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Technical Note

Wavelet-Based Hydrological Time Series Forecasting

Yan-Fang Sang’; Vijay P. Singh?; Fubao Sun?®; Yaning Chen*; Yong Liu®; and Moyuan Yang®

Abstract: These days wavelet analysis is becoming popular for hydrological time series simulation and forecasting. There are, however, a set

of key issues influencing the wavelet-aided data preprocessing and modeling practice that need further discussion. This article discusses four

key issues related to wavelet analysis: discrepant use of continuous and discrete wavelet methods, choice of mother wavelet, choice of

temporal scale, and uncertainty evaluation in wavelet-aided forecasting. The article concludes with a personal reflection on solving the four

issues for improving and supplementing relevant wavelet studies, especially wavelet-based artificial intelligence modeling. DOI: 10.1061/
(ASCE)HE.1943-5584.0001347. © 2016 American Society of Civil Engineers.

Author keywords: Hydrological forecasting; Artificial intelligence modeling; Wavelet analysis; Temporal scale; Hydrological time series
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Introduction

Understanding the variability of hydrological processes is an essen-
tial and important scientific topic in hydrology studies, but it is also
a difficult problem due to the complex stochastic nature of hydro-
logical processes (Shoaib et al. 2014). Hydrological time series
analysis and forecasting is an effective approach to determine
the variability of hydrological processes and predict future values.
During recent years wavelet modeling has become popular for
hydrological time series forecasting because the wavelet analysis
method has the superiority of handling the nonstationary variability
of hydrological processes (Nourani et al. 2014; Sang et al. 2015).
For wavelet model inputs, the original hydrological series are usu-
ally decomposed into a set of subsignals by continuous or discrete
wavelet method, called data preprocessing. Each subsignal plays a
different role in the original series, and the behavior of each sub-
signal is distinct. Therefore, a wavelet model is constructed such
that wavelet decomposition results of the original input series
are the input data vector and the original output series are still
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the output data vector (Kisi 2009). Compared with conventional
single models, the process of hydrological time series forecasting
by wavelet models is more easily guided because it takes the vari-
ability of hydrological processes into consideration. However, a set
of key issues influences the wavelet-aided data preprocessing and
modeling practice, and the choices of proper mother wavelet and
temporal scale are two of the most important issues. In fact, these
two issues constitute the essential basis of all wavelet analyses.
Although there are a multitude of relevant studies (Sang 2012;
Nourani et al. 2014; Shoaib et al. 2014), these issues have not been
completely resolved, and there is no universal method for the
choice of mother wavelet and temporal scale yet.

Following the theories of wavelet analysis (Percival and Walden
2000), the suitable mother wavelet and temporal scale should ac-
curately reflect the deterministic characteristics and true compo-
nents (periodicities, trend, etc.) in a hydrological time series
under multitemporal scales. Although we clearly know the math-
ematical equations and properties of all wavelets, the true compo-
nents in the raw hydrological data are not known. Thus, there forms
a paradox: on one hand, we need to choose a suitable wavelet and
temporal scale to identify the true components, but on the other
hand, we should first know the true components to choose a suit-
able wavelet and temporal scale. This is the primary reason for
the difficulty in the choice of mother wavelet and temporal scale.

In this article the authors offer personal opinions and sugges-
tions for wavelet modeling, hopefully as an improvement and a
supplement for relevant studies. Because a large number of studies
describing various types of wavelet models have been reported,
they are not repeated here. Four issues of concern in wavelet
modeling here are (1) discrepant use of continuous and discrete
wavelet method, (2) choice of mother wavelet, (3) choice of tem-
poral scale, and (4) uncertainty evaluation in wavelet-aided fore-
casting. These issues are now discussed.

Key Issues in Wavelet Modeling

Discrepant Use of Continuous and Discrete Wavelet
Method

The basic objective of wavelet analysis is to achieve a complete
representation of the localized and transient phenomena occurring
at different temporal scales (Percival and Walden 2000; Labat
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2008). Generally, wavelet analysis can be divided into two types:
continuous and discrete. Both of them have been widely applied in
hydrology. In the specific area of wavelet-aided modeling, the dis-
crete wavelet method has gotten more applications compared with
the continuous wavelet method. Many studies discussed the prob-
lem and gave the reason that the continuous wavelet method gen-
erates large amounts of data and requires more computational time
and resources (Adamowski and Sun 2010; Tiwari and Chatterjee
2010). However, they did not clearly explain the problem, and more
convincing reasons should be given.

In the authors’ opinion, the continuous and discrete wavelet
method has different superiority for hydrological time series analy-
sis. The continuous wavelet method is superior for determining
both the scale contents of a series and how they vary in time. In
their excellent work, Torrence and Compo (1998) placed the con-
tinuous wavelet transform method in the framework of statistical
analysis by formulating a significance test. This has made the con-
tinuous wavelet method become more effective and rapidly de-
velop. The continuous wavelet method of course can be used
for wavelet modeling, just as discussed by Shoaib et al. (2014).
Generally, more data can give more useful information, which
would be favorable for the data-driven modeling practice (Singh
1998). The continuous wavelet method can identify the complex
characteristics of a time series under multitemporal scale, based
on which the continuous wavelet-based models can perform better
than those single models. However, there is much repeated infor-
mation (called data redundancy) in the continuous wavelet results
of a time series, and the results get more impacts from the boundary
effects, which would influence the stability of wavelet modeling
structure and correspondingly cause more uncertainty. It is the main
reason causing the worse performance of the continuous wavelet
models compared with the discrete wavelet models, so the former
has limited application in wavelet modeling practice.

The superiority of the discrete wavelet method is to decompose
a series into subsignals given proper wavelet and temporal scale,
and the result can guide wavelet threshold denoising and wavelet
decomposition. Because those wavelets used for discrete wavelet
transform must meet the orthogonal properties, the results can over-
come the problem of data redundancy in the continuous wavelet
transform. On the basis of the discrete wavelet results of series,
we can avoid the influences of noise and multi components over-
lapping on the hybrid wavelet—artificial intelligence models. There-
fore, the discrete wavelet method is commonly employed for
hydrological time series forecasting.

As a result, the continuous and discrete wavelet methods have
different advantages for time series analysis. If our purpose is to
understand complex localized and nonstationary variability of a
time series, we can use the continuous wavelet method. If we want
to do denoising, identification of true components, especially wave-
let modeling, we should use the discrete wavelet method.

Choice of Mother Wavelet

Differing from other transform techniques whose basis functions
are fixed, the choice of proper mother wavelet is the foremost task
in all wavelet analyses because results of time series analysis are
very sensitive to the wavelets used. There is a large number of
wavelets which are available for time series analysis. Different
wavelet functions are characterized by their distinctive support
region and vanishing moment. The support region of a wavelet
reflects its feature of localization ability, and the vanishing moment
of a wavelet reflects its ability of representing polynomial behavior
or information of the data. Generally, all mother wavelets can be
divided into two types, orthogonal or nonorthogonal. Seven

© ASCE

06016001-2

wavelet families, Haar, Daubechies (dbN), Coiflets (coifN), Sym-
lets (symN), BiorSplines (biorM.N), ReverseBior (rbioM.N), and
DMeyer (dmey), are orthogonal wavelets. Three wavelet families,
Morlet (morl), Mexican hat (Marr), and Gaussian (gaus), are non-
orthogonal wavelets. The use of an orthogonal wavelet implies the
use of the discrete wavelet transform whereas a nonorthogonal
wavelet can be used with either the discrete or the continuous wave-
let transform (Torrence and Compo 1998).

The essence of wavelet transform is to discover the similarity
between the analyzed series and wavelet (Walker 1999), but it can-
not be easily carried out in practice, and an appropriate wavelet
cannot be easily chosen. Many studies have discussed the choice
of wavelet function. For instance, Torrence and Compo (1998) sug-
gested choosing a nonorthogonal wavelet by comparing “width and
shape” similarity between wavelet and series; Schaefli et al. (2007)
suggested that the chosen wavelet should have progressive and
linear phases, exhibit good time-frequency localization, and be
adapted to the trade-off between time and scale resolutions; and
Nourani et al. (2014) suggested that similarity in the shape between
wavelet and raw series is often the best guide in choosing a reliable
wavelet. These suggestions are mainly qualitative and empirical,
and cannot be easily implemented in practice. Besides, many other
studies tried to find out one or some suitable wavelets for wavelet
modeling through experiments (Nourani et al. 2011; Maheswaran
and Khosa 2012; Singh 2011; Shoaib et al. 2014). However, the
universality and usability of these selected wavelets are limited
by a lack of evidence.

In the authors’ opinion, both the properties of wavelets and the
composition of series should be considered for choosing a wavelet,
and three key points should be clarified for the issue. The first is
that four key properties of wavelets should be concerned: (1) the
wavelet should have the progressive and linear phase; (2) the wave-
let should exhibit good localization both in time and frequency do-
mains; (3) the wavelet should be adapted to the trade-off between
time and scale resolutions (Schaefli et al. 2007); and (4) the wavelet
should also meet the orthogonal condition, because it is required for
wavelet decomposition, denoising, multiresolution analyses, and
many other wavelet analyses (Sang et al. 2013). The second is that
because observed hydrological data usually include noise, which
contaminates the true components of the series (Yevjevich 1972),
the similarity between wavelet and those true components in raw
noisy series, but not raw noisy series, should be the basis for choos-
ing the proper mother wavelet; in other words, the appropriate
wavelet should at least meet the need of accurately separating
the true components from noise through wavelet denoising practice
(Donoho 1995). The third is that because different time series usu-
ally show different characteristics and include different true com-
ponents, it may be more feasible to establish a universal rule or
criterion for the choice of wavelet, but not to find a specific method
or wavelet for the problem. Sang et al. (2013) discussed the prob-
lem, and used the statistical indices to establish the criteria for
choosing a proper wavelet (Table 1). The criteria quantify the sim-
ilarity between the denoised series and raw series, and restrict the
pure random characteristics of noise. To be specific, the mean val-
ues of the raw and denoised series should be similar; the standard
deviation value of the denoised series should be smaller than that of
the raw series; the coefficient of skewness of the raw and denoised
series should be similar; the lag-1 autocorrelation coefficient of
the denoised series should be bigger than that of the raw series;
and the lag-1 autocorrelation coefficient of the removed noise
should be close to zero. Analyses of various synthetic and observed
series have verified its reasonableness, and the results accord well
with the essence of wavelet transform. Hence, the criteria can be an
approach to choosing a wavelet.
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Table 1. Criteria for Assessment of the Reasonability of the Chosen
Wavelet and the Denoising Result of Series

Statistical indices

Series’ type X o C, r
Original series X, o, Cs, o
Denoised series X, ~X, on<o, Cs,~Cs, ry,>r,
Noise X, =X,—X,, — — rin &0

Note: Denoised series = true components in original series; Noise = random
components removed from original series; Original series = observed series
data. For the original series, denoised series, and noise, X, X,,and X, are
their mean; o, 0,,, and o, are their standard deviation; Cs,, Cs,,, and Cs,,
are their coefficient of skewness; and ry,, ry,,, and ry, are their lag-1
autocorrelation coefficient, respectively. — = it is unknown about the
statistical character of noise. It is cited from Sang et al. (2013).

Choice of Temporal Scale

The choice of proper temporal scale, called decomposition level for
the discrete wavelet analysis, is another important issue for wavelet
analysis, especially for wavelet modeling, because it directly deter-
mines the accuracy of the characteristics identified in a time series
under multitemporal scales. In many previous studies, an algorithm
of logjon, which is based on historical data length n, is recom-
mended for choosing a temporal scale (Wang and Ding 2003;
Belayneh et al. 2014; Nourani et al. 2014). Besides, another algo-
rithm of log[n/(2v — 1)]/log(2), which is based on both series
length n and the number v of vanishing moments of wavelet, is
also widely used for choosing a temporal scale (de Artigas et al.
2006; Nalley et al. 2012). These algorithms may be arguable.
Hydrological time series usually show dominant characteristics
under multitemporal scales, and various time series with the same
length show obviously different characteristics. Therefore, the
choice of proper temporal scale should be closely based on
the composition and characteristics of the analyzed data, but not the
series data length, properties of wavelet, or other factors.

In the authors’ opinion, two key points must be considered for
the choice of a temporal scale: purpose and uncertainty. Discrete
wavelet analysis is usually used for denoising or separating the true
components of a series, as the basis of wavelet modeling, so two
types of temporal scale need to be chosen for the two purposes,
respectively. Besides, decomposition results of the series and the
identified true components using the chosen temporal scale have
uncertainty; therefore, the evaluation of uncertainty is another im-
portant problem. Sang (2012) discussed this problem and proposed
the significance testing of discrete wavelet transform (DWT). He
first established a stable reference energy function by doing Monte
Carlo simulation to diverse noise types. Then, by comparing the
energy function of the hydrological time series with the reference
energy function, he presented a step-by-step guide for wavelet de-
composition of series (Fig. 1), in which a suitable temporal scale
can be chosen, and uncertainty can also be quantitatively evaluated
using a proper confidence interval. Following the guide, we can
easily judge whether a component under a certain temporal scale
is noise or a true component, and the result can guide artificial in-
telligence modeling. Hence, the significance testing of DWT for
hydrological time series analysis is recommended here for choos-
ing a proper temporal scale.

Uncertainty Evaluation in Wavelet-Aided Forecasting

The combination of wavelet analysis with artificial intelligence
models improves hydrological time series forecasting. Various
studies have demonstrated the effectiveness of this practice due
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Fig. 1. The steps for comparing energy function of hydrological series
with the reference energy function, and the steps for choosing decom-

position level. “DWT” is discrete wavelet transform (reprinted from
Sang 2012, © ASCE)

to the ability of wavelet analysis (Wang and Ding 2003; Sang 2013;
Nourani et al. 2014; Tiwari and Adamowski 2013; Rathinasamy
et al. 2013). However, forecasting results of hydrological extremes
(including both maximum and minimum) have not been obviously
improved in many case studies. These hydrological extremes
reflect the complex influence of various random factors on hydro-
logical processes and cause the uncertainty in hydrological time
series forecasting. On the whole, present studies about wavelet mod-
eling mainly focused on improving the accuracy of forecasting
value through diverse combinations of models, but there is a limited
study about uncertainty evaluation.

Hydrological processes generally have uncertainty, and the fore-
casting result with a single optimal value is not convincing and
“honest.” The optimal results do not take uncertainty into account
effectively, so they cannot meet the practical needs adequately
(Krzysztofowicz 2001). Sang (2013) tentatively proposed a wavelet
modeling framework for hydrological time series forecasting
(Fig. 2). The framework first separates different true components
and removes noise in the original series through the discrete wave-
let method. It then forecasts the former and quantitatively describes
the random characteristics of noise. Finally, it adds them up and
obtains the final forecasting results. Forecasting of true components
is for obtaining the deterministic forecasting results, and noise
analysis is for estimating the occurrence possibility of extremes.
In the future, more efforts should be made to employ proper
methods of uncertainty evaluation into the wavelet modeling
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Choose proper wavelet and temporal scale
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Fig. 2. Steps of hydrological time series forecasting by the wavelet
modeling framework. “DWT” is discrete wavelet transform, and
“WTD” is wavelet threshold de-noising (reprinted from Sang 2013,
© ASCE)

processes and further to make the results of hydrological time series
forecasting more reliable.

Conclusions

In this paper four key issues related to wavelet modeling are dis-
cussed, and the methods and suggestions for solving them are
given. On the whole, the continuous and discrete wavelet methods
have different advantages for time series analysis. We can use the
continuous wavelet method to identify complex localized and non-
stationary variability of a time series and use the discrete wavelet
method to do denoising, identification of true components, espe-
cially wavelet modeling. In the process of wavelet analysis, both
the properties of wavelets and the composition of series should
be considered for choosing a proper mother wavelet; the choice
of proper temporal scale should be closely based on the composi-
tion and characteristics of the analyzed data, and both the purpose
and uncertainty should be considered in the choice of a proper tem-
poral scale.

In conclusion, the wavelet models can improve hydrological
time series forecasting. Because accurate wavelet analysis of time
series is the kernel of wavelet modeling, more studies should focus
on it in future studies. Especially, uncertainty evaluation is still an
open issue in wavelet-aided modeling, and more studies should be
given to the problem.
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