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Abstract

This part of the paper, a sequel to Part I, in continuation of the analytical
treatment of the Soil Conservation Service curve number (SCS-CN) method, further
explores the SCS-CN method for: (a) its functional behaviour, (b) the physical in-
terpretation of its proportional equality and curve number, (c) the derivation of sel-
dom explored potential maximum retention S-CN relation, and (d) the development
of CN-antecedent moisture condition (AMC) relations. Finally, an attempt is made
to present the SCS-CN concept as a viable alternative to power law.

Key words: antecedent moisture condition, curve number, infiltration, Soil Conser-
vation Service, sorptivity, soil-vegetation-land use complex, hydrologic condition.

1. INTRODUCTION

As discussed in the first part of this two-part paper (Mishra and Singh, 2002a), the
Soil Conservation Service curve number (SCS-CN) method is a combination of the
following equations:

P=1L+F+Q, (1)

= =, )
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=25, 3)

where P is the total rainfall, I, is the initial abstraction, F is the cumulative infiltration
excluding 1,, Q is the direct runoff, and S is the potential maximum retention or infil-
tration. All quantities in eqs. (1) — (3) are in depth or volumetric units. The popular
form of the SCS-CN method is obtained by combining eqgs. (1) and (2) as

(P-1,)"

Q= P-1,+S"

C))
which is valid for P 2 I,; else Q = 0. Parameter S is mapped into curve number (CN)
as

S = 1000 _ 10 . (5)
CN

The issues related to the SCS-CN method, such as the rational derivation of the
method and the rationale of initial abstraction, have been discussed in the first part
(Mishra and Singh, 2002a). Others issues, such as the analytical structure of the S-CN
mapping relation and the CN-AMC relations are investigated in this part. Thus, the
objective of this part of the paper is to revisit the existing SCS-CN method for its
functional behaviour and explore its fundamental proportionality concept using the
soil porosity. The description of its functional behaviour leads to the development of
criteria useful for field applications. The empirical S-CN relationship is investigated
for its analytical derivation. The relations linking CN with AMC are also proposed and
discussed. Finally, a brief investigation is made for using the SCS-CN concept as an
alternative to the power law widely used as a surrogate to the popular Manning equa-

tion.

2. FUNCTIONAL BEHAVIOUR OF THE EXISTING
AND MODIFIED SCS-CN METHODS

Existing SCS-CN method

The behaviour of the SCS-CN method can be described as follows. Under the state of
complete saturation, the basic SCS-CN concept (eq. 2) fails to describe Q, for both F
and § are equal to zero; rather Q is described by the water balance (eq. 1). Since S =0
and therefore F =0, I, = 0 for A =0.2 and @ = P from eq. (1). However, for the condi-
tion I, # 0, A = e from eq. (3) and from eq. (1), @ = P-I,. Thus, Q or the runoff factor
C is significantly governed by I,, which is consistent with the notion that 7, governs S
(McCuen, 1982) that, in turn, governs Q (eq. 4 with I, = 0.2 ). On the other hand, no
runoff (or Q = 0) condition can possibly occur if P=0, I, 2 P, or S = oo, If P = 0, then
each term of eq. (1) should be equal to zero. In such a situation, the left-hand side of



SCS-CN METHOD. PART H 109

eq. (2) equals 0/0 and the right-hand side is equal to zero for S > 0; it is indeterminate
(= 0/0) if § = 0. Under the condition I, = P, the entire rainfall is initially abstracted.
Therefore, both F and @ are taken as equal to zero to restrict the violation of water
balance (eq. 1). These conditions (I, 2 P and F = Q = 0), however, do not limit the
validity of eq. (2), for both its left- and right-hand sides are equal to zero for § > 0.
Finally, if § = oo (for example, an infinitely deep sandy soil), then, according to the
existing SCS-CN method, F = Q = 0 because I, = o for A = 0.2. However, if I, # 0,
then for § = o0, A = 0 (eq. 3) and Q = 0 from eq. (2) and consequently, F = P-I, from
eq. (1). Thus, the condition A = 0 does not necessarily describe I, =0. However, if
I, =0, then A =0, as shown below following Mishra and Singh (1999).
Combining eq. (4) with eq. (3), solving for S, multiplying the resulting equation
by A, and then solving for A yield (Mishra and Singh, 1999):
___cr
T Q-I)a-I.-0)
and A = 0. Equation (6) can also be directly derived from eq. (4). In eq. (6), if -l

(6)

or (I,+C)— 1, A— oo, Equation (6) yields prohibitive negative values of
A [= =1/(1-1.)] for C approaching 1. Thus, for A to be a non-negative value, the
following should hold: Q + I, < P, which when coupled with eq. (1) yields F = 0, and
its combination with eq. (3) leads to S<(P-Q)/A. It implies that § < 5(P-Q)
for A=0.2.

Equation (6) describes the functional behaviour in C -1~ A4 space, as shown in

Fig. 1. This figure shows that A can assume a value even when I, is not necessarily
equal to zero. In addition, as C—0, A—0 and, consequently, S—eo. Thus, eq.(3) with A
= 0.2 will yield 1, much larger than zero. Therefore, the existing SCS-CN method per-
forms poorly on very low runoff producing (or low C-values) lands, such as sandy
soils and forest lands. Similarly, when A increases sharply and approaches infinity for

agiven I, (or C = 1-1I.) (Fig. 1), the SCS-CN method may perform poorly.

Figure 1 also shows thick lines indicating the region of SCS-CN applicability for
A-range of (0.1, 0.3) (SCD, 1972). Apparently, as C increases and I. decreases, the
applicability region in terms of the runoff-generation potential widens or the range of
C-values increases to a certain extent and then decreases as C—1 and I, — 0. The
maximum C-range (0.39, 0.62) can be described mathematically for I: = 0.113, im-
plying the existing SCS-CN method to be most applicable to those watersheds exhibit-
ing C-values in the approximate range of (0.4, 0.6) and initial abstraction amount of
the order of 10% of the total rainfall.

Since the SCS-CN method with A = 0.2 performs well on urban watersheds
(SCS, 1986) because of the very low S-values and, in turn, the insignificant amount of
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Fig. 1. Variation of initial abstraction coefficient, A, with runoff factor, C, and nondimensional
initial abstraction, 1.

initial abstraction with insignificant bearance on the computed Q-values, it follows
that the existing SCS-CN method is applicable for C > 0.6. Thus, C 2 0.4 and from the
relation § < (P-Q)/A, S < (10/3)(P-Q) for A = 0.3 forms the bounds for applicability
of the method. Coupling of these conditions yields a broad criterion expressed as S <
2P or, alternatively, in terms of CN (eq. 5), the criterion is
N > 1000 .
10+2P

As a text example, if P=1 inch, CN 283, for which Q >0.23 inch. Similarly, if
P =10 inches, CN 2 33 and, in turn, Q > 2.29 inches. Thus, the applicability bounds in
Fig. 1 are: A £0.30, I, £0.35P, and C > 0.23. It is noted that the condition S < 2P al-
lows the SCS-CN method to work even when S < P, where the Mockus method
(Mishra and Singh, 2002b) fails.

Q)

Modified SCS-CN method

The modified version of the existing SCS-CN method is expressed as

__(P-L)
Q= 0.5(P-1,)+S"’

8)
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which is applicable for § = 0.5(P-1,), for Q-value to be less than or equal to (P-1,).
Equation (5) is assumed to hold for S-CN conversion.

Following Mishra and Singh (1999), the behaviour of the modified version can
be explained from the relation

*

A=_2CL ©)
(1-1,)2-C)

Ineq. (9),if I.>1,Aswas C<1.For C=1,A=2L/(1-I))and if C=0, 1 =0.
Thus, A can vary between zero and infinity.

3. PHYSICAL SIGNIFICANCE OF
THE SCS-CN PROPORTIONAL EQUALITY

From the analytical derivation of the SCS-CN method (Mishra and Singh, 2002a)
from the Mockus method, the Zoch method, or the first-order storage hypothesis, it is
evident that the proportional equality (eq. 2) is the result of the generalization of the
first-order infiltration process coupled with the water balance equation with the as-
sumption that the cumulative rainfall grows linearly with time. Thus, this proportional
equality is an improvement over the exponentially decaying infiltration process, for
the Mockus method impossibly exhibits runoff (rainfall-excess) rate to exceed the
rainfall intensity. It is further noted that the Mockus method assumes the exponential
decay of the infiltration rate with time. Since the Horton model is an empirical
method, the SCS-CN method can also be construed as an empirical method. Besides,
derivation of the SCS-CN method from the second-order storage hypothesis leads to
its categorization as a conceptual method. However, the applicability of the SCS-CN
method to most hydrological conditions serves as a motivation to explore the physical
basis of the method. The following discussion explores this proportional equality us-
ing the concept of soil porosity.

Soil porosity

A soil column can be divided into three main parts: volume of solids, water, and air, as
shown in Fig. 2. In this figure, V is the total volume, V,, is the volume of water, V; is
the volume of solids, and V, is the volume of air for a unit surface area. The sum of the
volume of air and the volume of water represents the volume of voids V,. Expressed
mathematically,

v, =V +Vv,. (10)

In volumetric terms, the water or moisture content, 6, is defined as 8 = V,/V and po-
rosity, n, is defined as
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Fig. 2. Schematic diagram showing soil-
water-air.

n=-—. (11)
The moisture content, 8, can also be expressed as

0 =ns,, (12)
where §, is the degree of saturation, varying from O to 1, or alternatively,

0 V
= =% 13
n Vv (13)

Proportional equality

In the proportionality concept (eq. 2 for I, = 0), F represents the infiltrated amount of
water (= V,,) and S is equal to the maximum possible amount of infiltration equal to

the maximum (P-Q) difference which, in turn, is equal to the volume of voids V,.
Therefore,

FIS = g, (14)

The left-hand side of eq. (14) represents the runoff factor C which has a range of (0, 1)
as

O
1
~ IO

(15)



SCS-CN METHOD. PART I 113

Thus, substitution of egs. (14) and (15) into eq. (2) for I, =0 leads to

C=35, (16)

which is the equation that integrates surface flow and subsurface flow linearly on a 1:1
scale, implying that the SCS-CN method is not only a runoff method but also an infil-
tration method (Aron et al., 1977; Chen, 1982; Gray et al., 1982; Ponce and Hawkins,
1996; Mishra, 1998; Mishra and Garg, 2000; Mishra and Singh, 2002b). Thus, the
SCS-CN method can also be categorised as an infiltration model. Using this concept
of proportional equality, it is possible to signify the curve number, CN.

Significance of CN

Equation (5) of the SCS-CN method defines CN and its link with S that represents the
maximum possible amount of infiltration. CN can be signified from the expression for
F derived from eqs. (4) and (1) for I, = 0 as

F_ P

S P+S§’
Equation (17) describes the variation of the degree of saturation (eq. 14) with rainfall
P. This equation leads to a derivation of the S-CN mapping relation (eq. 5) as follows.

(17)

The ratio F/S varies from 0 to 1. To map it on a scale of 0100, it is necessary to
multiply eq. (17) by 100, leading to

F 100P

100 — = . (18)
S P+S
Defining the left-hand side of eq. (18) as CN leads to
v o 100P 100 (19)

P+S 1+S/P

which describes the variation of CN with P and S. Assuming P = 10 inches leads to
eq. (5). Thus,

CN =100 % (20)

Equation (20) defines CN as the percent degree of saturation of the watershed due to a
10-inch rainfall amount. It is worth noting that the direct use of CN in the proportion-
ality concept (eq. 2) for computing Q is restricted, because CN, by definition, corre-
sponds to the 10-inch base rainfall, not to the actual rainfall. Therefore, eq. (4) with /,
= 0 should be resorted to computation of Q for a given rainfall amount, as also shown
below.
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In terms of CN, the runoff factor C(=Q/P) can be defined from eq. (4) (for I, = 0)
as

C= L . (21)

10( 100
1+—| ———1
P [ CN ]
To describe C physically it is necessary to explain the bracketed portion in the de-
nominator of eq. (21) in terms of the volumetric elements of the soil (Fig. 2) as

0 100 V-V, V. (22)
CN 100V, /V, v, vV,

where V, is the void space, V,, is the available moisture due to 10-inch rainfall, and V,
is the space available for water retention after 10-inch rainfall. An actual rainfall P
greater than 10 inches would result in higher V,, and, consequently, lesser V, or, in
turn, a lesser V,/V, ratio and vice versa. Therefore, the bracketed term in the denomi-
nator of eq. (22) needs to be updated (increased or reduced) in proportion to 10/P to
describe the actual V,/V, ratio that corresponds to P. The actual V,/V,, ratio computed
in the denominator of eq. (22) and the inverse of the resulting sum of the denominator
yields the actual degree of saturation that corresponds to P, which equals C to form the
proportional equality equivalent to C = S,. Such a description leads to defining the
runoff factor C (eq. 21) as the degree of saturation, S,, of the watershed for the actual
rainfall P. It supports the validity of the C = §, concept described above. The implica-
tion of such an assertion is that for CN to represent a watershed characteristic, S/P
should form a basic parameter of the SCS-CN model while deriving CN from rainfall-
runoff data, rather than S alone.

4. ANTECEDENT MOISTURE CONDITIONS

The National Engineering Handbook, Section 4 (NEH-4), (SCS, 1956, 1985) identi-
fied three antecedent moisture conditions: AMC I, AMC II, and AMC III for dry,
normal, and wet conditions of the watershed, respectively. NEH-4 provides a conver-
sion table from CN for AMC II to the corresponding CNs for AMC I and AMC II1.
The original values (SCS, 1956) of this table were smoothened in the later versions of
NEH-4 (for example, SCS, 1985). Based on the refined values, Sobhani (1975) and
Hawkins et al. (1985) linked CNs of different AMCs in terms of the potential maxi-
mum retention as below

S;=22818y; #=0999 and SE=0.206inch (23)
and
Sm = 0.427 Sii; ?=0994 and SE=0.088inch, (24)
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where SE is the standard error and subscripts I through III correspond to AMC 1
through III, respectively. Equations (23) and (24) are applicable in the CN range (55,
95). Substitution of egs. (23) and (24) into eq. (5) leads to

CN, = Ny ; ¥=0996 and SE=1.0CN (25)
2.281-0.01281CN,
and
CN, #=0994 and SE=0.7CN. (26)

CN, = :
0.427 +0.00573 CN,,

For practical applications, NEH-4 derives CN based on the amount of the antece-
dent 5-day rainfall, which forms an index of the initial soil moisture. The term initial
stands for the state before the start of the storm. Equations (23) and (25) can be de-
rived from eq. (5), written in general form as

N = 100X '
S+X
In eq. (5), X = 10 inches of rainfall, which corresponds to the normal condition. Equa-

tion (27) is valid for all AMCs according to NEH-4. Alternatively, CN for AMC I and
AMC III can be derived from eq. (27), respectively, as

(27)

100(X — P,
= 00X - F) (28)
Sy +H(X-RB)
and
100(X + P
N, = 20X+ F) (29)
SlI +(X +Plll)

These equations imply that the normal rainfall amount X is reduced by P if CNy; con-
verts to CN,. Similarly, an additional rainfall amount of Py; over and above the normal
X-value is required to raise CNy to CNyy. Substitution for Sy in eqs. (28) and (29)
leads, respectively, to

3 CN,
CN, = X P (30)
X~PB 100X -P)
and
_ CN,
CN, = % . o (31)

X+P, 100(X +P,)
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which are the general expressions for CN according to any antecedent moisture condi-
tion for a given amount of the normal and the two extreme antecedent rainfalls X, P,
and Py, respectively. A comparison of egs. (30) and (31) with the respective eqs. (25)
and (26) leads to

X =(2.281/1.281) P, = 1.7806 P, (32)
and

X =(0.427/0.573) Py; =0.7452 Py . (33)

For given Py and Py values in NEH-4 equal, respectively, to 0.5 (1.3 cm) and 1.1 inch
(2.8 cm) for a dormant season and 1.4 (3.6 cm) and 2.1 inches (5.3 cm) for a growing
season, the normal antecedent rainfall, X, can be computed as

dormant season:

X =0.89 inch for AMC1 and X =0.82 inch for AMCIII ;

growing season:

X =2.49 inches for AMC I and X =1.56 inches for AMC I11 .

The inference drawn from the above calculations is that the normal amount of rainfall,
X, varies with both AMC and season. The variation in X can be interpreted in terms of
the initial abstraction amount, I,, which can be neglected in AMC III. Thus,
I, =0.89 — 0.82 = 0.07 inch for the dormant season and I, = 2.49 — 1.56 = 0.93 inch for
the growing season. Similarly, the variation of X with the season can be attributed to
evapotranspiration that can be neglected in the dormant season. Thus, the evapotran-
spiration amount can be computed as equal to 0.74 (= 1.56 — 0.82) inch for the grow-
ing season under AMC II1, and equal to 1.60 (= 2.49 — 0.89) inches under AMC 1.

Variation of CN with AMC

Following the above C = §, concept, eq. (2) (for I, = 0) can be modified for the ante-
cedent moisture, M, as

Q _F+M F+M
P-I, S+M Sy

, (34)

where Sp represents the volume of air equal to the volume of voids (for complete ante-
cedent dry condition) and M is computed as

__55S,

, 35
P 1S, (33)

where Ps is the antecedent 5-d rainfall amount and M is derived assuming the com-
pletely dry antecedent condition. Thus, CN can be described from egs. (34) and (35)
for P, = 10 inch as
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oy 100[ 105 RS, |_ 1000 36)
S, |10+8 P +5, 1 10+§
Equation (36) leads to CN for AMC I as
P8
eN. = 100} 105, FAuSe |_ 1000 -
So | 10+S8, B, +5, 10+,
It follows that
Fyy = So M—I ) M, = 1_§_l' "_IOSO ’ (38)
1-M, Sy, 110+ S,

where subscript I refers to AMC 1. Similar expressions can be derived for AMC 1 and
AMC IIIL. It is apparent from egs. (36) — (38) that S, is required a priori for computing
Psqy through Psqyyy. Its derivation using the NEH-4 data is shown below.

As described above by egs. (23) and (24), Sy Sy, and Sy are related with each
other. However, there does not exist a relationship between Sy and S). For this reason,
trials were made for §; and its relation with S; such that the derived Ps-values ap-
proximated the average of AMC II defined by NEH-4 (Table 1). The derived relation-
ship, shown in Fig. 3, which includes I, (= 0.2 ), yields the limiting Ps-values for
various AMCs, as shown in Table 1. The derived Sy values are equal to 0.11 inch for
the dormant season and 0.56 inch for the growing season and S¢/S; = 1.6. For AMC I,
the derived limiting Ps-values were equal to 0.8 and 1.75 inch for dormant and grow-
ing seasons, respectively. An assumption of soil porosity equal to 0.3 (Singh and Yu,

1.0
AMC IIIM

6.0

5.0]

4.0

Ps (in inches)

3.0 AMC 11
2.0

1.0 AMC I
0.0 //—’/

000 010 020 030 040 050 060 070 080 090 1.00

8o (in inches)

Fig. 3. Variation of Ps with S;. Ps includes I, =0.2 S.
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‘ Table 1
Antecedent soil moisture conditions (AMC)

Total 5-day antecedent rainfall, Ps (in inches)

AMC NEH-4 (McCuen, 1982) derived from Fig. 3
Dormant season | Growing season I?g(;r__rflgnlt 18?22?:] Groswoizgo‘sg?son
I less than 0.5 less than 1.4 less than 0.22 less than 0.49
II 0510 1.1 1.4 t02.1 0.22102.28 0.4910 5.02
I more than 1.1 more than 2.1 more than 2.28 more than 5.02

1990) leads to the soil depth above the impeding layer (Huggins and Monke, 1966)
equal to 0.36 and 1.87 inches for dormant and growing seasons, respectively. Since
the existing SCS-CN method accounts for only dynamic (or capillary) portion of infil-
tration and excludes its static (or gravitational) portion, these values of S, represent the
soil depths responsible for the dynamic infiltration process. It is consistent with the
notion that only the top-soil-zone significantly affects the dynamic infiltration process
(Fok and Chiang, 1984). In other words, the antecedent moisture model considers only
the uppermost soil layer as a reservoir (Schaake et al., 1996), rather than the complete
root zone depth., Figure 3 can be used for deriving the AMC criteria for any other
So-value that depends on regional soil, vegetation, and land use characteristics.

5. SCS-CN CONCEPT AS AN ALTERNATIVE TO POWER LAW

With the above analytical, conceptual, and physical background of the SCS-CN
method, it 1s now appropriate to explore if the SCS-CN concept could be a replace-
ment of the widely used power law. In hydrology, the widely used steady-state stage
-discharge (or velocity) relation generally expressed as a power function represents
another form of the popular Manning equation

v= le”s;,” : (39)
n
where U 1s the mean flow velocity (in m/s), R is the hydraulic radius (in m), n is Man-
ning’s roughness, and s is the channel bed slope (in m/m). Here, it is necessary to de-
scribe first the basis for making such an attempt and to adapt an SCS-CN-based func-
tion that exhibits the growth or decay of a dependent variable with its independent
variable.
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Representing the spatial variation of interacting storage elements over a water-
shed by a power distribution function, Moore (1985) gave a relationship for comput-
ing the surface runoff volume (or rainfall-excess) from a given effective storm rainfall
volume. This relationship when plotted is quite close to that produced by the SCS-CN-
generated runoff with rainfall. It implies that the power distribution may represent the
SCS-CN concept and vice versa.

From eq. (17) the variation of the cumulative infiltration F with rainfall for a
given S can be described as

SP
= ) 40
S+P “0
Replacing P by i.t, (eq. 18 of Part I; Mishra and Singh, 2002) leads to
at
=L 41
b+t “1)

where a = § and b = §/i,, which is equal to the Horton decay parameter ¢. Thus, pa-
rameter a describes the system’s potential maximum capacity, and b the decay of the
phenomenon. Equation (41), however, describes the growth of the cumulative infiltra-
tion with time . Thus, parameters a and b have a physical significance. A division of
F by time ¢ describes the decay of the average infiltration rate, f,,, with 7 as

a

f““=b+t'

(42)
Equations (41) and (42) describing, respectively, the growth and decay functions
can, in general, be expressed as

ax a
- ; — , 43
Y b+x Y b+ x “43)

where y and x are dependent and independent variables, respectively, and a and b are
the parameters. Equation (43) is analogous to that given by Ponce (1989), among oth-
ers, for describing the rainfall depth-duration relationship:

at
p=2L 44
b+r 49
which describes the growth of rainfall with the rainstorm duration. In eq. (44),
parameter a represents the maximum possible amount of P that can occur on a
watershed in time ¢, similar to S representing the upper bound of F in eq. (40). Thus,
eq. (43) is based on the capacity of the considered system. Parameter b bears the

dimension of time and describes the growth pattern of P with .

Similarly, eq. (43) is analogous to that relating the uniform rainfall intensity with
the rainstorm duration as (Ponce, 1989)
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a
iy = —— . (45)
* b+t
Parameters a and b of eq. (45) can also be described, respectively, as the potential
maximum rainfall intensity that can occur in time ¢ on a watershed and decay factor
of ip. From eq. (43) an expression for the steady-state rating curve for a unit-width rec-

tangular channel can be given as

ah
v= ,
b+h
where v is the flow velocity, 4 is the corresponding stage of flow, a represents the po-

tential maximum velocity, and b is the decay factor of velocity. For a unit-width rec-
tangular channel, discharge ¢ can be given as

(46)

_ah’
b+h

On the other hand, the steady-state rating curve in terms of the power law can be
expressed as

q 47)

q=a h"", (48)

where g is the discharge, h is the depth of flow, and a; and m are the coefficient and
the exponent, respectively. Parameters of eq. (48) can be described by equating the
wave celerity derived from the Seddon formula (Mishra and Singh, 2001) as below.

From eqgs. (47) and (48) the wave celerity, c, can be derived, respectively, as

26+ h
c—[ b h ]U, c=(1+m)v. 49)

It follows that

b\v
(2

This implies that parameter m is a function of v and A, which is consistent with the
wave derivations for m (Mishra and Singh, 2001) describing its dependence on the
Froude number and the kinematic wave number which, in turn, depend on v and A.

Furthermore, an assumption of v and # varying exponentially (Mishra and Singh,
2001) leads to describing the v/h ratio for the kinematic wave as

) (51)

>le
I
m[;:

[=]
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where V; is the peak flow velocity and Hy is the corresponding depth of flow. Since
m = 2/3 for kinematic wave (Mishra and Singh, 2001), parameter a relates to parame-
ter bas a=(3V,/2H,)b. V,can be related to Hy using eq. (46) as

_ aH,
" b+H,
It follows that a =3V, and b = 2H,.

A replacement of A by the hydraulic radius R in eq. (46) yields a general expres-
sion for velocity and, in turn, discharge as

(52)

aRA
= , 53
9 b+ R ©3)
where A is the area of cross-section. The advantage of such a relationship is that its
parameters are fully describable in terms of the SCS-CN concept. Including the Man-
ning roughness and bed slope, a more general SCS-CN-based expression for the com-
putation of discharge can be given as

aRs A
= , 54
7 n(b+R)(c+s,) 64)
20 where n is Manning’s roughness, 5o is
18 { Line of perfect fit the bed slope, and a, b and c are the
16 - parameters.

144 To demonstrate the applicability
g 121 of eq. (54), a set of data was generated

? 10 A . . . .
gl ) using Manning’s equation with »n vary-
D s 5 ing from 0.01 to 0.1, 50 from 0.001 to
%‘ 4 ot 0.1, and R from 0.5 to 5S m. The
2 2 A fitting (Fig. 4) of eq. (54) to this data
> 0 . . . set exhibited the Nash and Sutcliffe
0 5 10 15 20 (1970) efficiency equal to 98.91% with

Velocity (Manning) a = 2075, b = 3358, and ¢ = 0.0433.

The high efficiency value indicates
a good performance of the SCS-CN
-based eq. (54).

Fig. 4. Velocities computed from Manning’s
and SCS-CN-based equations.

6. CONCLUSIONS

The following conclusions are derived from the study:

1. The proportionality concept, eq. (2), of the SCS-CN method represents the
C = S, concept that is based on the volumetric concept of soil physics. Thus, the SCS-
CN method is a conceptual model founded on physical considerations.
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2. The applicability of the SCS-CN method is restricted to the CN values given
by eq. (7), and the initial abstraction coefficient varies from zero to infinity.

3. The curve number CN can be defined as percent degree of saturation of water-
shed due to the 10-inch base rainfall amount.

4. It is possible to describe the variation of CN with any AMC, even other
than the existing ones.

5. The SCS-CN method can be taken as a viable alternative to power law.
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