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DERIVATION OF RATING CURVES USING ENTROPY THEORY

V. P. Singh

ABSTRACT. Using the entropy theory, this study derives the stage‐discharge relation, often called the rating curve, which is
based on two simple constraints: (1) the total probability and (2) the mean logarithmic discharge. Parameters of the derived
curves are determined with the use of these two constraints. The entropy theory permits a probabilistic characterization of
the rating curve and hence the probability density function underlying the curve. It also permits a quantitative assessment
of the uncertainty of the rating curve. The derived rating curves are tested using field data and are found to be in agreement
with the curves obtained by the least square method.
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he relation between stage and discharge is often re‐
ferred to as the stage‐discharge rating curve or sim‐
ply the rating curve. It is a kinematic relation
(Singh, 1993, 1996). In principle, a rating curve is

a relation between flux (usually volumetric) and concentra‐
tion related to a river or stream. In the case of a stage‐
discharge relation, the volumetric flux is represented by flow
discharge (cubic meters per second) and its corresponding
flow concentration by flow depth or stage above a datum. In
the case of a sediment rating curve, the concentration can be
represented by suspended sediment concentration. Thus, the
relation between suspended sediment concentration and dis‐
charge defines a suspended sediment rating curve. Similarly,
if concentration is represented by pollutant concentration,
then the relation between pollutant concentration and dis‐
charge corresponds to the pollutant rating curve. Thus, there
are different types of rating curves used in hydrology. Since
the rating curves are of similar form from an algebraic view‐
point, and fundamental to most rating curves is the estimation
of discharge, this study focuses on the stage‐discharge rating
curve only. Rating curves are employed for a variety of pur‐
poses, including the determination of discharge for measured
stage, calibration of physically based hydraulic and hydro‐
logic models, evaluation of flood inundation, and damage as‐
sessment. They are also used for constructing continuous
records of discharge, continuous time series of sediment dis‐
charge or sediment concentration, continuous pollutant
graphs, floodplain mapping, storage variation, hydraulic de‐
sign, catchment routing, damage assessment, and so on
(WMO, 1994).

A common method used to construct a rating curve for a
gauging site is to plot observed discharge and stage data on
graph paper and fit an equation using regression or a least
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square method. Depending on the river gauging site and the
underlying geomorphic controls, three types of rating curves,
which are parabolic or power type, have been derived and are
employed in practice (Corbett, 1962; Lambie, 1978). Param‐
eters of these curves are determined either graphically or by
using a mathematical or statistical method, such as least
square method, maximum likelihood, pseudo‐maximum
likelihood, segmentation, artificial neural networks, simu‐
lated annealing, and genetic programming (Lee et al., 2010).

Ideally, the rating curve should be a smooth curve of para‐
bolic shape, without reversals in curvature, so that a unique
relation between stage and discharge is easily established. In
the absence of an abrupt change in the slope of the rating
curve, the rate of increase in stage corresponding to a speci‐
fied increase in discharge should be reasonably consistent
throughout the stage. In the case of the relation for a channel,
the channel must be capable of regulating or stabilizing the
flow past the gauge such that for a given stage or height of the
water surface, the discharge past the gauge must remain unal‐
tered. The relation is controlled by a section or reach of the
channel below the gauge, known as the section control. It
eliminates the influence of all other boundary conditions on
the velocity of flow at the stage. A control may be complete
or partial. A complete control, as the name suggests, governs
the stage‐discharge relation for the full range of stage and is
independent of all downstream conditions. On the other
hand, a partial control governs the relation for only part of the
range in stage. It may act in concert with other controls and
be an essential part of the complete control (Corbett, 1962;
Petersen‐Overleir and Reitan, 2005).

However, a rating curve is often subject to a number of un‐
certainties,  as discussed by Clarke (1999): (1) There are in‐
herent errors in discharge measurements due to the
computation of average velocity, relative accuracy of the
flow meter equipment, and the experimenters (Sauer and
Meyer, 1992). (2) Since discharge is a product of cross‐
sectional area and flow velocity and cross‐sectional area is
computed using depth and width, determining the discharge
at a place where velocity variations are kept to a minimum or
selecting a stable river cross‐section, which is usually associ‐
ated with a high depth to width ratio and relatively little ero‐
sion and deposition of sediment, is not always easy. (3) The
section control must be capable of maintaining a fairly stable
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relation between discharge and water stage at the selected
point above it. If the channel control is comprised of channel
slope, resistance, and dimensions over a considerable dis‐
tance, which varies inversely with slope and increases with
increasing stage, and if the distance increases farther down‐
stream and includes controls of new downstream features,
then the curvature of the rating curve may exhibit reversals.
If a channel has a flat slope, then the control at high stages
may extend so far downstream that it may involve backwater
effects, which may not occur at lower stages. Abrupt changes
in controls and submergence of controls most likely cause ir‐
regularities in the slope of the stage‐discharge relations.
(4)�In order for a stage‐discharge relation to be stable for a
given discharge, both relations of slope to stage and slope to
discharge must remain unaltered. This will correspond to a
complete control in its effectiveness. These relations would
be constant for steady‐state conditions, which do not occur
often. Nevertheless, the sites for the position of gauges and
controls must be selected such that the variation in discharge
for a given stage, due to variations in slope, velocity, or chan‐
nel conditions, is small during the period of time involved.
(5)�A permanent control ensures a permanent stage‐
discharge relation at all times as long as slope remains the
same. For a permanent control, the position with respect to
the datum of the gauge, its distance downstream from the
gauge, and the condition of the streambed between the gauge
and the part of the channel controlling the stage‐discharge
relation must remain unchanged. However, in real life, these
conditions are seldom met, and a permanent control and con‐
sequent permanent stage‐discharge relation do not remain
unchanged. Even if the control may seem permanent, the
stage‐discharge relation may change. (6) There can be more
than one control for high and low flows (Yoo and Park, 2010).

Herschy (1995) investigated errors in discharge due to er‐
rors in velocity and depth measurements. Considering chan‐
nel instability, DeGagne et al. (1996) developed a decision
support system. Because there can a change in control from
low flow to high flow, a segmentation method, which is de‐
veloped in segments, has been used to represent a rating curve
(Torsten et al., 2002; Schmidt and Yen, 2002; Petersen‐
Overleir, 2004; Petersen‐Overleir and Reiten, 2005; Sivapra‐
gasam and Mutill, 2005; Overlier, 2006). This discussion
shows that there is an element of randomness in the stage‐
discharge curve, and it will therefore be reasonable to argue
that discharge can be treated as a random variable. Although
significant temporal variability in discharge has been recog‐
nized, little effort has been made to account for its probabilis‐
tic characteristics when establishing rating curves and to
quantify uncertainty in a rating curve. One way to accomplish
the twin objectives of defining the probability distribution
and the uncertainty of a rating curve is to use the entropy
theory. This theory has an advantage over other methods in
several respects. First, it takes account of the information
available on the rating curve, such as moments (mean, vari‐
ance, etc.) of discharge. These moments are more stable in
time than individual measurements. Second, it permits us to
quantify the information or uncertainty associated with the
curve. Third, it paves the way to determine data sampling or
the number of measurements needed to determine a robust
rating curve. Fourth, it obviates the need for estimating the
rating curve parameters empirically or by curve fitting. Fifth,

since the parameters estimated by the entropy theory are ex‐
pressed in terms of the specified constraints, they have physi‐
cal meaning or they can be interpreted in terms of the given
information.  These considerations motivated the use of the
entropy theory.

The objective of this study therefore is to (1) derive, using
the entropy theory, the stage‐discharge rating curve domi‐
nated by friction control and its three special forms, (2) deter‐
mine the rating curve parameters from the specified
information expressed as constraints, (3) derive the probabil‐
ity density function associated with the three rating curves,
(4) determine the entropy associated with these curves, and
(5) test the three rating curves with field measurements.

FORMS OF RATING CURVES
A rating curve for a gauge in a channel dominated by fric‐

tion is normally expressed in a power form (Corbett, 1962;
Kennedy, 1964) as:

 cyyaQ b +−= )( 0  (1)

where Q is the discharge (L3/T, e.g., ft3 s‐1 or m3 s‐1); y is the
stage or height of water surface (L, e.g., ft or m); y0 is the
height (L) when discharge is negligible and is usually taken
as a constant value or is sometimes used as a fitting parame‐
ter; b is an exponent; and a (L3‐b/T) and c (L3/T) are parame‐
ters, where L is the length dimension and T is the time
dimension. Equation 1 is a general form and specializes into
three popular types that are commonly employed (Corbett,
1962). Although the three forms differ from each other in
their parameters, these forms have been popularly used and
reported separately in the hydraulic literature and stem from
river morphological characteristics. Therefore, they are de‐
scribed as such.

Type 1: In this case, y0 = 0 and c = 0. Equation 1 then be‐
comes:

bayQ = (2a)

or in logarithmic form:

ybaQ logloglog += (2b)

Type 2: In this case, c = 0. Equation 1 then becomes:

byyaQ )( 0−= (3a)

or in logarithmic form:

)log(loglog 0yybaQ −+= (3b)

Type 3: In this case, y0 = 0. Equation 1 then becomes:

cayQ b += (4a)

or in logarithmic form:

ybacQ loglog)log( +=− (4b)

It should be noted that values of parameters a, b, and c will
vary from one relation to another. In the hydraulic literature,
equations 2 to 4 have been applied. The objective here is to
derive these relations using the entropy theory.
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DERIVATION OF RATING CURVES USING

ENTROPY THEORY
The procedure for deriving rating curves, based on the en‐

tropy theory, is comprised of (1) Shannon entropy, (2) specifi‐
cation of constraints, (3) maximization of entropy in concert
with the principle of maximum entropy, (4) derivation of the
probability distribution of discharge, (5) maximum entropy,
(6) determination of Lagrange multipliers, and (7) derivation
of the rating curve. It is assumed that temporally averaged
discharge Q is a random variable with a probability density
function (PDF) denoted as f(Q). Each of these steps is dis‐
cussed in the following sections.

SHANNON ENTROPY
The Shannon entropy (Shannon, 1948; Shannon and

Weaver, 1949) of discharge Q or of f(Q), H(Q), can be ex‐
pressed as:

 ∫−=
DQ

Q
dQQfQfuH

0

)(ln)()(  (5)

where Q0 and QD represent the lower and upper limits of dis‐
charge for integration. Equation 5 expresses a measure of un‐
certainty about f(Q) or the average information content of
sampled Q. The objective here is to derive the least‐biased
f(Q), which can be accomplished by maximizing H(Q), sub‐
ject to specified constraints, in accordance with the principle
of maximum entropy (POME) (Jaynes, 1957, 1982). Maxi‐
mizing H(Q) is equivalent to maximizing f(Q)lnf(Q). In order
to determine f(Q) that is least biased toward what is not
known as regards discharge, the principle of maximum entro‐
py (POME) developed by Jaynes (1957, 1982) is invoked,
which requires specification of certain information, ex‐
pressed in terms of what is called constraints, on discharge.
According to POME, the most appropriate probability dis‐
tribution is the one that has the maximum entropy or uncer‐
tainty, subject to these constraints.

SPECIFICATION OF CONSTRAINTS

For deriving the stage‐discharge relation, following Singh
(1998) the constraints to be specified are the total probability
law, which must always be satisfied by the probability density
function of discharge written as:

 ∫ ==
DQ

Q

dQQfC

0

1)(1  (6)

and

 ∫ ==
DQ

Q

QdQQQfC

0

ln)(ln2  (7)

Equation 7 is the mean of the logarithmic discharge val‐
ues. Equation 6 is the first constraint defining the total proba‐
bility law (C1), and equation 7 is the second constraint (C2)
defining the mean of the logarithm of discharge.

MAXIMIZATION OF ENTROPY

In order to obtain the least biased probability density func‐
tion of Q, f(Q), the Shannon entropy, given by equation 5, is
maximized following POME, subject to equations 6 and 7. To

that end, the method of Lagrange multipliers is employed.
The Lagrangian function then becomes:
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where � 0 and �1 are the Lagrange multipliers. Recalling the
Euler‐Lagrange equation of calculus of variation and differ‐
entiating equation 8 with respect to f, noting that f is variable
and Q is a parameter, and equating the derivative to zero, one
obtains:

 QQf
f

L
ln)1(]1)([ln0 10 λ−−λ−+−==

∂
∂

 (9)

DERIVATION OF PROBABILITY DISTRIBUTION

Equation 9 leads to the entropy‐based probability density
function (PDF) of velocity as:

 1)exp()(or

]lnexp[)(

0

10

λ−λ−=

λ−λ−=

QQf

QQf

 (10)

The PDF of Q contains the Lagrange multipliers �0 and �1,
which can be determined using equations 6 and 7. The cumu‐
lative probability distribution function of Q can be obtained
by integrating equation 10 as:

 [ ]1
0

1

1

0 11

1

)exp(
)( +λ−+λ− −

+λ−
λ−= QQQF  (11)

Note that when Q = Q0:

 1

0 00 )exp()( λ−
= λ−= QQf QQ  (12)

MAXIMUM ENTROPY
Substitution of equation 10 in equation 5 yields the maxi‐

mum entropy or uncertainty of discharge:

 QQH ln)( 10 λ+λ=  (13)

DETERMINATION OF LAGRANGE MULTIPLIERS
Substitution of equation10 in equation 6 leads to:

 [ ]10
1

10
11ln)1ln( +λ−+λ− −++λ−−=λ QQD

 (14)

Differentiating equation 14 with respect to �1 produces:
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On the other hand, substitution of equation 10 in equa‐
tion�6 can also be written as:

 dQQ
DQ

Q
∫ λ−=λ

0

1ln0
 (16)
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Differentiating equation 16 with respect to �1, one gets:
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Multiplying and dividing equation 17 by exp(‐�0), and us‐
ing equation 6, the result is:
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Equating equation 15 to equation 18, an expression for �1
is obtained in terms of the constraint and the limits of integra‐
tion of Q as:
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DERIVATION OF RATING CURVE

Let the maximum stage (channel flow depth) be denoted
D. It is then assumed that all values of stage y measured from
the bed to any point between 0 and D are equally likely. In
reality this is not highly unlikely because at different times
different values of stage do occur. This is also consistent with
the Laplacian principle of insufficient reason. The cumula‐
tive probability distribution of discharge can then be ex‐
pressed as the ratio of the stage to the point where discharge
is to be considered and the stage up to the maximum water
surface. The probability of discharge being equal to or less
than a given value of Q is y/D. At any stage (measured from
bed) less than a given value y, the discharge is less than a giv‐
en value, say, Q. Thus, the cumulative distribution function
of discharge, F(Q) = P(discharge < a given value of Q), where
P = probability, can be expressed as:

 
D

y
QF =)(  (20)

F(Q) denotes the cumulative distribution function (CDF),
and Q is discharge (m3 s‐1). It should be noted that on the left
side of equation 20, in the argument of function F, the vari‐
able is Q, whereas on the right side the variable is y. The CDF
of Q is not linear in terms of Q unless Q and y are linearly re‐
lated. Of course, it is plausible that F(Q) might have a differ‐
ent form. Since equation 20 constitutes the fundamental
hypothesis employed here for deriving the stage‐discharge
relation using entropy, it will be useful to evaluate its validity.
This hypothesis (i.e., the relation between the cumulative
probability F(Q) and the ratio y/D) should be tested for a large
number of natural rivers. This hypothesis was tested for sev‐
eral sets of data on stage and discharge, as shown for a sample
data set in figure 1, which shows that the hypothesis ex‐
pressed by equation 20 is approximately valid. It may also be

Figure 1. Relation between the cumulative probability F(Q) and the ratio
y/D.

noted that a similar hypothesis has been employed when us‐
ing the entropy theory for deriving infiltration equations by
Singh (2010a, 2010b), soil moisture profiles by Singh
(2010c), and velocity distributions by Chiu (1987). It may
also be emphasized that even if the above hypothesis is not
strictly valid, it will not greatly influence the results because
it merely allows the entropy theory to lead to the rating curves
that are desired.

The probability density function is obtained by differen‐
tiating equation 20 with respect to Q:
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The term f(Q) dQ = F(Q + dQ) ‐ F(Q) denotes the probabil‐
ity of velocity being between Q and Q + dQ.

Substituting equation 10 in equation 14, one gets:
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Equation 22 yields:
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Equation 23 can be considered as a general rating curve,
for it encompasses all three types of rating curves outlined
earlier.

RATING CURVE TYPE 1
If y0 = 0 and Q0 = 0 in equation 23, then the result is:
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and 
1

1

1 +λ−
=b  (26)

Then, equation 24 yields the rating curve given by equa‐
tion 2a. This rating curve is used in practice. When plotted on
log‐log paper, equation 24 will be straight line. It may now
be interesting to evaluate the Lagrange multipliers for this
simple case and hence parameters a and b.

DETERMINATION OF LAGRANGE MULTIPLIERS
Substitution of equation 10 in equation 6 yields:
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1
)exp(

110

1

1

0

1

D

D

Q

Q

+λ−++λ−−=λ

+λ−
=λ

+λ−

 (27)

where QD is the discharge at y = D.

Differentiating equation 27 with respect to �1, one obtains:
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One can also write from equations 10 and 6:
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Differentiating equation 29 with respect to �1 and simpli‐
fying, one obtains:
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Equating equation 28 to equation 30 leads to an estimate
of �1:

 
QQD lnln
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Therefore, exponent b of the power form rating curve be‐
comes:

 QQb D lnln −=  (32)

Equation 32 shows that exponent b of the power form rat‐
ing curve can be estimated from the values of the logarithm
of maximum discharge at the water surface covering the
channel fully and the average of the logarithmic values of dis‐
charge. The higher the difference between these logarithm
values, the higher will be the exponent.

The Lagrange multiplier �0 can now be expressed as:
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The PDF of Q can be expressed as:
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Figure 2. Probability density function of discharge for USGS gauging
station 08082000‐Salt‐FK‐Brazos.

and the CDF as:

 bQQ
D

b QQQbQF D
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)ln/(ln1
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0 )()exp()( −=λ−=  (35)

For b < 1, the probability density function (PDF) monoton‐
ically increases from 0 to exp(‐�0)QD (1/ b)‐1. Figure 2 shows
a PDF of discharge values observed at a USGS gauging
station (08082000‐Salt‐FK‐Brazos) on the Brazos River.

The entropy (in Napiers) of the discharge distribution can
be obtained by substituting equation 34 in equation 5:
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RATING CURVE TYPE 2
In this case, Q0 = 0 at y = y0. Therefore, equation 23

becomes:
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Using equation 25 and 26, equation 37 becomes:

 byyaQ )( 0−=  (38)

This type of rating curve is also used in practice. The PDF,
CDF, and entropy associated with this curve remain the same
as for rating curve type 1. Here, parameters a and b will have
the same definitions but with y replaced by y ‐ y0 as in the case
of type 1.

RATING CURVE TYPE 3
In this case, let q = Q ‐ Q0, where Q0 is some small value.

It is assumed that q = 0 at y = 0. Then the derivation in the case
of rating curve type 1 will hold, and equation 23 will be
become:

 cayQ b +=  (39)

which includes equation 24 as a special case. Here,
parameters a and b will have the same definitions but with Q
replaced by q as in the case of type 1 and c = Q0.
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Table 1. Stream gauging stations on the Brazos River, Texas.

USGS
Number Location County Latitude Longitude

Hydrologic
Unit

Drainage
Area,

mi2 (km2)

Contributing
Area,

mi2 (km2)

Gauge Datum
above Sea Level
NGVD, ft (m)

08079600 Justiceburg Garza 33°02′18″ 101°11′50″ 12050004 1,466 (4,497.40) 244 (748.54) 2,222.47 (677.41)
08080500 Aspermont Stonewall 33°00′29″ 100°10′49″ 12050004 8,796 (26,984.37) 1,864 (5718.38) 1,624.79 (494.26)
08082000 Salt‐FK Stonewall 33°20′02″ 100°14′16″ 12050007 5,130 (15,737.81) 2,496 (7657.23) 1,588.70 (484.24)
08082500 Seymour Baylor 33°34′51″ 99°16′02″ 12060101 15,538 (47,667.48) 5,972 (18320.90) 1,238.97 (377.64)
08083100 Clear‐FK Fisher County 32°47′15″ 100°23′18″ 12060102 228 (699.46) 228 (699.46) 1,885.09 (577.58)

EVALUATION
The objective here is to evaluate if entropy‐based

parameters and hence rating curves yield acceptable
discharge values for given stage or flow depth, but not to
advocate the preference of one rating curve over others. To
that end, five stream gauging stations located on the Brazos
River, Texas, were selected. These stations are located in four
different counties and are operated by the U.S. Geological
Survey (USGS). Table 1 gives relevant information on these
stations. The drainage areas at these stations vary from 228
to 15,538 square miles (699.46 to 47,667.48 km2) and
represent a broad range of flow conditions.

Parameters were computed using equations for all five
stations and are shown in table 2. For comparison, parameters
of the three rating curves were also determined using the least
square method, and values of these parameters are also given
in table 2. The entropy values obtained were also determined
for the five stations and are given in table 2.

In order to quantitatively evaluate the goodness of fit of
the three rating curves, the following statistical measures
were employed:

Coefficient of correlation:
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Average bias:
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Root mean square (RMS):
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Table 2. Parameters a and b of rating curves for five gauging stations (for period of record 2006‐2009).

Name of Station
and USGS Number

Rating
Curve

Entropy‐Based Parameters LS‐Based Parameters y0
(m)

Q0
(m3 s‐1)

H
(bits)a b a b

DMF‐Brazos
08079600 Type 1 26.35 2.34 68.30 1.67 ‐‐ ‐‐ 1.85

Type 2 26.35 2.34 79.04 2.27 ‐2.5 ‐‐ 1.85

Type 3 26.35 2.34 186.8 0.95 ‐‐ 64.00 1.85

DMF‐Brazos
08080500 Type 1 57.5 3.14 104.58 2.45 ‐‐ ‐‐ 2.14

Type 2 57.5 3.14 0.82 5.09 ‐2.5 ‐‐ 2.14

Type 3 57.5 3.14 23.1 3.59 ‐‐ 64.0 2.14

Salt‐FK‐Brazos
08082000 (2006‐09) Type 1 3.89 3.66 0.03 6.66 ‐‐ 2.30

Type 2 3.89 3.66 265.1 2.1 2.8 2.30

Type 3 16.59 2.95 1.05 4.64 190.0 2.08

Brazos
08082500 Type 1 67.5 3.16 104.58 2.44 ‐‐ ‐‐ 2.42

Type 2 67.5 3.16 0.38 5.44 ‐1.7 ‐‐ 2.42

Type 3 10.44 4.12 459.4 0.25 ‐‐ 276.0 2.42

Clear‐FK‐Brazos
08083100 Type 1 0.017 4.21 0.07 3.83 ‐‐ ‐‐ 2.44

Type 2 0.07 4.21 0.001 5.08 ‐1.9 ‐‐ 2.00

Type 3 1.71 2.72 0.88 3.1 ‐‐ 0.67 2.00
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Table 3. Statistical measures for evaluating the performance of entropy and least square methods.

Name of Station
and USGS Number

Rating
Curve

Entropy Method Least Square Method

r2
Bias

(m3 s‐1)
RMS

(m3 s‐1) NSE r2
Bias

(m3 s‐1)
RMS

(m3 s‐1) NSE

DMF‐Brazos
080779600 Type 1 0.916 43.75 167.69 0.91 0.938 43.60 167.48 0.91

Type 2 0.906 ‐196.43 838.18 0.884 0.816 ‐77.69 403.67 0.881
Type 3 0.914 36.74 165.30 0.913 0.969 ‐13.58 37.05 0.996

DMF‐Brazos
08080500 Type 1 0.951 83.31 254.00 0.987 0.80 271.18 1021.75 0.792

Type 2 0.824 ‐261.92 1270.40 0.872 0.821 ‐54.560 741.86 0.841
Type 3 0.985 63.31 248.04 0.988 0.811 ‐275.21 1696.95 0.811

Salt‐FK‐Brazos
08082000 Type 1 0.412 120.75 1005.90 0.472 0.845 ‐190.07 2410.54 0.844

Type 2 0.667 179.41 1035.1 0.674 0.856 ‐64.88 1680.82 0.856
Type 3 0.476 470.75 1105.30 0.629 0.843 ‐104.94 2074.00 0.843

Brazos
8082500 Type 1 0.943 84.95 252.8 0.975 0.792 276.65 1037.7 0.792

Type 2 0.827 ‐280.48 1252.01 0.827 0.879 ‐128.59 1067.37 0.888
Type 3 0.98 262.84 538.16 0.985 0.808 ‐96.33 2351.38 0.808

Clear‐FK‐Brazos
08083100 Type 1 0.982 33.99 135.57 0.987 0.963 ‐78.01 334.27 0.963

Type 2 0.925 ‐19.77 162.71 0.981 0.967 29.37 196.54 0.973
Type 3 0.988 33.49 135.45 0.987 0.92 ‐77.514 335.15 0.921

Nash‐Sutcliffe efficiency:
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where Qo(i) is the ith observed discharge; Qc(i) is the ith

computed discharge; oQ  and cQ  are the average values of
observed and computed discharges, respectively; and N is the
number of observations. These measures were computed for
all three curve types and for all stations and are given in
table�3.

In general, both the entropy‐based curves and the curves
determined with the least square method were comparable,
but the agreement between computed and observed curves
was sometimes better for the entropy‐based method than for
the least square method, and sometimes the reverse was true.
Furthermore, type 1 curve better represented the observed
stage‐discharge relation than type 2 and type 3 curves. In
some cases, type 2 as well as type 3 curves were satisfactory.
This is also reflected in the statistical measures given in
table�3.

For illustrative purposes, computed and observed rating
curves for two stations, station 2 (08080500‐DMF‐Brazos)
and station 5 (08083100‐Clear‐FK‐Brazos), are shown in
figures 3 to 8. For station 2, a rating curve of type 1 fitted the
data reasonably well, as shown in figure 3. This is also seen
from the high correlation value of the coefficient of
determination  (r2) of 0.951 and the Nash‐Sutcliffe efficiency
(NSE) of 0.987. For this station, the average bias produced by
the type 1 curve was small (83.31 m3 s‐1), and so was the root
mean square error (RMS) (254.0 m3 s‐1). These measures for

the least square method were: r2 = 0.8, bias = 271.18 m3 s‐1,
RMS = 1021 m3 s‐1, and NSE = 0.792. The goodness of fit is
remarkable,  given that no fitting was involved and the
parameters were based solely on the constraints or the
information specified beforehand. For this station, entropy‐
based rating curves of type 2 and type 3 were also found
suitable. For the type curve 2, the statistical measures for the
entropy‐based method were: r2 = 0.824, bias = ‐261.923 m3

s‐1, RMS = 1270.4 m3 s‐1, and NSE = 0.872, and for the least
square method they were: r2 = 0.821, bias = ‐54.56 m3 s‐1,
RMS = 741.86 m3 s‐1, and NSE = 0.841. For the type 3 curve,
the statistical measures for the entropy‐based method were:
r2 = 0.985, bias = 63.31 m3 s‐1, RMS = 248.04 m3 s‐1, and
NSE�= 0.998, and for the least square method they were: r2�=
0.811, bias = ‐275.21 m3 s‐1, RMS = 1696.95 m3 s‐1, and
NSE�= 0.811. Both methods were comparable, as shown in
figures 4 and 5.

Figure 3. Entropy method‐based and least square method‐based rating
type 1 curve and observed stage‐discharge relation for station 2
(08080500‐DMF‐Brazos).
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Figure 4. Entropy method‐based and least square method‐based type 2
curve and observed stage‐discharge relation for station 2
(08080500‐DMF‐Brazos).

Figure 5. Entropy method‐based and least square method‐based type 3
curve and observed stage‐discharge relation for station 2
(08080500‐DMF‐Brazos).

Figure 6. Entropy method‐based and least square method‐based type 1
curve and observed stage‐discharge relation for station 5
(08083100‐Clear‐FK‐Brazos).

For station 5, the entropy‐based type 1 rating curve fitted
the data well, as shown in figure 6. For this curve, the
statistical measures for the entropy‐based method were: r2 =
0.982, bias = ‐33.99 m3 s‐1, RMS = 135.57 m3 s‐1, and NSE�=
0.987, and for the least square method they were: r2 = 0.963,
bias = ‐78.01 m3 s‐1, RMS = 334.27 m3 s‐1, and NSE = 0.963.
The entropy‐based method and the least squares method were
comparable,  but the least square method slightly under-

Figure 7. Entropy method‐based and least square method‐based type 2
curve and observed stage‐discharge relation for station 5
(08083100‐Clear‐FK‐Brazos).

Figure 8. Entropy method‐based and least square method‐based type 3
curve and observed and stage‐discharge relation for station 5
(08083100‐Clear‐FK‐Brazos).

estimated the discharge values for specified flow
depths. For the type 2 curve, the least square method had a
slight edge, as seen in figure 7 and the statistical measures.
For the entropy‐based method, these statistical measures
were: r2 = 0.925, bias = ‐19.77 m3 s‐1, RMS = 162.71 m3 s‐1,
and NSE = 0.981, and for the least square method they were:
r2 = 0.967, bias = 29.37 m3 s‐1, RMS = 196.54 m3 s‐1, and
NSE�= 0.973. The least square method had a slight edge.

The entropy‐based type 3 rating curve fitted the observed
data reasonably well, as seen in figure 8 and the statistical
measures. The least square method also fitted the data well.
For the entropy‐based method, the statistical measures were:
r2 = 0.988, bias = 33.49 m3 s‐1, RMS = 135.45 m3 s‐1, and NSE
= 0.987, and for the least square method they were: r2 = 0.92,
bias = ‐77.51 m3 s‐1, RMS = 334.15 m3 s‐1, and NSE = 0.921.
The entropy method had a slight edge.

For all five stations, the entropy method‐based rating
curves compared well with the observed rating curves and the
least square method‐based curves. The entropy values reflect
relative goodness of fit. The entropy values were quite
comparable,  and agreements between observed and
computed rating curves were also comparable. Since the
differences between entropy values for different curves were
small, it was difficult to judge the fit based on the entropy
values. The lower values reflect less uncertainty, meaning a
better fit, and this was observed somewhat.
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Figure 9. Change in discharge with the change in parameter y as a
function of y for rating curve type 1 for USGS gauging station
08080500‐DMF‐Brazos.

Figure 10. Change in discharge with the change in parameter a as a
function of y for rating curve type 1 for USGS gauging station
08080500‐DMF‐Brazos.

Figure 11. Change in discharge with the change in parameter b as a
function of y for rating curve type 1 for USGS gauging station
08080500‐DMF‐Brazos.

SENSITIVITY ANALYSIS
The rating curve has one dependent variable (Q), one

independent variable (y), and two or three parameters
depending on the type of curve. For type 1, the two
parameters are a and b. For type 2, the parameters are a, b,
and y0. For type 3, the parameters are a, b, and c. It would be
interesting to determine the sensitivity of rating curves to
their parameters. To that end, one can write:

Figure 12. Change in discharge with the change in parameter y as a
function of y for rating curve type 2 for USGS gauging station
08080500‐DMF‐Brazos.

Figure 13. Change in discharge with the change in parameter a as a
function of y for rating curve type 2 for USGS gauging station
08080500‐DMF‐Brazos.

Figure 14. Change in discharge with the change in parameter b as a
function of y for rating curve type 2 for USGS gauging station
08080500‐DMF‐Brazos.

For type 1 curves:
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Figure 15. Change in discharge with the change in parameter y as a
function of y for rating curve type 3 for USGS gauging station
08080500‐DMF‐Brazos.

Figure 16. Change in discharge with the change in parameter a as a
function of y for rating curve type 3 for USGS gauging station
08080500‐DMF‐Brazos.

Figure 17. Change in discharge with the change in parameter a for rating
curve type 3 for USGS gauging station 08080500‐DMF‐Brazos.

For type 2 curves:
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For type 3 curves:
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Each derivative of Q with respect to a given parameter can
be called a sensitivity coefficient. The values of the
coefficients help assess the effect of parameters on the rating
curve and also reflect their significance. Using equations 44
to 46, the coefficients were computed for all curves for all
five stations using both the entropy method and the least
square method. For economy of space, these coefficients are
plotted for the three curves for only station 2 (08080500‐
DMF‐Brazos), as shown in figures 9 to 17. Curves would be
similar but not the same for other stations. For type 1 curves,
as shown in figures 9 to 11, the entropy‐based sensitivity
coefficient for input parameter y and parameters a and b as
functions of flow depth are significantly higher as flow depth
exceeds 2 m and become even higher for higher flow depths.
This is even truer for type�2 curves, as shown in figures 12 to
14. However, for type�3 curves, this is true only for the
entropy method, as shown in figures 14 to 17; for the least
square method, they remain almost independent of flow
depth.

CONCLUSIONS
The following conclusions are drawn from this study:

(1)�With the entropy method, parameters of rating curves can
be determined in terms of specified constraints, which
themselves are determined from observations. This obviates
the need for fitting. (2) All three rating curves (types 1, 2, and
3) are found to represent observed rating curves quite well.
(3) The rating curves computed using the entropy method
compare well with those computed using the least square
method.
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