for the inversion of Dn
i .

The algorithm is iterated upon until convergence is reached or the maximum

number of iterations is reached. The stopping conditions for the LU-SGS or BLU-

SGS should be adjusted depending on the case being simulated. Approximately,

convergence can be declared if the implicit residual drops 2-3 orders of magnitude

with a maximum iteration limit set to 10.

3.2.3 Dual-Time Stepping

Previous subsections covered explicit and implicit time integration schemes. Both

of these methods work well for finding steady solutions and unsteady solutions in

which the time scale prescribed by the physics is near the time scale prescribed by

the numerics. For unsteady cases, however, where the time scale of the physics can

be much larger than that of the numerics, the CFL condition severely limits the

allowable time step size leading to a large required number of time steps. Implicit

schemes loosen these restrictions. To completely remove the time scale limitations

dictated by numeric stability, and allow time steps more appropriate for the given

physics, dual-time stepping must be used.

Development of the dual-time stepping scheme begins by discretizing the time

derivative term in the semi-discrete Eq.(3.42) with a second-order backward differ-

ence approximation,

3 ~Qn+1
i − 4 ~Qn

i + ~Qn−1
i

2 ∆t
Ωi = ~Rn+1

i (3.75)
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where ∆t is the global physical time step prescribed by the user and is chosen so the

physical features in the flow are captured. No consideration is given at this point for

numerical stability.

The dual-time stepping scheme then updates the flow field by solving Eq.(3.75)

for ~Qn+1
i at every node i. The method used to solve the system dictates the details

of the method. Because Eq.(3.75) is non-linear and a non-linear solver has already

been developed to solve the steady system, it is convenient to use the same method

here. Essentially, we cast each physical time step in the dual-time stepping scheme as

a unique steady problem and solve them one at a time using the converged solution

from one time step as the initial condition for the next.

Casting the system in Eq.(3.75) as a steady problem results in the following form,

∂

∂t∗

(
~Q∗

i

)
Ωi = ~R∗

i (3.76)

where ~Q∗
i is an approximation to ~Qn+1

i and t∗ is pseudo-time variable added to solve

the equation. The pseudo-time residual, ~R∗
i , is defined as

~R∗
i = ~Ri −

(
3

2 ∆t
Ωi

~Q∗
i − ~G∗

i

)
(3.77)

where ~Ri is the standard residual introduced earlier (3.13). All terms that are con-

stant during the current dual-time step are lumped into a pseudo-time source term,

~G∗
i . It takes the following form,

~G∗
i =

2

∆t
Ωi

~Qn
i − 1

2 ∆t
Ωi

~Qn−1
i . (3.78)

Either the explicit or implicit time marching schemes developed earlier in this

section may be used to solve Eq.(3.76). Once the equation is converged, the pseudo-
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time derivative, ∂
∂t∗

( ~Q∗
i ), drops out, Eq.(3.75) is satisfied, and the state vector is

updated, ~Qn+1
i = ~Q∗

i . The system is then stepped forward in time and a new steady

problem is set up and solved. The remainder of this subsection will develop the

dual-time stepping method for the explicit and implicit schemes.

A Runge-Kutta explicit time stepping scheme can be used to solve Eq.(3.76).

The Runge-Kutta stages take the following form,

~Q
(0)
i = ~Q

(∗,k)
i

~Q
(1)
i = ~Q

(0)
i − α1

∆t∗i
Ωi

~R∗
i

(
~Q

(0)
i

)

~Q
(2)
i = ~Q

(0)
i − α2

∆t∗i
Ωi

~R∗
i

(
~Q

(1)
i

)

...

~Q
(m)
i = ~Q

(0)
i − αm

∆t∗i
Ωi

~R∗
i

(
~Q

(m−1)
i

)

~Q
(∗,k+1)
i = ~Qm

i

(3.79)

where k denotes the current and (k + 1) the new pseudo-time iteration. The initial

guess for the pseudo-time marching is ~Qn
i for every node i. The marching is typically

continued until ~R∗
i is reduced by four orders of magnitude.

3.2.3.1 Explicit Dual-Time Stepping

As was pointed out by Arnone et al. [75], the explicit scheme (3.79) becomes

unstable when the physical time step, ∆t, is of the same order as the pseudo-time

step, ∆t∗. Melson et al. [76] showed that the instability is due to the term 3
2∆t

Ωi
~Q∗

i

from Eq.(3.77). To avoid this instability, the culprit term can be treated implicitly.

The explicit scheme in Eq.(3.79) is modified to take the following form,
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~Q
(m)
i = ~Q

(0)
i − αm

∆t∗i
Ωi

[
1 +

3

2∆t
αm∆t∗i β

]−1

·
[
~R∗

i

(
~Q(m−1)

)
− 3

2∆t
Ωi β ~Q

(m−1)
i

]

(3.80)

where β can be adjusted to stabilize the scheme. Literature suggest that choosing

β = 2 provides sufficient stability [58, 77]. Additional development of the dual-time

stepping scheme with explicit time marching can be found in Refs. [75, 78, 79, 80,

81, 82].

3.2.3.2 Implicit Dual-Time Stepping

Using the implicit scheme in dual-time stepping begins by formulating Eq.(3.76)

as

∂

∂t∗

(
~Q∗

i

)
Ωi = ~R

(∗,k+1)
i (3.81)

with (k +1) being the new pseudo-time iteration. The pseudo-time residual, ~R∗
i , can

be linearized in pseudo-time as

~R(∗,k+1) ≈ ~R(∗,k) +
∂ ~R∗

∂ ~Q∗
∆ ~Q∗. (3.82)

The pseudo-time Jacobian, ∂ ~R∗

∂ ~Q∗
, takes the form

∂ ~R∗

∂ ~Q∗
=

∂ ~R

∂ ~Q
+

3

2 ∆t
Ωi (3.83)

where ∂ ~R

∂ ~Q
is the Jacobian. This leads to the following form for the implicit dual-time

stepping scheme,
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[(
1

∆t∗i
+

3

2 ∆t

)
Ωi +

(
∂ ~R

∂ ~Q

)

i

]
∆ ~Q∗

i = −~R
(∗,k)
i . (3.84)

Equation (3.84) can be solved using the LU-SGS or BLU-SGS methods. Further

discussion on dual-time stepping schemes using implicit time marching can be found

in Refs. [83, 84, 85].

65



3.3 Time-Linearization

This section introduces the time-linearization approximation that is used to cal-

culate rotordynamic coefficients. It outlines the time-linearization approximation

and how it manifests itself in the discretized Navier-Stokes equations that were de-

rived in previous sections. Additional solution methods are discussed that are needed

to handle the additional terms generated by the time-linearization approximation.

Finally, techniques are introduced to generate a time-linearized mesh upon which

the time-linearized Navier-Stokes equations operate.

3.3.1 Small Perturbation Theory

The time-linearization approximation is based on small perturbation theory. Small

perturbation theory is a powerful approach that is used to find approximate solu-

tions to difficult to solve problems [86]. It is especially useful for problems containing

multiple time and spatial scales. For instance, two spatial scales are considered for

the gas seals in this work. The larger scale is associated with the clearance dis-

tance between the rotor and the stator while the smaller scale is associated with the

amplitude of the rotor whirl. This suggests splitting the solution into two parts as

φ = φ0 + ǫφ1 (3.85)

with larger scale φ0 and smaller scale φ1 added together. Here, ǫ is a small variable,

usually some parameter of the problem, that represents the ratio between the scales.

φ1 is called a small perturbation of φ0. Additional scales and perturbations may be

considered by extending Eq.(3.85) and forming a power series in ǫ,

φ = φ0 + ǫφ1 + ǫ2φ2 + . . . (3.86)
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When the power series is used in place of the original term in a function, a new

power series is formed. For example, using the simple function f(φ) = φ2 results in

the following power series,

f(φ) = φ2
0 + ǫ (2φ0φ1) + ǫ2

(
φ2

1 + 2φ0φ2

)
+ . . . (3.87)

It can be seen how the lower order terms of φ appear in the higher order terms of

f , but the higher order terms do not appear in lower order terms. This generates a

cascade of influence from low order to high. Approximations may be made to f to

within a given ǫ order by truncating the power series.

3.3.2 Linearization of Spatial Coordinates

The derivation of the time-linearized Navier-Stokes equations begins with ad-

dressing the linearized motion of the mesh and how it effects the governing equations.

Recall that the motion of the domain is caused by the harmonic whirl of the rotor.

The amplitude of the whirl is very small compared to the seal clearance allowing for

the linearization approximation to hold. The position and motion of the center of

the rotor can be described with

~xr(t) = ~xr,0 + ǫ ℜ
[
~xr,1e

jωt
]

(3.88)

where ~xr(t) is the position as a function of time, ~xr,0 is the unperturbed position,

~xr,1 is a complex number that contains information on the phase-shift, arg ~xr,1, and

amplitude, ‖~xr,1‖, of the whirl, j =
√
−1, ω is the whirl frequency, and ℜ [•] is the

real part of the term. Also, ǫ is a small value that’s included to scale the amplitude

and enforce the small perturbation assumption. Figure 3.4 shows the motion of the

center of a whirling rotor.
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Figure 3.4: Motion of the center of a whirling rotor.

To account for the whirl motion of the rotor, the computational domain must

deform with a matching harmonic motion. Figure 3.5 shows an example of a deform-

ing mesh. The moving, physical coordinates, (x, y, z, t), therefore, are related to the

steady, zeroth-order coordinates, (x0, y0, z0, t0), by,

x(x0, y0, z0, t0) = x0 + ǫ x1(x0, y0, z0)e
jωt

y(x0, y0, z0, t0) = y0 + ǫ y1(x0, y0, z0)e
jωt

z(x0, y0, z0, t0) = z0 + ǫ z1(x0, y0, z0)e
jωt

t(x0, y0, z0, t0) = t0

(3.89)

where x1, y1, and z1, are perturbations of the mesh. Amplitude, ǫ, and frequency, ω

are the same as Eq. (3.88) and remain constant throughout the simulation.

To project the governing equations on to the moving mesh, it is necessary to con-

struct a relationship between derivative operators in the physical and computational

coordinate frame. This relationship is given by
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Figure 3.5: Example of an undeformed (solid) and deformed (dashed) mesh.




∂
∂x0

∂
∂y0

∂
∂z0

∂
∂t0




=




∂x
∂x0

∂y
∂x0

∂z
∂x0

∂t
∂x0

∂x
∂y0

∂y
∂y0

∂z
∂y0

∂t
∂y0

∂x
∂z0

∂y
∂z0

∂z
∂z0

∂t
∂z0

∂x
∂t0

∂y
∂t0

∂z
∂t0

∂t
∂t0







∂
∂x

∂
∂y

∂
∂z

∂
∂t




= [J ]




∂
∂x

∂
∂y

∂
∂z

∂
∂t




(3.90)

where J is the Jacobian matrix associated with the transformation from physical to

computational frames. The inverse relationship is




∂
∂x

∂
∂y

∂
∂z

∂
∂t




= [J ]−1




∂
∂x0

∂
∂y0

∂
∂z0

∂
∂t0




(3.91)

Using the relationships defined in Eq.(3.89), the matrix J−1 is
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[J ]−1 =




1 − ǫ ∂x1

∂x0

−ǫ ∂y1

∂x0

−ǫ ∂z1

∂x0

0

−ǫ ∂x1

∂y0

1 − ǫ ∂y1

∂y0

−ǫ ∂z1

∂y0

0

−ǫ ∂x1

∂z0

−ǫ ∂y1

∂z0

1 − ǫ ∂z1

∂z0

0

−jωx1 −jωy1 −jωz1 1




(3.92)

Neglecting higher order terms, the derivatives in the physical coordinates can be

expressed in terms of the computational coordinates with the following relationships

∂
∂x

= ∂
∂x0

− ǫ
(

∂x1

∂x0

∂
∂x0

+ ∂x1

∂y0

∂
∂y0

+ ∂x1

∂z0

∂
∂z0

)

∂
∂y

= ∂
∂y0

− ǫ
(

∂y1

∂x0

∂
∂x0

+ ∂y1

∂y0

∂
∂y0

+ ∂y1

∂z0

∂
∂z0

)

∂
∂z

= ∂
∂z0

− ǫ
(

∂z1

∂x0

∂
∂x0

+ ∂z1

∂y0

∂
∂y0

+ ∂z1

∂z0

∂
∂z0

)

∂
∂t

= ∂
∂t0

− ǫjω
(
x1

∂
∂x0

+ y1
∂

∂y0

+ z1
∂

∂z0

)
.

(3.93)

3.3.3 Linearization of the Flow

Unsteadiness in the flow field is being excited by the harmonic whirling of the

rotor. This suggest splitting the state variables into the familiar linearized form,

~Q(x0, y0, z0, t0) = ~Q0(x0, y0, z0) + ǫ ~Q1(x0, y0, z0)e
jωt (3.94)

where the vector ~Q0 represents the zeroth-order or mean flow field and vector ~Q1

represents the first-order perturbation. Here, the zeroth-order terms, ~Q0, correspond

to a rotor exhibiting no whirling motion. The variations from the mean field caused

by the whirling motion of the rotor are small and harmonic in time and are accounted

for by the first-order terms, ~Q1, and are written with complex numbers to account for

not only the magnitude of the perturbation, but also the phase differences between

different parts of the domain.

The time-linearized approximations are carried through to every other term using
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a robust, if not sometimes tedious, method described below. To clarify this concept,

a simple example is given where we linearize the first term in the convective flux

vector, ~Fc. This example is worked out in 2D to limit the number of terms. The

term to be linearized, φ, is given as

φ = ~m · n̂ = mxnx + myny (3.95)

where the vector ~m represents momentum and is defined as ~m = (ρu, ρv)T . The

components of the momentum, ~m, and the normal vector, n̂, are expanded into their

zeroth and first-order terms.

mx = mx,0 + ǫ mx,1e
jωt

my = my,0 + ǫ my,1e
jωt

nx = nx,0 + ǫ nx,1e
jωt

ny = ny,0 + ǫ ny,1e
jωt

(3.96)

The expanded forms in Eq.(3.96) are substituted into the original definition in

Eq.(3.95) giving,

φ = (mx,0 nx,0 + my,0 ny,0) + ǫ (mx,1 nx,0 + my,1 ny,0 + mx,0 nx,1 + my,0 ny,1) ejωt

(3.97)

where higher order terms, any terms containing ǫ2, ǫ3, etc. are neglected. Equation

(3.97) is then split into zeroth and first-order terms giving

φ0 = (mx,0 nx,0 + my,0 ny,0)

φ1 = (mx,1 nx,0 + my,1 ny,0 + mx,0 nx,1 + my,0 ny,1) ejωt.
(3.98)

By examining φ0 in (3.98) and φ in (3.95), it can be seen that the definition for
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the zeroth-order part is nothing more than the full-order definition with zeroth-order

terms replacing the original terms. Also, φ1 can be written in the form,

φ1 =

(
∂φ

∂ ~m

)

0

~m1 +

(
∂φ

∂n̂

)

0

~n1 (3.99)

where

~m1 = (mx,1, my,1)
T

~n1 = (nx,1, ny,1)
T

(3.100)

and following from (3.95),

(
∂φ
∂ ~m

)
0

= (nx,0, ny,0)
(

∂φ
∂n̂

)
0

= (mx,0, my,0) .
(3.101)

It may appear that the relationship between the first-order terms and the deriva-

tives presented in (3.99) is coincidental. However, using a more direct derivation it

can be shown that the relationship holds for all functions. A truncated Taylor series

expansion of (3.95) gives,

φ(∆~m, ∆~n) = φ0 +

(
∂φ

∂ ~m

)

0

∆~m +

(
∂φ

∂n̂

)

0

∆~n (3.102)

If the delta terms are set equal to the first-order perturbation terms, ∆~m = ~m1,

∆~n = ~n1, then the relationship in (3.99) is recovered.

Similar to how, in the example, φ is defined by a flow variable, ~m, and a geometric

variable, n̂, all terms in the full-order RANS solver are directly or in-directly defined

by state variables, ~Q, and mesh node locations, ~x. Note that all geometric terms

such as cell volumes, face areas and normal vectors are ultimately defined by mesh

node locations. This suggests that a similar process can be followed to derive the
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zeroth and first-order parts for every term in the RANS solver. Just as with the

example above, the zeroth-order part will match the full-order definition and the

first-order part will be made up of a derivative with respect to the state variables

and a derivative with respect to the mesh node locations.

The result of this method gives a simple and clean form for the definition of the

zeroth and first-order terms. This form is written for a general term, φ, as,

φ = φ0 + ǫ φ1e
jωt = φ0 + ǫ

[
∂φ

∂~x
~x1 +

∂φ

∂ ~Q
~Q1

]
ejωt (3.103)

where the derivative within the square brackets are defined as

∂φ

∂~x
=

(
∂φ

∂x0

,
∂φ

∂y0

,
∂φ

∂z0

)T

(3.104)

and

∂φ

∂ ~Q
=

(
∂φ

∂ρ0

,
∂φ

∂u0

,
∂φ

∂v0

,
∂φ

∂w0

,
∂φ

∂p0

)T

. (3.105)

Equations for φ0 and φ1 can be derived by substituting the assumed forms for

the mesh positions, ~x, and the state variables, ~Q, into the formula for φ(~x, ~Q). Note

that if φ refers to a purely geometric term, e.g. Ωi, Sij, n̂ij , it will only be affected

by the perturbations of the node locations, ~x.

3.3.4 Introduction of Face Velocity

The process of linearizing an established full-order flow solver requires introducing

new terms. For this work, the full-order solver was originally developed for non-

deforming meshes. For a deforming mesh fluxes are calculated relative to the motion

of the faces. Therefore, the face velocity is required to compute any flux through

that face. For example, the convective flux vector, ~Fc, must be modified to account
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for the motion of the faces as

~F M
c = ~Fc − Vt

~Q (3.106)

where ~F M
c is the modified convective flux vector, ~Fc is the convective flux vector

defined in (3.3), ~Q is the vector of conservative variables defined in (3.1), and Vt is

the contravariant velocity of the face. The contravariant face velocity, Vt, is given by

Vt = n̂ · ∂~x

∂t
= nx

∂x

∂t
+ ny

∂y

∂t
+ nz

∂z

∂t
(3.107)

where n̂ = (nx, ny, nz) is the face unit normal and ∂~x
∂t

=
(

∂x
∂t

, ∂y
∂t

, ∂z
∂t

)
is the face

velocity.

Linearizing (3.106) and splitting the results into zeroth-order and first-order terms

gives

~F M
c,0 = ~Fc,0 − Vt,0

~Q0

~F M
c,1 = ~Fc,1 − Vt,0

~Q1 − Vt,1
~Q0

(3.108)

Because zeroth-order terms are associated with a steady domain, Vt,0 is zero, giving

~F M
c,0 = ~Fc,0

~F M
c,1 = ~Fc,1 − Vt,1

~Q0

(3.109)

No new terms are required for the zeroth-order system while a first-order contravari-

ant face velocity, Vt,1, must be included in the first-order system.

When dealing with a dynamic discretized space an additional consideration must

be taken into account to ensure geometric terms agree with one another. This idea,

referred to as the Geometric Conservation Law (GCL) [87, 88, 89, 90], was first

pointed out by Thomas and Lombard [91]. It states that the change in volume of a
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given 3-D space must equal the volume swept out by its moving boundaries for any

period of time. This is written symbolically as

∂

∂t

∫

Ω

dΩ =

∮

∂Ω

Vt dS (3.110)

and in finite volume form as,

∂

∂t
Ωi =

N(i)∑

k=1

Vt,ik Sik (3.111)

where Ni are the neighbors of cell i and Vt,ik and Sik refer to the contravariant velocity

and area of the face between cells i and k. Linearizing Eq.(3.111) and recalling that

zeroth-order terms are steady and first-order terms are harmonic in time gives, for

the first-order system,

jωΩi,1 =

N(i)∑

k=1

Vt,ik,1 Sik,0 (3.112)

where ω is the frequency of the harmonic motion. This sets up a relationship between

the first-order cell volumes, Ω1, and the first-order face velocity, Vt,1, that must hold

to satisfy GCL.

To ensure this relationship holds one can either calculate Ω1 using the direct

linearization method described above and then define Vt,1 based on Ω1. Or, alter-

natively, Vt,1 may be found through direct linearization of the time derivative of the

face centroid, and then define Ω1 based on Vt,1. Either alternative will satisfy GCL.

It was found that defining Vt,1 based on Ω1 gave better results but required inverting

a large system of equations.
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3.3.5 Full Linear System

With the assumed harmonically perturbed forms for the state vector and node

locations substituted into the full system from Eq.(3.12),

∂ ~Qi

∂t
Ωi = ~Ri, (3.113)

and with all other terms developed using the method outlined above, a full system

can be formed with unknowns ~Q0 and ~Q1 and prescribed terms ~x0 and ~x1. The full

system is written, for a select node i, as

∂

∂t

[
~Qi,0Ωi,0 + ǫ

(
~Qi,0

∂Ωi

∂~x
~x1 + ~Qi,1Ωi,0

)
ejωt

]
= ~Ri,0 + ǫ

(
∂ ~Ri

∂~x
~x1 +

∂ ~Ri

∂ ~Q
~Q1

)
ejωt

(3.114)

where, for a general term φ,

~φ =
(
~φi=1, ~φi=2, . . . , ~φi=N

)
(3.115)

is a global concatenation of the local vectors from every node.

The full system may be split into a zeroth-order and a first-order system by

grouping terms by their ǫ order. The zeroth-order system can then be written as

∂

∂t

(
~Qi,0Ωi,0

)
= ~Ri,0 (3.116)

and the first-order system written as

[
jωΩi,0 −

∂ ~Ri

∂ ~Q

]
~Q1 = −

[
~Qi,0

∂~Ωi

∂~x
− ∂ ~Ri

∂~x

]
~x1 (3.117)

The steady, zeroth-order system exactly matches the full-order system. Therefore,
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procedures developed to solve the full-order system can be used to solve the zeroth-

order system. The zeroth-order state vector, ~Q0, can be found using the pseudo-time

marching method described in the temporal discretization section to solve steady

problems.

With a known zeroth-order state vector, ~Q0 and prescribed zeroth and first-order

node location vectors, ~x0 and ~x1, the unsteady, first-order system may be solved to

obtain the first-order state vector, ~Q1. This system is a large, sparse, linear system

with 10N degrees of freedom where N is the number of nodes in the mesh. Each node

is associated with five conserved variables each consisting of a real and imaginary

part. The system grows even larger when turbulence models are included.

The large size of the system precludes the use of many standard methods for

solving linear systems due to time and computer memory constraints. Two methods

are presented here that are able to handle these constraints. The first method is a

pseudo-time marching method that is similar to the approach used to solve the full-

order system. The second method uses the Generalized Minimal Residual Method

(GMRES) based on a Krylov subspace approach which are well suited for sparse

systems.

The first step in solving the unsteady system using the pseudo-time stepping

approach is to add a pseudo-time gradient term. With this addition, the first-order

system takes the form,

∂

∂t0

(
~Qi,1

)
Ωi,0 ejθ +

[
jωΩi,0 −

∂ ~Ri

∂ ~Q

]
~Q1 = −

[
~Qi,0

∂~Ωi

∂~x
− ∂ ~Ri

∂~x

]
~x1 (3.118)

where t0 is the pseudo-time and θ is a rotation angle that is be explained later in

this section. The pseudo-time gradient is multiplied by the zeroth-order cell volume,
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Ω0, so as to match the true time gradient term of the full system. Eq.(3.118) is

integrated forward in pseudo-time until a converged solution is reached. At this

point the pseudo-time gradient goes to zero and is dropped and the original first-order

system is recovered. The procedure to march the system in time closely resembles

the procedure used for the full-order and zeroth-order systems, allowing previously

developed computer code to be reused with minimal modification.

As seen in Eq.(3.118), the pseudo-time gradient is also multiplied by a rotation

ejθ, that effectively phase shifts the gradient. This is used to fix a problem that can

arise in cases dominated by the real-time gradient, ∂ ~Q1

∂t
. The real time gradient, when

applied to a harmonically oscillation, acts as a 90 degree phase shift. The iterative

process used by the pseudo-time marching method can become very inefficient and

even divergent because of this phase shift. Essentially, any update to the real part of

the state vector, ℜ[ ~Q1], is immediately shifted into the imaginary part and then, in

the next iteration, shifted back again. This strongly couples the real and imaginary

parts during the solution process even when they may not be strongly coupled in

the final solution. A phase shift of angle θ may be imposed to counteract this issue.

When θ is properly chosen, the solution process can be dramatically sped up and

even some otherwise divergent cases will converge.

Currently, no quantitative analysis have been performed on selecting the optimal

value for θ. The optimal value is case dependent and can range from about 5 degrees

to around 85 degrees with higher frequencies tending to require higher θ values. It

is left as a user input.

The second method used to solve the unsteady, first-order system is GMRES. An

outline of the method can be found in [65]. GMRES can be very memory intensive.

For each iteration essentially one full flow field worth of data must be stored. For

large cases, this can severely restrict the minimum number of search directions. To
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get around this memory restriction, a restarted GMRES method is used. Several

GMRES processes are run in series with the output of one becoming the initial guess

of the next. In this way, the total memory requirement can be kept to a minimum.

The issue that arises, however, is that the convergence of the solution may stall

before ever reaching an adequate precision. It is therefore best to use as many search

directions that the available memory will permit.

Once the first-order state vector, ~Q1, is found using either pseudo-time stepping

or GMRES, it can be added to the previously found zeroth-order vector, ~Q0, to

recover the full unsteady state vector, ~Q.

3.3.6 Unsteady Mesh Generation

As discussed above, the Navier-Stokes equations are projected onto an unsteady

domain. The unsteady domain, along with the projected Navier-Stokes equations,

are discretized with an unsteady mesh. The unsteady mesh is made up of a steady,

zeroth-order part, and a perturbed, unsteady first-order part. The zeroth-order

mesh contains the locations and connectivity of the nodes within the undisturbed

domain. The first-order mesh contains information describing how each individual

node moves, perturbed from their initial position to account for the deformation of

the domain. The two parts of the unsteady mesh are generated separately.

The steady, zeroth-order mesh is generated using an established, off-the-shelf

mesh generating package.

The perturbed, first-order mesh must match the motion of the rotor and the stator

at the boundaries of the domain and offer a smooth variation within the domain.

The stator wall is stationary leading to a value of zero for the real and imaginary

parts of x1, y1, and z1 at the stator boundary. The motion of the rotor is dependent

on the specific case. For an unbending rotor with a circular whirl orbit, for example,
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values of x1 = (0, 0), y1 = (1, 0), and z1 = (0, 1) must be enforced everywhere on the

rotor surface. This assumes the rotor rotates about the x-axis. Note that x1, y1, and

z1 have been normalized with respect to the whirl amplitude.

Once x1, y1, and z1 have been set to match the motion of the rotor and stator at

the boundaries, a smooth variation can be achieved in the interior using an iterative

relaxation method. First, an initial guess is made for x1, y1, and z1 at every node

with prescribed values on the rotor and stator surfaces. Then, iteratively looping

through the nodes, xi,1, yi,1, and zi,1 are updated according to,

~xk+1
i,1 = ~xk

i,1 + α




N(i)∑

j=1

wij ~xk
j,1 − ~xk

i,1


 (3.119)

where

wij =
|~xi,0 − ~xj,0|

N(i)∑
k=1

|~xi,0 − ~xk,0|
(3.120)

The value for α is set between 0 and 1. Values on the stator and rotor have been

prescribed and are not updated. Iterations continue until converged values for xi,1,

yi,1, and zi,1 are reached for every node.

3.3.7 Calculation of Rotordynamic Coefficients

The time-linearization methods discussed in this section were developed as part

of a larger effort to predict rotordynamic stability characteristics of annular gas seals.

This subsection focuses on this larger effort, developing the rotordynamic models as

well as outlining the integration of these models with the RANS solvers. At the end

of the subsection it should be clear how the time-linearized and full-order solvers are

used to predict the stability characteristics of annular gas seals.
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The development of the rotordynamic model begins by relating the aerodynamic

force on the rotor with the rotor displacement. For a displaced rotor, the relationship

−





Fx

Fy





=




K k

−k K








X

Y





+




C c

−c C








Ẋ

Ẏ





(3.121)

is used where Fx and Fy are the forces on the rotor in the x and y directions, X and

Y are the components of the rigid-body displacement of the rotor away for center,

and K, k, C, and c are the rotordynamic coefficients. For gas seals, the added-mass

coefficients are negligible [92] p. 292. With Eq.(3.121), the stability characteristics

of the gas seals is determined entirely by the values for the rotordynamic coefficients.

The rest of this subsection focuses on determining these values.

The displacement of the rotor whirling with a circular orbit can be described as

X = ℜ [ǫ ejωt] Ẋ = ℜ [jωǫ ejωt]

Y = ℜ [−jǫ ejωt] Ẏ = ℜ [ωǫ ejωt]
(3.122)

where ǫ is the whirl amplitude, and ω is the frequency.

The force on the rotor can also be written in radial and tangential components

where the radial direction is aligned always with the displacement and the tangential

direction is tangent to the orbit. This leads to the relationship





Fx

Fy





=





Fr

Ft





ℜ
[
ejωt
]
. (3.123)

The relationships in (3.121)-(3.123) should hold for all time. So, without loss of

generality, time is set to zero. Substituting (3.122) and (3.123) into (3.121) gives
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−Fx

ǫ
= K + cω

−Fy

ǫ
= −k + Cω.

(3.124)

The reactionary forces on the rotor are

Fx =
L∫
0

2π∫
0

ℜ [(po + ǫ p1) · nx] dθ dz

Fy =
L∫
0

2π∫
0

ℜ [(po + ǫ p1) · ny] dθ dz

(3.125)

where z is the axial direction, L is the seal length, θ is the angle as measured from the

positive X axis, p0 and p1 are the zeroth and first-order pressure and nx and ny are

the components of the unit normal pointing in the X and Y directions respectively.

Components of the unit normal can be written in terms of θ as nx = cos θ and

ny = sin θ.

Integrating the zeroth-order pressure around the annulus results in a zero net force

on the rotor. The first-order pressure varies around the annulus as p1 = (p∗r + j p∗i ) ejθ

where p∗r and p∗i are the real and imaginary parts of the first-order pressure at θ = 0.

Eq.(3.125) can then be written as

Fx

ǫ
= R π

L∫
0

p∗r dz

Fy

ǫ
= −R π

L∫
0

p∗i dz

(3.126)

where R is the radius of the rotor.

In Eq.(3.124), the forces Fx and Fy are functions of the whirl frequency ω. Because

a single specified whirl frequency is given as an input to the time-linearized RANS

solver, several different first-order flow fields must be found, each associated with a

different specified whirl frequency, to establish the relationship between forces and

the frequency. This suggests, for a given seal, the following procedure to calculate
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the rotordynamics coefficients.

• Full order RANS solver is used to find the steady zeroth-order flow field asso-

ciated with a non-whirling (no displacement) rotor.

• Time-linearized RANS solver and zeroth-order results are used to calculate a

first-order flow field for a prescribed whirl frequency, ω.

• Use Eq.(3.126) and first-order flow field to calculate the reactionary forces on

the rotor.

• Repeat previous two steps for a range of whirl frequencies.

• With reactionary forces known for several whirl frequencies, rotordynamic co-

efficients, K, k, C and c, are backed out from Eq.(3.121).

A minimum of two whirl frequencies must be used to capture the coefficients,

though more may be used for increased certainty. In this work, four frequencies were

used. Whirl frequencies were chosen such that the whirl ratio remains around a value

of one. The whirl ratio is defined as the ratio between the rotor whirl velocity and

the rotor rotational velocity.

This procedure allows the rotor dynamic coefficients to be found, establishing

the rotordynamic characteristics of the gas seal, by calculating a single, non-linear,

steady, zeroth-order flow field and four linear, first-order flow fields. The four, first-

order cases are decoupled from one another and may be run simultaneously. Ex-

tracting the reactionary forces and rotordynamic coefficients becomes a quick, post-

processing step.
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3.4 Boundary Conditions

This section presents boundary conditions for the full-order and time-linearized

solvers. The boundary conditions presented include solid wall, inlet and outlet,

symmetric plane, translational and rotational periodic, and non-reflective. The first

subsection covers the implementation of the boundary conditions for the full-order

code. The implementation for the time-linearized code is discussed in the next sub-

section. The last subsection is dedicated to the non-reflective boundary conditions

for both full-order and time-linearized codes.

The boundary conditions for the inlet, outlet and solid walls are enforced in a

weak sense. Instead of applying conditions directly to the state variables, interme-

diate state variables are introduced along the boundaries which are used to evalu-

ate boundary fluxes. The intermediate variables are chosen such that the specified

boundary conditions hold.

3.4.1 Full-Order Boundary Conditions

3.4.1.1 Wall Boundary Condition

For inviscid fluxes, the solid wall boundary condition enforces the no penetration

conditions and holds that the component of the fluid velocity normal to the wall is

equal to velocity of the wall itself. For the cases considered here for the full-order

code, velocity in the wall normal direction is always equal to zero. The no penetration

condition is then written as

~v · n̂ = unx + vny + wnz = 0 (3.127)

where n̂ is the surface normal.

For viscous flows, in addition to no penertration, the no slip condition is enforced
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at walls. This holds that, for a stationary wall, components of the velocity are zero.

u = v = w = 0 (3.128)

For the wall rotating around the x-axis, the components of the velocity are

u = 0

v = −ωR cos θ

w = ωR sin θ

(3.129)

where ω is the angular velocity, R is the radius, and θ is the angle as measured from

the z-axis.

3.4.1.2 Inlet and Outlet Boundary Conditions

The inlet and outlet boundary conditions, collectively referred to as farfield con-

ditions, are enforced at the entrance and exit of the domain, respectively. It is at

these locations that the computational domain is artificially truncated. In the phys-

ical system being modeled, the domain extends beyond these artificial boundaries.

This leads to additional complexities when the boundary conditions are enforced.

Ideally, the truncation of the domain should have no notable effect on the flow as

compared to an infinite domain. An inadequate implementation can introduce spu-

rious and unphysical waves into the system leading to a slowdown in convergence or

an inaccurate final result. A later subsection will cover in more detail non-reflective

boundary conditions which further eliminate truncation effects.

By studying the local characteristics of the system, it can be determined which

direction information is flowing. This will determine which and how many conditions

can be enforced at the inlet and outlet boundaries. The characteristics correspond to

the eigenvalues of the local flux Jacobian matrix. A positive eigenvalue corresponds
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with a downstream velocity while a negative eigenvalue corresponds with upstream.

By looking at the signs of the eigenvalues of the flux Jacobians at the inlet and outlet

boundaries, it can be determined how many conditions must be enforced.

The inlet boundary for a subsonic flow has four positive eigenvalues and one

negative. The characteristics associated with positive eigenvalues corresponds to

information traveling downstream and into the domain. We are able to enforce as

many conditions as there are incoming characteristics. In this case, four conditions

can be imposed.

The subsonic outlet boundary also has four positive and one negative eigenvalue.

This, however, corresponds to only a single incoming characteristic. Therefore, only

one condition can be enforced at the outlet.

For supersonic flows, all of the characteristics flow downstream. This results in all

five conditions being enforced at the inlet and no conditions enforced at the outlet.

A common procedure to define the four conditions enforced at the subsonics inlet

is to specify the total pressure, p∗, total temperature, T ∗, and two flow angles α and

β. To specify the outgoing characteristic, a Riemann invariant[93, 94, 95], is used.

The outgoing Riemann invariant is defined as

R− = ~vd · n̂b −
2cd

γ − 1
(3.130)

where ~vd represents the flow velocity just interior of the inlet boundary, n̂b represents

the unit normal direction of the boundary and conditions taken from the interior of

the domain. Here, cd is the speed of sound. The total pressure and total temperature

from the upstream conditions are used to compute the intermediate entropy

s =
p∗

(ρ∗)γ
(3.131)
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and intermediate total enthalpy

H =
γRT ∗

γ − 1
(3.132)

where ρ∗ is defined as

ρ∗ =
p∗

RT ∗
(3.133)

The incoming Riemann invariant, R+, can be written as

R+ = R− +
4

γ − 1
c (3.134)

where c is the intermediate speed of sound. To remove c from Eq.(3.134), it can be

defined using the total enthalpy, component of velocity tangential to the boundary,

and the incoming and outgoing Riemann invariants. Therefore, the intermediate

speed of sound, c, is defined as,

c = (γ − 1)

√
H − v2

t

2
− 1

8
(R+ − R−) (3.135)

where the tangential flow velocity, vt is defined as

vt = |~vd| − ~vd · n̂b. (3.136)

Substituting Eq.(3.135) into Eq.(3.134) results in a quadratic equation for the

incoming Riemann invariant, R+. A solution for the quadratic equation can be

written as

R+ =
1

γ + 1

[
(γ − 3)R− + 4

√
H − v2

t

2
− γ − 1

2
(R−)2

]
. (3.137)
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Once the incoming invariant, R+, is known, the intermediate normal velocity, vb,

and the intermediate speed of sound c can be backed out using

vb =
R+ + R−

2
(3.138)

and

c =
γ − 1

4

(
R+ − R−

)
. (3.139)

The intermediate density, ρ and intermediate pressure, p, can be computed using

the intermediate speed of sound, c, and the intermediate entropy, s, with

ρ =

(
c2

γs

) 1

γ−1

(3.140)

and

p =
1

γ

(
c2γ

γs

) 1

γ−1

. (3.141)

Finally, the components of the intermediate velocity, ~v = (u, v, w)T , can be found

using the prescribed inlet flow angles, α and β.

|~v| =
√

v2
b + v2

t (3.142)

u = |~v| cos α (3.143)

v = |~v| sin α cos β (3.144)

w = |~v| sinα sin β (3.145)

The intermediate state variables are used to evaluate the flux across the inlet
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boundary faces.

The subsonic outflow boundary conditions are defined by a user specified static

back pressure, pb, and four conditions from the interior. Using the back pressure, pb,

and the entropy, s, tangential velocity, vt, speed of sound, c, and total pressure, p∗,

from the interior, the intermediate state variables can be defined.

The intermediate pressure, p, is set equal to the specified static back pressure,

p = pb. (3.146)

The intermediate entropy, s, and tangential velocity, vt, are set equal to their

interior counterparts,

s = si (3.147)

and

vt = |~vi| − ~vi · n̂b. (3.148)

The incoming and outgoing Riemann invariants, R− and R+, are defined by

R+ = ~vi · n̂b +
2ci

γ − 1
(3.149)

and

R− = R+ − 4

γ − 1

√
γ (p∗)

γ−1

γ s
1

γ . (3.150)

The intermediate density, ρ, and velocity, ~v = (u, v, w)T , can then be computed

using the incoming and outgoing Riemann invariants as shown in Eqs. (3.140) -
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(3.145).

The intermediate state variables are used to evaluate the flux across the outlet

boundary faces..

Flow conditions at the supersonic inlet boundary can be entirely specified based

on prescribed freestream conditions.

~Q = ~Qb (3.151)

Flow conditions at the supersonic outlet boundary are entirely defined by the

flow conditions inside the domain.

~Q = ~Qi (3.152)

3.4.1.3 Symmetric Boundary Condition

The symmetric boundary condition enforces flow symmetry with respect to the

plane on which it is applied, eliminating the need to solve the full domain. Symmetry

is enforced by setting the velocity component normal to the boundary face to zero,

no penetration, and enforcing zero gradient of the state variables at the boundary

and in the boundary normal direction.

Zero gradient at the boundary is enforced with the help of an adjacent interior

node. This location of the interior node is specified by the mesh. The distance

between the boundary and interior node is denoted by xv. The direction n̂v is defined

pointing from the boundary node towards the interior node.

Taylor series expansion is used to find the relationship between the interior and

boundary nodes. A general state variable, φ, and the component of its gradient in

the n̂v direction, ∂φ
∂nv

, are expanded about the boundary location towards the interior
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node.

φ(xv) = φv = φ0 +
∂φ0

∂nv
xv +

∂2φ0

∂n2
v

x2
v

2
+ · · · (3.153)

∂φ

∂nv
(xv) =

∂φv

∂nv
=

∂φ0

∂nv
+

∂2φ0

∂n2
v

xv + · · · (3.154)

Combining the two equations and neglecting higher order terms,

φ0 = φv −
1

2
(
∂φv

∂nv
+

∂φ0

∂nv
)xv. (3.155)

In the above equation xv, φv and ∂φv

∂n
= ~∇φv · n̂ are easily found. The value for

∂φ0

∂n
is

∂φ0

∂nv

= ~∇φ0 · n̂v (3.156)

where

~∇φ0 = ~∇φ − ∂φ

∂n
n̂ (3.157)

∂φ

∂n
= ~∇φ · n̂. (3.158)

Here, n̂ denotes the boundary surface normal direction and ∂φ
∂n

denotes the component

of the gradient in the n̂ direction. ~∇φ0 is the gradient with the boundary normal

components removed to satisfy the zero gradient criterion.

For implementation, however, ∂φ0

∂nv
is rewritten as

∂φ0

∂nv
= ~∇φ · n̂v −

∂φ

∂n
(n̂ · n̂v) (3.159)

and n̂ · n̂v is precomputed.

The zero gradient criterion is applied to all state variables independently using

the method described. The gradients ~∇φ are defined using the methods specified in
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Chapter 3.

Using the newly calculated state variables, the velocity component of the flow

normal to the boundary face, ~vN , is now removed.

~vT = ~v − |~vN |n̂ (3.160)

where

|~vN | = ~v · n̂ (3.161)

This enforces no flow through the boundary.

3.4.1.4 Periodic Boundary Conditions

The periodic boundary condition has been implemented for both translationally

and rotationally periodic domains. For both types of periodic boundary conditions,

a master boundary is paired with its respective slave boundary introducing new

connectivity to the mesh. For a translational periodic boundary, a position on the

slave boundary is related to a position on the master boundary using

~xs = ~xm + ~xms (3.162)

where ~xs and ~xm are positions on the slave and master boundaries and ~xms is a

vector that defines the translation from master to slave boundary. A position on a

rotational slave boundary is related to a position on the master boundary using the

following,

~xs = Tms~xm (3.163)
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where Tms is a rotation matrix. Assuming the rotation is taken about the x-axis,

Tms takes the form,

Tms =




1 0 0

0 cos θ sin θ

0 − sin θ cos θ




(3.164)

where θ is the rotation angle.

For nodes on the periodic boundary, the following relationships hold for their re-

spective state vectors, ~Qi. For translational periodicity, the state vector relationship

is

~Qs = ~Qm (3.165)

where ~Qs and ~Qm are the state vectors associated with nodes on the slave and master

boundaries respectively. For rotational periodicity, the state vector relationship is

~Qs = Ums
~Qm (3.166)

where

Ums =




1

Tms

1




. (3.167)

The components of velocity, u, v and w are rotated while density, ρ, and pressure, p

are not.

In the present work, control volumes are defined using a dual mesh, with a node

at the center of each control volume. The nodes on periodic boundaries are partnered
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with a node on the corresponding boundary and their state vectors are connected

such that the partnered nodes are treated as essentially a single node. This naturally

leads to a single control volume split in two along the periodic boundary with parts

on either side. This concept is used when computing the residual for the master and

slave nodes.

First, the residuals are computed for both master and slave nodes using the same

procedure as is outlined in Chapter 3, by looping through the neighbors of the nodes

and computing fluxes through each face. The only exception for periodic boundaries

is that the flux through the periodic boundary is omitted. The residuals, therefore,

are calculated using

~Rim = −
Ni,j 6=ns∑

j=1

~FijSij (3.168)

and

~Ris = −
Ni,j 6=nm∑

j=1

~FijSij (3.169)

where ~Ri,s and ~Ri,m are residual vectors associated with a slave and master node pair,

Fij and Aij are the flux and area associated with the face between nodes i and j,

and (Ni, j 6= ns) and (Ni, j 6= nm) represent the set of neighbors of node i excluding

the corresponding slave and master nodes.

Next, the master and slave residual vectors are summed,

~R∗
im = ~Rim + ~Ris (3.170)

to give the total residual vector, ~R∗
i , associated with the recombined control volume

spanning both sides of the periodic boundary.
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The state vector for the master node, ~Qi,m, is then updated using the total residual

vector,

~Qn+1
im = ~Qn

im +
∆t∗im
Ω∗

im

~R∗
im (3.171)

where ∆t∗i,m and Ω∗
i,m are the time step and volume associated with the combined

control volume. Finally, the state vector associated with the slave node, ~Qi,s, is

updated using the relationships described earlier.

3.4.2 Time-Linearized Boundary Conditions

The previous subsection covered boundary conditions for the full-order Navier-

Stokes solver. This subsection goes over how those boundary conditions used to be

modified to be applied to the time-linearized code. Recall that the time-linearization

method is based on the following linear approximation,

φ = φ0 + ǫ φ1 (3.172)

where, for a given flow variable φ, φ0 is the averaged value over a long period of

time, and φ1 is the perturbation about the average. The variable ǫ is a very small

number representing the difference of time scale that the mean and perturbation

effects operate at.

Substituting Eq.(3.172) into the boundary condition formulations in the previous

subsection, and omitting terms of order ǫ2 and higher, gives zeroth, ǫ0, and first

ǫ1, order terms. The zeroth order terms correspond with the mean flow effects and

match the full-order formulation perfectly. The first order terms correspond with

the perturbation effects and are linear with respect to the state vector perturbation

variables, φ1.
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3.4.2.1 Wall Boundary Condition

The formulation for the inviscid solid wall boundary condition says that ~v · n̂ = 0.

Using Eq.(3.127) for the components of velocity u, v, and w and the geometric terms

nx, ny, nz, the components of the normal vector, results in

(u0nx,0 + v0ny,0 + w0nz,0) + ǫ (u0nx,1 + v0ny,1

+w0nz,1 + u1nx,0 + v1ny,0 + w1nz,0) = 0.
(3.173)

Recall that the mean variables are acquired from a full-order, steady simulation.

Therefore, the zeroth order term is already satisfied leaving only the following,

u0nx,1 + v0ny,1 + w0nz,1 + u1nx,0 + v1ny,0 + w1nz,0 = 0. (3.174)

The geometric terms, both mean and perturbed, are prescribed.

For the viscous solid wall, the velocity is equal to the velocity of the wall, ~vw.

The mean part of the wall velocity is zero.

u0 = v0 = w0 = 0. (3.175)

This gives for the first order terms,

u1 = uw,1, v1 = vw,1, w1 = ww,1 (3.176)

where ~vw,1 = (uw,1, vw,1, ww,1)
T is the first order wall velocities associated, on the

rotor, with the whirl motion.

3.4.2.2 Periodic Boundary Conditions

When using the time-linearized method to simulate the effects of rotor whirl, as

is done in this work, an additional consideration must be made to the rotational
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periodic boundary condition. When dealing with the first-order terms, a phase shift

must be included between terms on the master and slave boundaries.

The phase shift arises because the forcing on the system is being provided by the

whirl of the rotor. To intuitively understand why this leads to a necessary phase shift

across the periodic boundary consider the annulus geometry in Fig. 3.6. The inner

cylinder is the rotor and it travels, displaced from a central position, harmonically

in time, along a circular whirl orbit. This generates, at any given time, a maximum

and minimum gap clearance. The location of the maximum and minimum clearance

travels around the annulus along with the whirl of the rotor. The clearance at any

given location along the annulus will vary harmonically in time, at some moments

corresponding to the maximum clearance and at other moments the minimum. When

comparing two different locations along the annulus with each other, their respective

local clearances will appear to be phase shifted from one another. Because it is

the whirling that drives the unsteadiness in the flow field, it can be reasoned the

linearized flow field should also exhibit a similar phase shift.

This phase shift, ejθ, appears both in the relationship between the slave and

master nodes locations

~xs,1 = Tms ~xm,1 ejθ (3.177)

and the slave and master state vectors,

~Qs,1 = Ums
~Qm,1 ejθ (3.178)

where θ is the angle of the rotational periodicity.
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A

B

Figure 3.6: Clearance of an annu-
lus geometry with whirling rotor.

3.4.3 Non-Reflective Boundary Conditions

Often, with CFD, it is the desire of the user to place the far-field boundaries

as close in as possible. For internal flows, such as those found in this work, the

placement of the far-field boundaries are specified by the test case and the user has

no freedom to choose the location. In either of those cases, disturbances generated

within the domain can reflect off of the far-field boundaries back towards the interior

areas of the flow. These reflected waves are unphysical in nature and can interfere

with the solution process and degrade the overall results. This subsection will detail

methods used to limit or eliminate these reflected waves for both the full-order and

time-linearized codes.

The reflective waves are generated by the far-field boundaries in an attempt to

enforce the user defined conditions. As a disturbance waves, generated within the

domain, exits the computational domain, it can change the flow conditions at the

boundary resulting in the boundary condition to no longer be satisfied. To ensure
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specified conditions are enforced, a reflective wave, equal and opposite to the original

disturbance wave, is generated and travels back into the domain. Because it is these

reflective waves that enforce the boundary condition they are required to enforce a

specified condition. The challenge is to modify the reflective waves in such a way

that they are still able to enforce specified boundary conditions while minimizing

their negative effects on the solution.

The theory used to enforce the non-reflective boundary conditions is developed by

assuming that the flow is governed by the linearized Euler equations at the far-field.

For this assumption to be valid the viscous shear stresses and turbulent effects need

to be negligible. Also, physical variations in the far-field have long wavelengths as

compared to the disturbance waves. The linearized Euler equation can be written in

the following form,

∂ ~Qp

∂t
+ A

∂ ~Qp

∂x
= 0 (3.179)

where the perturbation state vector, ~Qp, is defined as

~Qp =




ρ − ρ̄

u − ū

v − v̄

w − w̄

p − p̄




=




ρ̃

ũ

ṽ

w̃

p̃




. (3.180)

The elements of ~Qp represent linear perturbations, ˜(•), of the state variables away

from average values, ¯(•). The flux Jacobian matrix, A, is written
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A =




ū ρ̄ 0 0 0

0 ū 0 0 1
ρ̄

0 0 ū 0 0

0 0 0 ū 0

0 γp̄ 0 0 ū




(3.181)

and is defined by the average state variables. The average state variables define the

state about which the Euler equations are linearized. Defining this average state is

case dependent and will be addressed later in this subsection.

The numerical procedure introduced in earlier chapters operate on the conserved

variables. It is useful, then, to introduce the linear transformation between conserved

and primitive variables,




ρ

ρu

ρv

ρw

ρE




= L




ρ

u

v

w

E




=




1 0 0 0 0

u ρ 0 0 0

v 0 ρ 0 0

w 0 0 ρ 0

V 2

2
ρu ρv ρw 1

γ−1







ρ

u

v

w

E




(3.182)

where

V 2 = u2 + v2 + w2. (3.183)

The behavior of the waves at the far-field can be analysed by assuming the fol-

lowing form,

~Qp = ~qre
j(ωt+kxx) (3.184)
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where j =
√
−1, ω is the frequency, and kx is the spatial wave number to be deter-

mined. Substituting Eq.(3.184) into (3.179) gives

(ωI + kxA)~qr = 0. (3.185)

The above equation can be rearranged to give an eigenvalue problem with eigen-

values kx and corresponding eigenvectors ~qr. The eigenvalue problem is written

−ωA−1I~qr = M~qr = kx ~qr. (3.186)

Solving for the wave number, kx, gives a function in terms of ω. Matrix M is

decoupled with the following transformation,

Λ = T−1MT =




−ω
ū

0 0 0 0

0 −ω
ū

0 0 0

0 0 −ω
ū

0 0

0 0 0 − ω
ū+c̄

0

0 0 0 0 − ω
ū−c̄




(3.187)

where T−1 and T are matrices made up of the left and right eigenvectors of M,

respectively, and c̄ =
√

γp
ρ

is the local averaged speed of sound. Matrices T−1 and

T define a linear transformation between the perturbation state vector, ~Qp, and the

vector of characteristic variables, ~φ.

~φ = T−1 ~Qp (3.188)

and
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~Qp = T~φ. (3.189)

The characteristic variables, ~φ, can be written out as




φ1

φ2

φ3

φ4

φ5




=




−c̄2 0 0 0 1

0 0 ρ̄c 0 0

0 0 0 ρ̄c 0

0 ρ̄c 0 0 1

0 −ρ̄c 0 0 1







ρ̃

ũ

ṽ

w̃

p̃




(3.190)

and




ρ̃

ũ

ṽ

w̃

p̃




=




− 1
c̄2

0 0 1
2c̄2

1
2c̄2

0 0 0 1
2ρ̄c

− 1
2ρ̄c

0 1
ρ̄c

0 0 0

0 0 1
ρ̄c

0 0

0 0 0 1
2

1
2







φ1

φ2

φ3

φ4

φ5




. (3.191)

The propagation speeds of the linearized characteristic variables are determined

by finding their respective group velocities. The group velocity is given by

vg = − ∂ω

∂kx
= − 1

∂kx

∂ω

(3.192)

where the waves number, kx, is the eigenvalue associated with the given characteristic

variable and can be found on the diagonal of the matrix Λ.

Altogether, the five characteristic variables have the following physical interpre-

tation. The first characteristic variable, φ1, is defined as
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φ1 = −c̄2ρ̃ + p̃ (3.193)

and is associated with an entropy wave. The entropy waves propagate with speed ū.

The second and third characteristic variables, φ2 and φ3, are defined as

φ2 = ρ̄c2ṽ (3.194)

and

φ3 = ρ̄c2w̃ (3.195)

and are associated with the components of a vorticity wave. The components of

vorticity propagate with speed ū. The fourth and fifth characteristic variables, φ4

and φ5, are defined as

φ4 = ρ̄c2ũ + p̃ (3.196)

and

φ5 = −ρ̄c2ũ + p̃ (3.197)

are associated with downstream and upstream traveling pressure waves respectively.

The downstream traveling pressure wave propagates with a speed ū+c̄. The upstream

traveling pressure wave propagates with a speed ū − c̄.

3.4.3.1 Time-Linearized Non-Reflective Boundary Conditions

The characteristic theory developed above can be applied to the time-linearized

system if the zeroth order terms, ~Q0, are used as the averaged variables, ¯(•), and the
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first order terms, ~Q1, as the perturbation variables, ˜(•). The characteristic variables

can then be written as




φ1,1

φ2,1

φ3,1

φ4,1

φ5,1




=




−c2
0 0 0 0 1

0 0 (ρc)0 0 0

0 0 0 (ρc)0 0

0 (ρc)0 0 0 1

0 −(ρc)0 0 0 1







ρ1

u1

v1

w1

p1




(3.198)

with the flux Jacobian matrix containing exclusively zeroth order terms, consistent

with the linear nature of the system.

It is then observed that characteristic variables φ1,1, φ2,1, φ3,1, and φ4,1 are prop-

agating downstream while φ5,1 is propagating upstream. In order to enforce the

non-reflective condition, no information is allowed to enter the domain and the down-

stream propagation characteristic variables must be removed at the inlet boundary

and the upstream propagating characteristic variable must be removed at the outlet.

This can be done by applying a filter at the far-field boundaries to be enforced at

every iteration of the code, just after the respective boundary conditions. The filter

takes the form of the following operation,

~Q1,f = TF∗T−1 ~Q1 (3.199)

where first order state vector, ~Q1,f represents the filtered variables. The matrix

F∗ is a diagonal matrix populated with zeros and ones such that the appropriate

characteristic variables are removed. It is written as
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F∗
inlet =




1

1

1

1

0




(3.200)

at the inlet and

F∗
outlet =




0

0

0

0

1




(3.201)

at the outlet.

With the filter applied at each node found on a far-field boundary, it can be

insured that no reflected waves can enter the first-order, time linearized flow field.

3.4.3.2 Full-Order Non-Reflective Boundary Conditions

The characteristic theory can be applied to the full-order code by linearizing

the Euler equations at each iteration about the current conditions. This makes the

averaged, ¯(•), terms from the characteristic theory associated with the current state

vector, ~Qn. The perturbed variables, ˜(•), are associated with the vector ∆~Qn. This

means the characteristic variables can be defined for the full-order system is
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


φ1

φ2

φ3

φ4

φ5




=




−c2 0 0 0 1

0 0 ρc 0 0

0 0 0 ρc 0

0 ρc 0 0 1

0 −ρc 0 0 1




n


∆ρ

∆u

∆v

∆w

∆p




(3.202)

defined at every node.

Unlike the time-linearized code, were completely removed reflective waves is re-

quired, the full-order code requires some incoming waves to be able to enforce bound-

ary conditions. Simply removing the incoming characteristic waves is not an option.

This challenge is met by allowing some percentage of the energy of the incoming

waves to remain. This has the effect of dampening reflections from spurious dis-

turbances and lessening their detrimental effects while still allowing user specified

boundary conditions to be enforced.

The filter has a similar form as before. It is written for the full-order system as

∆ ~Qf = TnF∗T−1,n ∆ ~Q (3.203)

where matrices T−1,n and Tn are defined separately at every node i and every time

step n. The filter matrix, F∗, now takes on the form

F∗
inlet =




1

1

1

1

α




(3.204)
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at the inlet, and

F∗
outlet =




α

α

α

α

1




(3.205)

at the outlet, where the coefficient α can be adjusted between zero and one. With

α set to zero, no reflective waves are allowed, and with α set to one, the filter is

effectively removed. It was found that a value of α = 0.1 gives a good balance.

With this filter, unwanted effects from spurious disturbances can be mitigated

while user defined boundary conditions can be enforced.

The non-reflective boundary, filter described above offers a computationally in-

expensive and conceptually simple method to handle unwanted reflection found at

far-field boundaries. For the turbomachinery seal cases in this work, the disturbances

at the far-field boundaries were primarily planar in nature. The 1D characteristic

theory described in this subsection was adequate for these cases. Some applica-

tions may require 2D or 3D characteristic theory to be effective. Development of

these higher dimensional theories and their application to non-reflective boundary

conditions can be found in [96, 97, 98].
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4. RESULTS

4.1 Full-Order Solver: Cavity Flow Results

This section1 presents the geometry and flow conditions used for the simulation of

single and multiple cavity channel flows. A grid convergence test is then presented,

followed by a comparison of the RANS and LES results. The numerical results are

then used to determine the empirical values of the Rossiter’s formula for cavities in

channel flow. The section ends with results for multiple cavities.

4.1.1 Geometry and Flow Conditions

Computer simulations were run to provide a numerical model for experiments

conducted at the Turbomachinery Laboratory at Texas A&M University. These ex-

periments were performed to investigate the characteristics of cavity flow instabilities

in annular seals. The hole-pattern of the annular stator seals was modeled using a

flat plate with cylindrical cavities. To model the clearance between the rotor and

stator a second flat plate with no cavities was located above the first. The experi-

ments were conducted for several different cavity depths and channel heights. The

numerical results shown herein had a channel height of 0.7112 mm and the cavities

had diameters and depths equal to 3.175 mm.

For the numerical simulations the model for the hole-pattern seal was simplified

to a single, rectangular, two-dimensional cavity with a length and depth of 3.175 mm.

The cavity was located in a channel with a height of 0.7112 mm, which extended

1Part of this section is reprinted with permission from “Prediction of Aeroacoustic Resonance
in Cavities of Hole-Pattern Stator Seals” by D. N. Liliedahl, F. L. Carpenter, P. G. A. Cizmas,
2010. J. Eng. Gas Turbines Power, vol. 133(2), p.022504, Copyright 2011 by American Society of
Mechanical Engineers.
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Figure 4.1: Computational domain with pressure probe locations.

22 mm (6.9 cavity lengths) in front of and behind the cavity. This allowed for

dissipation of spurious waves that reflect from the inlet and outlet boundaries and

prevented them from interfering with the cavity flow. The computational domain

is shown in Fig. 4.1. For clarity, the extremities of the channel are not shown.

As shown in the previous section, the flow solver is three-dimensional. To reduce

the computational time, the width of the computational domain was limited to one

cell. This simplified domain allowed for reasonable computation times while still

capturing the necessary flow features.

The inlet total pressure was 104,190 Pa, the exit static pressure was 101,325 Pa

and the total temperature was 305.4 K. The Reynolds number based on the cavity

length was 14,300. Each simulation was started from an initial condition with a

uniform velocity of 68 m/s parallel to the channel. These parameters were chosen to

provide a flow with a Mach number of approximately 0.2.

In the experiments, the flow through the channel was fully developed by the time
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it reached the cavities. To ensure the numerical simulation modeled the proper flow

conditions, a fully developed flow was specified at the inlet boundary of the compu-

tational domain. It was found that numerical simulations using the fully developed

condition predicted a dominant frequency approximately 1.4 kHz higher than using

a uniform flow inlet condition. The fully developed inlet boundary condition was

used for the remainder of the study.

4.1.2 Grid Convergence

Although the flow solver used herein was unstructured, the domain was dis-

cretized using an entirely structured grid. Cells were clustered near the boundaries

and along the top of the cavities to capture the larger gradients present in the bound-

ary layers and shear layer. The cell size along the walls was specified such that the

y+ number was less than 1.4. The growth rate of the cell height in the direction

normal to the wall was 1.3.

Table 4.1: Details of grids used in convergence test.
Grid 1 Grid 2 Grid 3

I1 45 90 180
I2 60 120 240
J1 25 50 100
J2 40 80 160

Total Cells 5766 23826 96846
Total Nodes 11952 48502 195402

A grid convergence test was carried out to ensure that the flow solution was

independent of the grid size. Grid independence was determined by comparing the

predicted lock-in (or dominant) frequencies. The dominant frequency was obtained

by measuring the pressure time history at several probe locations in the domain and
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then performing a Fourier transform to determine the peak frequency of oscillation.

The probe locations are shown in Fig. 4.1.

The grid convergence test was conducted using three grids shown in Table 4.1.

For each subsequent grid, the number of nodes along each boundary was doubled.

Variables I1, I2, J1 and J2 denote the number of nodes corresponding to the locations

shown in Fig. 4.1. Figure 4.2 shows a plot of the dominant frequency versus total

number of nodes. As the number of nodes increases and the grid is refined, the

dominant frequency converges to a value near the value recorded from the experiment.

Table 4.2 shows a summary of the results. Grid 2, shown in Fig. 4.3, was considered

a good compromise between solution accuracy and computational cost and was used

for the remainder of the study.

It should be noted that the experimental investigation, which had several hundred

cavities, showed two dominant frequencies at Mach 0.17: 15.62 and 21.75 kHz. These

dominant frequencies corresponded to the second and third mode, m, in Rossiter’s

formula (1.2).

Table 4.2: Dominant frequencies in experiment and using RANS solver.
Dominant Frequency [kHz]

Experiment 21.75
Grid 1 16.22
Grid 2 20.95
Grid 3 22.76

4.1.3 RANS vs. LES

To verify the RANS model, large-eddy simulations (LES) were performed using

similar mesh and boundary conditions. These LES computations were performed
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Figure 4.2: Grid convergence: dominant frequency vs. total number of nodes.
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Figure 4.3: Grid 2 - detail of the cavity region.

using the commercial code FLUENT, Version 6.3. A second-order implicit scheme

was used with a least-squares cell based method to calculate the gradients. Bounded

central differencing was used to discretize the governing equations. The sub-grid

scale turbulent viscosity was modeled using the dynamic kinetic energy subgrid-

scale model [99]. The pressure, momentum and sub-grid kinetic energy variables

were relaxed using the factors 0.3, 0.7, and 0.8, respectively. To capture the physics

of the cavity flow, the simulations were run using a time step of 10−7 seconds.

Figure 4.4 shows the pressure contours generated by the RANS and LES solvers

for a flow with a Mach number of 0.17 at the leading edge of the cavity. The vortex

(A) located at approximately 60% of the cavity length rises the same distance above

the cavity opening using both simulation methods. The dipole (B) which is formed

at the trailing lip of the cavity is shown to be in very nearly the same phase. This

shows that LES and RANS simulations qualitatively agree well and capture the same
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Figure 4.4: Pressure contours with vortex A and dipole B: (a) LES (b) RANS
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salient features of the flow.

Velocity profiles are shown in Fig. 4.5 for five evenly spaced locations through the

cavity. These profiles are for the same flow and time as the snapshots in Fig. 4.4. The

velocity profiles produced with the LES and RANS simulations are nearly identical

except near the bottom of the cavity.

Figure 4.6 shows a comparison of the pressure time history for point 3 as indi-

cated in Fig. 4.1. The wavelengths of the periodic signal produced by the LES and

RANS methods are nearly identical and the amplitudes match well. The frequency

distribution is shown in Fig. 4.7. Both plots show a dominant frequency just above

20 kHz as well as a strong harmonic frequency above 40 kHz. The dominant fre-

quency of the LES simulation was 21.80 kHz while the RANS simulation was 20.94

kHz. This shows good quantitative agreement between the two models.

Numerical simulations using RANS and LES solvers produce very similar results.

However, the computational time required by the RANS solver was more than one

order of magnitude smaller than that of the LES solver. As a result, the RANS

solver was used for the remainder of the study.

The RANS simulations were run on a 3 GHz Quad-Core Intel Xeon processor.

The CPU time required was approximately 7×10−5 seconds per node per iteration

while using the second-order accurate scheme. The simulations were each run for

approximately 120k iterations using a CFL number of 3.5. The average residuals

were all less than approximately 10−5.

4.1.4 Single Cavity Channel Flow

Figure 4.8 shows a series of pressure contours illustrating a complete cycle of the

cavity flow mechanism described above. A vortex is shed from the leading edge of

the cavity and increases in magnitude as it propagates along the shear layer. As
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Figure 4.5: Velocity profiles generated with LES and RANS.
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the vortex approaches the trailing edge of the cavity, a dipole is formed releasing an

acoustic wave. As the original vortex impinges on the trailing edge, a second vortex

is shed. Figure 4.9 shows the pressure contour for a moment in the feedback cycle

where both the vortex and dipole are easily observable. The vorticity distribution

for the same moment is shown in Fig. 4.10. The influence of the vortex on the shear

layer is apparent.

Simulations using the flow conditions described above, for a cavity with a length

and depth of 3.175 mm and a channel height of 0.7112 mm, predicted a dominant

frequency of 20.95 kHz. This compares well with the experimental result of 21.75

kHz. This shows that, even though the flow domain was significantly simplified, the

numerical simulations were able to accurately capture the important flow features

and their interactions, and to accurately predict the dominant frequency.

4.1.5 Determination of Empirical Values

In this study it was found that Rossiter’s formula (1.2) as reported in litera-

ture [13, 27] was not able to accurately predict dominant frequencies. It was believed

that the error was due to the influence of the opposing wall of the channel. This

section presents a modification to Rossiter’s formula to allow for prediction of dom-

inant frequencies for cavity flow within a channel. Numerical simulations showed

that the feed-back mechanism for cavity channel flows was the same as that used to

derive Rossiter’s formula. For this reason the form of Rossiter’s formula remained

valid while only the value of one empirical variable was modified.

The empirical term γ can be physically understood as a phase shift between

the shear layer oscillations and the acoustic waves. In past studies, the value has

consistently been found to be 0.25. The value of γ = 0.25 was also found herein

to accurately predict dominant frequencies for cavities in a channel. Therefore, the
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Figure 4.8: Pressure contours at various times within a cycle.
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Figure 4.9: Snapshot of pressure contours for channel cavity flow.
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Figure 4.10: Snapshot of vorticity contours for channel cavity flow.
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value for γ was not modified.

The empirical term κ can be physically understood as the ratio between the

propagation speed of the vortices and the freestream velocity. Originally, Rossiter

found the value for κ by fitting the equation to experimental results. Using CFD,

however, the position of the vortices can be directly tracked throughout a given cycle.

The velocity is then easily calculated giving the κ ratio. Reported κ values for open

cavity flow range from 0.57 by Larcheveque et al. [27] to 0.66 by Rossiter [13]. Using

the technique described above, the authors found the κ ratio to be 0.52.

Rossiter’s formula assumes that the velocity of the vortices remains constant

throughout the length of the cavity. Simulation results clearly shows this is an

approximation of a more complicated phenomenon. Figure 4.11 shows the velocity

of a vortex with respect to its position within the cavity. The velocity is normalized

against the free stream velocity and the position is normalized against the cavity

length. The vortex begins with a velocity near zero before it is shed from the leading

edge of the cavity. As the vortex convects downstream, its normalized velocity

increases to a peak value of around 0.63 near 70% of the cavity length. The vortex

then slows down before impinging on the trailing edge of the cavity. Averaging the

normalized vortex velocity across the length of the cavity yields a κ value of 0.52.

Figure 4.12 shows pressure variation as a function of frequency for two Mach

numbers at the cavity leading edge, 0.166 and 0.183. The pressure variation was cal-

culated using the RANS solver results at the points 2, 3 and 4 shown in Fig. 4.1. All

points predict the same dominant frequency: 23.68 kHz for Mach 0.166 and 26.32

kHz for Mach 0.183. The dominant frequency was also calculated with Rossiter’s

formula (1.2) using the third mode, m=3. Two values of κ constant were used:

Rossiter’s κ=0.66 and the value calculated herein for channel flows, κ=0.52. Fig-

ure 4.12 shows a good match between the dominant frequency predicted by the RANS
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Figure 4.11: Vortex convection velocity as a function of cavity location.
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solver and Rossiter’s formula with κ=0.52, for both Mach numbers. A summary of

the predicted dominant frequencies is shown in Table 4.3.

Table 4.3: Predicted dominant frequencies: RANS and Rossiter’s formula.
Mach RANS Rossiter’s formula (1.2)

κ=0.52 κ=0.66

0.166 23.68 kHz 23.90 kHz 29.70 kHz
0.183 26.32 kHz 26.14 kHz 32.42 kHz

4.1.6 Multiple Cavity Channel Flow

The hole-pattern stator seal used in the experiments contained several hundred

cavities. To investigate the possible interactions between neighboring cavities, simu-

lations were run using configurations with three, five, and seven cavities. Each cavity

had a length and a depth of 3.175 mm. The channel height was 0.7112 mm. The

distances between cavities were varied between 0.5 and 1.0 mm to assess the cavity

spacing effect on the two-dimensional results [100].

The computational domain of the multiple cavities repeated the grid generated

for the single cavity 3, 5, and 7 times. There were 30 nodes added between the

cavities, referred to as I3 and shown in Fig. 4.13. A summary of the grid sizes for

the multiple cavity domains is shown in Table 4.4.

Table 4.4: Grid sizes for multiple cavity configurations.
Cavities 3 5 7

Total Cells 59718 95610 131502
Total Nodes 121306 194110 266914
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Figure 4.12: Pressure variation vs. frequency.
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Figure 4.13: Computational domain for multiple cavity configuration.

Figures 4.14, 4.15, 4.16, and 4.17 show the pressure variation vs. frequency for

a single cavity and for multiple cavities with a 0.5 mm gap. The dominant frequency

for the single cavity is 15.77 kHz, with no other significant frequencies present. The

dominant frequency for the multiple cavities with 0.5 mm gap remains approximately

15.77 kHz, while higher modes of the dominant frequency are introduced near 45

and 60 kHz. The higher modes become more powerful as more cavities are added.

Figure 4.18 shows the frequency distribution of a geometry with five cavities that

had a gap of 1.0 mm. The dominant frequency remains near 15.60 kHz but higher

modes are no longer present.

The numerical results generated by the RANS and LES solvers properly captured

the dominant frequencies of the cavity channel flow. The agreement between the

RANS and LES solvers was also proven for the velocity and pressure variation. For

a single cavity channel flow the RANS solver predicted 15.77 and 20.95 kHz for

the dominant frequencies, the LES solver predicted 15.11 and 21.8 kHz, while the

experimental data reported 15.62 and 21.75 kHz. It should be noted that the stator
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Figure 4.14: Frequency distributions for single cavity.
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Figure 4.15: Frequency distributions for three cavities with 0.5 mm gap.
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Figure 4.16: Frequency distribution for five cavities with 0.5 mm gap.
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Figure 4.17: Frequency distribution for seven cavities with 0.5 mm gap.
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Figure 4.18: Frequency distribution for five cavities with 1.0 mm gap.
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seal used in the experiment had several hundred cavities.

The agreement between the numerical results and the experimental data is re-

markable considering that the simulation was basically two-dimensional and that

only a single cavity was modeled. This indicates that cross flow and cavity interac-

tions are secondary effects for the dominant frequencies. When multiple cavities were

simulated, the predicted dominant frequencies did not change; however, higher har-

monic frequencies were excited. The numerical simulation showed that the variation

of the freestream Mach number significantly affected the dominant frequency.

4.2 CFD-Perturbation Solver: Validation and Rotordynamic Results

Three test cases were used to demonstrate the capabilities of the time-linearized

RANS solver. The first test case consisted of airflow through a straight, square

channel with a pressure oscillation enforced at the exit. Acoustic waves travel from

the exit, upstream through the channel, and leave the domain at the entrance. The

second case is Stokes’ second problem; a well-known case consisting of fluid excited

only by a wall oscillating parallel to itself. The third case is a straight annular

gas seal with parameters roughly based on the High Pressure Oxidizer Turbopump

(HPOTP) of the space shuttle main engine (SSME). Rotordynamic coefficients for

this case were compared against bulk flow results from Nelson [101]. These cases

were chosen to reflect the internal flows and moving wall effects encountered in gas

seals.

4.2.1 Straight Channel with Oscillating Back Pressure

The domain for the first test case, a straight channel with an oscillating back-

pressure, consisted of a square channel one meter in length and two centimeters in

height and depth. Flow conditions at the inlet and exit were chosen such that the

flow had a Mach number of 0.6 with an inlet total pressure of 129 kPa and an aver-
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age backpressure of 101 kPa. A mesh of 6,400 evenly spaced nodes was used. The

simulation was inviscid and second order accurate in space and time.

Results from the time linearized simulation were compared against results from a

time accurate simulation. The time accurate simulation was run with an oscillating

backpressure with amplitude of 5 kPa and frequency of 7,000 Hz. The simulation

was marched forward in time until a steady state periodic solution was found. For

the time linearized simulation, first a steady solution was found using a RANS solver.

Next, the effect of the oscillating backpressure was accounted for by enforcing the

perturbed pressure at the exit of the channel and using the time linearized CFD code

to find the resulting perturbed flow field. A non-reflecting boundary condition was

used at the channel entrance to allow the acoustic waves to freely leave the domain.

A plot of the instantaneous perturbed pressure field through the length of the

channel is shown in Fig 4.19. The perturbed pressure has been non-dimensionalized

with respect to the amplitude of the enforced oscillation. In this plot fluid is flow-

ing to the right while the wave of interest is traveling to the left. The solid and

dashed lines show the results of the time accurate and time linearized simulations,

respectively. The acoustic wave inherently contains some non-linear effects, which

are captured by the time accurate simulation but cannot be captured by the time

linearized simulation. This accounts for the difference in wavelength between the two

results. Also, the time linearized simulation used a non-reflecting boundary condition

at the entrance of the channel while no such boundary condition was available for

the time accurate simulation, further contributing to disagreement near the channel

entrance. Even with these errors, results from the time linearized method match well

with the time accurate.

The time accurate simulation required a large number of time steps to reach a

periodic steady state. To ensure accuracy of the results, convergence within a set
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Figure 4.19: Comparison of unsteady pressure between time-linearized and exact.
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tolerance must be reached for each time step. This process is very computationally

expensive. The time linearized simulation required only a single non-linear conver-

gence for the steady zeroth order solution, and a single linear convergence for the

unsteady perturbed solution. A speed up of approximately an order of magnitude is

seen when using the time linearized method versus the time accurate.

4.2.2 Oscillating Flat Wall - Stokes’ Second Problem

Stokes’ second problem assumes an infinite wall with a flow field that extends

infinitely away from the wall. To approximate this for the CFD simulations, a domain

was chosen 0.1 meters long with periodic boundary conditions with a solid wall

boundary along the bottom. The height of the domain, 5 cm, was chosen such that

the influence of the moving wall dissipated before reaching the top boundary. A

depth of 1 mm was chosen to enforce the 2D nature of Stokes’ second problem while

using a 3D code. A mesh of 4,500 nodes was used. The nodes were clustered near the

wall to capture viscous effects. Standard atmospheric conditions were enforced at

the boundaries. The simulation was viscous and laminar and second order accurate

in space.

The results from the time-linearized simulation were compared against the exact

solution

u

u0
= exp

(
− y

y∗

)
cos

(
θ − y

y∗

)
(4.1)

where u is the fluid velocity,u0 is the maximum wall velocity, y is the distance from

the wall, y∗ =
√

2ν
ω

, ν is the viscosity, ω is the frequency, and θ = ωt is the phase

angle.

For the time-linearized simulation, a steady zeroth order solution was used with

zero velocity and constant pressure and density at standard atmospheric conditions.

The effects of the oscillating wall were accounted for with the unsteady perturbed
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Figure 4.20: Comparison of flow profiles time-linearized and exact.

grid. The unsteady grid matched the oscillations at the wall and smoothly died out

moving away from the wall.

A plot of the velocity profile from the time linearized simulation at different phase

angles is shown in Fig. 4.20. The exact solution for phase angels 0 and 90 degrees

are also shown. The agreement is very good for all phase angles demonstrating the

ability of the time-linearized CFD code to predict perturbed viscous effects as well

as the effects of the moving mesh.

137



4.2.3 Straight Annular Seal - HPOTP of the SSME

A straight annular seal case was run to validate the time linearized RANS code.

The results from the time linearized CFD-perturbation method were compared against

bulk flow results from Nelson [101]. The parameters for the straight seal used are

roughly equivalent to the hot gas secondary seal of the High Pressure Oxidizer Tur-

bopump (HPOTP) of the space shuttle Main Engine (SSME).

The domain used for the time linearized simulations was a 2 degree slice of a

straight annular seal with smooth surfaces on the rotor and stator. Parameters for

the spatial dimensions of the domain can be found on Table 4.5 along with operating

conditions. For the steady, zeroth order solution, periodic boundary conditions were

used to take advantage of the rotational symmetry. For the unsteady, first order

simulation, the periodic boundary condition included a phase shift for the perturbed

state vector, ~Q1, to ensure the proper axial phase distribution.

Total inlet Shaft rotational Shaft whirl

pressure Backpressure Length Radius Clearance velocity velocity

1.52 MPa 0.65 MPa 6.5 mm 3.25 cm 0.086 mm 30,400 rpm 30,400 rpm

Table 4.5: Parameters for the straight annular seal case.

The steady mesh contained nodes evenly distributed along the axial and annular

directions, and clustered near the solid surfaces to capture the viscous effects. The

unsteady perturbed mesh was defined to match the whirl motion of the rotor at the

inner radius and match the stationary stator at the outer radius. To ensure a smooth

transition, the motion of the mesh varied linearly with the radius in the interior of

the domain. Non-reflective boundary conditions were used at the entrance and exit
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Figure 4.21: Straight seal mesh refinement study.

to minimize spurious waves.

A mesh convergence study was performed for the straight seal case to determine

an adequate spatial refinement. Three mesh refinements were used with each re-

finement level containing twice as many nodes in the axial and radial directions as

the next coarser level. Figure 4.21 shows the average first-order pressure within

the seal plotted against the number of nodes for each mesh. It was determined that

the medium mesh, with 40,000 nodes, offered a good balance between accuracy and

efficiency. All cases run used meshes with the same or similar refinement level as the

medium mesh.

Figures 4.22 and 4.23 show a comparison of the stiffness and damping coefficients,
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Figure 4.22: Direct and cross-coupled stiffness coefficients with varying L/D.
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Figure 4.23: Direct and cross-coupled damping coefficients with varying L/D.
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respectively, between the time linearized solver and Nelson’s bulk flow method [101].

Nelson reported that the values for the direct and cross-coupled inertial coefficients

were negligible for these cases and, therefore, were not reported. The current research

also found this to be true.

Excellent agreement is seen between the bulk flow and time-linearized models

for both the direct and cross-coupled stiffness. Time-linearized cases were run while

varying the length to diameter by a value of 0.05 starting from 0.1 and ending at 0.4.

Nelson reported stiffness values for length to diameter ratios of 0.1, 0.2 and 0.4. A

positive trend is predicted, using either method, for both the direct and cross-coupled

stiffness with a greater effect seen in the direct.

Predictions for the direct and cross-coupled damping coefficients show good agree-

ment between the time-linearized and bulk flow models. As with the stiffness, cases

were run with length to diameter ratios ranging from 0.1 to 0.4 and compared against

reported bulk flow values from Nelson. Both the bulk flow and time-linearized mod-

els showed a positive trend for the direct damping with a similar range of values. A

slightly greater effect was predicted by the bulk flow model. The length to diameter

ratio had very little effect on the cross-coupled damping as predicted by the bulk

flow model while the time-linearized model predicted a positive correlation.

To demonstrate some the ability provided by the time-linearized method, Fig.

4.24 reports the variation of the real and imaginary parts of the first-order pressure

with respect to varying length to diameter ratios. The rotordynamic coefficients

are calculated using first-order forces on the rotor and the forces are calculated by

integrating the first-order pressure. Plots of the pressure, therefore, provide a more

localized breakdown of the effects of varying length to diameter ratio than global

values, such as force or rotordynamic coefficients. Pressure values are plotted against

location along the axis with the location normalized against to total seal length to
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Figure 4.25: Direct and cross-coupled stiffness coefficients with varying pre-swirl.

allow comparison between seals of different lengths. The solid lines show the real

part while the dashed lines show the imaginary.

For all three reported length to diameter ratios, the real part of the first-order

pressure drops from a maximum value near the seal inlet to just below zero near the

outlet. Recall that the first-order pressure is just a perturbed term, so negative values

are physical. The imaginary part remains more constant throughout the length of

the seal than the real part, but still shows a slight drop near the the outlet. The

maximum values for both the real and imaginary parts of the first-order pressures

increase with increasing length to diameter ratios.

A comparison of predicted rotordynamic coefficients between the time-linearized
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Figure 4.26: Direct and cross-coupled damping coefficients with varying pre-swirl.
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and bulk flow methods for a range of pre-swirl ratios are shown in Figs. 4.25 and

4.26. The pre-swirl ratio is the ratio of the rotational flow velocity at the inlet of

the swirl with respect to the rotational velocity of the rotor. Values were reported

by Nelson with pre-swirl ratios of 0.0 and 0.5 with length to diameter values of 0.1,

0.2 and 0.4. Time-linearized simulations were run with a length to diameter ratio of

0.1 at pre-swirl ratios of 0.0, 0.167, 0.333 and 0.5.

The time-linearized and bulk flow models were in excellent agreement for the

direct stiffness at a length to diameter ratio of 0.1. Both methods showed almost

no correlation with pre-swirl. A positive correlation was shown by both the time-

linearized and bulk flow models for the cross-coupled stiffness, with a greater effect

predicted by the time-linearized.

Both the time-linearized and bulk flow models predicted almost no correlation

with respect to pre-swirl ratio for the direct damping coefficient and a slight positive

correlation for the cross-coupled. Predicted values for the damping coefficients were

higher using the time-linearized method, but fell near or within the ranges predicted

by the bulk flow model.

A localized breakdown of the effect of varying pre-swirl ratio on the real and

imaginary parts of the first-order pressure is shown in Fig. 4.27. The real part is

shown with solid lines and the imaginary part is shown with dashed. The pre-swirl

had almost no effect on the real part of the first-order pressure. There is a positive

correlation between pre-swirl ratio and the imaginary part of the first-order pressure.

4.2.4 Stepped Labyrinth Seal

A stepped labyrinth seal case was run to validate the time linearized RANS

solver. The seal geometry and flow conditions were chosen to match tests run by

Wagner et al. [102] at Siemens Energy Sector, Oil and Gas Division. In that work,
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Figure 4.27: First-order pressure for varying pre-swirl.
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Figure 4.28: Details of the geometry of the stepped labyrinth seal (mm).

a full-scale high-pressure test rig was used to measure the rotordynamic coefficients

for an impeller-eye-seal. A time-accurate CFD model was also developed to provide

further insight on the seal dynamics. Experimental measurements and time-accurate

CFD results from Wagner et al. are compared against predictions made by the time-

linearized RANS solver developed here.

The domain used for the time-linearized simulations was a 0.25 degree slice of

a stepped labyrinth annulus seal. A cross-section view of the domain detailing the
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Figure 4.29: Details of the geometry of the cavities of the labyrinth seal (mm).
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geometry are shown in Figs. 4.28 and 4.29. Four teeth, extending from the stator,

separate the seal into an inlet region, three stepped cavities, and a downstream

annulus extending to the right. Figure 4.28 shows the relative positions of each area

of the geometry while Fig. 4.29 details the shape of the cavities. Measurements

in the radial direction are taken from the radius of the rotor in the downstream

annulus region while measurements in the axial direction are taken from the leading

edge of the seal. Table 4.6 provides further spatial parameters along with operating

conditions.

Table 4.6: Geometric and operating parameters for labyrinth seal test case.
Number of tips 4 Rotational speed 15,000 rpm
Tip pitch 4.0 mm Inlet swirl 98.0 m/s
Tip height 4.0 mm Static inlet pressure 2000 kPa
Radial gap width 0.10 mm Inlet temperature 49.7◦ F
Axial tip width 0.20 mm Static outlet pressure 1600 kPa
Radial step height 1.0 mm Gas: nitrogen 28.0 kg/kmol
Diameter under 1st tip 130.44 mm Whirl amplitude 10.0 µm

As with the straight annular seal case, periodic boundary conditions were used for

both the steady, zeroth-order and unsteady, first-order solutions to take advantage

of the rotational symmetry. A phase shift of the first-order state vector, ~Q1, was

enforced to ensure proper axial phase distribution.

The mesh contained 180,000 nodes, clustered near solid surfaces to capture vis-

cous effects. The distance from the surface to the first interior node was carefully

chosen to ensure the y+ number never exceeded 3. The nodes were distributed with

growth rates of at most 1.3. A grid convergence study was carried out and detailed

in Wagner, et al.[102] which resulted in each cavity being gridded with about 2,000
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nodes for each tangential slice. To remain consistent, the grid used here contained

about the same.

Figures 4.30-4.32, show comparisons of the magnitude of the first-order pres-

sure in each of the three cavities between experimental measurements and time-

accurate CFD predictions from Wagner, et al. [102] as well as time-linearized CFD-

perturbation predictions generated by the time-linearized CFD-perturbation method.

Values are shown for a range of excitation frequencies. Stepped labyrinth seals have

very complex flow patterns made up of several distinct pieces working in concert.

Comparing pressures in each cavity, as opposed to an overall force or rotordynamic

coefficient, provides a more detailed breakdown of the flow. Predictions from CFD

can be compared against measured values from each area of the seal and can be

analyzed separately. Extracting these details from the flow is trivial using CFD, but

can be very difficult using an experimental test rig. Pressure measurements from

each cavity can reasonably be made with the test rig and provide good comparisons

for the CFD, detailing the separate areas of the flow.

Values predicted by the time-linearized CFD-perturbation method for all three

cavities agreed very well with measured values at 100 and 200 Hz. The predicted

values, however, remained about constant or dropped for 300 and 400 Hz while

the measured values showed a positive quadratic correlation. Predictions from the

time-accurate CFD method were consistently lower than measured but captured the

quadratic trend better than time-linearized.

The experimental measurements clearly indicate a quadratic relationship with

respect to frequency, most likely due to added inertia from gas trapped in the seal.

The overall magnitude of the perturbed pressures agreed well with measurements

but the quadratic relationship was missed. This suggests the linear approximation

made by the CFD-perturbation method is missing an important contributor to the
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Figure 4.30: Magnitude of the first-order pressure within the first cavity.
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Figure 4.31: Magnitude of the first-order pressure within the second cavity.
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Figure 4.32: Magnitude of the first-order pressure within the third cavity.
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rotordynamic stability for labyrinth seals. To capture the added inertial effects in

labyrinth seals, quadratic terms or even higher should be included in the CFD-

perturbation model.
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5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

A Reynolds-averaged Navier-Stokes (RANS) solver developed in-house was used

to simulate grazing channel flow past single and multiple cavities. The objective of

this investigation was to predict fluid instabilities in hole-pattern stator seals. The

numerical results generated with the RANS solver showed good agreement with those

obtained using a commercial Large Eddy Simulation code. In addition, the numerical

results agreed well with experimental data. Rossiter’s formula, a popular semi-

empirical model used to predict frequencies of hole-tone acoustic instabilities caused

by grazing fluid flow past open cavities, was modified using the RANS solver results to

allow for its application to channel flows. This was done by modifying the empirical

constant κ, the ratio of vortex velocity and the freestream velocity, by tracking vortex

position through a cycle of the flow. The dominant frequencies predicted using the

Rossiter’s formula with the new κ value matched well the experimental data for hole-

pattern stator seals. The RANS solver accurately captured the salient features of

the flow/acoustic interaction and predicted well the dominant acoustic frequencies

measured in an experimental investigation. The flow solver also provided detailed

physical insight into the cavity flow instability mechanism.

An unstructured, fully 3D, Reynolds’ averaged Navier-Stokes (RANS), time-

linearized based CFD-perturbation solver was developed to predict rotordynamic

coefficients for annular gas seals. It demonstrates an improvement over past CFD-

perturbation methods used for turbomachinery by being unstructured, fully 3D and

including turbulent effects. Earlier CFD-perturbation solvers were structured and

2D or semi-3D. This limited the geometries of the seals that were accessible to them.
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With an unstructured and fully 3D solver, virtually any seal geometry may be sim-

ulated. The time-linearized solver, being based on an established full-order in-house

RANS solver, inherits all of the features of the full-order code. The methods used in

development of the time-linearization are robust enough to ensure their applicability

to any new features that may be added to the full-order code. This ensures the

CFD-perturbation method will benefit from any future development of the full-order

in-house RANS solver.

Results were presented for the following test cases: channel with oscillating back-

pressure, Stokes’ second problem—oscillating flat wall, straight seal—HPOTP, and

a stepped labyrinth seal. The results for the time-linearized RANS solver agreed well

with the time accurate RANS solver for the channel with oscillating backpressure

case with slight differences in the acoustic wavelength due to unaccounted non-linear

effects. The time-linearized RANS solver required approximately an order of mag-

nitude less computational effort. Results for Stokes’ second problem matched the

exact solution extremely well, demonstrating the ability of the method to predict

perturbed viscous effects and effects due to the moving mesh. Rotordynamic coeffi-

cients were presented for a straight annular gas seal at conditions roughly matching

the HPOTP of the space shuttle main engine. The results from the time linearized

RANS solver matched well with bulk flow results presented by Nelson [101] for a

varying length to diameter ratio as well as a varying pre-swirl ratio. Overall values

for the first-order pressure in the stepped labyrinth seal matched well with empirical

measurements presented by Wagner, et al. However, the correlation of the first-order

pressures with the excitation frequency did not match indicating the inability of the

time-linearized assumption to capture quadratic effects.
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5.2 Future Work

Research will continue in the analysis of cavity flows and their application to seals.

Currently, only 2D approximations of the cavities have been used. Future studies will

include full 3D simulations with multiple cavity shapes including grooves, cylindrical

holes and hexagonal holes. These 3D cavities contain more complex flow features and

may require a more intricate analytical model than is offered by Rossiter’s equation.

Based on the results presented in this dissertation, the 2D approximation does a

good job capturing the dominant flow features of the 3D cavities. This suggests that

Rossiter’s equation should be at the core of any future analytical models developed

for more complex seal geometries.

Additionally, only a small number of cavities have been used to explore the inter-

action of multiple cavities, which in reality can number in the hundreds or thousands.

Separate cavity flows may interact with one another by way of the sound waves, em-

anating from each cavity, exciting neighboring cavity flows and potentially forcing

the neighbor into a different frequency. The neighbor, in turn, may also excite the

original cavity flow. With hundreds of cavity flows interacting, each seeing a slightly

different local Mach number, a rich and highly complex flow emerges. Simulating this

flow with current computational tools is a daunting task, particularly when complex

cavity geometries are included.

The primary difficulty faced in simulating these complex seal geometries is the

computational cost required to capture the complex flow features. Parallelization

schemes currently being developed in-house and implemented in UNS3D should pro-

vide the computational power to run these simulations.

The primary limitation of the time-linearized based CFD-perturbation solver

presented in this dissertation is the linear approximation as demonstrated by the
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labyrinth seal case. The small perturbation method used to linearize the code may

be continued beyond linear and additional terms may be kept. This would allow the

simulations to capture quadratic, cubic or even higher order effects depending on how

many terms are kept. Because of the nature of small perturbation approximations,

each additional term would generate an additional linear system, similar in form

to the current first-order system. The zeroth-order system would remain the same

and be the only truly non-linear system to be solved. For instance, if three terms

are kept there would be the nonlinear zeroth order system and three linear systems

associated with the first-order, second-order and third-order terms. The additional

linear systems would be solved using the scheme developed in this dissertation. The

would be solved one at a time, in order from low to high. This would also allow a

user to terminate or continue the simulation until a desired accuracy is reached.

To make the CFD-perturbation method fully nonlinear, a harmonic balance ap-

proach should be used. Harmonic balance schemes attempt to solve the non-linear

system using an initial guess, linearized corrections and Newton iterations. They

are commonly used to analyze nonlinear electrical circuits and have also been used

recently to analyze instabilities in turbomachinery [103, 104]. The most difficult

component of a harmonic balance scheme is linearizing the full system, which has

already been done for the time-linearization method presented in this dissertation.

Future work will be done to fit the time-linearized and full-order solvers into the

harmonic balance, Newton iteration framework to produce a fully nonlinear CFD-

perturbation solver.
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