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ABSTRACT 

Accurate Human Motion Estimation Using Inertial Measurement Units for Use in Biomechanical 

Analysis 

  

Wyatt Hahn and Tyler Marr 

Department of Mechanical Engineering 

Texas A&M University 

 

Research Advisor: Dr. Pilwon Hur 

Department of Mechanical Engineering 

Texas A&M University 

 

 

 Vision-based motion capture systems (MCSs) are often used as a way to create full-body 

virtual models of human beings, for applications ranging from movie Computer-Generated 

Imagery (CGI) to biomechanical analysis of human movements to medical purposes. However, 

vision-based MCS are often very expensive and require long and complicated preparation 

procedures. This study aimed to use inertial measurement units (IMUs), which are significantly 

more cost-effective and easier to use than visual-based MCSs, in order to create a motion capture 

system with accuracy comparable to that of visual motion capture systems. The IMUs used for 

the system include 3-axis gyroscopes, 3-axis accelerometers, and 3-axis magnetometers. A novel 

algorithm is introduced for orientation estimations which makes two position estimates—one 

using the gyroscope and one using a combination of the accelerometer and magnetometer—and 

an average is found between the two. Preliminary tests involving a subject performing shoulder 

abductions/adductions, elbow flexions/extensions, and hip flexions/extensions revealed low root-

mean-squared error values and high correlation between joint angles calculated concurrently 

using the visual- and IMU-based motion capture systems. The ultimate goal of this application is 
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to develop a graphical user interface (GUI) that can facilitate the accurate biomechanical 

analyses of the human and/or animal movement using kinematic data (e.g., 3D orientation) from 

low-cost and easy-to-use IMUs. Ultimately, the algorithm is expected to be made open-source, 

and this application will enable a more affordable, accessible, and portable biomechanics lab of 

human movement analysis for researchers and provide simple ways for clinicians to diagnose 

pathological movements of their patients.   
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CHAPTER I 

INTRODUCTION 

 

Motion capture systems (MCSs) are utilized for a variety of tasks spanning many fields—

such as creating models for video game characters, assisting in computer-aided surgery [1], 

biomechanical analysis of human movement, and physical rehabilitation [2]. While several 

methods of motion capture are available, all existing methods have shortcomings. For example, a 

visual MCS, one of the most widely used and accurate systems, is so expensive that many 

researchers and clinicians may have limited access to these systems. Also, data collection using 

these visual MCSs requires a significant amount of time for calibration, marker preparation, and 

subject preparation. Although new technologies made in the arena of motion capture that can 

solve all current issues are highly unlikely, algorithms and technologies have been evolving in 

order to take steps forward in these deficiencies [1]. 

Inertial measurement units (IMUs) are potential candidates for creating an alternate 

motion capture system due to their cost effectiveness, small size, and ease of use. IMUs 

generally contain accelerometers and gyroscopes and can be placed on each segment of the 

human body to quickly obtain information about their angular velocities, linear accelerations, 

and gravitational orientation to estimate the orientation and location of those body segments. 

Some IMUs have also been equipped with magnetometers that can measure the orientation of 

Earth’s magnetic field. Studies have been successfully estimating human movement using IMUs, 

some with the use of additional sensors [3]-[6]. 

 In this study, a novel algorithm is created for use with IMUs containing 3-axis 

gyroscopes, accelerometers, and magnetometers in order to create a MCS with similar accuracy 
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as that of visual-based MCS that captures and displays data in real-time while improving user-

friendliness and reducing the time and cost required for such a system. The algorithm aimed to 

improve on latency and drift issues experienced in other systems. The novel IMU-based system 

is tested against a visual-based system to compare accuracy.  
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CHAPTER II 

SYSTEM DETAILS 

 

 The full system comprises 16 IMU sensors positioned on the body to capture the most 

information about the entire body’s motion. Thus, each link (upper arm, forearm, hand, thigh, 

shank, and foot) has a sensor attached to it. Since the shoulders can move independently, sensors 

are attached to the shoulder blades to capture their motion. The shoulders move relative to the 

sternum, and the sternum can move independently relative to the pelvis. Therefore, sensors are 

attached to the sternum just below the joining of the collarbones and near the pelvis on the lower 

back right above the beltline. The algorithm does not depend on the distance a sensor is placed 

from a joint (such as how far the forearm sensor is from the elbow), so the sensors are ideally 

placed where muscle contractions will not interfere with readings of gross body movements. Due 

to the aforementioned placement stipulations, the head would require an additional, seventeenth 

sensor. The system created in this study does not include this sensor, but the addition would be 

simple by following the same algorithm used.  

 The algorithm assumes an orientation of the sensor on the body in a way that makes it 

easy to perform the rotations and create the model of the body. Generally, the z-axis of each 

sensor is oriented away from the body, and, except for the case of the pelvis, the x-axis is pointed 

in the direction of the body part (e.g. parallel with the femur for the thigh). The pelvis is oriented 

with the x-axis parallel with the hips to minimize the rotation of the sensor from the spine. The 

pelvis sensor, as will be seen in Chapter IV, is the basis of creating the vectors of the body 

model. As such, keeping the sensor as stationary as possible (not including full-body rotations) is 

ideal. Figure 1 displays the location and orientation of the sensors as well as joints and points of 
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interest for creating the model of the body and calculating joint angles, with the global 

coordinate system shown between the feet. 

 

Figure 1: Diagram of position and orientation of the sensors on the body as well as joints and 

points of interest for the computer model and joint angle calculation  
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CHAPTER III 

POSITION AND ORIENTATION ESTIMATION ALGORITHM 

 

 The algorithm for determining the orientation of a single IMU makes two predictions: 

one based on the data gathered from the gyroscope and the other based on data from a 

combination of the accelerometer and magnetometer data. The gyroscope gives information 

about the angular velocity of the unit. From this, trapezoidal integration is performed at each data 

point, and starting from a prescribed initial direction and orientation the vector representing the 

unit is rotated via a quaternion created from the integrated data. The vector’s orientation (i.e. 

local coordinate system) is rotated in the same manner. However, due to noise, this method, 

when used alone, is susceptible to drift. 

 The accelerometer and magnetometer data are used to compensate for this drift. First, a 

reference coordinate system must be created to compare future readings against. The 

accelerometer takes an initial reading of the acceleration that it is experiencing, which at rest 

would be solely the acceleration due to gravity. The X, Y, and Z components of the acceleration 

are put into normalized vector form. The magnetometer reads the magnetic field of the earth. 

Another vector is formed from the data. A cross product between the magnetometer and 

accelerometer vectors is calculated. The vector produced by the cross product is then normalized. 

In order to form an orthogonal system for the basis of rotation, the accelerometer vector is then 

crossed with the magnetometer-accelerometer-cross vector. Thus, an initial position is 

established against which all other positions will be compared. The process of setting up the 

orthogonal system is performed at every time step. Since the IMU feels the opposite rotation of 

what it is performing (e.g. if it rotates nose-down, it feels the gravity rotate nose-up), the initial 
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vector is rotated by the same rotation that rotates the current orthogonal system to the initial 

system. Whereas the gyroscope performs the rotation on the previous direction and orientation, 

the accelerometer and magnetometer rotation always executes on the initial direction and 

orientation of the vector. Therefore, drift is not a problem for the accelerometer and 

magnetometer data. Instead, an issue arises when the unit experiences very large acceleration. In 

these situations, it is difficult to determine how much of the acceleration is due to gravity and in 

what direction gravity is acting. 

Therefore, both the gyroscope-calculated vector (vector A in Figure 2) and the 

accelerometer-magnetometer vector (vector B in Figure 2) are used to estimate the direction and 

orientation of the IMU. First, the spherical coordinate angles are found for each vector as a basis 

of comparison. By convention, θ is considered as the angle on the xy-plane (counterclockwise-

positive from the x-axis) and φ is considered as the angle from the vector projected onto xy-plane 

up towards the z-axis (positive up from the xy-plane). Thus, θA, θB, φA, and φB are found. The 

angle α represents the difference from θB to θA, while the angle β represents the difference from 

φB to φA. (Note that the starting from B instead of A was arbitrarily chosen and that this algorithm 

works whether the angles of vector A are greater or smaller than those of vector B.) Figure 2 

shows the conventions used for this algorithm. Next, the algorithm employs basic algebraic 

concepts to determine how much either vector is “trusted”—that is, how much closer the 

estimation should be to vector A or vector B. This trust calculation is meant to determine a 

percentage of angles α and β to rotate from vector B. The data from the gyroscope is most likely 

to be comprised of noise at low readings, so vector A is not to be trusted near zero rotation. 

Higher readings are more desirable. However, the IMU has a maximum reading, after which it 

cannot be known how fast it is actually rotating. It is not helpful to entirely suppress very high 
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Figure 2: Angle notation convention used for the trust algorithm 

 

readings. Therefore, a quadratic equation is employed which is dependent on the magnitude of 

the gyroscope reading and outputs the percentage of the angles to rotate. This equation has the 

constraints of having the value of zero (0%, or entirely trusting vector B) at a velocity magnitude 

of zero, a maximum value of 1 (100%, or entirely trusting vector A), and a value of 0.5 (50%) at 

the maximum angular velocity. Each direction is considered individually and the trusts from all 

three directions are averaged together. For vector B, the trust is based on the acceleration data, 

since the magnetometer data is considered to be of a fixed magnitude. The raw accelerometer 

data, in the absence of noise, reads a value of magnitude 1 (in g) at rest. In motion the IMU 

generally may experience more or less than 1 g of acceleration. The closer the value is to 1 g, the 

more reliable it is. The following equation determines the “trust” from the accelerometer data: 

 

 %𝑡𝑟𝑢𝑠𝑡 = 1 −
1

(1+|1−‖𝑔‖|)20
  (1) 
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where g is the vector of the acceleration data. If the Euclidian norm of g is 1, the %trust will be 

zero (i.e. entirely trusting vector B). The denominator expression of the second term was 

designed to account for singularities that might arise if the acceleration is precisely in the 

opposite direction of gravity (i.e. an acceleration of 0). The norm is raised to the twentieth power 

so that the second term will quickly approach zero as it departs from a value of 1, yielding a trust 

of 100% (or entirely trusting vector A). The trust from the gyroscope data and that of the 

magnetometer-acceleration data are then averaged to find the total trust. Finally, the difference 

angles (α and β) are multiplied by the total trust and added to the angles of vector B in order to 

find the final direction of the actual estimation. This entire process is repeated for each time step 

for all sensors.  
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CHAPTER IV 

ASSEMBLING THE MODEL AND JOINT ANGLE CALCULATIONS 

 

Mathematically, the orientation estimation is performed in the local coordinate system of 

each sensor before being rotated to the global coordinate system. That is, each sensor assumes 

that it is being pointed in the x-direction and the estimation rotations are performed accordingly. 

The vectors that are created are then rotated to match the orientation of the body part to which it 

is attached as described in Chapter II. The rotated vectors are converted to their positions in 

global coordinates and the joint positions are created by “attaching” the vectors end-to-end 

starting from the pelvis. First, each rotated vector, initially a unit vector, is multiplied by the 

length of its corresponding body segment to create the actual vector. The coordinate of the pelvis 

is initialized at the origin. Adding a vector that represents the hip, which is in the direction of the 

pelvis x-direction, creates the hip joint. The knee joint is created by adding the thigh vector to the 

hip joint coordinate. Similarly, adding the shank vector to the knee coordinate creates the ankle, 

and adding the foot vector to the ankle coordinates creates the coordinates of the toes. Creating 

the upper body follows a similar method. Adding the torso vector to the pelvis creates a 

metaphorical joint at the base of the neck. The shoulder joint is created by adding the shoulder 

vector. From there, adding the upper arm vector creates the elbow, adding the forearm vector 

creates the wrist, and finally, adding the hand vector creates the fingers. 

As can be deduced from the estimation algorithm, the system is a relative one, whereas 

visual motion capture systems give absolute positions in the space. That is, it assumes that the 

trials are starting using an anatomic position as a reference, and all estimations are based upon 

that initial position. (The top image in Figure 5 in Chapter VI shows this anatomic position.) Due 
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to the relative nature of the system, the model must be fixed in some way for simplification. The 

above process fixes the model horizontally by the pelvis to the vertical (z-) axis. In order to 

capture motion relative to the ground, such as for gait analysis, it is desirable to fix the lowest 

point on the model to the ground, since that is a real-world constraint. For that reason, the lowest 

point of all the joints or points of interest in the global z-direction is found, and all z-coordinates 

in the model are translated up (or down) correspondingly. For example, if the subject were 

pointing their toes, the end of the foot vector would be lowest point, and the model would be 

translated to fix the toes on the global xy-plane. (Note that neither method—affixing the pelvis 

nor affixing the lowest point—can accurately capture if the subject were to jump off the ground. 

However, the latter is more appropriate for motions like walking or crouching.) Finally, the 

vectors and joints can be plotted. 

Joint angles are extracted from the unit rotated vectors. The joint angles, including the 

quadrant in which they lie, are found by utilizing the dot and cross products according to the 

formula 

 

 
𝐴×𝐵

𝐴∙𝐵
=

|𝐴||𝐵|𝑠𝑖𝑛𝛾

|𝐴||𝐵|𝑐𝑜𝑠𝛾
= 𝑡𝑎𝑛𝛾 (2) 

 

where γ is the angle between the vectors. The angle is found by solving equation (2) to yield 

 

 𝛾 = tan−1
𝐴×𝐵

𝐴∙𝐵
= 𝑎𝑡𝑎𝑛2(𝐴 ∙ 𝐵, 𝐴 × 𝐵) (3) 

 

The system in this study finds the joint angles at the shoulders, elbows, wrists, knees, and ankles 

as well as other angles with less significant meaning.   
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CHAPTER V 

CALIBRATION AND SYSTEM USAGE 

 

 A common way of calibrating a visual motion capture system requires waving a rod with 

markers attached in random motions throughout the testing space to ensure the images seen by 

the cameras are fit together for accuracy. Once initially calibrated, attaching the markers to the 

subject can take up to half an hour. The sensors must be placed on the bony parts of the body and 

precise placement is required for accurate measurements. If a marker is not placed satisfactorily 

in line with markers at other joints, there will be inherent error in the data. After the markers 

have been positioned on the subject, more calibration trials might be necessary to further ensure 

that all data is being collected by the cameras. During the data collection process, markers may 

become hidden from view of all of the cameras. When markers are hidden the software must 

interpolate the marker position and extra time must be spent after the trial to confirm or adjust 

these marker positions, and sometimes the markers are lost altogether. Finally, after all the data 

has been collected, filtering is often necessary and vectors must be created between the markers 

before the joint angles can be calculated. 

 The system developed in this study requires much less effort to use. The incoming data is 

filtered via a third-order low pass Butterworth filter with a 5 Hz cutoff frequency [7]. It was 

deemed that a low cutoff frequency is appropriate, as it can capture human motion while 

attenuating electrical noise. One benefit of the IMU system over visual MCSs is that no data 

points are lost so long as the sensors stay within the relatively long range of the IMU base 

station. Generally, the calibration process takes a matter of minutes and consists of two parts. 

First, the magnetometers must be calibrated. All three axes of the magnetometers of each IMU 
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read within a different range of magnetic field values. In order to use the algorithm described in 

Chapter III, these values must all be centered on zero such that vectors can be made in equally 

scaled spaces. Therefore, the range of values that each sensor reads must be found. These ranges 

are found by a calibration step that involves rotating all the IMUs (before being placed on the 

body) in random motions such that all axes can read all directions. This might take up to 30 to 60 

seconds. The maximum and minimum readings of each sensor during this process are saved, and 

the values are shifted to zero by their averages. The other calibration step accounts for the 

gyroscope zero offset, which causes drift if uncorrected. This offset is found by taking the 

average of the data of the stationary IMUs (again, before placing them on the subject), and the 

average is subtracted from the raw gyroscope data. Again, this might take a maximum of 30 to 

60 seconds (depending on how long the user wishes to employ this method for accuracy). 

Another feature of the system is the quick customizability of the model to each subject. Length 

measurements of the subject’s body can be input into the system, and the model will be 

constructed based upon these lengths. This customization is accomplished since the system 

constructs the model by plotting the vectors end-to-end, and the vector lengths are based on the 

inputs themselves.  

 From the testing of this system, it appears that this calibration is all that is needed for 

relatively accurate usage if consecutive uses of the system occur in a single location. However, 

if, for instance, the system were to move to another building, a full-system calibration must occur 

using the Delsys software in order for the sensors to become adjusted to the new magnetic 

environment. The full calibration process takes up to 15 minutes to do. Even if this is not done, 

though, the system still performs relatively well, and only some extra post-processing filtering is 

required to achieve a similar behavior as a fully-calibrated system. Regardless, this system 
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requires much less time or proficiency to calibrate and use for many applications. Figure 3 below 

presents a flowchart of the process of using the system. Figures 8 through 11 in the Appendix 

display the Graphic User Interface (GUI) and model (created using the Unity Engine). 

 

Figure 3: System procedure flowchart  
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CHAPTER VI 

EXPERIMENTAL PROCEDURES 

 

In order to test the accuracy of the developed IMU-based MCS, a head to head 

comparison was done with both an optical MCS and the IMU-based MCS with a single subject. 

Both sensors were calibrated as needed by the system, and then all of the sensors were attached. 

The 16 IMU sensors were fitted to a subject as previously described. Thirty optical markers were 

used for the optical MCS (a Qualisys Oqus system). Markers were placed bilaterally on the toe 

tip, heel, medial/lateral malleolus, medial/lateral condyle of tibia, trochanter, ASIS, PSIS, 

acromion, medial/lateral humeral epicondyle, and ulnar/radial styloid process, plus unilateral C7 

and T10 markers. The positions of all the markers can be seen in Figure 4, note that the markers 

that are slightly transparent represent markers that are on the side of the body facing away from 

view. 

 

Figure 4: Marker positions for both MCSs 
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Once the subject was fitted with all the markers, the subject was asked to stand in the 

reference anatomic position seen at the top of Figure 5. The subject would then clap and perform 

a predetermined motion at a slow and controlled rate for ten repetitions. After completion of the 

tenth repetition the subject would then return to the anatomic position and clap again. The claps 

were performed before and after each task so that the data from both MCSs could be 

synchronized. This synchronization was necessary since the IMU-based MCS collected data at 

60 Hz while the optical MCS collected data at 100 Hz. In addition to different sampling rates 

both of the systems collected data on different computers and data collection was not stopped 

and started simultaneously. The clapping motion created a spike in the elbow and shoulder 

angles that could be used as a reference point of both data. 

 The subject performed three tasks in all, represented by arrows A, B, and C in Figure 5. 

The first task involved bilateral shoulder abduction/adduction to 90°, the second task included 

bilateral elbow flexion/extension to 90°, and the final task included hip flexion/extension to 90° 

in which five repetitions were done with each leg, alternating right and then left. After each task 

was complete post-processing of data from the optical motion capture system needed to be 

performed. 

Post-processing of the optical motion capture system was done using the Qualisys Oqus 

software. This post-processing was needed because there are often points during the data 

collection in which the system does not register a marker position, so interpolation needs to be 

performed in order to give a best estimate of where the marker was when it could not be seen. 

This post-processing after each trial took approximately five minutes due to the simplicity of the 

tasks performed. After all of the marker positions were interpolated all of the data was exported 

as a MATLAB file. In MATLAB, custom codes were used in order to calculate the joint angles.  
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Figure 5: The three tasks performed by the subject 

 

This was done by first finding exact joint positions by taking the average position of the two 

markers for each joint. A vector was then found between the joint positions by subtraction. The 

angle between adjacent vectors was then found in the same way as described in Chapter IV, 

through the use of Equation 3. The joint angles of interest for this experiment were bilaterally the 

shoulder (measured between the back and upper arm), the elbow (measured between the upper 

and lower arm), the knee (measured between the thigh and shank), and the ankle (measured 

between the shank and foot). 

Post-processing of the IMU data simply involved applying a 4th order zero-lag 

Butterworth filter with a cutoff frequency of 1 Hz [8]. Due to the fact that the IMU system 

assumes an initial position and the subject did not have all joints at the exact starting angle to 

begin each trial, as well as the fact that marker position on the body affects the measured joint 

angle, the data from both systems were shifted so that the means of the data matched. The two 

data sets were then synchronized based on the measured clap so that joint angles could be 
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compared directly side-by-side. Finally, the root mean square error (RMSE) and Pearson’s 

correlation coefficient (r) were calculated for each joint angle measured for each trial.  
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CHAPTER VII 

EXPERIMENTAL RESULTS 

 

 For task A the joints of interest were both shoulders. For task B the joints of interest were 

both elbows, and for task C the joints of interest were both knees. The side-by-side comparison 

of these joint angles over time can be seen in Figure 6. 

 

Figure 6: Comparison plots of the joints of interest for all three trials performed 
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 From Figure 6 it is evident that the joint angles over time for both systems followed 

closely together. The statistical analysis of these joint angles over time resulted in Table 1. 

Table 1. RMSE in degrees and correlation coefficients for primary joints of interest 

Task Left Shoulder Right Shoulder 

A 
RMSE  Correlation  RMSE  Correlation  

2.56 1.00 10.73 0.95 

B 

Left Elbow Right Elbow 

RMSE  Correlation  RMSE  Correlation  

8.55 0.99 9.00 0.99 

C 

Left Knee Right Knee 

RMSE  Correlation  RMSE  Correlation  

5.58 0.99 5.93 0.99 

 

 The highest RMSE value measured was a value of 10.73° for the right shoulder. This is 

still a relatively low RMSE value because the overall range of motion was approximately 80°. 

The right shoulder also had the lowest correlation coefficient, a correlation of 0.95. There are 

two likely reasons that the right shoulder saw this high RMSE value and low correlation. The 

first possibility is that the calibration of the magnetometer for that particular IMU was not fully 

completed, causing the IMU to not sense its full range of orientation. The second possibility is 

that the IMU was not properly placed on the side of the upper arm and therefore the angle was 

improperly calculated with the MCS. All other primary joints of interest saw correlation 

coefficients of 0.99 except for the left shoulder, suggesting a very close relationship between the 

angles measured by both systems. After the right shoulder, the next highest RMSE value was 

only 9.00°, followed by a value of 8.55°. Both of these RMSE values were for the elbows, 

suggesting that there is something systematically wrong with the calculation of the elbow angles 
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that needs to be fixed. Also, from Figure 6 it is evident that the primary discrepancies in both 

elbow angles were at the peaks of the range of motion. It appears that at these extreme angles are 

where the IMU MCS had the most difficulty in calculating the joint angle. Both knee angles 

showed very low RMSE values, in particular values between 5.50° and 6.00°. The knee angles 

followed very closely at almost all times throughout the motions of task C. Similar to the elbow 

angles, it appears that the greatest differences in knee joint angles occurred at the peak angles. 

Finally, the RMSE value for the left shoulder was 2.56°, which was significantly lower than all 

of the other joints, and its correlation was a value of 1.00. An RMSE of 2.56° with this large of a 

range of motion and a correlation of 1.00 shows that the system was able to match the optical 

MCS almost perfectly. 

The angles of all joints previously mentioned were plotted and a statistical analysis was 

performed on them for every task. It was seen that joints not primarily involved in the motion 

trial had a low correlation. An example of one of these joints can be seen in Figure 7.  

 

Figure 7: Plot of right knee joint angle over time from both MCSs during Task A 
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 The RMSE of this particular angle for this trial was 0.20° and the correlation was 0.192. 

It appears that the majority of the difference in angle here is primarily from noise and the overall 

range of motion is less than 1°. Since there is such a small range, a low correlation in this case 

does not indicate inaccuracy. All of the other joints that are not presented in Figure 6 resemble 

what is presented in Figure 7. Since the motions of these joints are not the primary joints of 

interest, the data from all of them was not closely analyzed.  
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CHAPTER VIII 

CONCLUSION 

 

 The novel IMU-based motion capture system developed in this study showed viability in 

preliminary tests as an easy-to-use and cost-effective replacement for complex and expensive 

visual motion capture systems at little to no expense of estimation accuracy. These preliminary 

tests involved a subject performing shoulder abductions/adductions, elbow flexions/extensions, 

and hip flexions/extensions while simultaneously being recorded by both a visual motion capture 

system and the IMU-based system. Results yielded low RMSE with a minimum at 2.56° and a 

maximum of 10.73° and high correlations reaching 0.99 for most cases. These outcomes warrant 

future development of this system to make adjustments for the errors experienced as well as 

testing with more subjects. Further developments in the system include refining the initial 

filtering of the incoming live data to reduce post-processing requirements. Possible improper 

placement of the sensors may be accounted for by including extra simple calibration steps or 

Principal Component Analysis (PCA) to find which axes of the sensors are experiencing the 

rotations performed. It is expected by the developers of the system that 10 more subjects will be 

utilized to test the system for validation. The end-goal of the system is for the code and algorithm 

created to be released as open source so that the public can utilize it and customize it for their 

own purposes, such as biomechanical analysis or movie and video game animation. 
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APPENDIX 

 

 

Figure 8: MCS GUI showing the “Raw Data” tab 

 

Figure 9: MCS GUI showing the “Filtered Data” Tab 
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Figure 10: MCS GUI showing the “Calibration” Tab 

 

Figure 11: Model created by MCS 
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 To calibrate the magnetometer or gyroscope, the check box labeled “Mag Calib” or “Gyr 

Calib”, respectively, must be checked before pressing start. When these are checked, no data will 

be output and the model will not be assembled. Only the calibration process will occur. Each 

time that the start button is clicked while one of the calibration processes are checked will 

reinitialize and recalibrate that sensor type. Therefore, if the first magnetometer calibration is 

deemed unsuccessful by the user, keeping the check box checked will allow the user to “clear” 

out the old calibration and attempt a new one. 

The check box labeled “Data Collect Only” can be clicked if the user does not need to 

view the model. Checking this box before pressing connect will suppress the model window, and 

the system can be used as regular without the model.  

 Under the raw and filtered data tabs, there can be seen three columns. The first simply 

displays the data (unfiltered and filtered for the raw and filtered tabs, respectively). The next 

shows the norm of the data from each sensor type (gyroscope, accelerometer, and 

magnetometer), and the last column displays the data as unit-length to observe the components in 

a more relative sense. The data displayed is the live data for the sensor number selected in the 

“Sensor Number” numeric up/down selector. Under the “Calibration” tab, the values for the 

magnetometer maximum and minimum values can be seen as well as the correction offsets for 

the magnetometer and gyroscope sensors. These values are also seen based upon the “Sensor 

Number” selected, as each sensor has a different offset.  

 Under the “Calibration” tab can also be seen the spaces to input the subject’s body 

measurements. The numeric up/down next to each body segment under the column titled “No.” 

is the sensor number corresponding to the body segment. Therefore, the user may place any 
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sensor on whichever body part he/she desires, so long as it matches the number input into the 

corresponding numeric up/down.  

 The top right of the GUI presents camera options for the model. Clicking one of the 

buttons next to the figure causes the model view to change to the corresponding camera angle 

seen in the figure. For example, clicking “B” will allow the user to see the model from the 

model’s right side. By default, the model view starts at position “E”, as seen in Figure 11. 


