UTILIZING KALE AND CHORD STRUCTURE IN CONTENT-BASED MUSIC
RECOMMENDATION

An Undergraduate Research Scholars Thesis
by
GREGORY KRUPIT

Submitted to the Undergraduate Research Scholars program
Texas A&M University
in partial fulfillment of the requirements for the degree of

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor: Dr. Tiffani Williams

May 2017

Major: Computer Science

ABSTRACT

Utilizing KALE and Chord Structure in Content-Based Music Recommendation

Gregory Krupit
Department of Computer Science
Texas A&M University

Research Advisor: Dr. Tiffani Williams
Department of Computer Science
Texas A&M University

With the popularity of digital entertainment applications such as Pandora, Spotify,
Amazon Music, etc., comes the need for sophisticated music recommendation algorithms.
Many algorithms depend on collaborative filtering, determining relevant song suggestions
for a particular user by analyzing similar tastes in the rest of the user base. This method
comes with the “cold start” problem, such that a system does not have enough data on a
new user to generate meaningful suggestions. A solution to this problem is a content-based
method, utilizing the structure and features of the music itself to determine similar songs
rather than user-based data. By using audio analysis tools and performing wavelet analy-
sis on songs to extract relevant acoustic features (chord progression), we will define a new
measure of similarity between songs. We show that using similarity of chord structure as
a basis for content-based music recommendation is a quality metric that can be introduced

into existing music recommendation applications.

i

DEDICATION

To a kit and a pup.

1l

ACKNOWLEDGMENTS

I would like to extend a very warm thanks to my undergraduate research advisor, Dr.
Tiffani Williams, for not only providing me with the tools, guidance, and motivation I
needed to complete this research, but also for providing inspiration and direction in the
realm of a topic that is important to both of us: education. I would also like to thank my
roommates, Brian Burrows and Renee Swischuk, for leading by example when it comes
to staying committed to research goals.

I would also like to thank Texas A&M’s Undergraduate Research Scholars Program
for providing the structure I needed to explore an interesting piece of the intersection of
computer science and music, as well as Texas A&M’s Computer Science Department for

providing the opportunity to complete an undergraduate thesis as my senior project.

v

NOMENCLATURE

MIR Music Information Retrieval

kALE k-gram AnaLysis Engine

TABLE OF CONTENTS

ABSTRACT e

DEDICATION e

ACKNOWLEDGMENTS o e

NOMENCLATURE e e

TABLE OF CONTENTS o e

LISTOFFIGURES e

LISTOFTABLES o e

3.1
3.2
33
34
3.5
3.6
3.7

Keys . . o e
Chord Structure/Chord Progressions in a SpecificKey
Generalized Chord Progressions

4. EXTRACTING RELEVANT DATA FROM MP3/WAV FILES

4.1
4.2
4.3
4.4

4.5

Normalizing AudioInput
Structure of MP3/WAV File Formats
BPM Extraction
Chord Progression Extraction
4.4.1 Subdivision of MP3’s into Sub-Beats
4.4.2 Use of Chromagrams in Chord Detection
Key Extraction

vi

Page

il
iil

v

vi
viii

X

4.6 OurImplementation, 15

5. SONG COMPARISON e 16
5.1 Distance between Chord Progressions 16
6. EXPERIMENTAL METHODS/PROCEDURES 18
7. RESULTS o e 21
8. DISCUSSION e e 25
8.1 KkALE in Music Recommendation. 25
8.2 Our Music Recommendation Algorithm 26
8.3 Ratingvs. Time Listened 28
9. CONCLUSION e s e s 29
REFERENCES e 30

Vil

LIST OF FIGURES

FIGURE Page

1.1 Overview of the transition from a list of songs to an MP3 player that pro-
vides recommendations based on comparison of those songs. 2

3.1 Illusration of the difference between high frequency wave, medium fre-

quency, and low frequency waves.o 6
6.1 Next song index given the current song’s rating. 20
7.1 Frequencies of all of the songs played in at least one experiment. 21

7.2 Successive rating trends from song to song, comparing randomly gener-
ated songs to recommendations using KALE. 22

7.3 Successive rating trends compared with change in time listened from song
TOSONZ. . o o v o 23

viil

LIST OF TABLES

TABLE Page

3.1 Equivalent notes and their corresponding frequencies and wavelengths. . . 7

8.1 Index of the next song to be played when the corresponding rating is pro-
vided by asubject. 27

1X

1. INTRODUCTION AND LITERATURE REVIEW

Current music recommendation algorithms subscribe to three methods: collaborative
filtering, content-based recommendation, or a mixture of the two [1]. Collaborative filter-
ing is a method in which a system recommends music to a user based on similar users. This
method yields an issue known as the “cold start” problem, where new users are provided
poor recommendations due to insufficient data. This provides motivation that improving
the second method, content-based recommendation, is an important pursuit. Music Infor-
mation Retrieval (MIR) is a field dedicated to techniques for gathering useful information
about songs and artists. Within the context of content-based music recommendation, MIR
can be used to extract song metadata (genre, artist, album, composition year, etc.) and
social media based information (comments, tags, reviews, etc.) in their determination of
similar songs. An alternate form of MIR focuses on acoustic analyses of songs, using fea-
tures such as beat, tempo, pitch, instrumentation, mood, etc. to determine similar songs of
potential interest [1]. Utilizing acoustic features of a song in lieu of user data and/or song
metadata is one solution to the cold start problem and is where this research will hold its
focus.

When determining song suggestions similar to a given set of songs, one feature cur-
rently not used is the chord structure of the song. In an analysis of chords and progressions
used in some of history's most popular songs, the distribution of chords and progressions
found is significantly skewed [2], providing motivation that similar chords and chord struc-
tures may be a key indicator of suitable song recommendations. Thus, we will investigate
the use of chord structure when determining song similarity in order to generate sugges-
tions. Figure 1.1 illustrates the flow of our entire system beginning with set of MP3’s and

resulting in an MP3 player that uses our recommendation system.

Song1| = | ExtractChord | _,
Progression
Extract Chord Pairwise
Song2| = Progression = - kALE Comparisons MP3 Player Driven
omparator by KALE
Extract Chord (Compare Each :
Song3| — 7 Progression | — | Song with Every Comparisons
o] Other Song)
o
o
Extract Chord
Song n Progression | =

Figure 1.1: Overview of the transition from a list of songs to an MP3 player that provides
recommendations based on comparison of those songs.

We have attempted to improve on current methods of finding the chord progression
of an arbitrary audio recording with a novel method using Fast Fourier transforms and
frequency analysis. In addition, we provide a machine learning method for determining
the key of a given audio recording by providing a chord histogram as a feature vector. Once
chord progressions for each MP3 in the library are determined, pairwise comparisons are
performed between chord progressions using an original distance measurement, k-gram
AnaLysis Engine (KALE).

We also compare how providing song recommendations to users using KALE compares

with providing users with a random sequence of songs. By analyzing trends in the ratings

that users gave songs during experiments, we show that KALE performs better in providing

quality recommendations than randomnly generating songs.

2. RESEARCH METHODS

We extracted acoustc features from and used KALE on 74 indie pop songs found on
NoiseTrade.com, a site providing free and legal MP3’s from independent artists. We built
an application that tests the effectiveness of KALE regarding the quality of the applica-
tion’s recommendations; the application asks subjects to listen to a song, collects a rating
the song and feedback about the song, and generates a new song based on the subject’s
previous rating. Using quantitative analysis of successive ratings and qualitative analysis
of subjects’ written feedback, we determined that KALE provides better recommendations

than when randomly ordered songs are presented to subjects.

3. MUSIC THEORY BACKGROUND

Basic knowledge of music theory is required to understand certain aspects of this work.
Therefore, we present introductions to the music theory topics involved with the methods

presented in this paper.
3.1 Music

All sound is made up of individual frequencies played in certain grouping and in certain
sequences. Music is the organization of the types of groupings and sequences of frequen-
cies that can occur. For our purpose, we define music as a set of rules that define which
groupings of frequencies are more likely to occur together, as well as which sequences of

frequencies are likely to occur.
3.2 Notes

Sound waves tend to follow a repeating, oscillating pattern, alternating between high
and low. Sound waves that we hear in popular music follow a predictable, repeating pat-
tern. Therefore, we can classify different waves based on wave properties. We define the
wavelength of a wave as the distance between adjacent peaks. We define the period of a
wave to be the length of one full oscillation of high to low. A cycle is defined as the the
distance between a point in a wave period and the same point the next occurring period.
Each of these properties helps define frequency, which is the number of periods that oc-
cur in one second. As illustrated in figure 3.1, a wave with a small period has a higher
frequency than a wave with a large period. We commonly used the unit Hertz (Hz) as the

unit of frequency.

Time

Low
Frequency

Medium
Frequency

Amplitude

High
Frequency

Figure 3.1: Illusration of the difference between high frequency wave, medium frequency,
and low frequency waves.

In Western music, we classify frequencies using a logarithmic scale: if we thus, if we
take an arbitrary frequency f, we categorize f,2- f,22- f,--- , 2" f as the same frequency
class. We call these frequency classes notes.

In Western music, there are 12 important notes. Each note has a letter (A,B,C,D,E,F,G)
and an optional accidental (f=sharp or b=flat). (Note: there are more accidentals than # and
b, but are not required for the understanding of this work.)

Humans can hear in the interval [20 Hz, 20,000 Hz]. Thus, we define the notes’ as-

signed frequencies of each note starting around that range:

Notes | Frequency | Wavelength
C 16.35 2109.89
C#/Db | 17.32 1991.47
D 18.35 1879.69
D#/Eb | 19.45 1774.20
E 20.60 1674.62
F 21.83 1580.63
F#/Gb | 23.12 1491.91
G 24.50 1408.18
GH/Ab | 25.96 1329.14
A 27.50 1254.55
A#/Bb | 29.14 1184.13
B 30.87 1117.67
C 32.70 1054.94

Table 3.1: Equivalent notes and their corresponding frequencies and wavelengths.

If we move down table 3.1 by one row, we move up the note by one half step. If we
move down the table by two rows, we move up in note by one whole step. Similarly,
moving up the table by one row moves the note down one half step, while moving up the
table by two rows moves the note down by two half steps, or one whole step. The purpose

of # is to take the letter that precedes it and move the note up one half step. The purpose

of b is to move the note down one half step.
3.3 Scales

We define a scale as a sequence of notes moving in the same direction. The frequencies
get higher in an ascending scale while the frequencies get lower in a descending scale. We
define the two important scales for this work: major and minor. Major and minor scales
each start and end with the same note, and contain 7 unique notes. To build an ascending

major scale starting from some note, we take the following sequence of steps:

—

. whole step

2. whole step

3. half step

4. whole step

5. whole step

6. whole step

7. half step

For example, a C major scale starts with C and takes the following steps:

—

. whole step — D

2. whole step — E

3. half step —+ F

4. whole step —+ G

5. whole step — A

6. whole step — B

7. half step — C

Thus, the notes in a C major scale are C,D,E,FG,A,B,C.
To build an ascending minor scale starting from some note, we take the following

sequence of steps:

1. whole step

2. half step

3. whole step

4. whole step

5. half step

6. whole step

\]

. whole step
For example, a C minor scale starts with C and takes the following steps:
1. whole step — D
2. half step — Eb
3. whole step — F
4. whole step —+ G
5. half step — Ab

6. whole step — Bb

7. whole step — C
Thus, the notes in a C minor scale are C,D,Eb,F,G,Ab,Bb,C.
3.4 Chords

We define a chord as two or more notes played at the same time. In this work, we only
consider two types of chords: major and minor. To determine which chord a set of notes
creates, we look at the triad created by those notes. A triad is a set of three unique notes:
the root note is the name of the chord, the middle note is two notes higher. and the top
note is two notes higher than the middle note. If a chord is major or minor, it always takes
7 half steps to move from the root to the top note. In a major chord, it takes four half steps
to move from the root note to the middle note. In a minor chord, it takes three half steps
to move from the root note to the middle note.

To build a C major chord, we define our root as C, move up four half steps to E, and
move 7 half steps from C to reach the top note, G. Thus, the notes C,E, and G make up a
C major chord. To build an B minor chord, we define our root as B, move up three half
steps to D, and move 7 half steps from B to reach the top note, Ff. Thus, the notes in a B

minor chord are B,D, and Ff.
3.5 Keys

The key of a song defines a template for which notes are generally used in that song.
We label each with a letter, optional accidental, and either major or minor. We identify
which key a song is in by the the accidentals of the notes used. For example, a C major
scale is C,D,E,F,G,A,B,C. Because there are no accidentals used in the C major scale, we
define C major to be the key that has no accidentals. Similarly, if we write out an A minor
scale, we see A,B,C,D,E,F,G,A, which also has no accidentals.

An A major scale is as follows: A, B, Cf, D,E,F,Gfi,A. Thus, the major key with 3

sharps (Cf, Gt, Ff}) is A major.

10

We use the following notation to write major and minor chords: a note with no label
following is assumed to be major, while a note with a lowercase 'm’ following it is minor.

For example, C represents C major, and Cm represents C minor.
3.6 Chord Structure/Chord Progressions in a Specific Key

Using the key of a song (the starting note for the scale and the set of accidentals in
that key), we can determine which set of chords belongs in that key. For each note in the
scale of a key, build a triad with the note as the root. These triads make up the chords to
be used in that key. For example, looking at the F major scale, we define a triad for each

of F,G,A,Bb,C,D,E, using only the notes that exist in that scale:
1. FEA,C—F
2. G,Bb,.D — Gm
3. ACE— Am
4. Bb,D,F — Bb
5. CEG—-C
6. D,EA — Dm

7. E,G,Bb — E diminished (our method does not distinguish between minor and di-

minished chords)

Thus, the chords used in the key of F major are F, Gm, Am, Bb, C, Dm, and E diminished.

A chord progression is a sequence of chords. Though there are exceptions, the most
popular chords used in a chord progression are those defined by a specific key’s triads.
Therefore, the most likely chords found in a song in F major are F, Gm, Am, Bb, C, Dm,

and E diminished.

11

3.7 Generalized Chord Progressions

We can generalize the chords used in a chord progression by analyzing the individual
chords’ relationship to the key of the song. For example, in a song in C major, we can
generalize the chord progression C, G, Am, F, Dm, G, C by noting that C is the first note
in the C major scale, G is the fifth note, A is the sixth note, and so on. We label these

relationships with roman numerals. Thus

C,G,Am,F,Dm,G,C

becomes

ILV,vi,VI,ii,V,T

(Note that we used upper case letters for major chords and lower case letters for minor
chords.)

Because the roman numerals identify relationships to a key instead of the chords them-
selves, we can rewrite that chord progression in any key by identifying the sequence of
chords that have the same relationships with the new key as the roman numerals prescribe.

To write the same chord progression,

I,V,vi, VI,ii,V,T

in G major, we write

G,D,Em,C,Am,D,G

Thus, even though C, G, Am, F, Dm, G, C and G, D, Em, C, Am, D, G are different chord

progressions, they represent the same generalized chord progression I, V, vi, VL, i1, V, L.

12

4. EXTRACTING RELEVANT DATA FROM MP3/WAV FILES

4.1 Normalizing Audio Input

The library of music used to determine the utility of KALE contains in songs in MP3
format. The methods used to extract relevant metadata, however, require the WAV file
format as input. Therefore, before analyzing an MP3, we convert it into a WAV file for use
in our algorithms.

We chose to convert a library of MP3 files to WAV format rather than beginning with a
library of WAV files. Because the MP3 format is compressed, it removes some of the noise
that occurs in an uncompressed file format such as WAV. By inspection of the extracted
chord progressions, the method we use to extract chord progression from a waveform
performed better (more accurate chord progressions) with a compressed waveform than
its uncompressed counterpart. Therefore, we chose to use a library of MP3’s to exploit

this benefit.
4.2 Structure of MP3/WAV File Formats

Metadata included in an MP3 file includes information about artist, album, genre, au-
dio duration, and the sampling rate (samples/second) of the MP3. The sampling rate of a
recording defines how many samples per second should be sent to an audio device. The
sampling rate of all recordings in our library is 41,000 Hz, or 41,000 samples/second. In
our method, sampling rate is the only piece of MP3 metadata we use.

The audio portion of a WAV file consists of an array of pairs (samples): the values in a
given pair represent the frequency to be played in the left and right speakers respectively.
When the samples in the array are played sequentially at the intended sampling rate, we
hear the audio recording as it intended to be heard. For our method, we only use the left

band of frequencies to determine the chord progression.

13

4.3 BPM Extraction

To determine the BPM of an arbitrary WAV file, we use the method presented by

George Tzanetakis. [3]
4.4 Chord Progression Extraction

To determine the chord progression of an arbitrary MP3, we perform a harmonic anal-
ysis on discrete frames of a recording, where each frame consists of a constant number of

samples (frequencies).
4.4.1 Subdivision of MP3’s into Sub-Beats

Because our chord finding method splits up an MP3 into discrete timesteps (frames)
to analyze, we use a given recording’s extracted BPM to create frames according to the
natural rhythm of the song. To determine how many samples belong in each frame to

analyze, we use the following equation:

4.1)

sampling_rate
samples_per_frame = |60 - Png_ J

BPM -4

which is equivalent to the number of samples in each quarter of a beat. By analyzing a
recording one quarter beat at a time, we allow for more complex chord progressions to be
extracted, specifically those that use syncopation (songs in which the change in chord does

not always fall exactly on the beat).
4.4.2 Use of Chromagrams in Chord Detection

Once a waveform is split into discrete sections, each section is analyzed with the use
of chromagrams and chord detection. For each partition of the waveform, the intensities
of each of the twelve notes are discovered through the use of a fast fourier transform and

harmonic analysis. These intensities are stored in a chromagram. Thus, once a chroma-

14

gram for each partition of the waveform is generated, each chromagram is analyzed for
the likeliest chord. For ease of comparison, we only classify chords as major or minor,

excluding all other chord forms.
4.5 Key Extraction

Key extraction is a necessary step in song comparison using KALE: before comparing
songs, all songs must be transposed into the same key. Key extraction was performed
using trends present in western chord progressions, namely that when a song is in a fixed
key, some chords are more popular than others. According to an analysis of 1300 popular
songs over the last 50 years, chords I, V, vi, and IV are most popularly used, followed by
ii and iii. Thus, in order to determine the key of a song, we look to the distribution of
chords used in its chord progression representation. We trained a One vs. All classifier on
known chord progression/key pairs to use as a classifier for unknown chord progressions.
The input to the classifier is a chord distribution and its output is the predicted key of the

song.
4.6 Our Implementation

We implemented and refined our method in Python2.x over the course of 6 months.
Because all songs are analyzed independently, we parallelized the process of analyzing
the songs. In addition, because we analyzed independent subsections of the waveform,
we parallelized the extraction of a chord progression. Without parallelization, finding the
BPM of a single song takes about 30 seconds and finding the chord progression, predict-
ing the key, and transposing a single song takes about 4 minutes. With parallelization,
Analyzing 100 songs takes about 1.5 hours, depending on the BPMs and lengths of the

songs.

15

5. SONG COMPARISON

5.1 Distance between Chord Progressions

We define similarity measure of two songs as the mutual distance between their chord
progressions. The motivating assumption for the validity of KALE is that if two chord pro-
gressions share similar sub-progressions, it is likely that the two songs will affect listeners
in similar ways. Therefore, we find the mutual distance between two songs using k-gram
analysis, comparing k-length sub-progressions from each song.

Using kALE, each chord in a chord progression plays some role in the distance to
another song. Let us define two chord progressions for song X, and song Y, such that X
consists of a sequence of chords x1, z2, 3, - - - ,x, and Y consists of a sequence of chords
Y1, Y2, Y3, - » Ym. We compare all pairs of k-grams from X and Y by computing the edit
distance between the k-grams. Thus, the minimum distance between two k-grams is 0
(in the case that the two k-grams represent the same sub-progression) and the maximum
distance between two k-grams is k (in which case the i*" index of the k-gram from X never
matches the i*" index from Y). The distance from song X to song Y is defined as the sum
of the minimum edit distance found containing chord z;.

n

dxwy = Z minimum distance containing x; 5.1
=1

Thus, if x; is a part of multiple k-grams in X and/or x; is part of a k-gram that is
compared with multiple k-grams in Y, we greedily choose the lowest edit distance it is
a part of. For example, if x; is part of a sub-progression that gets compared with some
sub-progression in Y, the edit distance of which is 0, we assert that because x; exists in

an exactly matching sub-progression in the other song, x; should not add to the distance

16

of the two songs. The same process is performed in the reverse direction, obtaining the
distance from Y to X. Let us call the distance from song X to song Y dx and the distance
from song Y to song X dy.We normalize the distances by scaling by the relative lengths
of the songs and find the average:

d X dY

. + .
[X]-min(|XT], [Y]) Y] min(]X], [Y])
2

d:

(5.2)

With kALE, the minimum distance is 0 and the maximum distance is 1, such that the
closer the distance is to 0, the more similar the songs.

One useful property of KALE is that even though as £ grows, growing the distance be-
tween song X and song Y, the relative distances between sets of songs remains consistent.
For example, with some £k, if the distance between song X and song Y is dxy, and the
distance between song X and song 7 is dxz, and dxy > dxz, no matter which £ we use
to determine mutual distances, dxy > dxz will be maintained.

For our application, we required that each song be associated with a list of all other
songs in the library, sorted by distance. Because £ does not matter when generate relative

song comparisons, we arbitrarily chose £ = 5 in our implementation.

17

6. EXPERIMENTAL METHODS/PROCEDURES

To explore the use of KALE as a method by which to recommend music to listeners, we
created an application that queues and plays MP3’s based on user ratings of the previous

song. The application has two modes:

1. Random selection of the next song from a library.

2. Selecting the next song based on the previous song’s rating.

We define KALE’s success in music recommendation as the increase in performance
from random recommendations to our recommendation algorithm. We selected 20 Texas
A&M students in various disciplines to use our application and provide recommendations
for songs. 10 students were provided randomly selected songs, while the other 10 were
provided recommendations based on the previous rating; we alternated mode of operation

between experiments. In each case the experiment procedure is as follows:

1. The subject completes a semi-structured interview relating to their relationship, his-
tory, and experience with music. Questions include styles of music normally listened
to and the settings in which music is normally listened to, musical talent and expe-
rience with music theory and analysis of chord structure, and listening experience

(e.g. parts of the music the subject normally gravitates toward).

2. The subject is instructed that they will listen to 10 songs. When the subject decides
a 1-10 rating for a given song, they may let the proctor know, who then stops the

song play and asks further questions about the subject’s opinion of the song.

3. The subject listens to and rates 10 songs as described in the previous item.

18

We wanted to make sure that subjects were basing their ratings on musical content
alone and not past experience with the music. Therefore, the songs chosen for the study
were written and performed by indie artists, ensuring that subjects would not have bias
toward any particular song(s). We downloaded 100 random songs from NoiseTrade, a ser-
vice that provides royalty free music from indie artists, and eliminated twenty-six songs
that had long non-musical introductions and/or did not prominently feature chord progres-
sions. We extracted the chord progressions from and pairwise compared the remaining 74
songs for use in the music playing application.

The recommendation algorithm uses the previous song’s rating to generate the next
song. In the application, each song is associated with a list of all other songs in our library
ordered by distance to that song (the earlier a song occurs in a list, the closer the song). To
determine which song to choose, we use a logarithmic scale skewed toward high ratings.

The formula for the curve shown in figure 6.1 is

exp(—rating/4) — exp(—10/4)

exp(—1/4) — exp(—10/4) ©1)

number_of_songs -

This formula takes the rating, derives a score for it, then scales the rating by the minimum
rating, 1, and the maximum rating, 10. Then, the index in the ordered list is found by
taking the result (0 < result < 1), and multiplying by the number of songs, which in our

libary is 74.

19

Next Song Index

80

70

[#1]
o

un
o

B
o

w
o

J
o

10

Index of Next Song Given Previous Song Results

2 3 4 5 6 7 8 9
Rating

Figure 6.1: Next song index given the current song’s rating.

20

10

7. RESULTS

The following graph (7.1) represents the frequency of songs played during the study.

Number of Plays Per Song, Average Rating per Song

6

Number of Times Played over All Experiments

| II|

5 B otk G esfelimdandi Srobd tatal e ‘bx‘mo AR m‘ Luida SRR o
\\\O‘\%;}}v v&%sgg, 5«0 «\‘, \!?;2,\\ E"\g‘ g87 \ﬁ‘ :%i% "lw?,p 2‘» \c{‘i %%@\E %%}33%\‘\(} i S @% :}ﬂ%&
\p‘“ \m“ d e u oe‘ (° (\“D
\ ‘(\ \(\
g W g\x‘“ & @e e @‘s
o e o o o

Figure 7.1: Frequencies of all of the songs played in at least one experiment.

The color on the bars represent average rating of the song over all experiments: the
darker the green, the higher the rating. Though we attempted to give all songs equal
probability of playing, some songs were selected more often than others, which we explore
later.

After using our application with 20 subjects, 10 with randomly generated songs and 10
with the kKALE recmmendation system, we compared rating transitions from song to song.

Plot 7.2 shows the four possible scenarios:

1. Low — Low: both ratings were low,

21

2.0 Actual vs. Scaled Ratings: kALE/Random Ratio by Rating Transition Type

Il Actual Ratings
HEl Scaled Ratings to Fit Range [1,10]

15¢

1.361

Ratio: Recommend / Random

0.0
Low Rating -> Low Rating High Rating -> Low Rating Low Rating -> High Rating High Rating -> High Rating

Figure 7.2: Successive rating trends from song to song, comparing randomly generated
songs to recommendations using KALE.

2. High — Low: arating is lower than the previous,
3. Low — High: a rating is higher than the previous
4. High — High: both ratings were high

Given that ratings were in the range [1,10], we classified anything above 5.5 as high and
below 5.5 as low. We found the percentage of occurrences in each of the random case and
kALE case, and divided the kALE percentage of each transition type by the corresponding
type in the random case. Thus, a result of 1.0 shows no change in that category, a result
more than 1.0 shows a rise in that category from random to recommendation, and a result
below 1.0 shows that the random case had a higher rate of occurrence for that category
than recommendation. In addition, we plotted two kinds of rating data: the green bars

represent raw ratings provided by users and the blue bars represent scaled ratings per user

22

to fit a range [1,10], thus illustrating rises and falls in ratings within users.
We also recorded how long each user listened to each song to pair with the ratings

provided. The following graph shows a trend we found significant:

Change in Rating vs Change in Percent of Song Listened To

100
Q
L]
el
5
c 50+ i
48]
7
O
c
ol
o
&
c o} |
[1}]
on
|
1+
=
|@]
@
=
8 50} |
(=)
(=)
=
n []
[)
[]
-100 ' - '
=10 -5 0 5 10

Successive Change in Rating

Figure 7.3: Successive rating trends compared with change in time listened from song to
song.

In plot 7.3, two scenarios were found: the rating and time listened moved in the same
direction (denoted by green circles), or the rating and time moved in opposite directions
(denoted by red x’s). The first case can be broken down into two categories: the rating

and time listened both increase (quadrant II) or the rating and time listened both decrease

23

(quadrant III). The second scenario is illustrated by quadrants I and I'V. The blue line shows

the linear regression of these data.

24

8. DISCUSSION

8.1 KALE in Music Recommendation

We performed our music recommendation experiment with 20 users (10 with randomly
generated songs, 10 with songs recommended using KALE). Because most ratings across
the random and kALE cases were relatively high (the average is 6.52 and the median is 7),
we removed bias from the songs themselves. Many subjects only rated songs in the range
5-9, so we scaled each subject’s ratings to fit the range [1,10]. Scaled ratings show rating
transition trends within a user, providing further insight to the behavior of the individual
subjects.

We analyzed trends in the changes in successive ratings looking at four specific sce-

narios in successive ratings:
1. Low Rating — Low Rating
2. Low Rating — High Rating
3. High Rating — Low Rating
4. High Rating — High Rating

where Low is characterized by ratings below 5.5 and High is characterized by ratings
above 5.5.

In our recommendation system, if a user gives a low rating, a very different is provided
next. Because different does not necessarily mean better (i.e. there is no way of knowing
if the subject will like the next song; it could be better or worse), scenarios 1 and 2 are
less meaningful. When a subject gives a high rating, however, we provide a song with

a similar chord progression with the hopes that the subject will like that song, as well.

25

Thus, a successful recommendation system will show an increase in High — High, and a
decrease in High — Low when compared with the random case.

As is seen in figure 7.2, we see that the ratio of recommendation to random percentages
of High — High is 1.361 in the raw ratings, and 1.273 in the scaled ratings. Because most
raw ratings were above 5.5, there is a high likelihood of adjacent raw ratings are high;
thus, the raw rating increase in this area is expected. The scaled rating increase in the
category High — High shows that if a user liked a song, they would like the next song in
terms relative to their own minimum and maximum ratings. This result, in particular, is
an indication that using KALE to recommend songs yields an increase in user enjoyment
from the random case.

When performing our experiments, we asked users why they did or did not like songs
to gain insight into why some songs appeal to them more than others. We received a
variety of responses: in addition to overall feel of a song (which is likely what our method
targets), many subjects gave low ratings for voices they found "annoying," genres they
did not like, the language a song is in, lyrical content, and/or other various reasons. In
addition, some subjects liked songs for reasons other than the music itself, such as lyrical
content or that a song reminded them of an artist or song they already like. Thus, the fact
that our we only increased our High — High scenario from random to recommend by a
factor of 1.361, and only decreased our High — Low scenario by a factor of 0.791, we can
point to these other influencing factors as the reason. As our method competes with other

factors important to our subjects, any increase at all is a success.
8.2 Our Music Recommendation Algorithm

In our analysis of songs used in the experiments, we found that some songs were played
more often than others. After investigation, we found this was due to our recommendation

algorithm preferring certain songs to others. The recommendation algorithm chooses the

26

next song to play for the subject by selecting the index in a sorted list of songs, ordered by
increasing distance with the last song played (determined by kALE). To prevent repeating
songs within an experiment, if the selected song has already played, the surrounding songs
in the list are explored until a new song has been found. Using the formula presented in

equation 6.1, the following table describes which index is initially chosen for each rating:

Rating | Index of Next Song
74
55
41
30
21
14

—

O| 00| |\ | | W

o
)

Table 8.1: Index of the next song to be played when the corresponding rating is provided
by a subject.

There 74 songs in our library and each song is associated with an ordered list. We
looked at the most popular songs played and found that they exist in many lists at or
around the indices chosen by the algorithm. For example, the most popular song played,
"10 Million Years" by Travis Roman, occurs at index 9 in 7 lists and at index 5 in 5 lists.
Because 7 and 8 were the most common ratings provided, and because ratings 7 and 8
yield the indices 9 and 5 respectively, "10 Million Years" had a high probability of being
selected when compared with other songs. Similarly, the second most popular song used
by our algorithm, "Farther Along Love War the Sea in Between" by Josh Garrels, occured

at index 1 in 6 lists and at index 4 in 5 lists. As described in table 8.1, if a rating of 8

27

were provided and the song at index 5 were already played during that experiment, the
algorithm would choose index 4. Thus, "Farther Along Love War the Sea in Between"
also has a high probability of being played. This pattern illustrates why some songs were

played significantly more often than others.
8.3 Rating vs. Time Listened

After noticing some patterns within users, we explored the relationship between the
rating a user provided and the amount of time spent listening to that song. Though we
did not find a direct correlation between the rating a user provided and the time listened
(specific listening behavior between users varied greatly), we did find evidence for the
general case: users tended to listen to a larger parentage of songs they liked than songs
they did not. Figure 7.2 shows this correlation: the rise and fall of rating from song to

song and time listened from song to song tended to move in the same direction.

28

9. CONCLUSION

Because moving from randomly generated songs to songs generated using KALE in-
creased subjects’ enjoyment of the songs they were provided, we feel that kKALE song
comparisons is a valid metric to utilize in content-based music recommendation. Because
of factors other than the feel of the music itself (which could point to chord progression)
found to influence subjects’ enjoyment of songs, KALE can have its best impact in recom-

mendation systems when used in conjunction with additional content-based metrics.

29

REFERENCES

[1] Y. Song, S. Dixon, and M. Pearce, “A survey of music recommendation systems and
future perspectives,” in 9th International Symposium on Computer Music Modeling

and Retrieval, 2012.

[2] J. A. Burgoyne, J. Wild, and I. Fujinaga, “An expert ground truth set for audio chord

recognition and music analysis.,” in ISMIR, vol. 11, pp. 633-638, 2011.

[3] G. Tzanetakis, G. Essl, and P. Cook, “Audio analysis using the discrete wavelet trans-

form,” in Proc. Conf. in Acoustics and Music Theory Applications, 2001.

30

