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ABSTRACT

Constraint Aware Behavior in Multi-Robot Systems . (May 2015)

Saurabh Mishra
Department of Computer Science and Engineering
Department of no
Texas A&M University

Research Advisor: Dr. Dr. Nancy Amato
Department of Computer Science and Engineering

In this work we present a behavioral modeling framework that accounts for a battery constraint.
This framework allows for a user to model robot teams of varying configuration performing com-
mon robotic tasks such as exploration or going to user specified goals. The focus of this work is
on how to model a constraint aware behavior and how assistance can be requested by and provided
from a robot team. We show experimental results in simulated environments and identify trends
that can be seen given a robot team configuration. We also discuss how this system can be adapted
to different environments and different constraints. Our system can be setup to allow for differ-
ent number of workers and helpers. The charging station, battery level and the behaviors of these
agents can also be varied. We discuss the affect of these different policies on the performance of
the workers. The performance is measured by the number of times the environment area is covered.
In conclusion we would measure the performance based on the number of times the environment

is covered by the agents.
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CHAPTER I
INTRODUCTION

Multi-Robot coordination is required to address certain tasks. In particular, we are interested in
studying tasks that may require robots to perform for a long periods of time or to be persistent. In
these cases, the hardware may not allow the robots to continue performing a task until completion.
For example, the robots could run out of battery or might encounter some other hardware failure.
We need methods that properly handle needs for replacement, repairing, or recharging of robots in

order for the task to be accomplished.

This kind of behavior has diverse applications. For example, in surveillance system robots may
take turns to monitor a certain area and they need to avoid depleting their batteries. Another exam-
ple is the case of a fire disaster where firefighter robots need to carry water with them to extinguish
the fires and they need to keep a proper supply at all times. In these cases, when they are about to
run out of supplies (battery or water), they can use the help of other robots for recharging or even

get replaced by other agents while they replenish their resources.

Although this problem has been addressed in several dimensions we lack an integrated method that
allows to test for different scenarios and policies. Behaviors handled are usually fixed. The method
to monitor battery status are more diverse, ranging from using a fixed or adaptive threshold[23] as
a trigger to predicting failures to ask for help in advance. When robots are in need to recharge,
they either go to a static charging station[7] or a mobile charging station comes to meet them[24].

Approaches to charging vary from static to mobile charging locations.

Our contribution is a method that allows a robot to exchange roles for charging the robots while
performing a task in a given environment. The method of charging is very flexible and applicable

to a wide variety of tasks where we can tune the policies. We designed our method to be applied



in different environments where the robots can perform a wide variety of tasks.

Our approach works as follows: We split the robots in two classes, workers and helpers. Workers
are the robots performing the task. Helpers are additional robots with enough resources to help the
worker. Workers monitor their battery levels to ensure that they can continue working and call for
help when their battery is low. When a worker calls for help the nearest helper is chosen to respond.
Helpers can respond in two different ways. One way is to swap its position with the worker so that
the worker can get recharged at a charging station. The other way is to make a helper recharge the
worker. Workers that need help can act in two different ways as well. One way is to start swapping
right away. The other way is to wait for a helper to arrive before swapping. This is useful when

the task requires that a robot is always present in the working environment.



CHAPTER 11
RELATED WORK

The problem of handling the available energy supply in robots has been addressed from several
different perspectives. There are different concerns that need to be addressed such as the method
of recharging the robots, should the charging station be static or moving? The overhead of charg-
ing the robots also needs to be discussed, the robots need to maximize the amount of working time
and minimize the amount of recharging time. We will discuss some of the work that has been done

in this section.

There has been research on where and how to perform charging. In [18] we see a method that
recharges the robots using a static docking station while [24] introduces the use of a tanker to dis-
tribute energy to other robots as more efficient than having the robots move to a charging location.
In [13] a method is provided that maintains the persistency of a task by allowing the robots to carry
and exchange fuel (battery) with other robots. Mobile charging units are also discussed in [3].

Recharging can be performed with automated docking and battery swap systems [22, 21].

There has also been research on finding good paths for charging. The work in [6] introduces a
combined coverage and energy dependent control law that drives an agent to a fixed docking sta-
tion as its energy level becomes low. This method however could lead to the environment being
unmonitored when all robots are low on energy. The work in [11] describes a method to design
paths for charging robots to find good rendezvous locations to meet working robots and recharge
them. This work assumes that the charging robots are only used for the purpose of charging other
working robots and they themselves do not need to be charged throughout the duration of the task.
Similar work [4, 10] propose to find a set of meeting points for worker robots and a single mobile

charging dock. The dock is assumed to have enough energy to charge the robots for the entire task.



Optimizing the charging process has also been studied. In [7] we see an optimization method to
place mobile docking stations to maximize the power available to working robots. The work in
[23] presents a method that tries to optimize the process of charging and executing the behavior
of the robots based on the foraging behavior of animals. In addition, a coverage method has been
proposed, [17], that is aware of the battery levels of the robot so that the robot returns to its initial
(charging) position every time it is needed in order to fulfill its coverage task. Also related, [20]
provides an algorithm for generating an optimal path for a robot considering different constraints
including remaining fuel through a multi-dimensional cost function. The work [9] developed a

mobile recharging station capable of recharging multiple small robots.

The decision on when to recharge the robot is another issue to consider. The most common ap-
proach is to use a fixed threshold as a reference as in [1]. That method recharges the robot after
some constant time (approximating a fixed battery level threshold). An alternative approach, [16],
robots recharge as soon as they sense an available charging station even if their batteries are not
low. The threshold method is also discussed in [23] along with an Adaptive Threshold method.
Adaptive threshold evaluates if a robot can get to a goal and subsequently to a charging location

with the given amount of battery.

In [8] a market based solution is applied to the Autonomous Recharging Problem. Each agent tries

to minimize its cost leading to the overall good.

The placement of the charging dock is an important factor in deciding how much time is wasted in
getting from a working location to a charging location. In [5] a method is shown that determines
the optimal placement of a charging location based on the feedback from the working agents. The

dock itself is a moving agent that optimizes its position over the course of the task.

The work in [19] shows a physical system designed to allow the robots to automatically dock

themselves to a charging location. They discuss the electro-mechanical design of the system. They



have a task module manager that keeps track of the battery status of the robot and forces them to

recharge when the battery is low.

The issue of interference around a charging station is discussed in [12]. The robot enters into a
random wander mode for a short period whenever it is unable to dock to the charging station before
attempting to charge again. This behavior helps in reducing robot density commonly found at a

charging station.

The approach presented here incorporates the abilities of several of the methods described above
in an integrated framework. While many of the previous methods work for fixed behaviors, we can
incorporate multiple behaviors such as frontier and coverage described in the later sections. We
allow for different charging methods like going to a charging station, being charged by a helper, or
swapping roles with the helper. We decide on when to call for help using a fixed threshold or by

estimating the energy needed to keep performing a task and going to the battery station.



CHAPTER III
MULTI-AGENT SYSTEM

In this section we will briefly describe the main aspects of our roadmap-based multi-agent system
which impact the overall motion of agents undergoing a scenario. This includes a description of the
agents, their motion model, and the environmental model. For more information on the roadmap-

based multi-agent system and applications we have studied previously, see the work in [14] [15]

[2].
Mobile Agent Model and Behavior

In this work we consider scenarios consisting of a set of N agents, A = aq, as, ..., ay. An agent a;
is represented by positional, velocity, and acceleration values: a; = {p, v, a}. These values dictate
the agent’s motion state in the environment. Agents are equipped with a behavior rule responsible
for creating a plan for the agent given it’s goals and knowledge of the environment. The behaviors
we describe in this work consider a battery constraint on the agent and determine when the agent’s
battery level require them to stop performing the actual work behavior and call for help. In the

scenarios we consider here, the work behavior results in a route through the environment.
Environmental Representation

Our environmental model allows us to study both basic and potentially complex environments. The
environment is composed of surfaces that represent the valid space. The agents use each surface

for generating valid roadmaps and determining if their current state is in the valid space.

We utilize our roadmap-based approach to represent valid motion through potentially complex
environments. The roadmap consists of a set of nodes sampled in the free/valid space of the
environment. The valid space consists of the space with no obstacles. The nodes are connected
using simple local planning techniques with a valid edge added to the roadmap between two nodes

if the intermediate nodes lie in the valid space. A valid edge is an edge between two nodes that lie



in the valid space. An agent that needs a valid path through the environment can then query the
roadmap for a start and goal configuration by connecting the configurations to the nearest node in
the roadmap in the same connected component. Basic graph search techniques are used to return
a valid path. Local planning techniques are used to connect different valid nodes to form a graph.
Local planning checks if there is a valid path between two given nodes. If there is a path then the

edge is added to the graph.
Motion Model

In this work we equip our agents with force rules to allow them to move through the environment.
The forces generated at each time step are used to update the acceleration, velocity, and position
components. For the scenarios presented here, the agents are equipped with only a goal-based
force rule, ignoring collision with other agents. The goal-based force rule guides the agent along
the planned route until a final goal is reached. See the work in [14] [15] to get more details about

these forces.

Battery-Constrain Aware Behavior

In our approach the team is split into workers and helpers. The split can be defined by the user
or generated at random. Algorithm 1 is called iteratively for each agent a,. Worker agents carry
out specific tasks while spending their battery and eventually reaching a threshold value when they
send a request for help. Meanwhile, helper agents charge their batteries at a charging location and,

when ready, respond to requests for help.

Algorithm 1 ConstraintAwareBehavior
Input: agent q;
1: if a; — IsWorker() then

2 a; — ExecuteWorkerBehavior()
3: else if a; — IsHelper() then

4:  a; — ExecuteHelperBehavior()
5. end if
6
7
8

: if NumOfHelpers >NumOflInitialHelpers then
. SetExtraHelpersAsWorkers()
: end if




Execute Worker Behavior

Algorithm 2 describes the general worker behavior that executes its assigned task while keeping
track of its battery levels. The task could be anything such as executing a simple patrolling behavior
where each agent patrols a certain area of the environment. The battery level of the agent decreases
at each time step. The battery is dependent on the agent’s movements, a moving agent would spend
its battery faster than a stationary agent, see Section Battery Level for a detailed explanation about
the modeled battery. Once a worker gets to low battery, it calls for help. The low battery status
can be determined in two ways. The first method uses a pre-defined threshold value for the low
battery. Once an agent reaches this threshold, it immediately calls for help. The second method is
smarter way of deciding whether the battery is low or not. Using this method a worker calculates
whether it can get to its next goal and then to a charging station from that goal with its current
battery level. If the battery level is too low to execute that action then the worker calls for help. It
is possible that a worker may not receive help from a helper due to the shortage of helpers. This
can happen when the number of workers is much larger than the number of helpers. To handle this
case, the agents have a second threshold value called the C'riticalT hreshold. Once the battery
reaches below this threshold, the worker moves to the nearest charging location to recharge itself
and becomes a helper. If the number of helpers in the environment becomes more than the initial

number of helpers, the extra helpers are sent back to the environment as workers.

Calling for Help

As shown in Algorithm 3, first the worker finds the closest helper that is available (with a recharged
battery). Then, it triggers the appropriate behaviors in workers and helpers depending on the type

of help needed by the worker which can be a BasicSwap, WaitAndSwap or a Recharge.

In the BasicSwap help method, the worker becomes a helper and heads for the charging station

while the a helper becomes a worker and goes to replace the worker in its task.

In the case of WaitAndSwap the worker waits for a helper agent to arrive at its location before

moving to a charging location. This ensures that the environment is never left empty. Since the

10



Algorithm 2 ExecuteWorkerBehavior
Input: agent worker;

1: if worker; — HasNewGoal() then
2 worker; — FindPathToNewGoal()
3: end if
4: if worker; — HasNoBehavioralRoute() then
5:  ComputeBehavioralRoute()
6: end if
7
8
9

. if worker; — BatteryMethod() == “threshold” then
if worker; — BatteryLowerThanThreshold() then

: worker; — CallForHelp()

10:  end if

11: else if worker; — BatteryMethod() == “AdaptiveThreshold” then

12:. if lworker; —  CanReachGoalAndCharingl.ocation(worker; —NextGoal(),
NearestCharingLocation(worker; —NextGoal())) then

13: worker; — CallForHelp()

14:  end if

15: end if

16: if worker; — BatteryLowerThanCritical Threshold() then

17:  worker —New_Goal = NearestChargingl.ocation(worker —GetCurrentPosition())
18:  worker; — SetAsHelper()

19: end if

Algorithm 3 CallForHelp
Input: agent worker, help_tag
1: helper = worker — FindClosestAvailableHelper()
2: if help_tag — BasicSwap then
3:  worker —New_Goal = NearestChargingLocation(worker —GetCurrentPosition())
4 SwitchHelperWorker(worker,helper)
5: else if help_tag — WaitAndSwap then
6:  helper —New_Goal = worker — GetCurrentPosition()
7
8
9

helper —IsHelpingWorkerToWaitAndSwap = true
helper —HelpingAgent = worker
. else if help_tag — Recharge then
10:  helper —New_Goal = worker — GetCurrentPosition()
11:  helper —IsHelpingWorkerToRecharge = true
12:  helper —HelpingAgent = worker
13: end if

11



worker waits for a helper, it does not carry out any other task and hence its battery reduces at
a slower rate. Once the helper reaches the worker, the worker can move to the nearest charging
location. Once it has recharged its battery, the worker becomes helper. This could be helpful in a

patrolling scenario where leaving the environment is not an option.

In the case of Recharge, when a worker needs to be charged, we model the case where the helper
carries a charged battery and replaces the battery in the worker. This could be useful when the
robots are heterogenous and there is a need for a particular robot to be present in the environment

at all times. The robot can be charged by another robot and it will continue its task.

Execute Helper Behavior

Algorithm 4 describes the helper behavior. The helper initially waits at a charging location until
someone calls for help. Once the helper is called for help, its new goal would be set appropriately
by the call for help depending upon the nature of the help call. The helper can help the worker in
three ways, BasicSwap, WaitAndSwap and Recharge, see section Call For Help. In the case for
WaitAndSwap and Recharge, Algorithm 3 assigns the helper with a worker as its “HelpingAgent”.
The ExecuteHelperBehavior then checks to see if the helper gets close to the worker. Once the
helper is close enough to the worker, WaitAndSwap or Recharge can be executed. This algorithm
also ensures that if a helper is at a charging station then it recharges its battery and becomes
available to help once the battery is fully charged. UpdateReachedGoal updates the goal of the

agent at each time step. It is used to ensure that the agent has reached the goal.

Battery Level

The battery is defined as a function of the speed of the agent. The battery reduces by a certain fixed
amount plus the speed of the agent. This shows somewhat realistic model of a real battery. When
the agent does not move, the speed will be zero. This will make the battery reduce at a slower rate
which is essentially true since the robot will not be doing any work. This feature was added to

support the wait and swap switch behavior.
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Algorithm 4 ExecuteHelperBehavior

Input: agent helper;

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

if helper; — HasNewGoal() then
helper; — FindPathToNewGoal()

2
3: end if

4: if helper; — IsHelpingWorkerInWaitAndSwap() then
5:
6
7
8
9

if HelperReachedCloseToWorker(HelpingAgent) then
worker = HelpingAgent
worker —New_Goal = NearestChargingLocation(worker —GetCurrentPosition())
SwitchHelperWorker(worker,helper)
end if
else if helper; — IsHelpingWorkerToRecharge() then
if HelperReachedCloseToWorker(HelpingAgent) then
worker = HelpingAgent
helper —RechargeWorker(worker)
helper — New_Goal = NearestChargingLocation(helper —GetCurrentPosition())
end if
end if
helper; —UpdateReachedGoal()
if helper; — IsAtChargingStation() then
helper; — RechargeBattery()
else if helper; — !IsAtChargingStation() then
helper; — New_Goal = NearestChargingLocation(helper —GetCurrentPosition())
end if

Algorithm 5 BatteryStatus

Input: agent a;

1:
2:

BatteryLevel -= DefaultDepletionRate + MovingDepletionRate(a;.GetSpeed())
return BatteryLevel

Algorithm 6 Adaptive Threshold

Input: agent worker

1:

A A o

DistToGoal = worker —FindDistanceToGoal(a;);
DistToChargingFromGoal = worker —FindDistanceFromGoalToCharginga;);
if DistToGoal+DistToChargingFromGoal >DistAllowedByBattery() then
return true
else
return false
end if

13



Algorithm 6 describes a method where the robots are able to smartly calculate whether they can
reach a goal and then to a charging station. The helpers first calculate the distance to their goal
and then the distance to a nearest charging location from that goal. If the distance is greater than
the distance that their battery would allow them to cover, then the robots call for help immediately

without continuing to the goal.

14



CHAPTER IV

EXPERIMENTS
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(b) Evans 2

Fig. IV.1. Evans library simulated model (3rd floor) (a) current configuration and (b)
potential configuration with same numbers of shelves and desks.

In this section we will present some example scenarios consisting of different robot teams, battery

configurations, behavior constraints, and environmental configuration to show how persistent a
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robot team can perform a task. This type of analysis can be useful when deciding what kind
of robot team is needed to perform a task given behavioral requirements, agent constraints, and
number of agents needed to be able to continually perform the desired behavior. We set the battery
level to 5000 units. The depletion rate for the battery is an amount that will be subtracted from
the battery at each time step that includes a base amount plus an additional amount depending on
if the agent is moving. The base amount we used in this experiment was 2.2 and the additional
movement amount was 0.5. The CriticalThreshold was varied from 0.05 to 0.3. Charging agents
would increase their battery level while at a charging station by five times the base amount or 11

per time step.

Two different environments configurations are shown in Figure IV.1. These are modeled after the
3rd floor of the Evans Library at Texas A&M University, College Station. The charging location for
each configuration is shown using a black box. In the experiments we tested different set of workers
and helpers with different number of charging location in the Evans1 and Evans2 environment. The
number of workers was varied from 3 to 5 and the number of helpers was varied from 1 to 3. The
number of charging locations in each case was also varied from 3 to 1. The location of the 3
charging locations is marked in the Figure IV.1(a) and Figure IV.1(b) as A, B, and C. In the case
with 2 charging locations, location B was removed from Evans1 and location C was removed from
Evans2. In the case with one charging location, locations A and C were removed from Evansl

whereas locations B and C were remove from Evans?2.

In this set of experiments we tested different set of workers and helpers with different number
of charging location in the Evansl and Evans2 environment. The behavior tested here was the
Frontier behavior. Frontier behavior is used to systematically cover the environment and it allows
us to specify a metric that measures the the number of times the given roadmap was covered by
the agents. Using this metric we can analyze the performance of the workers. We added a new
threshold to accommodate for agents dying in the case where there were not enough number of
helpers. When a worker’s battery level reaches this new threshold, the worker moves to a charging
location to get recharge its battery. Once its battery is recharged, it comes back and resumes its task.

This threshold is varied by the CriticalT hreshold value as shown in the graphs. Figure IV.2(a)

16



and IV.2(b) show results from the Evans1 environment with different critical thresholds. You can
see that with a higher critical threshold, less agents die due to the battery running out and hence
more area is covered with more workers. Since the number of agents dying is decreased, more
workers are available for the entirety of the task hence, more workers directly relates to more
area being covered in the environment. With a lower critical threshold the workers barely have
any chance of going to a charging location themselves and coming back. This would mean that
with more workers and less helpers we would expect more agents to die and hence less area to be
covered as shown in the results. From the graphs we can see that the area covered in case with 3
workers and 3 helpers remained almost the same as our previous results but the area covered in
the other two cases reduced significantly. We are able to achieve these results in both the Evans

environments.

Another environment configuration is shown in Figure IV. This is a simulated model of an office
building. The charging locations are marked with black boxes. The results from this environment
are similar to the results from the Evans building environment. However, in this environment more
area is covered by the agents. The office environment also shows a clearer trend in more workers
performing better than fewer as compared to the Evans environment. The Evans environment was
much more complex and large compared to the Office environment. Office environment allows
agents to get to charging locations even with very low battery left. This leads to less agents dying
early and hence more area is covered. This shows that our method works in different types of
environment with similar results. Covering robots deciding to go for charging earlier rather than
stay to work for longer time allows the workers to perform better since there are less agents that

die. Figure 1V.4 provides the results from this environment.
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Evans1 Basic Swap Battery Level = 5000 Critical Threshold = 0.3
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Fig. IV.2. Evans Library Building Results
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Evans2 Basic Swap Battery Level = 5000 Critical Threshold = 0.05
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Evans2 Basic Swap Battery Level = 5000 Critical Threshold = 0.05
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Fig. IV.3. Evans Library Building Results
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(a) Office Environment
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Office Environment Battery Level = 5000 Critical Threshold = 0.3
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Fig. IV.4. Office Environment Results
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CHAPTER V
CONCLUSION AND FUTURE WORK

We have presented a behavioral modeling framework that accounts for a battery constraint. This
framework allows for a user to model robot teams of varying configurations performing common
robotic tasks such as exploration or going to user specified goals. Our modeling framework allows
us to identify some expected trends when a robot team is configured in certain ways. It also
provides insight into the importance of the location of charging locations and how they can impact
the success of a robot mission. Finding the best set of charging locations is an interesting avenue of
future work, especially in more complex environments with constraints on the available placement
of these locations. This type of framework can be extended to a variety of constraints and our
pluggable behavioral system allows a user to easily change the work that a robot team is expected

to perform.

In the future we would also like to look into techniques using which the agents would be able to
decide the best arrangement of the charging locations in the environment and the optimal ratio of
workers to helpers needed to perform the task. Another focus would be to model other constraints
on the agents. One such constraint is water, we can model the behaviors with both water and
battery constraints. The agents would have to manage both the constraints and work to make sure

the working time is maximized.
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