The amount of milk a cow produces depends upon breeding, feeding and management. Harvesting this milk is the most important phase of dairy cow management. Both quantity and quality of milk are affected by the milking process. Health Department regulations require that milk be from healthy cows. Abnormal milk, including milk from cows with mastitis, may not be offered for sale. Tests based on the number of leucocytes in milk are being used to indicate milk from cows with mastitis.

What are leucocytes? They are commonly called white blood cells and are a normal constituent of both blood and milk. These white blood cells are one of the body’s important defenses against infection. When an infection occurs in the body, such as mastitis, large numbers of these cells migrate to the area in an attempt to limit and combat infection. It is generally agreed that the concentration of leucocytes in normal milk is approximately 100,000 per milliliter (ml). Leucocyte counts in excess of 500,00 per ml. are considered indicative of some abnormality. This may include, in addition to mastitis, colostrum milk, stripper milk, or a diseased condition at some other location in the cow’s body.

Most authorities feel that proper installation, maintenance and operation of milking equipment are major factors in preventing and controlling mastitis. For this reason, the Texas Milk Quality Council has developed recommended minimum performance standards for the installation and operation of milking equipment. These standards include:

Vacuum Pump

The vacuum pump should have the following minimum air flow capacities at 15 inches of mercury: (American Standard—approximately 1/2 these measurements).

<table>
<thead>
<tr>
<th>Number of milkers</th>
<th>Air flow (CFM)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bucket (minimum)</td>
<td>Pipeline milkers (minimum)</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>29</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>60</td>
</tr>
</tbody>
</table>

A vacuum tank of from 15 to 30 gallons capacity is recommended for all systems.

Vacuum Regulators

The regulator should have an air-inlet capacity equal to any excess the pump is capable of pumping and maintain a relatively constant vacuum from no-load to full-load operation.

In bucket systems, locate the regulator between the vacuum pump or reserve tank and the first stall cock. In pipeline installations, locate the regulator on the vacuum pump side of the moisture trap near the receiver bowl. Do not place the vacuum regulator in the feed room or other dusty areas. Check periodically for cleanliness and proper function.

Air Flow Piping, Tubing and Fittings

Bucket milkers—The inside diameter and arrangement of all pipes and fittings should be such that the effective pump capacity will not be less than 90 percent of the total pump capacity when
measured at the point in the line most distant from the pump. All stall cocks should permit a minimum of 10 cubic feet of air flow per minute measured at 15 inches of mercury.

Pipeline milkers—Inside diameter of the pipe from vacuum supplier (pump) to milk receiver should be 1 1/2 inches. There should be a moisture trap between the receiver and vacuum pump with inlet and outlet diameter of not less than 1 1/2 inches.

All low points in the vacuum line should be equipped with automatic drain valves.

The main vacuum line to the pulsators should be a minimum diameter of 1 1/4 inches. Note: Do not confuse this with the pulsator line from a master pulsator which may be 3/8 inches in diameter.

Vacuum Stability

Vacuum should be stabilized within 2 inches of mercury at the teat end in all milkers during full milk flow. Alternating pulsators are recommended if vacuum varies over 2 inches inside the milking unit with each pulsation cycle during full milk flow.

Milk Hose and Milk Piping

There should be no filters or other obstructions in milk hose or pipes that will restrict air flow. All milk piping should be of the following sizes to prevent flooding of milk lines if same lines are used to remove air from the milking unit:

- (a) four milkers or less: 1 1/2 inches
- (b) more than four milkers: 2 inches

When four to six units are being used on a 1 1/4-inch line, flooding can be minimized with a double line and a double entry receiving jar. There should be a continuous slope of at least 1 1/4 inches per 10 feet toward the receiver with no risers.

Milk hose length and "lift" to the pipeline should be kept to a minimum. Low lines or weigh jars are recommended whenever possible.

Parlor barns—Milk should not be lifted more than 4 feet in a parlor barn. In heights above 4 feet, jars should be used with the jars at or below udder level. In a weigh jar system, two 1 1/4-inch lines should be used with individual inlets into the receiver. (With two lines, one line removes air from the top of the jar and provides vacuum for the pulsators while the other carries the milk.)

Stanchion barns—The highest point of the pipelines should be no higher than that necessary to maintain the 1 1/2-inch drop per 10 feet to the receiver with no risers.

Pulsation Ratio and Rates

Pulsation should be constant and should not cause unstable vacuum in the teat cup assembly. The pulsator should permit vacuum relief on the teat end for a minimum of 20 percent of the total pulsation cycle.

Teat Cup Liner or Inflation

Teat cup inflation should not crowd against the base of the udder except when milking cows with small teats. The inflation bore should not exceed 13/16 inches in diameter at the widest point, due either to design or use. Design of the inflation should permit complete closure or vacuum relief on the teat end at normal milking vacuum. The milk tube outlet should be of sufficient diameter to permit rapid outflow of milk, or an air vent should be provided in the proximal end of the milk tube to push milk out and prevent flooding in the inflation bore.

Milk Hose and Milk Piping

There should be no filters or other obstructions in milk hose or pipes that will restrict air flow. All milk piping should be of the following sizes to prevent flooding of milk lines if same lines are used to remove air from the milking unit:

- (a) four milkers or less: 1 1/2 inches
- (b) more than four milkers: 2 inches

When four to six units are being used on a 1 1/4-inch line, flooding can be minimized with a double line and a double entry receiving jar. There should be a continuous slope of at least 1 1/4 inches per 10 feet toward the receiver with no risers.

Milk hose length and “lift” to the pipeline should be kept to a minimum. Low lines or weigh jars are recommended whenever possible.

Teat Cup Shell

The shell should be of adequate size and construction to provide free movement of teat cup inflation during operation. The shell should not unduly restrict the flow of milk through the milk tube.

Teat Cup Claw or Receiver Unit

The milk receiving portion of the milking unit should have enough capacity to prevent flooding of the inflation with milk originating from milk hose or unit due to the action of the pulsating inflation and to prevent excessive vacuum fluctuation at the teat end. The claw should be provided with an air vent to allow 1/2 cubic foot to enter per minute, or the milk tubes should be provided with air vents equal to 1/2 cubic foot for four inflations. Claw ferrules should not unduly restrict flow of air or milk due to design or abuse. Note: Ferrules with bent tips obstruct milk flow.

Milking

Positive visual means should be provided to determine when the cow is milked out. This can be done either by use of a visual claw assembly, clear plastic milk hose, or clear milk tubes or inflations.

Parlor barns—The shell should be of adequate size and construction to provide free movement of teat cup inflation during operation. The shell should not unduly restrict the flow of milk through the milk tube.

Stanchion barns—The highest point of the pipelines should be no higher than that necessary to maintain the 1 1/2-inch drop per 10 feet to the receiver with no risers.

Pulsation Ratio and Rates

Pulsation should be constant and should not cause unstable vacuum in the teat cup assembly. The pulsator should permit vacuum relief on the teat end for a minimum of 20 percent of the total pulsation cycle.

Teat Cup Liner or Inflation

Teat cup inflation should not crowd against the base of the udder except when milking cows with small teats. The inflation bore should not exceed 13/16 inches in diameter at the widest point, due either to design or use. Design of the inflation should permit complete closure or vacuum relief on the teat end at normal milking vacuum. The milk tube outlet should be of sufficient diameter to permit rapid outflow of milk, or an air vent should be provided in the proximal end of the milk tube to push milk out and prevent flooding in the inflation bore.

Milk Hose and Milk Piping

There should be no filters or other obstructions in milk hose or pipes that will restrict air flow. All milk piping should be of the following sizes to prevent flooding of milk lines if same lines are used to remove air from the milking unit:

- (a) four milkers or less: 1 1/2 inches
- (b) more than four milkers: 2 inches

When four to six units are being used on a 1 1/4-inch line, flooding can be minimized with a double line and a double entry receiving jar. There should be a continuous slope of at least 1 1/4 inches per 10 feet toward the receiver with no risers.

Milk hose length and “lift” to the pipeline should be kept to a minimum. Low lines or weigh jars are recommended whenever possible.

Teat Cup Shell

The shell should be of adequate size and construction to provide free movement of teat cup inflation during operation. The shell should not unduly restrict the flow of milk through the milk tube.

Teat Cup Claw or Receiver Unit

The milk receiving portion of the milking unit should have enough capacity to prevent flooding of the inflation with milk originating from milk hose or unit due to the action of the pulsating inflation and to prevent excessive vacuum fluctuation at the teat end. The claw should be provided with an air vent to allow 1/2 cubic foot to enter per minute, or the milk tubes should be provided with air vents equal to 1/2 cubic foot for four inflations. Claw ferrules should not unduly restrict flow of air or milk due to design or abuse. Note: Ferrules with bent tips obstruct milk flow.

Milking

Positive visual means should be provided to determine when the cow is milked out. This can be done either by use of a visual claw assembly, clear plastic milk hose, or clear milk tubes or inflations.

Parlor barns—The shell should be of adequate size and construction to provide free movement of teat cup inflation during operation. The shell should not unduly restrict the flow of milk through the milk tube.

Stanchion barns—The highest point of the pipelines should be no higher than that necessary to maintain the 1 1/2-inch drop per 10 feet to the receiver with no risers.

Pulsation Ratio and Rates

Pulsation should be constant and should not cause unstable vacuum in the teat cup assembly. The pulsator should permit vacuum relief on the teat end for a minimum of 20 percent of the total pulsation cycle.

Teat Cup Liner or Inflation

Teat cup inflation should not crowd against the base of the udder except when milking cows with small teats. The inflation bore should not exceed 13/16 inches in diameter at the widest point, due either to design or use. Design of the inflation should permit complete closure or vacuum relief on the teat end at normal milking vacuum. The milk tube outlet should be of sufficient diameter to permit rapid outflow of milk, or an air vent should be provided in the proximal end of the milk tube to push milk out and prevent flooding in the inflation bore.

Milk Hose and Milk Piping

There should be no filters or other obstructions in milk hose or pipes that will restrict air flow. All milk piping should be of the following sizes to prevent flooding of milk lines if same lines are used to remove air from the milking unit:

- (a) four milkers or less: 1 1/2 inches
- (b) more than four milkers: 2 inches

When four to six units are being used on a 1 1/4-inch line, flooding can be minimized with a double line and a double entry receiving jar. There should be a continuous slope of at least 1 1/4 inches per 10 feet toward the receiver with no risers.

Milk hose length and “lift” to the pipeline should be kept to a minimum. Low lines or weigh jars are recommended whenever possible.

Teat Cup Shell

The shell should be of adequate size and construction to provide free movement of teat cup inflation during operation. The shell should not unduly restrict the flow of milk through the milk tube.

Teat Cup Claw or Receiver Unit

The milk receiving portion of the milking unit should have enough capacity to prevent flooding of the inflation with milk originating from milk hose or unit due to the action of the pulsating inflation and to prevent excessive vacuum fluctuation at the teat end. The claw should be provided with an air vent to allow 1/2 cubic foot to enter per minute, or the milk tubes should be provided with air vents equal to 1/2 cubic foot for four inflations. Claw ferrules should not unduly restrict flow of air or milk due to design or abuse. Note: Ferrules with bent tips obstruct milk flow.

Milking

Positive visual means should be provided to determine when the cow is milked out. This can be done either by use of a visual claw assembly, clear plastic milk hose, or clear milk tubes or inflations.

Parlor barns—The shell should be of adequate size and construction to provide free movement of teat cup inflation during operation. The shell should not unduly restrict the flow of milk through the milk tube.

Stanchion barns—The highest point of the pipelines should be no higher than that necessary
In May, 1966, persons interested in the state's dairy industry assembled at Texas A&M University and took the first step toward forming a statewide organization now known as the Texas Milk Quality Council. Membership includes milk producer associations, Dairy Products Institute of Texas, Texas Animal Health Commission, Texas Department of Health, Texas Veterinary Medical Association, city health departments supervising milk sales and all Texas colleges of veterinary medicine and agriculture.

Purposes of the Council are: (1) collect, screen and dispense promptly to all members information regarding new public health rulings, scientific developments and guidelines for improving milk quality; (2) seek to coordinate efforts of all groups concerned with milk quality; (3) encourage and promote needed research; (4) develop evaluation methods for determining results of recommended procedures for improving milk quality; and (5) establish standards in various areas of milk quality control as needed.

One of the first Council actions, through its Committee on Milking Equipment, was to develop recommended guidelines (minimum performance standards) for the installation and operation of milking equipment.
<table>
<thead>
<tr>
<th>Name:</th>
<th>Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location of Dairy:</td>
<td></td>
</tr>
<tr>
<td>Type of Installation:</td>
<td>No. Units: No. Operators:</td>
</tr>
</tbody>
</table>

1. **VACUUM PUMP:** (Make) (Model Number)

<table>
<thead>
<tr>
<th>Pump Capacity</th>
<th>Effective Pump Capacity*</th>
<th>Reserve</th>
<th>Size of Reserve Tank</th>
<th>Size of Drain</th>
<th>Exhaust Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) CFM</td>
<td>(b) CFM</td>
<td>(c) CFM</td>
<td>(d) GAL</td>
<td>(e)</td>
<td>(f)</td>
</tr>
</tbody>
</table>

2. **VACUUM LINES:** (Size)

<table>
<thead>
<tr>
<th>Main Line (Diam.) Length of Line</th>
<th>Tank to Pump (Diam.)</th>
<th>Pump to Receiver (Diam.)</th>
<th>Slope (in. to 10')</th>
<th>Automatic Drains: At Low Points</th>
<th>Restrictions: (Reducers, Unnecessary bends, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) in. ft.</td>
<td>(b) in.</td>
<td>(c) in.</td>
<td>(d) in.</td>
<td>(e)</td>
<td>(f)</td>
</tr>
</tbody>
</table>

3. **VACUUM REGULATOR:**

<table>
<thead>
<tr>
<th>Location</th>
<th>Condition</th>
<th>Is air continuously admitted during milking?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucket: Between Pump and First Stall Cock</td>
<td>Pipeline: On pump side of moisture trap near releaser</td>
<td>Clean</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Clean</th>
<th>Good Repair</th>
<th>Pulsations per minute</th>
<th>Single action or Alternating</th>
<th>Pulsation Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
</tr>
</tbody>
</table>