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ABSTRACT 

Effects of Bisphenol A Exposure on Central Nervous System Development 

  
Centura R. Anbarasu 

Department of Biomedical Science 
Texas A&M University 

 

Research Advisor: Dr. Louise Abbott 
Department of Veterinary Integrative Biosciences 

Texas A&M University 
 

 

 Bisphenol A (BPA), a common environmental toxicant and endocrine disrupting 

chemical, is becoming increasingly important due to its potential carcinogenicity.  The aim of 

this research project was to study the effects of BPA exposure on the developing central nervous 

system. Recent studies have characterized the effects of BPA exposure on reproductive and 

cardiac systems. However, the neurobiological deficits of BPA exposure are largely unknown. 

Using zebrafish as a model organism, embryos were raised beginning 6 hours post fertilization 

(hpf) in medium containing varying concentrations of BPA from 1µM to 25µM. Between 6 hpf 

and 72 hpf, length, movement, hatching, and mortality were measured. Once the embryos 

matured to 72 hpf, they were euthanized, fixed, embedded in paraffin, and sectioned for 

immunohistochemistry procedures to study the expression patterns of myosin, PCNA (a marker 

of cellular proliferation), and caspase-3 (a marker of apoptosis). Additionally, this study aimed to 

investigate whether BPA exposure interfered with dopamine pathways by examining the 

expression patterns of tyrosine hydroxylase, using immunohistochemistry procedures and gene 

expression analyses. These data are potentially relevant to human exposure to BPA, to elucidate 

its potential negative effects on neurological development and health. 
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NOMENCLATURE 

 

BPA  Bisphenol A 

HPF  Hours Post Fertilization 

ZFEs  Zebrafish Embryos 

PCNA  Proliferating Cell Nuclear Antigen 

DMSO  Dimethyl Sulfoxide 

DAB  Diaminobenzene 

RT-qPCR Quantitative Real-Time Reverse Transcriptase Polymerase Chain Reaction 

TH   Tyrosine Hydroxylase 
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CHAPTER I 

INTRODUCTION 

 

Although Bisphenol A (BPA) is a prevalent environmental toxicant, little is known about 

its adverse effects on the body. BPA is found as a component in many plastics and resins, and 

can seep into foods and beverages from the lining of their containers (Bauer, 2016). In the past, it 

was difficult to study the direct effects of BPA exposure on vertebrates due to their long 

developmental periods, cost and space limitations, and the internal nature of their fertilization 

and development, but the emergence of zebrafish as a model organism to study translational 

neuroscience and central nervous system function (Stewart et al., 2014) has bridged that gap. 

Multiple advantages of using zebrafish include high physiological and genetic homology to 

mammals, external fertilization and rapid development, transparency of embryos and larvae, and 

cost- and space-effectiveness (Stewart et al., 2014). 

BPA is most commonly known as an endocrine disrupting chemical. Recent studies in 

zebrafish have determined that BPA exposure alters early dorsoventral patterning, segmentation, 

and brain development in early embryogenesis (Tse et al., 2013). BPA early-life exposure 

toxicity has proven to cause cardiac edema, cranio-facial abnormalities, swimbladder inflation 

failure, and poor tactile response in zebrafish as well (Lam et al., 2011). In male zebrafish, its 

effects on the reproductive system include increased cell apoptosis in the testis, changes in the 

mitochondria and endoplasmic reticulum in Sertoli and Leydig cells, and elevated activated 

caspase-3 levels in the cytoplasm, which indicates increased rates of cellular apoptosis (Liu et 

al., 2013). A study examining human children identified several behavior deficits, such as 

anxiety, depression, and hyperactivity, corresponding with higher BPA levels in the urine 
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(Harley et al., 2013). These data suggest that the neural circuitry may be altered by BPA 

exposure.  

Studies have shown that dysregulation of many functional processes including emotion, 

locomotion, learning, and memory, can lead to various neurological disorders such as 

schizophrenia and Parkinson’s disease (Boehmler, 2006). Since BPA exposure is known to affect 

locomotion and emotion, it may also play a role in these neurological disorders. Researchers 

have identified hyperactive dopamine signaling at D2 receptors as a possible cause of 

schizophrenia since it increases both the positive and negative symptoms associated with the 

disease. Additionally, amphetamines and cocaine stimulate schizophrenia-like symptoms by 

affecting dopamine pathways. Schizophrenia can be treated with antipsychotics that lower 

dopamine levels. Conversely, Parkinson’s is a disease that involves nerve damage to the 

substantial nigra, which decreases dopamine levels. Symptoms of Parkinson’s include slow 

movement and anxiety, which are also documented effects of BPA exposure. Therefore, it is 

important to examine the effects of BPA exposure on dopamine signaling. By using live embryo, 

immunohistochemistry, and gene expression analysis procedures, this study aimed to examine 

the expression patterns of tyrosine hydroxylase following BPA exposure. 

  



7 

CHAPTER II 

METHODS 

 

BPA exposure in zebrafish embryos 

Adult zebrafish were bred in the Biology Department, under the guidance of Jennifer 

Dong. At 2 hours post fertilization (hpf), the zebrafish embryos (ZFEs) were collected and 

brought to Dr. Abbott’s lab for BPA exposure and incubation at 28.5°C. The ZFEs were 

transferred into 24-well plates, with 4-5 ZFEs per well, and immersed in 2 mL of embryo 

medium. At 6 hpf, the embryo medium was removed and replaced with embryo medium 

containing 1µΜ, 5 µΜ, 10 µΜ, and 25µΜ BPA. Because BPA is water insoluble, it was 

dissolved in DMSO to make a working stock solution, and then diluted in embryo medium to the 

specified concentrations. Due to the use of DMSO to dissolve the BPA, we created two control 

groups: control (no BPA and no DMSO) and DMSO control. 

 

Live embryo procedures 

The timeline of live ZFE exposure can be seen in Fig. 1 below. The first data collection 

point was at 24 hpf, at which time spontaneous movement activity of the ZFEs was recorded. 

Spontaneous movement was measured by counting the number of times the ZFEs moved during 

a 1-minute interval (n = 30 ZFEs per exposure group). At 30 hpf, the number of alive vs. dead 

and hatched vs. unhatched ZFEs were recorded. Similarly, alive vs. dead and hatched vs. 

unhatched counts were recorded at 54 hpf. The last live embryo data collection time point was 72 

hpf, when elicited movement activity, alive vs. dead, and hatched vs. unhatched measurements 

were all recorded. Elicited movement was measured by gently touching the tails of the ZFEs and 
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recording how far they moved (n = 10 ZFEs per exposure group). Following the conclusion of 

the live embryo studies at 72 hpf, ZFEs were euthanized with MS-222 and immersion-fixed in 

10% neutral buffered formalin. At this point, total length of a subset of the fixed ZFEs was 

measured (n = 20 ZFEs per exposure group). Then, the ZFEs were either embedded in paraffin 

and sectioned for immunohistochemistry or immersed in RNAlater® and frozen for gene 

expression assays. 

 

Fig. 1. Live ZFE Exposure Timeline 

 

Immunohistochemistry 

 Zebrafish embryo sections that were embedded in paraffin were cut in the Veterinary 

Integrative Biosciences Histology Laboratory and sectioned onto slides. The slides were 

deparaffinized and blocked in normal horse serum to minimize non-specific binding of antibody. 

ZFE sections then were probed with primary antibody for the following proteins of interest: 

myosin (a protein expressed in muscle), proliferating cell nuclear antigen (PCNA– a protein 

expressed in cells undergoing cell division), activated caspase-3 (a protein expressed in cells 

dying via apoptosis), and tyrosine hydroxylase (TH– an enzyme involved in the production of 

dopamine). Next, the slides were incubated with a secondary antibody, biotinylated-horse anti 

mouse serum, and stained using diaminobenzine (DAB). The slides were viewed with a light 

microscope and staining intensity was analyzed using the NIS-Elements software. Mean gray 

values were calculated using the Image J program. Statistical analysis was performed by 
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ANOVA, followed by Tukey and Student-Newman-Keuls tests to determine whether differences 

in protein expression were statistically significant among the various BPA concentrations. 

 

Gene expression analysis 

RNA extraction and cDNA synthesis 

RNA was extracted from whole ZFEs using TRIzol® reagent, and RNA cleanup was 

performed using the Qiagen® RNEasy Mini Kit. Then, nanospectrophotometry analysis was used 

to determine the RNA concentration in each sample. cDNA was synthesized using the Invitrogen 

SuperScript III First-Strand Synthesis System for RT-PCR. The protocol was based off Peterson 

and Freeman’s article in the Journal of Visualized Experiments (Peterson and Freeman, 2009).  

 

Quantitative real-time reverse transcriptase PCR 

The SsoAdvanced™ Universal SYBR® Green Supermix was used to perform quantitative 

real-time reverse transcriptase PCR (RT-qPCR). First, a standard curve was run in triplicate for 

each gene to determine that the optimal volume of cDNA needed for each reaction was 2 µL. 

Then, the mastermix, forward and reverse primers, water, and cDNA from each sample were 

combined, and the assay was run in triplicate for each gene- TH1, TH2, and β-actin (a 

housekeeping gene used as a reference control). The primer sequences used were as follows: 

TH1: forward, GACGGAAGATGATCGGAGACA; reverse, CCGCCATGTTCCGATTTCT. 

TH2: forward, CTCCAGAAGAGAATGCCACATG; reverse, 

ACGTTCACTCTCCAGCTGAGTG. β-actin: forward, CGAGCAGGAGATGGGAACC; 

reverse, CAACGGAAACGCTCATTGC. Primer sequences were purchased from Bioneer 

Corporation and modeled after those used in a different study by Chen et al., 2012. The 
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following cycling parameters were used, which were based on the same paper by Chen et al., 

2012: 95°C for 30 s and 45 cycles of the following pattern, 95°C for 10 s and 62°C for 45 s. 

SYBR Green was used to monitor fluorescence changes after every cycle. Resulting data were 

calculated by the comparative method using Ct values of β-actin as the reference control. 
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CHAPTER III 

RESULTS 

 

Spontaneous and elicited movement following BPA exposure 

 To study the effects of BPA exposure on the developing central nervous system, we first 

examined changes in movement. Since ZFEs were still in their chorion and unhatched at 24 hpf, 

spontaneous movement was tested.  ZFEs exposed to 10 µM and 25 µM BPA exhibited a 

significant decrease in spontaneous movement (p<0.01) when compared to both the control and 

DMSO control groups. The 10 µM BPA-exposed group experienced a 0.30-fold decrease while 

the 25 µM BPA-exposed group experienced a 0.46-fold decrease in spontaneous movement (Fig. 

2).  

At 72 hpf, hatched ZFEs were tested for possible BPA effects on elicited movement. As 

seen with the spontaneous movement, ZFEs that were exposed to 10 µM and 25 µM BPA 

exhibited a significant decrease in elicited movement (p<0.05 and p<0.01). The 10 µM BPA-

exposed group displayed a 0.31-fold decrease, while the 25 µM BPA-exposed group displayed a 

0.82-fold decrease (Fig. 3). These data are consistent with the qualitative observations of 

increasing inactivity following exposure to increasing levels of BPA. 
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Fig. 2. BPA Induced Changes in Spontaneous Movement in ZFEs 24 hpf 

 

 

Fig. 3. BPA Induced Changes in Elicited Movement in ZFEs 72 hpf 
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Total overall length of ZFEs 

 Following live embryo procedures, the lengths of ZFEs were recorded at 72 hpf to 

determine whether total overall length was correlated with BPA exposure. BPA exposure 

resulted in more ZFEs with curved tails. However, BPA exposure did not significantly affect the 

total overall length of ZFEs except for those in the 25 µM BPA group (Fig. 4). The 25 µM BPA 

exposed group showed a 0.06-fold decrease in overall length (p<0.01) as compared to control 

ZFEs and a 0.04-fold decrease in overall length (p<0.01) when compared to the DMSO control 

group. Although ZFEs in the DMSO control group had slightly shorter overall lengths, the 

difference between the control and DMSO control groups was not statistically significant. This 

helps to confirm that any changes observed in ZFE length were due to the BPA exposure rather 

than DMSO exposure.  

 

Fig. 4. BPA Induced Changes in Overall Length in ZFEs 72 hpf 

 

 

 



14 

Myosin and PCNA expression in BPA-exposed ZFEs  

Myosin 

 Myosin is a motor protein that is best known for its role in muscle contraction and 

motility. After observing a decrease in both spontaneous and elicited movement due to BPA 

exposure, we examined the effects of BPA on myosin. To assess the myosin expression pattern 

in ZFE tail regions, immunohistochemistry was performed on 72 hpf sections. The mean gray 

value of multiple areas along the tail muscle fibers was recorded and averaged. Higher levels of 

myosin staining were evident in control ZFEs (Fig. 5A) compared to the 25 µM BPA-exposed 

ZFEs (Fig. 5B). The 5 µM, 10 µM, and 25 µM BPA-exposed ZFEs all showed significantly 

decreased levels of myosin expression (p<0.01, p<0.01, and p<0.05). However, the 10 µM BPA 

exposure group showed the largest reduction in myosin protein expression compared to the 

control and DMSO control groups (Fig. 6). 

 

Fig. 5. Myosin Expression in (A) Control ZFEs and (B) 25 µM BPA Exposed ZFEs at 72 hpf 
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Fig. 6. BPA Induced Changes in Density of Myosin Staining in ZFEs 72 hpf  

  

PCNA 

PCNA is a protein essential for DNA replication in eukaryotic cells. Since BPA exposure 

has already been shown to increase apoptosis in the testis and cytoplasm of the male 

reproductive system in zebrafish, we investigated whether BPA exposure conversely decreases 

the number of proliferating cells. We used immunohistochemistry to assess the expression 

pattern of PCNA in ZFE brain regions, using sagittal sections of 72 hpf ZFEs. The mean gray 

value of the entire brain region up to the level of the beginning of the yolk sac was recorded. 

Levels of PCNA expression in control ZFEs (Fig. 7A) were higher than levels of PCNA 

expression in 25 µM BPA-exposed ZFEs (Fig. 7B). BPA exposure significantly reduced PCNA 

expression in 1 µM, 5 µM, 10 µM, and 25 µM BPA groups (p<0.05) when compared to the 

control and DMSO control groups (Fig. 8). 
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Fig. 7. PCNA Expression in (A) Control ZFEs and (B) 25 µM BPA Exposed ZFEs at 72 hpf 

 

 

Fig. 8. BPA Induced Changes in Density of PCNA Staining in ZFEs 72 hpf 

 

TH1 and TH2 gene expression levels 

 BPA exposure decreased spontaneous and elicited movement at an organismal level, as 

well as decreased myosin protein expression. Since dopamine pathways play a critical role in 
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motor control, we hypothesized that BPA exposure would also affect dopamine signaling. TH1 

and TH2 are genes that code for tyrosine hydroxylase, the rate-limiting enzyme in catecholamine 

synthesis. Tyrosine hydroxylase converts tyrosine into L-DOPA, which is a precursor to 

dopamine. Using RT-qPCR, changes in TH1 and TH2 gene expression were measured and 

normalized to β-actin gene expression. We observed an apparent increase in TH1 gene 

expression and decrease in TH2 gene expression following BPA exposure. However, the 

standard error was too large for the results to be statistically significant. Therefore, the 

expression patterns of TH1 and TH2 were not significantly altered by BPA exposure (Fig. 9). 

 

Fig. 9. Normalized TH1 and TH2 Gene Expression in ZFEs following BPA Exposure   
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CHAPTER IV 

CONCLUSION 

 

We examined dose-dependent effects of BPA exposure on the developing central nervous 

system using zebrafish as our model animal. On the organismal level, decreases in spontaneous 

movement, elicited movement, and total overall length of ZFEs were observed. These changes 

prompted investigations into the effects of BPA exposure on various proteins. Levels of myosin 

expression in ZFE tail regions were significantly decreased by exposure to BPA at 5 µM, 10 µM, 

and 25 µM. Additionally, PCNA expression in ZFE brain regions were significantly reduced in 

all BPA-exposed groups: 1 µM, 5 µM, 10 µM, and 25 µM. PCNA is a protein that is expressed 

in dividing cells. Reduced expression of PCNA is suggestive that fewer cells are dividing in 

BPA-exposed ZFEs compared to control ZFEs. It is possible that developing brain cells are not 

dividing as fast or that cells could be dying in excessive numbers compared to the normal cell 

death rate that is expected in the developing ZFE brain. Further experimentation is ongoing to 

determine whether BPA exposure also affects levels of activated-caspase-3, a marker of cellular 

apoptosis, in ZFE brain regions. 

Changes in movement and myosin expression due to BPA exposure led us to explore the 

possibility that BPA exposure interferes with dopamine signaling, as dopamine pathways are 

integral to proper motor functions (Seidler et al., 2010). Gene expression analyses of TH1 and 

TH2 levels indicated that BPA exposure does not significantly alter the levels of tyrosine 

hydroxylase coding genes. These data suggest that BPA exposure may not be involved in 

epigenetic changes to DNA, but may play a role in altering protein expression. Current 
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immunohistochemistry testing is underway to determine whether tyrosine hydroxylase protein 

expression is affected.  

Future directions include studying the effects of BPA exposure on other movement-

related pathways to determine how myosin expression and motor functions are inhibited. 

Furthermore, it will be important to identify alternative genes involved in the development and 

protection of the dopaminergic system to elucidate the effects of BPA exposure on movement 

and catecholamines in fetal central nervous systems. It also would be important to examine the 

effects of BPA on developing central nervous systems following maternal, paternal, and in utero 

exposure to the toxicant. 
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