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[1] An entropy-copula method is proposed for single-site monthly streamflow simulation.
In this method, the joint distribution of adjacent monthly streamflows is constructed using
the copula method, whereas the marginal distribution of streamflow for each month is
derived using the entropy method. Then, the conditional distribution is derived from which
monthly streamflow is generated. Moment statistics of monthly streamflow (such as mean,
standard deviation and skewness) can be modeled by the entropy-based marginal
distribution while the dependence structure between streamflows of adjacent months can be
modeled by the copula-based joint distribution. The proposed entropy-copula method can
be extended by incorporating an aggregate variable for modeling the interannual
dependence. Application to the simulation of monthly streamflow from the Colorado River
illustrates the effectiveness of the proposed method.

Citation: Hao, Z., and V. P. Singh (2012), Entropy-copula method for single-site monthly streamflow simulation, Water Resour. Res.,
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1. Introduction
[2] Synthetic streamflow data are needed in water

resources studies for the evaluation of alternative designs
and policies against the range of sequences that are likely
to occur in the future [Loucks et al., 1981]. It is desired that
synthetic streamflow is similar to historical streamflow and
preserves moment statistics (such as mean, standard devia-
tion, and skewness) and dependence structure (such as lag-
one correlation). The interannual dependence is important
for the simulation of long wet and dry periods [Sivakumar
and Berndtsson, 2010], and also needs to be preserved.
Sivakumar and Berndtsson [2010] provided a review of
streamflow simulation models.

[3] The copula method has been extensively applied for
hydrologic modeling mainly due to its flexibility in con-
structing the joint distribution to describe the dependence
structure between random variables. One of the most com-
mon applications is frequency analysis of hydrological var-
iables [Favre et al., 2004; Salvadori and De Michele,
2004; Genest et al., 2007; Kao and Govindaraju, 2008;
Chebana and Ouarda, 2009; Salvadori and De Michele,
2010; Renard, 2011; Vandenberghe et al., 2011]. Recent
years have been witnessing an upsurge in applications of
the copula method. Bardossy and Li [2008] introduced a
copula-based model to describe spatial variability for the

interpolation of groundwater quality parameters. Serinaldi
[2009] employed the bivariate copula-based mixed distri-
bution to deduce the multisite Markov model for modeling
and generating daily rainfall series. Chowdhary and Singh
[2010] developed a copula-based approach for reducing
uncertainty in the parameter estimation of frequency distri-
butions. Gyasi-Agyei [2011] used a copula to model the de-
pendence structure of daily rainfall properties for daily
rainfall disaggregation.

[4] One of the important applications of entropy theory
is to derive the maximum entropy-based distribution of ran-
dom variables [Kapur, 1989; Kesavan and Kapur, 1992].
Hao and Singh [2011] proposed the entropy method for sin-
gle-site monthly streamflow simulation with the entropy-
based joint distribution and Lee and Salas [2011] proposed
the copula method for annual streamflow simulation with
the copula-based joint distribution. This study proposes an
entropy-copula method for monthly streamflow simulation
in which the joint distribution is constructed using the cop-
ula method with the marginal distribution derived using the
entropy method. The entropy-copula method is simpler than
the previous work by Hao and Singh [2011], since less pa-
rameters are determined simultaneously and is able to model
different (nonlinear) dependence structures of streamflow
due to the copula component. To model the interannual de-
pendence of monthly streamflow, an aggregate variable is
used to guide the simulation. The proposed method is
applied to the monthly streamflow of the Colorado River at
Lees Ferry, Arizona, and its performance is evaluated by
comparing generated and observed statistics.

2. Methodology
2.1. Entropy Theory and Marginal Distribution

[5] For a continuous random variable X with probability
density function (PDF) f(x) defined on the interval [a, b],

1Department of Biological and Agricultural Engineering, Texas A&M
University, College Station, Texas, USA.

2Department of Civil and Environmental Engineering, Texas A&M
University, College Station, Texas, USA.

Corresponding author: Z. Hao, Department of Biological and Agricul-
tural Engineering, Texas A&M University, College Station, TX 77843-
2117, USA. (hzc07@tamu.edu)

©2012. American Geophysical Union. All Rights Reserved.
0043-1397/12/2011WR011419

W06604 1 of 8

WATER RESOURCES RESEARCH, VOL. 48, W06604, doi:10.1029/2011WR011419, 2012

http://dx.doi.org/10.1029/2011WR011419


the Shannon entropy I can be expressed as [Shannon,
1948]:

I ¼ �
Zb

a

f ðxÞ ln f ðxÞ dx: (1)

[6] Using the principle of maximum entropy proposed
by Jaynes [1957] with the first four moments as constraints
specified as:

Zb

a

giðxÞf ðxÞ dx ¼ EðgiÞi ¼ 0; 1; . . . ; 4: (2)

[7] The maximum entropy-based PDF can be obtained
as [Kesavan and Kapur, 1992]:

f ðxÞ ¼ exp ½��0 � �1x� �2x2 � �3x3 � �4x4�; (3)

where �i, i ¼ 0,1 , . . . , 4, are the Lagrange multipliers ; and
E(gi) is the expectation of the function gi(x) (gi(x) ¼ xi).
The Lagrange multipliers in equation (3) can be determined
in terms of the specified constraints using the Newton-
Raphson method [Hao and Singh, 2011].

[8] The constraints in the form of moments have been
used to derive the maximum entropy distribution of random
variables in different areas [Mead and Papanicolaou, 1984;
Smith, 1993; Gotovac et al., 2010]. In addition, the distribu-
tion in equation (3) can also model bimodality in the data
[Matz, 1978]. For streamflow simulation, the distribution
derived from the entropy method in equation (3) can be used
as the marginal distribution of streamflow for each month and
samples drawn from the distribution can be expected to pre-
serve the mean, standard deviation, skewness (and kurtosis).

[9] The cumulative distribution function (CDF) of the
maximum entropy-based PDF in equation (3) can be
expressed as

EX ðxÞ ¼
Z x

a
f ðtÞdt: (4)

2.2. Copula Theory and Joint Distribution

[10] For the continuous random vector (X, Y) with mar-
ginal CDFs FX (x) and FY (y), the joint distribution function
of the random vector (X, Y ) can be expressed with its mar-
ginal CDFs and copula C as [Nelsen, 2006]:

PðX � x; Y � yÞ ¼ C½FX ðxÞ;FY ðyÞ; �� ¼ Cðu; v; �Þ; (5)

where � is the parameter of the copula that measures the de-
pendence between marginals ; and u and v are realizations
of the random variables U ¼ FX (x) and V ¼ FY (y). The
two-dimensional Copula C maps the two marginal distribu-
tions into the joint distribution as [0,1]2 ! [0,1]. For the
estimation of parameter �, the method of moment (MOM),
the exact maximum likelihood (EML) method, and the in-
ference functions for margins (IFM) method can be used
[Joe, 1997; Genest and Favre, 2007].

[11] There are several copula families and a variety
of dependence structures can be modeled [Joe, 1997;
Nelsen, 2006]. For example, random variables from both

the Gaussian copula and Frank copula exhibit symmetric
dependence, while those from the Clayton copula exhibit
asymmetric dependence [Trivedi and Zimmer, 2005]. For
streamflow simulation, the joint distribution of streamflows
for two adjacent months constructed from the copula
method in equation (5) can be used to model the (nonlinear)
dependence structure of monthly streamflow.

[12] The conditional distribution of random variable Y
given X (denoted as C2j1(vju)) can be derived from the joint
distribution in equation (5) as:

PðY � yjX ¼ xÞ ¼ C2j1ðvjuÞ ¼
@Cðu; v; �Þ

@u
: (6)

2.3. Entropy-Copula Method

[13] The proposed entropy-copula method combines the
entropy method to derive the marginal distribution and the
copula method to construct the joint distribution. The joint
distribution from the entropy-copula method can be con-
structed from equations (4) and (5) and expressed as:

PðX � x; Y � yÞ ¼ C½EX ðx; � Þ; EY ðy; � Þ; � �; (7)

where � and � are the parameters of the entropy-based
marginal distribution, and � is the copula parameter. The
IFM method can be used for parameter estimation, in which
parameters of the marginal distributions and those of the
copula can be split. Parameters � and � can be estimated
by the Newton-Raphson method, while copula parameter �
can be estimated using the maximum likelihood method.
Compared with the entropy based method proposed by Hao
and Singh [2011], less number of parameters needs to be
estimated simultaneously. In addition, the copula compo-
nent in the joint distribution enables the characterization of
different (nonlinear) dependence structures [Joe, 1997;
Nelsen, 2006].

[14] The samples from the joint distribution in equation
(7) can be expected to preserve the mean, standard devia-
tion, skewness through the entropy-based marginal distribu-
tion and dependence structure through the copula-based
joint distribution. The conditional distribution from the joint
distribution in equation (7) can also be expressed using
equation (6). Monthly streamflow can be generated sequen-
tially from the conditional distribution and totally 12 condi-
tional distributions have to be used.

2.4. Extended Entropy-Copula Method

[15] The proposed entropy-copula method can be extended
to preserve the interannual dependence by introducing an ag-
gregate variable in the conditional distribution similar to the
framework developed by Sharma and O’Neill [2002]. For
monthly streamflow denoted as X1, X2, . . . , X12, X13, X14, . . . ,
Xn, where X1, X2, . . . , X12 are the monthly streamflows of the
first year and so on, an aggregated variable can be defined
as the summation of the previous m monthly streamflows
(m ¼ 12 in this study):

Zt�1 ¼
Xm

i¼1

Xt�j: (8)

[16] Denoting streamflows of two adjacent months as
Xt�1, Xt and the corresponding aggregate variable as Zt�1
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with the cumulative distribution functions F(Xt�1), F(Xt)
and G(Zt�1), respectively, the joint distribution of random
vector (Zt�1, Xt�1, Xt) can be expressed by copula C as:

PðZt�1 � zt�1;Xt�1 � xt�1;Xt � xtÞ ¼ Cðv1; v2; v3;’Þ; (9)

where ’ is the parameter that can be a scalar or vector
depending on the copula family; v1, v2, and v3 are the real-
izations of random variables V1 ¼ G(Zt�1), V2 ¼ F(Xt�1)
and V3 ¼ F(Xt). Then the conditional distribution of Xt given
Xt�1 and Zt�1 (denoted as C3j12(v3jv1, v2)) can be derived
from the joint distribution by copula C in equation (9) as:

PðXt � xtjZt�1 ¼ zt�1;Xt�1 ¼ xt�1Þ

¼ C3j12ðv3jv1; v2Þ ¼
@C2ðv1; v2; v3;�Þ

@v1@v2

@C2ðv1; v2;�Þ
@v1@v2

� ��1 :

(10)

[17] The procedure for generating monthly streamflow
by the extended entropy-copula method is summarized as
follows:

[18] 1. Pick any zt�1 and the corresponding xt�1 values
from the historic record. Compute the corresponding cumula-
tive probabilities Gt�1 (zt�1) (denoted as v1) and Ft�1 (xt�1)
(denoted as v2).

[19] 2. Generate a uniform random number � between
[0, 1], which is considered to be the conditional cumulative
probability corresponding to a specific value xt, given the ini-
tial value zt�1 and xt�1 (or v1 and v2). From equation (10),
one obtains: C3j12ðv3jv1; v2Þ ¼ �. The cumulative probability

Ft(xt) (denoted as v3) can be obtained as: v3 ¼ C�1
3j12ð�Þ and

then xt can be obtained as: xt ¼ Ftðv3Þ.
[20] 3. Increase time step t and update random values

xt�1 and zt�1.
[21] 4. Repeat steps (1)–(3) until the required length of

monthly streamflow is generated (The first few streamflow
values can be discarded to avoid initialization bias).

3. Application
[22] Monthly streamflow from the Colorado River at

Lees Ferry, Arizona, from 1906–2003 was used for applica-
tion of the proposed method. More details about the datasets
are given by Hao and Singh [2011]. 100 flow sequences
with 100 years of streamflow in each sequence were gener-
ated to assess the performance of the proposed method. The
basic statistics (mean, standard deviation, skewness, lag-one
(Pearson) correlation, maximum and minimum values) and
interannual dependence from generated streamflow were
compared with those from the observed streamflow using
box plots. The performance was considered to be satisfac-
tory when a statistic fell in the box plot.

3.1. Marginal and Joint PDF

[23] Maximum entropy-based marginal PDF and CDF
for each month were compared with empirical histograms
and empirical CDFs estimated from the Gringorten plotting
position formula. These results for the May and September
streamflow are given in Figure 1. Generally the theoretical
PDF fitted the empirical histogram relatively well and theo-
retical CDF also fitted the empirical CDF well. Note that
the skewness of September streamflow is relatively high

Figure 1. Comparison of empirical and theoretical PDFs and CDFs for the May and September stream-
flow (Units for streamflow are in Cubic Meter per Second (CMS)).
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(1.96). These results showed that the entropy-based mar-
ginal distribution modeled the underlying streamflow well,
even though high skewness was involved. The bimodality
in the PDF of the May streamflow, which has been found in
the previous study [Prairie et al., 2006], was not resolved
with the PDF in equation (3). However, this can be over-
come when more moments are used to derive the entropy-
based marginal distribution. To avoid the uncertainty in the
estimation of higher moments from the historical record
(98 years), the entropy-based PDF in equation (3) was used
as the marginal distribution for monthly streamflow
throughout the year. Box plots of the entropy-based mar-
ginal PDFs for the generated May and September stream-
flows are also shown in Figure 1, which shows the
uncertainty of the moments estimated from the generated se-
ries of a particular length (100 years) appreciably affects the
entropy-based PDF in equation (3). Compared with the PDF
estimated from the observed streamflow, the generated
streamflow preserved the marginal distribution relatively
well and the use of the first four moments as constraints to
derive the marginal distribution is acceptable for this study.

[24] The Clayton, Frank, Gumbel and Gaussian copula
functions were selected to construct the joint distribution.
Two goodness of fit test statistics, the Cramér–von Mises
statistic (Sn) and Kolmogorov-Smirnov statistic (Tn) given
by Genest et al. [2006], were employed to choose the suita-
ble copula function. Statistics (Sn and Tn) and the associ-
ated p values based on a run of 5000 samples were
obtained using the parametric bootstrap procedure [Genest
et al., 2006; Genest and Favre, 2007]. Results for statistic
Sn are given in Table 1. The very low p value (<0.05) sig-
nified that the null hypothesis that the copula function was
a valid model should be rejected. The times of streamflow
pairs of adjacent months that a copula function was rejected
for the Clayton, Frank, Gumbel and Gaussian copulas were
6, 4, 7, and 2, respectively. Similar results were also
obtained from statistic Tn (times of rejecting the copula
were 6, 2, 4, and 2, respectively). It can be seen that there
was not a single copula function that performed best for
modeling all streamflow pairs. A practical way for the simu-
lation of monthly streamflow may be to choose different
copula functions in modeling different streamflow pairs. The
Gaussian copula function seemed to be preferable based on
the number of rejections. In this study, the Gaussian copula
function was selected hereinafter for the illustration of the
proposed method for monthly streamflow simulation. The
entropy-copula (EC) method and extended entropy-copula
(EEC) method with the Gaussian copula function were
denoted as ECG method and EECG method.

3.2. Basic Statistics

[25] A plot of observed monthly streamflow and a
sequence of generated monthly streamflow for 98 years by
the ECG method is shown in Figure 2. Generally the variabil-
ity of generated streamflow was similar to that of observed
streamflow (e.g., maximum and minimum values). Similar
results were obtained from the streamflow generated by the
EECG method (not shown).

[26] Basic statistics of observed and generated streamflow
by the ECG method are shown with box plots in Figure 3.
The relative error (RE), defined as RE ¼ (Sm – Xo)/Xo,
where Sm is the median of generated statistic and Xo is the
observed statistic, for each statistic is shown in Table 2. The
ECG method performed well in preserving the mean, stand-
ard deviation, and skewness, since all the statistics fell in the
box plot. The RE for mean and standard deviation was under
5% and that for skewness was under 10% for all months. In
addition, there seemed to be some underestimation of stand-
ard deviation and skewness for this simulation, since nega-
tive relative error was obtained for 9 and 11 months,
respectively.

[27] Generally the lag-one correlation was preserved
well, though for certain months (e.g., October with RE of
15.6%) the observed statistic did not fall in the box. Com-
pared with the entropy method by Hao and Singh [2011]
using the same datasets, there seemed to be no significant
difference in the preservation of mean, standard deviation
and skewness between the two methods, while the entropy
method performed relatively better than the entropy-copula
method in preserving the lag-one correlation. However,
when the Spearman and Kendall (rank) correlations were
also used for measuring the dependence structure, results
from the entropy-copula method, as shown in Figure 4, pre-
served the two correlations well, while the entropy method
did not preserve as well (not shown). These results showed
the outperformance of entropy-copula method in preserving
the nonlinear dependence. The maximum and minimum
values were generally preserved well for most months
(with RE under 5% and 20% for maximum and minimum
values for most months), though overestimation or under-
estimation for certain months occurred. Results of the
EECG method in preserving these statistics of each month
were similar to those by the ECG method and thus are not
presented.

[28] Statistics of observed and generated streamflow at
the annual time scale by the ECG and EECG methods are
shown in Figure 5. The mean and standard deviation were
preserved well by both methods. Neither ECG nor EECG
method preserved the skewness well. The reason may be

Table 1. Statistics Sn and Associated p Values of Different Copulas for Different Streamflow Pairs

Copula Sn and p Value 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12 12–1

Clayton Sn 0.25 0.19 0.09 0.06 0.13 0.11 0.15 0.44 0.17 0.22 0.29 0.15
Clayton p value 0.01 0.05 0.32 0.65 0.13 0.09 0.03 0.00 0.04 0.01 0.00 0.10
Frank Sn 0.05 0.08 0.33 0.25 0.06 0.07 0.08 0.12 0.11 0.07 0.13 0.15
Frank p value 0.72 0.31 0.00 0.00 0.45 0.16 0.13 0.05 0.07 0.30 0.03 0.01
Gumbel Sn 0.06 0.22 0.51 0.54 0.21 0.14 0.19 0.11 0.16 0.08 0.06 0.10
Gumbel p value 0.64 0.02 0.00 0.00 0.01 0.01 0.00 0.15 0.04 0.30 0.52 0.13
Gaussian Sn 0.06 0.12 0.22 0.30 0.04 0.04 0.07 0.14 0.08 0.03 0.08 0.08
Gaussian p value 0.69 0.15 0.01 0.00 0.83 0.62 0.24 0.06 0.35 0.94 0.24 0.24
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that simulation errors from both the mean and standard
deviation would affect the simulated skewness. However,
the two methods differed significantly in preserving the lag-
one correlation. The EECG method preserved the lag-one

correlation well, while the ECG method did not perform as
well. The reason was that the lag-one correlation of annual
streamflow was not incorporated in the ECG model, while
for the EECG model this property was incorporated through

Figure 2. Comparison of observed monthly streamflow (98 years) and a sequence of generated
monthly streamflow by the ECG method.

Figure 3. Box plots of basic statistics of observed and generated monthly streamflow by the ECG
method. Continuous lines with star marks for each month represent statistics of historical record. Mn,
Sd, Sk, Lag-1, Max and Min represent the mean, standard deviation, skewness, lag-1 correlation, maxi-
mum and minimum values.
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the aggregate variable. For the preservation of maximum
and minimum values, the ECG and EECG methods per-
formed relatively well with slight overestimation.

3.3. Interannual Dependence

[29] The interannual dependence between streamflows of
seasonal and annual time scales was also assessed for the
EECG method. Box plots of lag-one and lag-four interan-
nual dependence between streamflow of a specific month
(seasonal time scale) and streamflows of the previous 12
months (annual time scale) of the generated streamflow are
shown in Figure 6. It is seen that the lag-one correlation
was preserved well for all months except for February, as
expected from the structure of the EECG method. The lag-
four correlation, although not directly included in the
model, was also preserved well for most months.

4. Summary and Conclusion
[30] An entropy-copula method is proposed for single-site

monthly streamflow simulation and is shown to preserve
statistics of monthly streamflow well. The entropy-based

marginal distribution with the first four moments as con-
straints is capable of modeling the complex properties (such
as high skewness) of the underlying streamflow data. The
mean and standard deviation of the generated streamflow at
the annual time scale can also be preserved well. The
extended entropy-copula method is shown to preserve inter-
annual dependence well. The preservation of the lag-one
correlation at the annual scale can also be improved by the
extended method. However, the skewness at the annual time
scale is generally not preserved well for both methods.

[31] Compared with the entropy method, the proposed
entropy-copula method is easier to carry out in terms of pa-
rameter estimation and enables the characterization of non-
linear dependence structures due to the copula component.
The use of higher moments (3rd and fourth moments in this
study) as constraints to derive the marginal distribution
relies on the accurate estimation of higher moments. Thus
the proposed method is preferable for streamflow simula-
tion with relatively long observation record.

[32] The entropy method provides a way to derive the
marginal distribution of hydrologic variables, including

Table 2. Relative Error (%) of Generated Statistics for Each Montha

Statistics 1 2 3 4 5 6 7 8 9 10 11 12

MN �0.2 �0.6 0.5 0.1 �0.3 0.7 0.3 0.2 0.6 �0.8 �0.1 �0.2
Sd �1.7 �1.6 �0.4 �1.8 �0.7 �1.5 �2.5 0.0 1.3 �0.8 0.0 �0.9
Sk �8.5 �3.5 �3.1 �0.7 5.5 �3.3 �2.7 �2.9 �5.1 �5.2 �4.2 �2.1
Lag1 �6.1 �2.5 12.9 16.7 5.8 1.4 2.3 3.0 �5.0 15.6 �0.1 �8.4
Max �1.9 �1.8 �0.6 �1.8 �2.5 �2.9 1.7 �5.3 �6.9 �9.3 �3.0 �1.3
Min 2.6 �4.1 �3.9 �12.7 15.0 0.8 �16.8 �0.8 �26.8 �16.8 37.6 �1.1

aMn, mean; Sd, standard deviation; Sk, skewness; Lag1, lag-one correlation; Max, maximum values; and Min, minimum values.

Figure 4. Box plots of Spearman and Kendall correlations of observed and generated monthly stream-
flow by the ECG method.

W06604 HAO AND SINGH: TECHNICAL NOTE W06604

6 of 8



Figure 5. Box plots of basic statistics of observed and generated annual streamflow by the (a) ECG
method and (b) EECG method. Units for Mn, Sd, Max and Min are in 103 CMS.

Figure 6. Box plots of lag-one and lag-four interannual dependence of observed and generated
monthly streamflow by the EECG method.
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some abnormal properties. For instance, to model multimo-
dal property, the entropy-based distribution with moments
as constraints provides an alternative way to resolve this
property. The copula method offers the flexibility to model
different (nonlinear) dependence structures of hydrologic
variables through a variety of copula families. A combina-
tion of these two theories, entropy and copula, enables the
modeling of complex properties of the marginal distribu-
tion and different dependence structures of data under
investigation. One possible limitation of the entropy-copula
method is that many Lagrange multipliers may be needed
to derive the marginal distribution for modeling certain
properties (e.g., multimode in the distribution) of the data.
For the cases where a large number of Lagrange multipliers
are involved in the entropy-based marginal distribution, the
inference functions for margins (IFM) method for parame-
ter estimation would reduce the burden of computational
complexity. In addition, a potential limitation of the entropy-
based marginal distribution would be that the desired prop-
erty needs to be expressed in the form of constraints in order
to derive the suitable marginal distribution. The connection
between the properties (such as extreme values) of the data
under investigation with the form of constraints needs fur-
ther study.

[33] The entropy-copula framework can be applied and
extended to higher dimensions for hydrologic modeling with
the entropy-based marginal distribution to model the marginal
properties and the copula-based joint distribution to model
the dependence structure of the data. For certain hydrologic
application (e.g., rainfall simulation), the copula method has
made its way for practical use. With the entropy-based mar-
ginal distribution, the entropy-copula framework would also
be applicable as a complement to the current study.
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