# Introduction to Research Data Management

Data Processing <a href="http://hdl.handle.net/1969.1/164594">http://hdl.handle.net/1969.1/164594</a>



## Introduction

Common data manipulations and tools for processing data.

Process your data in a manner that allows you to roll back changes if you make a mistake.

# Preparing data for analysis

Processing data by:

- Subsetting
- Merging
- Manipulation

## Data transformation

- Normalizing data collected by multiple people and/or instruments.
- Converting data to different units.
- Converting raw data into meaningful values.

| 711070500276000 |         | date       | time  | air_temp_c | precip_mm |
|-----------------|---------|------------|-------|------------|-----------|
| 711070600276000 |         | 2007-07-11 | 5:00  | 27.6       | 0         |
| 711070700277003 |         | 2007-07-11 | 6:00  | 27.6       | 0         |
| 711070800282017 |         | 2007-07-11 | 7:00  | 27.7       | 3         |
| 711070900285000 | <b></b> | 2007-07-11 | 8:00  | 28.2       | 17        |
| 711071000293000 |         | 2007-07-11 | 9:00  | 28.5       | 0         |
| 711071100301000 |         | 2007-07-11 | 10:00 | 29.3       | 0         |
| 711071200304000 |         | 2007-07-11 | 11:00 | 30.1       | 0         |
|                 | •       | 2007-07-11 | 12:00 | 30.4       | 0         |

### De-identification

Removing or obscuring any personally identifiable information from individual records in a way that minimizes the risk of unintended disclosure of the identity of individuals and information about them.

- Anonymization
- Aggregation
- Masking
- Shuffling
- Perturbation

# De-identification tips

- Remove direct identifiers.
- Use pseudonyms or replacements.
- Reduce the precision and detail through aggregation.
- Generalize meaning of detailed text variables.
- Restrict upper or lower ranges to hide outliers.
- Use digital manipulation of audio and image files to remove personal identifiers.
- Avoid over-anonymization and exercise additional care when working as a team.
- Keep master log of all replacements, aggregations, and removals.

# Statistics for analysis

- Descriptive statistics are traditionally applied to observational data.
- Conventional statistics are often used to understand experimental data.



# Software for data manipulation and analysis





Microsoft Excel and Google Sheets: Data entry, manipulation, and graphing.



OpenRefine: Working with and cleaning messy data.

NVIVO: Powerful qualitative data analysis (QDA).



**SAS**: Advanced analytics, multivariate analyses, and predictive analytics.



SPSS: Logical batched and non-batched statistical analysis, data mining and text analytics.



**STATA**: General-purpose statistical analysis, graphics, simulations, regression, and custom programming.



**Matlab**: Numerical computing, matrix manipulations, plotting, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages



**R**: Statistical computing and graphics, and popular programming language for doing stats.



**Python (NumPy, SciPy, Pandas)**: Object oriented programming language with several data analysis libraries.

## Documentation reminder

Workflows allow you to give a precise and reproducible description of your procedure.

#### Show and describe:

- Inputs
- Outputs
- Transformations

# Informal workflows

- Well-described version history.
- Commented scripts.
- Flow charts.

# Version history

Showing changes you've committed over time.



# Commented scripts

Explaining the input, output and function of code.

```
def trim(docstring):
 if not docstring:
     return ''
 # Convert tabs to spaces (following the normal Python rules)
 # and split into a list of lines:
lines = docstring.expandtabs().splitlines()
 # Determine minimum indentation (first line doesn't count):
 indent = sys.maxint
 for line in lines[1:]:
     stripped = line.lstrip()
     if stripped:
         indent = min(indent, len(line) - len(stripped))
 # Remove indentation (first line is special):
 trimmed = [lines[0].strip()]
 if indent < sys.maxint:
```

## Flow charts



• Inputs or outputs

Include data, metadata, or visualizations.



Analytical processes

Include operations that change or manipulate data in some way.



Subroutines

Predefined processes that specify a fixed multi-step process.



Decisions

Specify conditions that determine the next step in the process.





## Formal workflows

- **Kepler**: Designed to help scientists, analysts, and computer programmers create, execute, and share models and analyses
- **Taverna**: A suite of tools used to design and execute scientific workflows and aid in silico experimentation.
- **VisTrails**: Scientific workflow and provenance management system that provides support for simulations, data exploration and visualization.

# Conclusion

• Discussed preparing data for analysis and documenting data processing using workflows.

## References and resources

- DataOne. "Lesson 09: Analysis and workflows" [module](<a href="https://www.dataone.org/education-modules">https://www.dataone.org/education-modules</a>)
- Kepler [website](<u>https://kepler-project.org</u>)
- Taverna [website](<u>http://www.taverna.org.uk</u>)
- VisTrails [website](<a href="https://www.vistrails.org/index.php/Main\_Page">https://www.vistrails.org/index.php/Main\_Page</a>)