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[1] The influence of two large-scale circulation patterns (the El Ni~no Southern Oscillation
(ENSO) and the Pacific Decadal Oscillation (PDO)), and the effect of the interdecadal
modulation of ENSO on precipitation in the state of Texas, U.S., was explored. Texas, by
virtue of its size, topography, and geographical location, spans a wide range of climatic
regions. The state is divided into 10 climate divisions. The precipitation pattern in each
division follows different probability distributions. The climate regimes which trigger this
difference are discussed. The seasonal correlation between ENSO and PDO with
precipitation anomaly in each climate division was established. Copula-based models were
developed to examine the dependence structure between the large-scale climate indices and
average monthly seasonal precipitation. The choice of copula is discussed in light of the
dependence structure. The selected copulas were then used to simulate precipitation
anomalies in three climate divisions: one which has a semiarid climate, one located in the
wettest region, and one straddling the subtropical humid and subtropical subhumid regions
of the state. The statistical performance of bivariate models for ENSO and precipitation,
and trivariate models for ENSO, PDO, and precipitation, in simulating precipitation
anomalies were compared. In general, inclusion of PDO was found to improve simulation
results. The most notable improvement was in simulating negative precipitation anomalies
during La Ni~na and negative PDO. The copula models were also tested for their abilities to
predict precipitation anomalies in these three regions. Again, the trivariate models
performed better, especially in predicting droughts due to La Ni~na and negative PDO.
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1. Introduction

[2] Large-scale circulation patterns are known to have a
noticeable influence on precipitation around the globe.
Ropelewski and Halpert [1986] identified regions of coher-
ent response and associated phases between precipitation
and temperature patterns with respect to El Ni~no Southern
Oscillation (ENSO) episodes in North America. Kurtzman
and Scanlon [2007] found a significant increase (decrease)
in precipitation with respect to El Ni~no (La Ni~na) in south-
ern and central U.S. Correlation of precipitation with the

Pacific Decadal Oscillation (PDO) was found to be weaker,
but it nonetheless influences precipitation patterns, espe-
cially when the two phenomena are evolving in the same
phase. On the other side of the Pacific Ocean, the Interdeca-
dal Pacific Oscillation (IPO), in conjunction with other cli-
mate variability patterns including ENSO, have been found
to affect the trends in annual maximum streamflow [Ishak
et al., 2013]. Higher flood risks have been associated with
persistent periods of negative IPO. Thus, monitoring the
state of IPO can help forewarn potential flood risks [Pui
et al., 2011].

[3] It has been shown that PDO modulates the effect of
ENSO; El Ni~no (La Ni~na) during the positive (negative)
phase of PDO leads to stronger climate responses than
when they are evolving in opposite phases [Gershunov and
Barnett, 1998]. Others, however, argue that stronger El
Ni~no and La Ni~na events are a result of the random decadal
variation of ENSO and may even be responsible for the
PDO [McPhaden et al., 2006; Rodgers et al., 2004].

[4] Nonetheless, McCabe and Dettinger [1999] state that
precipitation prediction skills in North America can be
enhanced when information on both ENSO and PDO are
considered. The ability to forecast precipitation with suffi-
cient lead time and a reasonable degree of accuracy, given
the projected state of large-scale circulation patterns, can
be extremely valuable for short-term water resources
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planning and to mitigate the devastating effect of droughts.
A wide range of tools and methods have been developed to
predict precipitation, streamflow, drought indices, and
other hydrologic variables [e.g., Chowdhury and Sharma,
2009; Devineni et al., 2008; Grantz et al., 2007].

[5] In this study, a statistical model is developed to
assess (i) how well ENSO conditions alone can forecast
monthly precipitation, and (ii) if considering both the state
of ENSO and PDO improves precipitation prediction in the
state of Texas. Texas is the appropriate setting for this anal-
ysis as it covers a large area and is subject to a range of cli-
mate—from tropical humid and hurricane prone on the east
side to desert on the west part, with an intermediate sub-
humid tropical region. It cycles through short- and long-
duration droughts, interspersed with periods of above
average precipitation. Precipitation, or the lack thereof,
has often been linked to conditions in the Pacific Ocean
[Ropelewski and Halpert, 1986]. The state of ENSO is a
major determinant : El Ni~no often leads to above average
precipitation and La Ni~na has been associated with major
droughts in the state. Further, PDO has also been shown to
affect local climatic conditions. €Ozger et al. [2009], for
example, using two Ni~no indices and a PDO index, showed
that there is a robust relationship between large-scale circu-
lation patterns and the Palmer Drought Severity Index
(PDSI). The correlation structure was not uniform across
the state; the semiarid regions exhibited higher correlation
than the subtropic regions. Mishra et al. [2011], using
cross-correlation and cross-wavelet analysis, showed that
the maximum cross-correlation as well as the spatial corre-
lation, between the Ni~no 3.4 index, Southern Oscillation
Index (SOI), and PDO with streamflow in Texas varies
from season to season. Winter streamflow extremes were
most influenced by SOI.

[6] This study employs copulas to model the dependence
between ENSO, PDO, and precipitation, since they each
exhibit different marginal behavior. Copulas have been
effectively used to determine the conditional probabilities
and return periods of drought events during different ENSO
states [Wong et al., 2010]. Maity and Nagesh Kumar
[2008] modeled the dependence of two climate variables
(ENSO and the Equatorial Indian Ocean Oscillation
(EQUINOO)) combined into a joint predictor with the
Indian Summer Monsoon using copulas, and were able to
predict rainfall at one station with a high degree of confi-
dence. To our knowledge, a more complex framework with
two predictors (in this case, the state of ENSO and PDO)
and precipitation as response variable has not been
investigated.

[7] The study was divided into the following main sec-
tions. The correlation between ENSO and PDO on precipi-
tation in the 10 climate divisions in Texas were first
assessed separately. The interdecadal modulation of ENSO
by PDO and its effect on precipitation was then examined.
Probability distributions were then fitted to the climate
indices data and to precipitation anomalies in each climate
division. The choice of marginals, with respect to basic sta-
tistical characteristics of precipitation is discussed. Bivari-
ate copula models for ENSO and precipitation, and
trivariate models for ENSO, PDO, and precipitation, were
developed and compared. The choice of copulas is dis-
cussed in light of the dependence structure. The selected

copula was then used to simulate precipitation in three cli-
mate divisions: one which has a semi-arid climate; one
located in the wettest region; and one in the middle, strad-
dling the subtropical humid and subtropical subhumid
regions of the state. Two models, a bivariate, using ENSO
and precipitation, and a trivariate, using ENSO, PDO, and
precipitation, were constructed and compared. Using the
most appropriate copula, precipitation anomalies in these
three distinctly different climate divisions were simulated
using both models and the statistics of the simulated values
were compared with the observations. The copula models
were also tested for their abilities to predict precipitation
anomalies in these three regions.

[8] The paper is structured as follows. Section 2 describes
the study area, which is divided into 10 climate divisions,
and explains how and why the climate changes across the
state. Section 3 describes the data set for precipitation and
climate indices, and section 4 explains the methodology
adopted in this study. In section 5, the influence of ENSO
and PDO on precipitation in each climate division is estab-
lished and a detailed illustration of how the copula model
was developed and validated is provided, followed by the
results and discussion on precipitation simulation and fore-
casting. Physical reasons that explain the marginal and cop-
ula selection are also given. The conclusions drawn from
this study are presented in section 6.

2. Study Area

[9] The state of Texas is the second largest state, with a
total land and inland water area of 691,146 km2, and the
second most populous (25.67 million in 2012), in the U.S.
It extends from latitude 25�500N to 36�300N and from lon-
gitude 93�310W to 106�380W. It has a mean elevation of
519 m; the highest point is the Guadalupe Peak (2668 m),
on the far western part of the state, and the lowest point is
the Gulf of Mexico (sea level), which also forms the south-
eastern boundary. By virtue of its size, topography, and
geographical location, Texas spans a wide range of climatic
regions with a multitude of microclimates [Nielsen-Gam-
mon, 2009]. The eastern third of the state is classified as
subtropical humid and the middle third as subtropical sub-
humid and subtropical steppe, while the western region is
subtropical arid and the north western panhandle area is
continental steppe (Figure 1). On the K€oppen-Geiger cli-
mate classification system (not shown here), the eastern
half of the state is warm temperate, fully humid, with hot
summer (Cfa) while the western half is mostly cold arid
steppe (BSk). The far western tip is arid desert (BWk) and
eastern lower edge, running along the border with Mexico,
is arid steppe, with hot arid temperatures (BSh).

2.1. Climate Divisions

[10] The number and areal extent of climate divisions in
the state of Texas has undergone several iterations; in
1904, the state had seven climatic divisions, which was
reduced to three in 1936, and in 1951, the state was divided
into the current 10 climatic regions (Figure 1) [Griffiths
et al., 1990]. One limitation of the current climate division
is that it does not always reflect homogeneous climate
regions, but has geographical boundaries that match county
boundaries. Furthermore, they are not of equal area;
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climate division 1 is the largest, covering nearly 15% of
the state, and division 10 is the smallest and covers just
over 1%.

2.2. Precipitation Pattern

[11] The average annual precipitation in the state
decreases longitudinally from east (1535 mm at Beaumont)
to west (247 mm at El Paso) at a rate of 100 mm/
�longitude. Violin plots of monthly precipitation in each
climate division are shown in Figure 2. A violin plot is a
boxplot combined with kernel density plots, added on each
side of the boxplot, to show the probability distribution of
the data set. Moving from west to east/southeast across the
state, along with an increase in the median value, more dis-
persion and skewness is noted in the monthly precipitation.
Furthermore, the probability of months with zero precipita-

tion is highest for climate divisions 1 and 5 and lowest for
divisions 4 and 8.

[12] The mean monthly precipitation in each climate
division, along with that for the whole state, is given in Fig-
ure 3. Texas has a very distinct bimodal precipitation pat-
tern; in fact precipitation patterns in climate divisions
located in the subtropical subhumid and subtropical steppe
part of the state (2, 3, 6, 7, and 9) are bimodal, prompting a
bimodal pattern for the state. May is the wettest month fol-
lowed by September. Climate divisions 1 and 5, located in
the continental steppe and subtropical arid zones, respec-
tively, have a unimodal precipitation pattern; November0–
April1 is the dry season and May0–October0 is the wet
season. Wet season rainfall represents 75% of annual pre-
cipitation. High precipitation in July and August is the
consequence of the North American Monsoon (NAM),

Figure 1. Climate divisions and climate regions (Larkin and Bomar [1983]) of Texas.

Figure 2. Violin plots of monthly precipitation in each climate division in Texas. Thick black line and
blue dot shows the 25th and 75th percentile range and median, respectively, and thin black line shows
the 5th and 95th percentile range.
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which can dramatically change the landscape of the arid
southwestern U.S. NAM is triggered by differential warm-
ing between land and the Pacific Ocean, causing the mon-
soon ridge to migrate north and result in a shift in wind
direction from southwesterly to more southeasterly, mark-
ing the onset of NAM. Precipitation is due to low level
moisture surges, carried from the Gulf of California, and
slow upper-level moisture from the Gulf of Mexico. Inter-
annual variability in the monsoon rainfall is not strongly
associated with ENSO [Adams and Comrie, 1997]. How-
ever, El Ni~no (La Ni~na) occurring concurrently with high
(low) phase of the North Pacific oscillation causes a weaker
(stronger) and southward (northward) displaced monsoon
ridge. Such condition delays (advances) the onset of NAM
and below (above) average early summer precipitation is
recorded [Castro et al., 2001]. Climate division 1 is
affected by NAM, but May and June precipitations are the
highest due to the West Texas Dryline [Nielsen-Gammon,

2009]. The dryline is a result of collision between warm
dry air from the desert west and moisture laden air from the
Gulf of Mexico, causing severe thunderstorm on the east of
the dryline. The dryline disappears in the summer as the jet
stream weakens and the monsoon system arises.

[13] The eastern, coastal, climate divisions 4, 8, and 10
have almost uniform monthly mean precipitation, fueled by
a constant supply of moisture from the Gulf of Mexico and
occasional hurricanes in the summer, which can bring con-
siderable amount of rainfall in a short period of time.

3. Data

3.1. Precipitation

[14] Sparse weather records in Texas exist from as early
as 1836, but statewide weather records began in 1895. The
time period considered in this study is January 1900 to
March 2012. Monthly mean precipitation data for each of
the 10 climate divisions in Texas was obtained from the
National Climatic Data Center (NCDC). The monthly val-
ues are equal-weighted averages from stations reporting
both temperature and precipitation within a division. Equal
weightage minimizes any bias that may result from changes
in the number of stations included over time [Guttman and
Quayle, 1996]. Figure 4 gives a plot of monthly precipita-
tion for each division, smoothed with a 13 month centered
moving average window, around the long-term means for
the data set.

3.2. Climate Indices

3.2.1. Southern Oscillation Index (SOI)
[15] ENSO is a coupled ocean-atmosphere phenomenon

associated with changes in the sea surface temperature in
the tropical Pacific and major shifts in the Intertropical
Convergence Zone over the Pacific Ocean. The Southern
Oscillation is the atmospheric component, pertaining to the
large-scale fluctuation in atmospheric mass between the
Indian and Pacific Oceans in the tropics and subtropics
[Trenberth, 1984]. SOI combines the fluctuations in atmos-
pheric pressure between Tahiti (17.5�S, 149.6�W) and Dar-
win, Australia (12.4�S, 130.9�E) into one series. Monthly
SOI data (standardized Tahiti 2 standardized Darwin),
derived following Trenberth [1984], was obtained from the
National Center for Atmospheric Research (NCAR) Cli-
mate & Global Dynamics (CGD) climate analysis section.
Trenberth’s [1984] standardization maximizes the signal-
to-noise ratio. SOI is preferred to other ENSO indices (e.g.,
Ni~no indices) for this study as they exhibit slightly higher
correlations with precipitation (K. Redmond, Classification
of El Ni~no and La Ni~na Winters, available at http://
www.wrcc.dri.edu/enso/ensodef.html).

[16] The correlation between SOI and precipitation in
the southern U.S. is generally negative. Negative correla-
tions, however, affect the types of copulas that can be
employed in this study, as some copulas, e.g., the Archime-
dean copula families, exist in the positive dependence
space. Rotated versions of these copulas can be used to
cover negative dependence, but would nearly double the
number of copulas to be included in the analysis. To cir-
cumvent this hurdle, we created a negative SOI series
(NSOI) by multiplying the SOI values by 21. A plot of
monthly NSOI values is shown in Figure 5. El Ni~no and La

Figure 3. Mean monthly precipitation (in mm) in each
climate division based on data for 1900–2011. Solid black
line represents the monthly mean precipitation for the
whole state.
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Ni~na events are associated with extremes in the NSOI
series. Unlike with the Ni~no 3.4 index (North American
countries reach consensus on El Ni~no definition, available
at http://www.noaanews.noaa.gov/stories2005/s2394.htm),
there is no established definition for ENSO events based on
SOI. Ropelewski and Jones [1987] suggested that ENSO
events can be identified using a 5 month running mean of
NSOI values, with El Ni~no (La Ni~na) defined when the

running mean value is above 10.5 (below 20.5) standard
deviations for 5 months or longer. Kiladis and van Loon
[1988], on the other hand, suggested that ENSO events be
defined when both Sea Surface Temperature (SST) is at
least 0.5�C above mean for three seasons and SOI is nega-
tive and below 21 for the same duration. The plot in Figure
5 shows a 5 month running mean and the 60.5 and 61
thresholds overlain on monthly NSOI indices.

Figure 4. Time series of monthly precipitation for each climate division. The time series has been
smoothed with a 13 month centered running mean filter. The dotted line represents the means for the
data set (mm). The time series were not padded at the ends.
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3.2.2. Pacific Decadal Oscillation (PDO)
[17] Monthly PDO indices for the study period were

obtained from the Joint Institute for the Study of the
Atmosphere and Ocean (JISAO). The PDO index is the
leading principal component from an un-rotated empirical
orthogonal analysis of monthly residuals of the North
Pacific Ocean Sea Surface Temperature Anomaly (SSTA),
poleward of 20�N [Mantua et al., 1997]. The residuals are
the difference between observed anomalies and monthly
mean global average SSTA; hence the index is not affected
by global warming trends.

[18] Figure 5 gives a plot of the monthly PDO indices. The
series was smoothed with a centered 13 month moving aver-
age filter to highlight multidecadal frequencies. Positive (neg-
ative) values indicate warm (cold) phases of PDO. Between
January 1900 and March 2012, 51.4% of the record was
warm months and 48.4% was cold months. There have been
two full PDO cycles in the last century: cool phases lasting
from 1890 to 1924 and from 1947 to 1976, and warm phases
lasting from 1925 to 1946 and from 1977 to 1998 [Mantua
and Hare, 2002; Minobe, 1997]. From 1998, the PDO has
been in a short 4 year cold phase until 2002, a warm phase
lasting from 2002 to 2007, and is currently in a cold phase.

4. Methodology

[19] The influence of climate variability patterns on pre-
cipitation was examined using Pearson correlation. Probabil-
ity distribution functions were fitted to NSOI, PDO, and

precipitation. Copulas were used to model the relationship
between climate indices and precipitation.

4.1. Correlation of ENSO and PDO With Precipitation

[20] Pearson correlation was used to determine the rela-
tionship between climate variability patterns and gauged
seasonal precipitation in each climate division. The correla-
tion coefficient can be used as a statistical test of independ-
ence to help make inferences about the degree of
association between variables. The magnitude and sign of
the correlation coefficient indicate the existence, strength,
and nature of any association [Redmond and Koch, 1991].

4.2. Copula Selection

[21] Simulating and predicting the influence of large-
scale circulation phenomena on precipitation requires
multidimensional modeling of random variables. Multidi-
mensional analyses have traditionally been expressed using
classical multivariate families which assume that the mar-
ginals describing the behavior of the individual random
variables are from the same family as the multivariate dis-
tributions. Moreover, the dependence structure of most
conventional multivariate distributions directly or indi-
rectly assumes linear correlation given through Pearson’s
product-moment correlation coefficient (e.g., bivariate
gamma distributions discussed by Yue et al. [2001]). A cop-
ula, which is due to Sklar [1959], skirts these constraints
and allows univariate margins and dependence structure to
be modeled independently.

Figure 5. Time series of monthly NSOI and PDO index. The NSOI series is overlain with a 5 month
centered running mean filter and 60.5 and 61 thresholds. The PDO series is smoothed with 10 passes of
a 13 month centered running mean filter. The time series were not padded at the ends.
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[22] A copula is a multivariate distribution with all uni-
variate margins being standard uniform U 0; 1ð Þ½ �. Joe
[1997] explains that for an m-variate distribution
F 2 F F1; . . . ;Fmð Þ, with jth univariate margin Fj, there
exists a copula C : 0; 1½ �m ! 0; 1½ � that satisfies

F xð Þ5 C F1 x1ð Þ; . . . ;Fm xmð Þ½ �; x 2 <m (1)

[23] If F is a continuous m-variate distribution function
with univariate margins F1; . . . ;Fm, and quantile functions
F21

1 ; . . . ;F21
m , then

C uð Þ5F F21
1 u1ð Þ; . . . ;F21

m umð Þ
� �

(2)

is unique; otherwise C is uniquely determined on
RanF13 . . . 3RanFm, where RanFj5Fj 21;1½ �ð Þ is the
range of Fj.

[24] The copula C can be considered ‘‘independent’’ of the
univariate margins, then

G yð Þ5C G1 y1ð Þ; . . . ;Gm ymð Þ½ � (3)

is a distribution function if G1; . . . ;Gm are all univariate
distribution functions. The copula can be parametrized by a
single value h, or can be multi-parameter.

[25] Copulas are generally classified into four classes :
Archimedean, extreme value, elliptical, and other miscella-
neous class. In this study, bivariate and trivariate cases of
two copulas from the elliptical class (Gaussian and Stu-
dent’s t with different degrees of freedom) and eight from
the Archimedean class (Clayton, Gumbel, Frank, Joe, BB1,
BB6, BB7, and BB8) were considered. BB1, BB6, BB7,
and BB8 are from the two-parameter families. The two-
parameter families of copula can be particularly useful in
capturing more than one type of dependence, e.g., one
parameter for upper tail and lower tail dependence each, or
one parameter for concordance while the other captures the
lower tail dependence [Joe, 1997].

4.2.1. Marginal Distribution Selection
[26] Marginals were chosen from a suite of theoretical

probability distributions commonly used in hydrology. A
combination of graphical assessment, Q-Q plots, and for-
mal goodness-of-fit techniques were used to compare
observed sample distributions with theoretical distributions
in the selection of the best fitting marginal.

[27] The chi-square goodness-of-fit test was used in
order to discriminate between theoretical distributions. The
chi-square goodness-of-fit test verifies the null hypothesis
that the data follows the specified distribution. The test sta-
tistic is given by:

v25
Xk

i51

Oi2Eið Þ
Ei

2

(4)

where Oi is observed frequency for bin i, Ei is the expected
frequency for bin i, and k is the total number of bins based
on Sturges’ formula ðk5log 2N11Þ. Ei5N F Yuð Þ2F Ylð Þð Þ,
where F is the cumulative distribution function for the dis-
tribution under test, Yu and Yl are, respectively, the upper
and lower limits for class i, and N is the sample size. The
test statistic is distributed as a v2 random variable with
k2p21 degrees of freedom, p being the number of esti-
mated parameters. The test fails to reject the null hypothe-

sis when v2 is less than the chi-square critical value with
k2p21 degrees of freedom and significance level a.

4.2.2. Elliptical Copula
4.2.2.1. Gaussian (Normal) Copula

[28] The Gaussian copula, derived from a multivariate
Gaussian distribution, is perhaps the most popular copula.
It can be expressed as

CRðu1; . . . ; umÞ5UR½U21ðu1Þ; . . . ;U21ðumÞ� (5)

where U is the distribution function of a standard normal
variable Nð0; 1Þ and

P
is the correlation matrix with

mðm21Þ=2 parameters satisfying the positive semidefinite-
ness constraint. UR is the m-variate standard normal distri-
bution with mean 0 and covariance matrix

P
, i.e.,

UR � Nmð0;RÞ [SAS/ETS, 2011].
4.2.2.2. Student’s t Copula

[29] The Student’s t copula can be written as

CHðu1; . . . ; umÞ5tm;R½t
21
m ðu1Þ; . . . ; t21

m ðumÞ� (6)

where H5 m;Rð Þ : m 2 1;1ð Þ;R 2 Rm3m
� �

and tm is the
univariate t distribution with m degrees of freedom. tm;R is
the multivariate Student’s t distribution with correlation
matrix

P
and m degrees of freedom [SAS/ETS, 2011].

4.2.3. Archimedean Copulas
[30] The Archimedean family is the most popular copula

family employed in hydrological analyses because of its
ease of construction and wide range of choices for the
strength of dependence. The general form of the Archime-
dean family is

C u1; . . . ; umð Þ5/21 / u1ð Þ1 � � �1/ umð Þ½ � (7)

where / : 0; 1½ � ! 0;1½ Þ is a strict Archimedean copula
generator function and its inverse /21 is completely mono-
tonic on 0;1½ Þ. The generator is a decreasing function and
is termed strict, and the resulting copula a strict copula,
when / 0ð Þ51 and / 1ð Þ50 [SAS/ETS, 2011]. The depend-
ence parameter h is embedded in the generating function /.

4.2.4. Copula Parameter Estimation
[31] The copula parameter can be estimated via several

methods: the exact maximum likelihood method, the
moment-like method, which is based on the inversion of the
nonparametric dependence measure (e.g., Kendall’s tau),
and the maximum pseudo-likelihood method [Chowdhary
et al., 2011]. The first method can be used if the marginal
distributions are already uniform. The last two methods
require that the observations, xi5ðxi1; . . . ; ximÞ>; i5
1; . . . ; n, are transformed into pseudo-observations, ûi5
ûi1; . . . ; ûimð Þ; i51; . . . ; n, i.e., in the unit hypercube.

ûi; j5 1= n11ð Þð Þrank ðxi; jÞ, where rank xi; j

� �
is the rank,

in ascending order between i51; . . . ; n. Nonparametrically
ranking the joint variates through their respective scale ranks
ensures that the dependence structure is determined inde-
pendently of the marginals [Genest and Favre, 2007]. In this
study, the maximum pseudo-likelihood method was used.
Another appealing advantage of this method is that it yields
smaller mean squared errors [Chowdhary et al., 2011]. For a
copula C u1; . . . ; um; hð Þ, with density c u1; . . . ; um; hð Þ, the
parameter h can be estimated by maximum likelihood:
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ĥ5arg max
h2H

Xn

i51

log c ûi1; . . . ; ûim; hð Þ (8)

4.2.5. Goodness-of-Fit Tests
[32] A combination of graphical and formal goodness-

of-fit tests was employed to select the most suitable copula.
A scatter plot of observed data (the support of the empirical
copula Cm) overlapped upon a set of random samples gen-
erated from copula Chm is an efficient way of visually com-
paring the effectiveness of the fitted copula in capturing the
dependence structure in the empirical data set. Genest and
Favre [2007] suggest that in order to avoid any arbitrari-
ness due to sampling variability, a large sample generated
from Chm is preferred to smaller samples, which may not
display the whole range of the distribution. Too large a
sample, however, may obscure the actual frequency of
occurrence [Chowdhary et al., 2011].

[33] Genest et al. [2009] provide a review of formal
goodness-of-fit tests for copulas. Two tests, the Cram�er-
von Mises and Kolmogorov-Smirnov tests, were used to
test the adequacy of copula models and differentiate
between the suitability of each copula in capturing the
dependence structure. The expressions for the Cram�er-von
Mises and Kolmogorov-Smirnov are, respectively, given as
[Genest et al., 2006]
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where Km wð Þ5
ffiffiffiffi
m
p

Km wð Þ2Khm wð Þf g, Khm wð Þ5P Chm U ;ðf
VÞ � wg, and khm wð Þ5dKhm wð Þ=dw.

[34] These tests can be employed for any type of copula.
The p values associated with test statistics were computed
by bootstrapping. A stepwise methodology is provided by
Genest and Favre [2007].

5. Results and Discussions

[35] The results and discussion section is structured as
follows. We first show the influence of ENSO and PDO on
precipitation in each climate division and discuss the inter-
decadal modulation of ENSO’s impact on precipitation.
We then present the choice of marginal distributions for
NSOI, PDO, and precipitation and examine how the proba-
bility distribution function for precipitation changes as a
result of the climate prevailing in each climate division.
The copula selection procedure is presented in section 5.3.
The bivariate case for average June0–November0 NSOI and
cold season average precipitation anomaly for climate divi-
sion 8 is used for illustration purposes. Finally, the results
for simulation and validation of the relationship between
climate indices and precipitation based on the chosen copu-
las are presented.

5.1. Influence of ENSO and PDO on Precipitation

[36] The influence of ENSO and PDO on both cold (Octo-
ber0–March1) and warm (April0–September0) season aver-
age monthly precipitation anomalies was examined in each
of the 10 climate divisions (The notation Month0 refers to
months of the ENSO year and Month1 refers to months of

Figure 6. Plots of correlation coefficients between average June0–November0 NSOI and mean cold
season (October0–March1) precipitation anomalies and average cold season PDO index and mean cold
season precipitation anomalies.
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the year following ENSO). October is the beginning of the
hydrological year in Texas and the cold and warm seasons
thus splits the water year in two 6 months periods.

[37] Redmond and Koch [1991] found an optimum lag of
4 months between SOI and precipitation in the western
U.S. We note a statistically significant positive correlation
between both average monthly June0–November0 NSOI
and average monthly cold season PDO on the one hand,
and mean monthly cold season precipitation anomalies on
the other (Figure 6). The correlation between warm season
indices and precipitation is negligible, consistent with pre-
vious observations [e.g., Khedun et al., 2012; Kurtzman
and Scanlon, 2007; Ropelewski and Halpert, 1986], and
will therefore not be pursued further in this study.

[38] The correlation structure for NSOI is consistently
above 0.4, except for climate division 1, across the whole
state. The correlation structure for PDO reveals two
regions. Climate regions 1 to 4 and 8, covering the top half
of the state, have a lower correlation, ranging between 0.2
(division 4) and 0.4 (division 2), while the lower south-
western half of the state has a correlation greater than 0.4.
Climate division 8 has the highest correlation with NSOI
(0.5) but switches to the region exhibiting lower correlation
with PDO.
5.1.1. Interdecadal Modulation of ENSO’s Impacts

[39] The effects of ENSO and PDO on precipitation pat-
terns are not independent; in fact PDO modulates the effect
of ENSO, leading to stronger climate responses when El
Ni~no (La Ni~na) is coincident with the positive (negative)
phase of PDO. When the indices are evolving in opposite
phases (i.e., El Ni~no and negative PDO or La Ni~na and pos-
itive PDO), climate signals may be weaker, spatially inco-
herent, and unstable [Gershunov and Barnett, 1998].

[40] The number of times the average June0–November0

NSOI and average cold season PDO index were in different
states were computed (Figure 8b). El Ni~no (La Ni~na) events
are deemed stronger when NSOI is greater (less) than 11
(21) and moderate when the index is between 10.5 and
11 (20.5 and 21) (based on K. Redmond, Classification

of El Ni~no and La Ni~na Winters, available at http://
www.wrcc.dri.edu/enso/ensodef.html). For the period of
record, there is a higher number of stronger El Ni~no than
La Ni~na events. Also, the ratio of moderate to stronger
events is 1:3, which indicates that the index rarely hovers
between 10.5 and 11 or 20.5 and 21. In fact, once initi-
ated, it eventually develops into a significant El Ni~no
(La Ni~na) event. The record is split into a combined total of
54 years of stronger El Ni~no or La Ni~na, and 58 neutral
years (21<NSOI< 1), implying that ENSO was either
active in one of the two conditions or neutral about half the
time.

[41] The average cold season PDO has an almost equal
number of positive and negative cases. When the state of
NSOI and PDO are considered together, an equal number
of El Ni~no events coincident with positive PDO, and La
Ni~na with negative PDO, are recorded. Also, the number of
El Ni~no (La Ni~na) during positive (negative) PDO is higher
than when they are in counter phase. Finally, more (less) El
Ni~no (La Ni~na) events during negative (positive) PDO is
noted.

[42] In order to verify the occurrence of positive (nega-
tive) precipitation anomalies occurring during El Ni~no (La
Ni~na) events, and corresponding PDO phases, mean cold
season precipitation anomalies were plotted against average
June0–November0 NSOI (Figure 7a). Climate division 8 is
chosen for illustration, as it is unique in that it has the high-
est correlation with NSOI and falls within the region hav-
ing relatively lower correlation with PDO. The dashed lines
represent the 61 thresholds above (below) which strong El
Ni~no (La Ni~na) conditions are observed. Positive (negative)
precipitation anomalies occurring during El Ni~no (La Ni~na)
were identified in Figure 7a and plotted against cold season
PDO (Figure 7b). It can be clearly seen that El Ni~no (La
Ni~na) brings above (below) average precipitation, but there
is no distinct pattern during the neutral phase of NSOI.
21% of the 112 years of data are in the El Ni~no-positive
anomaly region and 18% are in the La Ni~na-negative
anomaly region. When the precipitation events are

Figure 7. Scatter plot of average monthly cold season (October0–March1) precipitation anomaly ver-
sus (a) average June0–November0 NSOI and (b) average cold season PDO indices for climate division 8.
Positive (negative) anomalies during El Ni~no (La Ni~na) events are shown in blue (red). The hit scores

for blue and red events in the four quadrants of Figure 7b are
8 16

16 4

 !
.
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transposed on the PDO plot, the overall precipitation pat-
tern is no longer as distinct, which explains the lower corre-
lation. It is nonetheless clear that there is a higher
frequency of above (below) average precipitation when the
indices are evolving concurrently than in opposite phases.

[43] The change in precipitation for each climate divi-
sion, given different phases of NSOI and PDO, were
computed and plotted along with boxplots of the average
monthly cold season precipitation (Figure 8). Results
confirm the hypothesized interdecadal modulation of
ENSO’s impacts, and also reveal that the percentage
change in precipitation anomalies is not uniform across
the state.

[44] In climate division 1, for example, when only El
Ni~no events are considered, irrespective of the phase of
PDO, an average increase of 5.6 mm (equivalent to 26%
of the long-term mean) is noted. When only La Ni~na
events are considered, again irrespective of the phase of
PDO, the average deficit is 5.7 mm (26%). When both
NSOI and PDO are positive the average increase in rain-
fall is 7.5 mm (34%) and when both indices are negative
the average deficit is 6.0 mm (27%). Across the state, an

increase ranging between 16% (division 4) and 26%
(division 1) is registered during El Ni~no events, and a
decrease ranging between 18% (division 4) and 35%
(division 6) is recorded during La Ni~na events. A more
modest increase (decrease) is noted when PDO is positive
(negative). When El Ni~no (La Ni~na) occurs concurrently
with positive (negative) PDO, the change in precipitation is
considerably greater. El Ni~no events during negative PDO
causes a small increase in precipitation, while La Ni~na
events during positive PDO still result in considerable rain-
fall deficits, implying that irrespective of the phase of PDO,
La Ni~na events can often have an adverse effect on water
resources in the state. Spatially, the percentage change in
the wetter eastern climate divisions is less than in the drier
western climate divisions.

5.2. Marginal Selection

5.2.1. NSOI and PDO
[45] Marginal distribution functions for the average

June0–November0 NSOI and the average October0–
March1 PDO indices were selected from over 25

Figure 8. (a) Boxplots of average monthly cold season (October0–March1) precipitation in each climate
division in Texas and (b) change in cold season (October0–March1) average precipitation for different
phases of average June0–November0 NSOI and average cold season PDO index. Colors in Figure 8b match
boxplot colors in Figure 8a. Numbers in parentheses are the number of such events in the data set.
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theoretical probability distributions. Based on their chi-
square statistics, it was found that NSOI and PDO can be
appropriately modeled by a GEV (Generalized Extreme
Value) and a Weibull distribution, respectively.

[47] The maximum likelihood estimates of the parame-
ters for the GEV and Weibull distributions are given
in Table 1. Figure 9 shows the histograms for average
June0–November0 NSOI and average October0–March1

PDO values with their respective marginal models and Q-Q
plots.
5.2.2. Average Monthly Cold Season Precipitation

[48] Marginal distributions for average monthly cold sea-
son precipitation anomalies for each climate division were
selected from the same suite of probability distributions
used for NSOI and PDO. Table 1 gives the selected model,
associated maximum likelihood estimates of its parameters,
chi-square statistic, and p value for each climate division.
Figure 10 is a plot of the histogram of the average cold sea-
son precipitation anomaly and selected marginal model for
each climate division.

[49] It is interesting to note that the selected marginals
vary with climatic conditions prevailing in each region.
As evidenced by the plot of the marginal distributions,
average cold season precipitation in all climate divisions,
except 4, are positively skewed, with the median value
being lower than the mean, implying that precipitation is
generally below normal, which is typical for the southern
U.S. Cold season precipitation pattern in both the western
arid climate divisions 1 and 5, and eastern climate divi-
sions 4, 8, 9, and 10, follow extreme value distributions.
Western climate divisions follow shifted Weibull distri-
butions (a.k.a. the Extreme Value Type III), while eastern
climate divisions follow the GEV distribution. Note that
the Weibull distribution is a special case of GEV, for
which the shape parameter n< 0. The standard deviations
of average cold season precipitation anomaly for climate
divisions 1 and 5 (r1,5), and consequently the shape
parameters of the fitted distributions, are relatively
smaller compared to that of climate divisions 4 and 8,
since precipitation, during the cold season, is minimal in
west Texas when NAM, the major source of moisture for
the region, is not active. Also, the distributions for 1 and
5 are more peaked, i.e., higher kurtosis, implying less
variability in the cold season precipitation across the
years.

[50] The range of average precipitation in the east is
much wider, as indicated by the large standard deviation
(3–4 times r1,5), and the fitted distribution becomes
broader. This is due to their proximity to the Gulf of Mex-
ico, which is a perennial source of moisture. Climate divi-
sion 4, which registers the highest average cold season
precipitation, is far enough north to be affected by winter-
time disturbances and has enough moisture for precipitation
when the disturbances arrive [Nielsen-Gammon, 2009]. Cli-
mate divisions 6 and 7, in the lower central part of the state,
follow lognormal distribution, while climate divisions 2
and 3, in the upper central portion, follow normal and
gamma distributions, respectively. The standard deviations
of climate divisions 3 and 7, which are further east, are
larger, and the probability of months without rainfall is rel-
atively low, again due to the influence of the Gulf of
Mexico.

5.3. Copula Selection

5.3.1. Copula Parameter Estimation
[51] Precipitation anomalies exhibit a positive associa-

tion between NSOI (and PDO) in Texas (Figure 6). Note
that SOI was converted to NSOI to ensure positive
association and thus reduce the number of potential copu-
las. For climate division 8, the sample estimates of the
Pearson correlation coefficient, Kendall’s tau, and Spear-
man’s rho are 0.54, 0.35, and 0.51, respectively, with cor-
responding p values of 1.22e-09, 3.44e-08, and 8.89e-09.

Table 1. Marginal Distributions, Parameters, Chi-Square Statis-
tics, and p Values for Average June0–November0 NSOI, Average
Cold Season (October0–March1) PDO Index, and Average Cold
Season (October0–March1) Precipitation Anomalya

Variable Distribution Parameters Chi-square p Value

Climate index
NSOI GEV n̂ 5 20.31 0.90 0.99

r̂ 5 1.38
l̂ 5 20.32

PDO Weibull â 5 5.99 1.81 0.94
b̂ 5 4.70

ĉ 5 24.40
Climate division
1 Weibull â 5 1.85 4.02 0.67

b̂ 5 19.33
ĉ 5 217.15

2 Normal r̂ 5 13.48 2.06 0.91
l̂ 5 0.02

3 Gamma â 5 48.08 2.43 0.88
b̂ 5 3.18

ĉ 5 2152.93
4 GEV n̂ 5 20.31 3.37 0.76

r̂ 5 28.00
l̂ 5 29.33

5 Weibull â 5 2.12 8.18 0.23
b̂ 5 16.33

ĉ 5 214.47
6 Lognormal r̂ 5 0.24 0.63 1.00

l̂ 5 4.28
ĉ 5 274.07

7 Lognormal r̂ 5 0.21 3.31 0.77
l̂ 5 4.73

ĉ 5 2115.66
8 GEV n̂ 5 20.18 4.23 0.65

r̂ 5 26.47
l̂ 5 211.14

9 GEV n̂ 5 20.15 2.20 0.90
r̂ 5 13.17
l̂ 5 25.90

10 GEV n̂ 5 20.07 0.61 1.00
r̂ 5 13.00
l̂ 5 26.64

aGamma: f ðxÞ5 ðx2cÞa21

baCðaÞ exp ð2ðx2cÞ=bÞ where a, b, c and are the
shape, scale, and location parameters, respectively. GEV:
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The association between the two variables was further
explored graphically through Kendall’s plot (K-plot) and
chi-plots (Figure 11). A K-plot is equivalent to a Q-Q
plot, but where data points falling on y5x diagonal indi-
cate that u1 and u2 are independent and points above
(below) the diagonal line indicate positive (negative)
dependence. Chi-plots [Fisher and Switzer, 2001] are
based on the chi-square statistics for independence in a
two-way table [Genest and Favre, 2007] and ki is a mea-
sure of the distance of the points u1;i; u2;i

� �
from the cen-

ter of the data, defined by its median ~u1; ~u2ð Þ. In case of
no relationship between the two variables, 95% of the data
points should fall within the two control lines. Both the K-
and chi-plots suggest significant positive dependence. Fur-
ther, the chi-plots for the lower and upper tails (where
lower (upper) tail is defined for those u1;i and u2;i values
that are smaller (larger) than their respective means), sug-
gest that the data exhibit both lower and upper tail
dependence. Moreover, stronger lower than upper tail
dependence is also visible from the plots, which implies

that the influence of ENSO during La Ni~na is more appa-
rent than during El Ni~no.

[52] Based on information garnered from the correlation
coefficients and graphically illustrated dependence struc-
ture, sets of one- and two-parameter copulas were chosen
as potential candidates for modeling the relationship
between average June0–November0 NSOI and average cold
season precipitation anomalies. The generating function,
parameter space, relationship of nonparametric dependence
measure, and lower and upper tail dependence for
the bivariate form of each copula are given in Table 2
[Schepsmeier and Brechmann, 2013].

[53] The dependence parameter(s) for each copula was
(were) determined using the maximum pseudo-likelihood
method, which ensures that the dependent structure is deter-
mined independently of the margins. The corresponding Ken-
dall’s tau values, maximized log-likelihood values (LLmax)
and Akaike and Bayesian Information Criteria (expressions
for AIC and BIC, respectively, are given as footnotes to
Table 3) were also computed.

Figure 9. Histograms and Q-Q plots of average June0–November0 NSOI and average October0–
March1 PDO index. NSOI follows GEV and PDO follows Weibull. Negative (positive) values are
shown in blue (red).
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5.3.2. Goodness-of-Fit Tests
[54] For each copula considered, two formal goodness-

of-fit tests were performed: Cram�er-von Mises and
Kolmogorov-Smirnov. Table 3 gives the test statistics and
associated p values, computed using bootstrapping based on
random samples of size 1000, except for the Gaussian cop-
ulas, where computational constraints limited the sample
size to 100. Four copulas (Gumbel, Frank, BB 6, and BB
8) can be rejected as viable models at 5% significance
level. Based on AIC and BIC, the Gaussian, Student’s t,
and Clayton copulas appear to be most suited to model the
dependence structure between average June0–November0

NSOI and average cold season precipitation anomaly in cli-
mate division 8. Note that since for large degrees of free-
dom, the Student’s t copula tends to a Gaussian copula,
only the latter and Clayton copulas will be analyzed
further.

[55] Figure 12 allows a visual comparison of the
observed data with random samples generated from the
Gaussian and Clayton copulas. Positive (negative) precipi-
tation anomalies occurring during El Ni~no (La Ni~na) are
identified as in Figure 7a. Note that the extreme lower left
data point is associated with the 1917 drought, where the
average June0–November0 NSOI was 23.82 and associated
average cold season precipitation anomaly was 251.59
mm, i.e., coordinates (23.82, 251.59). By contrast, the
recent 2011 drought has coordinates (22.62, 241.43).

[56] The spread of the two copulas are visibly different ;
even though they both envelop the observed data, they
exhibit different tail behaviors. Lower and upper tail
dependence in the Gaussian copula is weak, whereas the
Clayton copula exhibits strong lower tail and weak upper
tail dependence. The relationship between average June0–
November0 NSOI and average cold season precipitation
anomaly does exhibit some degree of lower tail depend-
ence, especially when the major drought events are consid-
ered (1917 (23.82, 251.59), 1950 (22.28, 238.04), 1975
(22.83, 230.42), and 2011 (22.62, 241.43)), a feature
which, graphically, makes Clayton a more attractive cop-
ula. However, based on analytical goodness-of-fit results,
the Gaussian copula is deemed most suited for this climate
division.
5.3.3. NSOI and Precipitation Anomaly

[57] Following the steps illustrated in sections 5.3.1 and
5.3.2, copulas were fitted to all 10 climate divisions in the
state. Table 4 gives the most suited copula and associated
parameter and goodness-of-fit statistics for each climate
division.

[58] Most copulas exhibit similar forms in their central
part but differ significantly in the tails, where extreme val-
ues are located. Given that each climate division is subject
to different climatologic conditions and subject to a number
of small- and large-scale meteorological regimes, the
degree of dependence with NSOI varies, hence the

Figure 10. (a) Histogram of average cold season (October0–March1) precipitation anomaly and (b)
plot of selected marginal distribution for each climate division.
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difference in the selected copula. It is important to note that
since the maximum pseudo-likelihood method was used for
the copula selection, the chosen copula is independent of
the marginals and solely due to the dependence structure.

[59] Cold season precipitation in the western part of the
state, as shown in section 5.2.2, is minimal and not highly
variable given the limited sources of moisture. Further, the
correlation of average cold season precipitation with aver-
age June0–November0 NSOI is relatively small. The most
suited copula for modeling the dependence in climate divi-
sions 1 and 5 are Gaussian and Frank, respectively. The dif-
ference between the Gaussian and Frank copulas is in the
intermediate area, where the Frank copula exhibits a stron-
ger dependence, but at the tails, the Gaussian copula tends
to be stronger. The Gaussian copula is also the most suita-
ble copula for climate divisions 4, 8, and 10, which are
located on the wettest part of the state. Despite strong cor-
relation between NSOI and precipitation for these climate
divisions, there is no distinct tail dependence, which leads
us to infer that other meteorological effects, most likely a
result of their proximity to the Gulf of Mexico, may tend to
mask drought events that may be due to La Ni~na.

[60] The copula deemed suitable for modeling the
dependence between NSOI and precipitation in climate
divisions 2, 3, 6, 7, and 9, located in the central part of the
state, is Clayton. Clayton’s h! 0 indicates that the mar-
ginals are independent, and as h! 1, the copula attains

the Fr�echet upper bound. It does not, however, attain the
Fr�echet lower bound. The Clayton copula exhibits a strong
lower tail dependence, but a relatively weak upper tail
dependence, which implies that there is a strong association
between negative NSOI (La Ni~na) and precipitation condi-
tions, while the association between positive NSOI (El
Ni~no) may be either weaker or obscured by local meteoro-
logical conditions.

[61] Finally, it is surprising to note that two-parameter
copulas, considered in this study because of their ability in
capturing more than one type of dependence, were not
selected in any of the 10 climate divisions. However, they
do rank as the second best choice in some climate divisions
(e.g., divisions 4 and 10).
5.3.4. PDO and Precipitation Anomaly

[62] The same set of copulas considered for NSOI and
precipitation anomaly were considered to model the
dependence structure between average cold season PDO
and average October0–March1 precipitation anomaly. The
Gaussian copula dominates the dependence structure
between PDO and precipitation across the state. Note that
due to the relatively high variability in precipitation, attrib-
uted partly to the influence of ENSO and partly to local
meteorological factors, the correlation between PDO and
precipitation is lower than with NSOI. Further, PDO has a
long cycle of about 20 to 30 years and hence its influence
can be qualified as more subtle, which explains the absence

Figure 11. Dependence between average June0–November0 NSOI and average cold season precipita-
tion anomaly for climate division 8 illustrated through (a) Kendall’s plot and (b–d) chi-plots.
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of strong tail dependence (both upper and lower) and the
choice of Gaussian as the most appropriate copula.
5.3.5. NSOI, PDO, and Precipitation Anomaly

[63] Three climate divisions were chosen for further
analysis, simulation, and prediction of average cold season
precipitation anomalies, using the state of NSOI and PDO

as precursors: 5 located in the arid west ; 7 straddling two
different climate regions in the middle-eastern part ; and 8
representing the wettest region in the state.

[64] In this section, the most appropriate copula for mod-
eling the dependence between both large-scale circulation
patterns (average June0–November0 NSOI and average

Table 2. Generating Function, Parameter Space, Relationship of Nonparametric Dependence Measure With Association Parameter, and
Lower and Upper Tail Dependence for the Bivariate Form of Each of the 10 Copulas Used in This Study

Copula Generator Parameter Space Kendall’s s

Tail Dependence

Lower (kL) Upper (kU)

Elliptical Copula
Gaussian q 2 ð21; 1Þ 2

p arcsin ðqÞ 0 0

Student’s t q 2 ð21; 1Þ; v > 2 2
p arcsin ðqÞ 2tv11 2
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v11
p ffiffiffiffiffiffiffi

12q
11q

q� �
Archimedean Copula
Clayton 1

h ðt2h21Þ h > 0 h
h12 221=h 0

Gumbel ð2log tÞh h � 1 12 1
h

0 2221=h

Franka
2log e2ht21

e2h21

h i
h 2 R \ {0} 12 4

h 14 D1ðhÞ
h

0 0

Joe 2log ½12ð12tÞh� h > 1
11 4

h2

ð1

0
tlog ðtÞð12tÞ

2ð12hÞ
h dt

0 2221=h

BB 1 ðt2h21Þd h > 0; d � 1 12 2
dðh12Þ 221=ðhdÞ 2221=d

BB 6 ð2log ½12ð12tÞh�Þd h � 1; d � 1
11

4

dh

ð1

0
ð2log ð12ð12tÞhÞ

3ð12tÞð12ð12tÞ2hÞÞdt

0 2221=ðhdÞ

BB7b ½12ð12tÞh�2d
21 h � 1; d > 0 12 2

dð22hÞ1
4

h2d
B 22h

h ; d12
� �

221=d 2221=h

BB 8 2log 12ð12dtÞh

12ð12dÞh

h i
h � 1; d 2 ð0;1�

11
4

dh

ð1

0

�
2log

ð12tdÞh21

ð12dÞh21

 !

3ð12tdÞð12ð12tdÞ2hÞ
	

dt

0 0c

aD1ðhÞ5
ðh

0

c=h
expðxÞ21

dx (Debye function).

bBðx; yÞ5
ð1

0
tx11ðt21Þy21dt (Beta function).

c2221=hif d51, otherwise 0.

Table 3. Parameter(s), Kendall’s Tau, Maximum Log-Likelihood, AIC, BIC, and Cram�er-von Mises and Kolmogorov-Smirnov Good-
ness-of-Fit Statistics, Along With Their Respective p Values, for Each Copula for Climate Division 8a

Copula q̂ or ĥ d̂ s LLmax AICa BICa Sn Statistic Sn p Tn Statistic Tn p

Gaussian 0.55 0.37 18.55 235.09 232.37 0.10 0.23 0.67 0.50
Student’s t 0.54 0.37 18.05 234.09 231.37 0.08 0.37 0.61 0.58
Clayton 0.92 0.32 17.81 233.62 230.90 0.12 0.19 0.85 0.21
Gumbel 1.44 0.31 12.60 223.19 220.47 0.22 0.01 1.03 0.03
Frank 3.51 0.35 16.33 230.66 227.94 0.14 0.05 0.73 0.26
Joe 1.51 0.22 7.59 213.17 210.45 0.71 0.98 1.70 0.93
BB 1 0.75 1.09 0.34 18.04 232.08 226.65 0.10 0.26 0.73 0.37
BB 6 1.00 1.44 0.31 12.59 221.18 215.74 0.22 0.02 1.03 0.04
BB7 1.06 0.90 0.32 17.84 231.68 226.24 0.11 0.19 0.81 0.24
BB 8 6.00 0.46 0.33 15.47 226.93 221.49 0.18 0.02 0.89 0.09

as 5 Kendall’s tau; LLmax 5 maximum log-likelihood; Sn statistic 5 Cram�er-von Mises statistics; Sn p 5 p value for Cram�er-von Mises goodness-of-fit
test ; Tn statistic 5 Kolmogorov-Smirnov statistics; Tn p 5 p value for Kolmogorov-Smirnov goodness-of-fit test.

AIC522
XN

i51
ln ½cðu; vjh; dÞ�12k.

BIC522
XN

i51
ln ½cðu; vjh; dÞ�1lnðNÞk where N is the length of the observations and k is the number of copula parameters.

KHEDUN ET AL.: COPULA-BASED PRECIPITATION FORECASTING MODELS

594



cold season PDO) and average cold season precipitation
anomaly is discussed. From the results of the bivariate anal-
ysis, three copulas (Clayton, Frank, and Gaussian) were
shortlisted for modeling the predictor and dependent varia-
bles. The parameter estimates, maximum log-likelihood,
goodness-of-fit statistic, and p value for each, are given in
Table 5. The Clayton copula does not fare well (very low p
values) in all three climate divisions, implying that there is
no distinct lower tail dependence anymore. Based on the
maximum log-likelihood values, which is equivalent to
comparing AIC since all three copulas are single parameter,
the Gaussian copula seems most suitable for modeling the
three variables. Given that the Gaussian copula is deemed
better than the Frank copula indicates that there is some
dependence at the tails.

5.4. Simulation

[65] For the three climate divisions (5, 7, and 8), repre-
senting three varying climate regimes and dependence with
NSOI and PDO, random values were generated from the
chosen copula to assess how the model simulates the pre-

cipitation for different cases or ranges of NSOI and PDO.
The bivariate case, between NSOI and precipitation anom-
aly is first considered, and the influence of PDO, in a tri-
variate model, is then discussed.

[66] Embrechts et al. [2003] provide an effective algo-
rithm for the generation of random variates for an m-variate
distribution, such that U1; . . . ;Um have joint distribution

Figure 12. Comparison of observed data with 1000 random samples generated from the Gaussian and
Clayton copula (solid light gray dots) for climate division 8. Observed positive (negative) anomalies dur-
ing El Ni~no (La Ni~na) events are shown in blue (red) and other events are shown in solid black dots (sim-
ilar to Figure 7a).

Table 4. Parameter and Cram�er-von Mises and Kolmogorov-
Smirnov Goodness-of-Fit Statistics, Along With Their Respective
p Values, for the Copula Selected for Modeling the Dependence
Between Average June0–November0 NSOI and Average Cold
Season Precipitation Anomaly for Each Climate Division

Climate
Division Copula q̂ or ĥ

Sn

Statistic Sn p
Tn

Statistic Tn p

1 Gaussian 0.40 0.06 0.80 0.57 0.86
2 Clayton 0.81 0.05 0.76 0.63 0.71
3 Clayton 0.78 0.05 0.74 0.56 0.85
4 Gaussian 0.46 0.06 0.64 0.76 0.35
5 Frank 2.73 0.06 0.59 0.63 0.58
6 Clayton 0.81 0.07 0.61 0.77 0.35
7 Clayton 0.92 0.08 0.42 0.76 0.38
8 Gaussian 0.55 0.10 0.23 0.67 0.50
9 Clayton 0.82 0.16 0.06 0.91 0.11
10 Gaussian 0.53 0.06 0.53 0.59 0.72

Table 5. Parameter(s), Maximum Log-Likelihood, and Cram�er-
von Mises Goodness-of-Fit Statistics Along With Its p Values, for
the Clayton, Frank, and Gaussian Copulas Modeling the Depend-
ence Between Average June0–November0 NSOI, Average Cold
Season PDO, and Average Cold Season Precipitation Anomaly for
Climate Divisions 5, 7, and 8

Climate Division 5 7 8

Clayton copula
Parameter (std. error) 0.60 (0.10) 0.71 (0.13) 0.68 (0.11)
Maximum log-likelihood 24.18 30.71 28.62
Sn statistic 0.09 0.07 0.08
Sn p 0.00 0.04 0.02

Frank copula
Parameter 2.71 (0.426) 2.85 (0.44) 2.77 (0.41)
Maximum log-likelihood 26.03 27.33 26.26
Sn statistic 0.05 0.05 0.05
Sn p 0.11 0.15 0.05

Gaussian copulaa

q1 0.49 (0.08) 0.49 (0.08) 0.49 (0.08)
q2 0.44 (0.08) 0.52 (0.07) 0.55 (0.08)
q3 0.45 (0.07) 0.44 (0.09) 0.36 (0.07)
Maximum log-likelihood 28.92 32.58 32.99
Sn statistic 0.03 0.03 0.03
Sn p 0.36 0.37 0.26

aPosition of qs in an unstructured Gaussian matrix

NSOI

PDO

Pcp

1 q1 q2

q1 1 q3

q2 q3 1

0
BBBB@

1
CCCCA

NSOI PDO Pcp
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function C. For k-dimensional margins of C, let Ck u1;ð
. . . ; ukÞ5C u1; . . . ; uk ; 1; . . . ; 1ð Þ with k52; . . . ;m21, and
C1 u1ð Þ5u1 and Cm u1; . . . ; umð Þ5C u1; . . . ; umð Þ. The condi-
tional distribution of Uk given U1; . . . ;Uk21, is given by

Ck uk ju1; . . . ; uk21ð Þ5P Uk � uk jU15u1; . . . ;Uk215uk21f g

5
@k21Ck u1; . . . ; ukð Þ
@u1 . . . @uk21

�
@k21Ck21 u1; . . . ; uk21ð Þ

@u1 . . . @uk21

(11)

assuming that both numerator and denominator exist and
the denominator is not zero. This algorithm can be used to
simulate the whole range of the joint distribution, or for the
prediction of the range of response variables given an
explanatory value.
5.4.1. Bivariate Simulation: NSOI and Precipitation
Anomaly

[67] Figure 13 shows boxplots of both observed values
and that simulated from the selected copula for different
NSOI ranges for climate divisions 5, 7, and 8. Notched
boxplots are preferred as they visually depict the signifi-
cance between the observed values and simulated data.
Nonoverlapping notches indicate that the medians are sig-
nificantly different at a 95% confidence level. The size
of the notch around each median (M) is calculated as
M6Cs, where C is a constant chosen to be 1.7 and
s51:25R=1:35

ffiffiffiffi
N
p

is the Gaussian-based asymptotic
approximate of the standard deviation of the median with R
being the interquartile range and N the number of observa-
tions in each group [McGill et al., 1978].

[68] When the whole range of NSOI is considered
(24<NSOI< 4), the interquartile ranges of both the
observed and simulated data overlap and the medians are
not significantly different. The medians in all cases are
lower than the means, indicating a higher probability of
precipitation deficit, which is typical for the state. The
skewness and kurtosis of the simulated values agree fairly
well with the observations. When specific ranges of NSOI
are considered, we note that there is better agreement
between observed and simulated values when NSOI <21
than when NSOI> 1. Better simulation of values in the
lower left quadrant is expected given that lower tail
dependence is stronger in the observed data (Figure 11).
5.4.2. Trivariate Simulation: NSOI, PDO, and
Precipitation Anomaly

[69] Figure 14 shows the boxplots of observed and simu-
lated values for different NSOI and PDO ranges for climate
divisions 5, 7, and 8. When the whole range of NSOI is
considered, irrespective of the state of PDO, the interquar-
tile ranges of both the observed and simulated data overlap
and the medians are not significantly different. The basic
statistics of observed and simulated data agree fairly well
on the whole. When the data is stratified into cases when
PDO is negative and positive, depicted with a light blue
and light red background, respectively, an interesting trend
emerges. Inclusion of PDO in the model generally
improves the simulation results, especially for the cases
when PDO is negative. Better agreement between observed
and simulated values is noted in the lower left quadrant,
that is negative precipitation anomaly due to La Ni~na and
negative PDO, but no significant improvement can be seen

in the upper right quadrant (positive precipitation anomaly
during El Ni~no coincident with positive PDO).

[70] In climate division 8, for example, the absolute dif-
ference between the means of observed and simulated val-
ues for NSOI <21 in the bivariate model is 6.1 mm. In the
trivariate model, the absolute difference between the
observed and simulated means for NSOI <21 and negative
PDO is only 0.8 mm. The absolute difference in medians
for the bivariate model is 7.4 mm while that for the trivari-
ate model is 4.6 mm (Table 6). Improvements are also
noted in the lower and upper quartiles (absolute difference
of 7.2 mm and 2.3 mm, respectively, in the bivariate model
reduced to 0.2 and 1.3 mm, respectively, in the trivariate
model). Similar improvements, albeit of different magni-
tude, given that the monthly rainfall is lower, were seen in
climate divisions 5 and 7. In climate division 7, however,

Figure 13. Boxplots of observed and simulated cold sea-
son precipitation anomalies for different NSOI ranges for
climate divisions 5, 7, and 8. Boxplots with light gray back-
ground are for complete NSOI range.
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the median did not improve even though the mean
improved. One possible reason for this discrepancy can be
due to the fact that climate division 7 is not homogenous as
it straddles two different climate regions (Figure 1) and the
lower half is exposed to oceanic influences. Comparable
discrepancies in behavior for stations lying at the intersec-
tion of climate regions in Texas were noted by Mishra
et al. [2011].

[71] These results highlight the importance of including
PDO in the probabilistic prediction of precipitation. While
ENSO, being a strong large-scale circulation pattern modu-

lating climatic conditions over the whole planet, is an
important determinant of precipitation conditions, it does
not fully explain the variability between El Ni~no (La Ni~na)
events [Khedun et al., 2012]. Knowledge of the state of
PDO can greatly improve our expectation of precipitation
conditions. La Ni~na coincident with negative PDO have
been shown to increase drought severities, while positive
PDO may lead to above average precipitation, despite neg-
ative ENSO conditions [Cole et al., 2002]. The trivariate
copula model does fairly well in simulating conditions
when PDO is negative, but not as well when PDO is

Figure 14. Boxplots of observed and simulated cold season precipitation anomalies for different NSOI
and PDO ranges for climate divisions 5, 7, and 8. Boxplots with light gray background are for complete
NSOI and PDO ranges and light blue (red) is for different NSOI ranges and negative (positive) PDO.
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positive, especially when both NSOI and PDO are positive.
This is due to the limitation of this simplistic model in sim-
ulating the complex local and remote drivers of precipita-
tion [Westra and Sharma, 2010]. A possible explanation is
that during a drought, once dry conditions are initiated, the
ground loses soil moisture, which can further intensify
local conditions by raising the ground temperature and cre-
ating a high pressure system, which may suppress rainfall.
On the other hand, even low rainfall event can increase soil
moisture, which evaporates back and increases humidity
level in the atmosphere along with evaporation from sur-
face waters in lakes and rivers, and in this case moisture
from the Gulf of Mexico. When temperature and other
meteorological conditions are conducive, this leads to more
precipitation. These local conditions may not be influenced
by large-scale climate phenomena, hence the high variabili-
ty in the upper right quadrant of the data set, which the cop-
ula model is unable to capture; hence the lower mean and
median in the simulated values as opposed to the observed
data.

5.5. Precipitation Prediction Using Copula Models

[72] In this section, we present how the copula models
discussed in the previous sections can be used for predict-
ing precipitation anomalies given the state of NSOI and
PDO. The prediction capabilities of the bivariate case, that
is NSOI and precipitation anomaly, is compared against the
trivariate model, which incorporates PDO, for climate divi-
sions 5, 7, and 8. They experience very different climate
regimes and the average cold season precipitation anoma-
lies follows different marginal distributions.

[73] The 112 year long data set was divided into two
sets; one for constructing the model and the other for vali-
dation. The modeling set contained 70% of the data and the
remaining 30% was used for validation. The following pro-
cedure was adopted for the selection of the validation data
set. The average June0–November0 NSOI, average cold
season PDO, and average cold season precipitation anoma-
lies (for all three climate divisions) matrix was stratified
based on NSOI values followed by PDO values, and repre-
sentative samples were randomly selected from each stra-
tum. This procedure ensures that the overall dependence
structure is not impaired while enough data points are
obtained in each case. Thus, the models remain unbiased,
as it would be when the whole data set is used for cold

season precipitation forecasting. Further, extracting the
validation data once, and not repeating the procedure
separately for each climate division, allows comparison
of the model performance across different climate
conditions.

[74] Copulas were fitted to the modeling data, from the
same set of copulas considered above and following the
same procedure described in section 5.3. Again, note that
the maximum pseudo-likelihood method was used, which
ensures that the copula selected is independent of the mar-
ginals and due to the dependence structure only. Despite
our attempt to preserve the overall dependence structure
in the modeling data set, the copulas chosen for the bivari-
ate models were different, except for climate division 7,
from those selected when the whole data set were used.
Clayton, with different ĥ parameters, was deemed the
most suitable copula for all three cases. However, for the
trivariate models, Gaussian again emerged as the most
suitable copula for modeling NSOI, PDO, and precipita-
tion anomaly.

[75] Once the most appropriate copula was selected, the
response variable, conditioned upon the explanatory varia-
ble(s), was obtained using equation (11). The results were
in the unit hypercube domain and were back transformed,
using the fitted marginals, to obtain the average cold season
precipitation anomalies.

[76] The predicted values against observed values for the
bivariate and trivariate case, for all three climate divisions,
are shown as scatterplots in Figure 15. The coefficient of
correlation between the predicted and observed values for
the bivariate case is 0.66, 0.69, and 0.60 for climate divi-
sions 5, 7, and 8, respectively. When PDO is included, the
correlation drops slightly to 0.58, 0.60, and 0.42. This drop
in correlation is expected given the high variability in pre-
cipitation due to local meteorological conditions, as illus-
trated with simulations, especially when both NSOI and
PDO are positive. Interestingly, however, the correlation
between observed and predicted values in the lower left
quadrant, that is, when both NSOI and PDO are negative, is
significantly improved in the trivariate model. Correlation
of values within that quadrant increased from 0.26, 0.45,
and 0.35 (bivariate case) to 0.65, 0.53, and 0.71 for climate
divisions 5, 7, and 8, respectively. This result is in accord
with the improved simulation ranges observed when PDO
was negative.

Table 6. Comparison of Means and Medians for Observed and Simulated Cold Season Precipitation Anomalies From the Bivariate and
Trivariate Models for Climate Divisions 5, 7, and 8

NSOI and PDO Range

Bivariate Model Trivariate Model

NSOI<21 NSOI<21 and PDO< 0

Observed Simulated Absolute Difference Observed Simulated Absolute Difference

Division 5
Mean 25.44 23.78 1.66 26.02 24.76 1.26
Median 25.40 24.77 0.63 25.86 25.92 0.06
Division 7
Mean 218.23 217.71 0.52 218.23 218.56 0.33
Median 222.69 221.26 1.43 227.40 221.04 6.35
Division 8
Mean 223.76 217.71 6.05 223.466 222.69 0.77
Median 228.69 221.26 7.43 229.490 224.93 4.56
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6. Conclusions

[77] Precipitation in the state of Texas is influenced by
large-scale circulation patterns in the Pacific Ocean. A statis-
tically significant correlation between both average June0–
November0 NSOI, and average cold season (October0–
March1) PDO, with average cold season precipitation was
found. The spatial correlation patterns for the two indices,
across the 10 different climate divisions in the state, are not
identical. Higher correlation with NSOI was recorded than
with PDO. Nonetheless, the effect of PDO can be significant.

[78] PDO has been known to modulate the effect of
ENSO, leading to stronger response when they are coinci-
dent, particularly when they are negative, than when they are
out of phase. In this study, a copula-based model was devel-
oped to assess how well ENSO conditions alone can predict
precipitation and if including the state of PDO improves the
prediction. Copulas were used to model the bivariate depend-
ence between NSOI and precipitation anomaly and the tri-
variate dependence between NSOI, PDO, and precipitation
anomaly. Ten copulas, from the elliptical and Archimedean
families, were evaluated. Three of the copulas considered
were two-parameter copulas, as they can capture more than
one type of dependence. The copulas were fitted using the
maximum pseudo-likelihood method which ensures that the
selected copula is independent of the marginals. Different
copulas were found to be suitable for different climate divi-
sions. The choice of copula is strongly driven by the lower
tail dependence which is associated with La Ni~na conditions
and negative precipitation anomaly.

[79] Using the chosen copula, precipitation was simulated
from the bivariate and trivariate models for three different cli-
mate divisions: 5, which is semi-arid; 8, located in the wettest
region; and 7 in the middle-eastern region, straddling the sub-
tropical humid and subtropical subhumid parts of the state.
When the whole range of NSOI and PDO were considered,
both the bivariate and trivariate models generated results with
almost the same interquartile ranges and basic statistics as the
observations. When the data were stratified into different
NSOI cases, in the bivariate model, better agreement in the

negative NSOI range than in the positive range was noted. It
was also found that the inclusion of PDO, in the trivariate
model, improved the simulation results, and even better agree-
ment between observations and simulations, in the quadrant
which represents negative precipitation anomaly due to La
Ni~na and negative PDO, was observed.

[80] Finally, to validate the copula models, the observa-
tion records were divided into two sets: one for modeling,
and one for testing and comparing the prediction capabil-
ities of the bivariate and trivariate models. Relatively good
correlation between the predicted values and the observa-
tions were noted with the bivariate model. The overall
coefficient of correlation between observed values and pre-
dicted values in the trivariate model was slightly less than
with the bivariate model. However, significant improve-
ment was noted in the prediction of negative precipitation
anomalies. The trivariate model can thus be effectively
used in predicting average negative cold season precipita-
tion anomalies, or drought, based on the state of average
June0–November0 NSOI and the state of PDO.

[81] From an application perspective it is interesting to
note that PDO is a long-term climate variability pattern
which shifts phases on at least inter-decadal time scale,
usually about 20–30 years. Also, given that average June0–
September0 NSOI is strongly correlated with average
June0–November0 NSOI, the former can be used in con-
junction with PDO as a forewarning index prior to the start
of the hydrologic year.
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