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ABSTRACT 

Study of the Radiolytic Enhancement of Gold Nanoparticles with Amino Acids. (May 2015) 

 

Mallory Elaine Carson 

Department of Nuclear Engineering 

Texas A&M University 

 

Research Advisor: Dr. Gamal Akabani 

Department of Nuclear Engineering 

 

Gold nanoparticles have become a growing field of study in cancer diagnosis and treatment. 

Several articles have shown that gold nanoparticles have the capacity to enhance the absorbed 

dose in localized tissue; however, consistent studies of their reported enhancement are scarce. 

Amino acids, a major constituent of human cells and tissue, were used as a model for assessing 

dose enhancement. In the current study, twenty aqueous amino acids with and without 

PEGylated and non-functionalized 5 nm gold nanoparticles were prepared and irradiated to 10 

kGy, 25 kGy, and 50 kGy using a 10 MeV electron beam and analyzed using UV-VIS 

spectrophotometry. A semi-quantitative response to conformational changes as a function of 

absorbed dose for radiosensitive amino acids following the Arrhenius equation was summarized 

and compared to samples containing gold nanoparticles. Inclusion of any nanoparticles provided 

only 0.01 - 0.04 increase in absorbance universally; thus for the low concentrations used in this 

experiment, radiolytic enhancement and differences in optical density caused by gold 

nanoparticles are grossly indeterminate. While enhancement has been previously shown to be 

achievable through the addition of small gold nanoparticles in in vitro and in vivo studies, other 

considerations such as nanoparticle size and concentrations may need to be modified to indicate 

such difference.  
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NOMENCLATURE 

 

AuNP Gold nanoparticle 

PEG Polyethylene glycol 

PEG-AuNP PEGylated gold nanoparticle 

ROS Reactive oxygen species 

UV-VIS Ultraviolet-visible 
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CHAPTER I 

INTRODUCTION 

 

1.1 Purpose of the study 

The purpose of this study is to characterize the radiolytic effects caused by the addition of gold 

nanoparticles (AuNPs), bare and PEGylated, to isolated amino acid solutions. For this 

investigation, amino acids serve as a basic model for biological systems, considering their 

integral role in the function of such systems. By employing amino acids, the extent to which 

AUNPs interact in a physical manner through radiolysis is observed. UV-VIS spectrophotometry 

presents the consequences of irradiation at the molecular level, namely to qualify the possible 

radiolytic enhancement via AuNPs and to illustrate nanoparticle agglomeration in solution.  

 

The implications of this study are far-reaching: by eliminating several biological factors such as 

enzymatic reactions, protein denaturation, and biochemical actions or pathways, amino acids 

may serve as a reasonable model for true dose assessment. Furthermore, the mechanisms by 

which nanoparticles interact with amino acids and their radiolytic products may be applied to 

their interactions with peptides and proteins. Through these evaluations it may then be possible 

to better predict and determine the effectiveness of radiotherapies utilizing functionalized or non-

functionalized AuNPs. 

 

1.2 Effects of radiation on biological systems 

Radiobiology, a discipline involving the interaction of ionizing radiation with living systems, is a 

subject of great importance in the understanding of natural cellular processes as well as current 
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applications such as cancer therapies and diagnostics. Two different processes are involved in the 

biologic effects of radiation: (1) direct ionization along charged particle tracks and (2) the 

indirect effects caused by the generation of free radicals and other entities that diffuse away from 

ionization tracks [1]. This second set is dominant in inducing intracellular damages and is 

typically in the form of reactive oxygen species (ROS) derived from the radiolysis of water. 

 

The creation and effects of ROS can result in both beneficial and deleterious outcomes in vivo. In 

low concentrations, ROS can be involved in mediating cellular signaling pathways and 

maintaining homeostasis. In greater concentrations, ROS can induce chromosomal aberrations, 

DNA base alterations, and the cleavage of peptide bonds in proteins [1, 2]. Cellular DNA 

damages are greatly cytotoxic, as radiation-induced mutations are believed to be a strong factor 

in cell viability. Radical reactions with proteins and amino acids themselves may also induce 

modifications that alter cellular functions by inactivating enzymes or directly altering or 

degrading protein structures. 

 

Typically cells contain antioxidants and free radical scavengers to protect against extensive 

radiolysis. However, these protections are inherently limited based on the balance between ROS 

production and the cell’s capability to mitigate its effects. Recovery may be possible if the 

incident radiation is minimal, but for higher doses radiolysis can induce significant biological 

changes which are beyond repair.  

 

Yet the biological effects of radiation can be exploited advantageously. In more recent 

applications like cancer treatment, an increased yield of ROS can enhance the oxidative stress in 
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a tumor cell and result in apoptosis [1]. While much is understood in the overall biological 

effects of radiolysis, there is still more to be discovered in its molecular modalities. Studying the 

radiolysis of amino acids, peptides, and proteins is paramount in further understanding cellular 

dynamics under irradiation. 

 

1.3 Introduction to amino acids 

Amino acids are organic compounds consisting of carboxyl (COOH) and amino (NH2) functional 

groups, accompanied by a side-chain unique to the species. Amino acids can be classified in a 

variety of ways: side-chain composition (aliphatic, aromatic, sulfur-containing, etc.), polarity, 

pH, and functional group locations. Those whose functional groups are located at the first carbon 

are denoted as α-amino acids and are integral to biochemistry. Common classifications for these 

amino acids are summarized in Table 1.1. 

 

Table 1.1. Classifications of amino acids (with abbreviations) based on R-group composition 

Hydrophobic Aliphatic Hydrophobic Aromatic Polar Neutral Side Chain 

Alanine  

Glycine 

Isoleucine* 

Leucine* 

Proline 

Valine* 

Ala 

Gly 

Ile 

Leu 

Pro 

Val 

Phenylalanine* 

Tryptophan* 

Tyrosine 

Phe 

Trp 

Tyr 

Asparagine 

Glutamine 

Serine 

Threonine* 

Asn 

Gln 

Ser 

Thr 

Acidic Basic Sulfur-containing 

Aspartic Acid 
Glutamic Acid 

Asp 
Glu 

Arginine 
Histidine* 

Lysine* 

Arg 
His 

Lys 

Cysteine 
Methionine* 

 

Cys 
Met 

 

 * indicates essential amino acid 

 

The twenty standard amino acids, which are also all L-stereoisomers, are a major constituent of 

human cells and other tissues, being only second to water in composition. Of these, nine are 
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labeled as “essential” (shown in Table 1.1) because humans cannot synthesize them directly. All 

standard amino acids are directly involved in protein synthesis via peptide bonds, hence their 

common designation as the “building blocks” of proteins. Some amino acids are also responsible 

for the regulation of metabolic pathways, growth, development, hormone synthesis, and 

reproduction [3]. In order to achieve proper protein and biomolecule synthesis, as well as provide 

energy for multiple cellular processes, amino acids must remain balanced in the body. 

 

Protein synthesis is achieved because of the complex chemistry of amino acids. Amino acids 

exist interchangeably as zwitterions containing a positive ammonium group and negative 

carboxylate group. This state facilitates the nucleophilic addition/elimination reaction necessary 

to create a peptide bond as the oppositely-charged groups come in proximity. Such bonds can be 

made in series to form polypeptide chains as precursors to proteins. 

 

Should the balance of amino acid compositions be offset, entire body homeostasis can be 

disturbed or even cause death. For example, tyrosine and tryptophan are important precursors to 

neurotransmitters like dopamine and other catecholamines. Previous studies by Hinz et al. have 

shown a direct connection between these amino acids and neurological disorders like Parkinson’s 

disease and depression due to L-DOPA and serotonin imbalance [4]. Optimal treatment of 

Parkinson’s disease with L-DOPA required the careful balance of tyrosine, tryptophan, and 

cysteine due to their subsequent depletion from the therapy [4]. Another condition, tyrosinemia, 

occurs when tyrosine cannot be properly metabolized, resulting in conditions such as acute liver 

disease and kidney damage [5]. This enzyme deficiency is typically accounted for through diets 
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low in tyrosine and phenylalanine, which can be converted into tyrosine [5]. The proper 

administration of amino acids is vital to maintaining health and treating disease. 

 

Amino acids are also significant in their ability to serve as predictors of disease. It has been 

demonstrated that the metabolic signatures of tyrosine, phenylalanine, and isoleucine can 

indicate diabetes and cardiovascular disease development [6].  With so many cellular functions 

and other diseases characterized by amino acid availability, knowing how these biomolecules are 

affected by radiation can provide insight into the maintenance of biological systems. 

 

1.4 Fundamentals of radiolysis 

Radiolysis in its most general sense is the disassembly and modification of molecules by ionizing 

radiation. This dissociation of one or more chemical bonds can lead to subsequent chemical 

interactions in the surrounding medium. In biological systems, the radiolysis of water is of great 

relevance because it is the greatest constituent of living things and its exposure can have 

significant consequences. The mechanism for the radiolysis in water follows three stages: (1) the 

physical stage of radiation absorption causing ionization or excitation, (2) the physicochemical 

stage in which unstable products dissipate energy through various processes, and (3) the 

chemical stage during which species react and diffuse throughout the solution [7]. When exposed 

to radiation, water molecules dissociate into various forms following radical termination and 

oxygen saturation [8]: 

 H2O → •OH, 𝑒𝑎𝑞
− , H•, O2

• - 
, H2O2, H2 (1.1) 

Reactive oxygen species (ROS) such as H2O2 and assorted oxygen compounds release excessive 

amounts of energy when converting back into more stable states in aqueous solutions [7]. The 
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yields of these products when formed by low-LET radiation depend on several factors including 

pH, absorbed dose, and dose rates. 

 

Radical species in water are generally short-lived but largely reactive. The physical stage is 

achieved 1 fs after initial radiation interaction and leads to the formation of ionized water 

molecules and electrons [7]. The physicochemical stage (10
-15

 - 10
-12

 s) allows for ion-molecule 

reactions, autoionization, and thermalization of electrons [7]. During the chemical stage (10
-12

 - 

10
-6

 s) the radiolytic products diffuse throughout branched tracks, depositing energy in the 

medium through reactions and thermalization [7].  

 

Energy from ionizing particles is not distributed uniformly, but rather in packages called spurs 

[8]. A spur can contain multiple free-radical pairs, which may interact with one another, causing 

subsequent exchanges and diffusion [8]. Under densely ionizing radiation, spurs in close 

proximity may form tracks that can branch off with increasing effects through radical reactions. 

The self-termination of these radicals often proceeds by the following forms [8]: 

 •OH + 𝑒𝑎𝑞
−  → •OH (1.2) 

 •OH + H → H2O (1.3) 

 2 •OH → H2O2 (1.4) 

 2H• → H2 (1.5) 

 2𝑒𝑎𝑞
−  + 2 H

+
 → H2 (1.6) 

As described previously, when ROS and radicals are created, they diffuse throughout the 

solution and interact with other entities in the medium. Primary radiolytic products of water react 

with target molecules in solution. Hydrogen abstraction results from the reaction of H• or •OH to 
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form a solute radical, R•, which is believed to be a cause of substantial damage in biological 

molecules [8]. Dissociation reactions liberate entire functional groups (e.g. amides, carboxylic 

acids, etc.) on organic compounds. Addition reactions combine radicals together or radicals and 

non-radicals. Solute radicals formed may also react with each other or with other reactants to 

form stable products by dimerization, additions of oxygen, or hydrogen transfer [8]. To 

determine specific products for a given solute would require further investigation and the 

complete characterization of reaction mechanisms. 

 

1.5 Radiolysis of amino acids 

Under normal physiological conditions, amino acids can undergo oxidation via ROS and become 

involved in biological functions. The radiolysis of amino acids has been a subject of study in the 

past, but never has a comprehensive study been accomplished. Currently it is known that much 

of radiolysis is mediated via the radiolytic products of water; thus, they may typically follow the 

mechanisms for target molecules as described previously. 

 

Studies by Hatano have elucidated much of these effects through the analysis of several α-amino 

acids. Based on the constant ammonia yield over a range of irradiation doses, it was supposed 

that deamination is caused by aqueous radiolytic products while part of an amino acid is directly 

oxidized by radiation [9]. More studies on peptides and proteins suggested similar mechanisms 

and the following interactions from organic free radicals [10]. It was found that peptide bonds 

were broken under γ-irradiation, yielding free amino acids, residues, and recombinations [10]. 
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More research efforts support this work by demonstrating the possible dimerization and cross-

linking of amino acids and proteins [2, 11]. Milligan et al. established that amino acid residues in 

DNA-binding proteins may be able to reverse DNA oxidation or form cross-links that could 

inhibit repair [12]. It has been postulated that the mechanism of the radiolysis of peptides and 

proteins is linked to the mechanisms proposed for the reaction of amino acids [13]. By studying 

amino acids in the context of radiolysis, it may be possible to infer how intracellular protein 

structures are affected by radiation and thus better understand the consequences of irradiation in 

vivo. 

 

1.6 Gold nanoparticles in biological applications 

Recently, gold nanoparticles (AuNPs) have become a subject of comprehensive study in 

biomedical applications. AuNPs are attractive in nanomedicine research because they are 

considered to be biologically inert, producing few cytotoxic effects [14]. Moreover, they possess 

a number of desirable characteristics including controllable size and shape during synthesis and 

surface chemistry, indicating their possible multifunctionality for in vivo applications [15, 16].  

 

AuNPs exhibit localized surface plasmon resonance (LSPR); this optical property makes them 

highly useful in surface enhanced Raman spectroscopy (SERS) or enhanced contrast in MRI [15-

17]. AuNPs are also being studied in-depth because of their ability to conjugate with 

polyethylene glycol (PEG-SH) and other sulfhydryl-terminated substrates via thiol linkages [18]. 

These functionalization moieties have been shown to increase colloidal stability and 

biocompatibility of  nanoparticles [18, 19]. They also slow clearance rates in vivo and to allow 
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for the conjugation of antibodies for targeted cell therapy, given some cancer cells tend to 

overexpress certain membrane antigens, leading to preferential uptake [16, 20, 21].  

 

Given the increased use of AuNPs in medicine, it is relevant to study the effects of these 

nanoparticles when used in external beam radiotherapy, brachytherapy, and nuclear medicine 

oncology [22-26]. Previous studies have demonstrated that the use of small AuNPs (≤ 5 nm) in 

aqueous solutions increases the generation of ROS during irradiation [26]. This process is two-

fold: the first process is associated with the direct interactions of ROS generated in water with 

the surface of the gold nanoparticles, and the second process is due to a direct interaction of 

photons and high-energy electrons with gold nanoparticles resulting in the production of a 

cascade of Auger electrons.  

 

The first in vivo demonstration of malignant tumor control using AuNPs was performed by 

Hainfield et al. The injection of small AuNPs prior to irradiation increased the survival rate in 

tumor-bearing mice significantly (86% long-term survival, compared to 20% for irradiation 

alone) [27]. In this experiment and others following it, the enhanced permeability and retention 

(EPR) effect of leaky vasculature in tumors is attributed to the maximal uptake of AuNPs, and 

the presumed preferential absorption of x-rays by AuNP constitutes much of its therapeutic 

effects through photoelectron emission [25, 27]. 

 

It has been suggested that functionalized and non-functionalized AuNPs can enhance the 

radiosensitivity of tumors through the preferential absorption of x-rays and interactions with the 

surrounding media [20, 27]. However, direct comparison of the radiolytic efficacies of these two 
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forms is scarce. The potential enhancement of ROS by AuNP interactions may have a significant 

effect on the radiolysis of water and amino acids. Therefore it is necessary to evaluate the extent 

of these physical interactions to corroborate the hypotheses posed in previous studies and justify 

the use of nanoparticles in radiotherapies. 

 

1.7 Atomic Theory of UV-VIS spectrophotometry 

Optical spectroscopy is based on the Bohr-Einstein frequency relationship for photon energies in 

Equation 1.1, 

 ∆𝐸 = ℎ𝜈 (1.1) 

where h is Planck’s constant and ν is the frequency of light [28]. This relationship directly links 

the atomic or molecular energy states with the frequency of electromagnetic radiation used to 

induce excitement. When atoms or molecules absorb electromagnetic radiation, they are 

transformed from a ground state into an excited state. In this process, energies of specific 

wavelengths are absorbed within the molecular bonds, and these electrons are promoted to higher 

energy orbitals. This is to state that photons of a given frequency will be preferentially absorbed 

for a specific bond because the energy required to transition to a higher energy state is precisely 

the energy provided by the impinging photons. However, these promotions are dependent on the 

bond structures between atoms; typically electrons in a non-bonding or π orbital move to the π* 

antibonding molecular orbital [29]. Because standard UV-VIS spectrophotometers typically 

work in the wavelength range of about 200 nm (in the near UV region) to about 800 nm (in the 

very near IR region), only a limited number of energy transitions may be possible, thus leading 

to the preferential absorption in some bond types. 
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For light produced by a spectrophotometer, photons may be absorbed by the molecules in the 

medium, leading to a decreased intensity of light at the end of the path length, or transmitted 

through [28]. The amount of interaction between the observed solution and light depends on the 

molecular configuration and concentration in solution. Light intensities and molar concentration 

for a given wavenumber ν (wavelength λ) may be related according to the Beer-Lambert law in 

Equation 1.2: 

 
log (

𝐼0

𝐼
)

𝜈
= log (

100

𝑇(%)
)

𝜈

= 𝐴 = 𝜀 ∙ 𝑐 ∙ 𝑑 (1.2) 

where A is the absorbance, T is the transmittance, I0 is the intensity of the monochromatic light 

entering the sample, I is the intensity of light emerging from the sample, ε is the molar 

absorptivity coefficient, c is the concentration of the light-absorbing material, and d is the path 

length of the sample [28]. By this relation one can directly relate the concentration of a chemical 

species in solution to the relative absorbance of light based on its characteristic electron 

excitations. This relation is typically only valid for low concentration solutions, as high 

concentrations increase interactions between solute molecules and can change several properties 

of the molecules, including light attenuation [28]. 

 

However, if promotion in electronic states was the only interaction involved in the absorption of 

ultraviolet or visible light, one would expect an absorption spectrum to contain discrete points at 

different wavelengths. Instead, the specific energies required for these transitions may appear as 

a continuum due to modulations in the rotational and vibrational states of a molecule [28]. These 

interactions continually change the energies of the orbitals, leading to absorption over a range of 

wavelengths. Other interactions that may decrease the resolution of a peak in an absorbance 

spectrum include the delocalization of pi bonds through conjugation and solvent properties, 
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including polarity, pH, temperature, or other interferences. The UV transmission of solvents 

depends critically upon the solvent purity, so this variable, as well as those previously listed, 

must be controlled or accounted for in order to identify and characterize the substances present in 

a solution [28, 30]. Because of these interactions, molecules are often characterized by a 

parameter λmax, the wavelength at which maximum absorption occurs. 

 

Typical applications of UV-VIS spectrophotometry include determining the molar absorptivity 

or concentration of a pure solute in solution, in accordance with the Beer-Lambert law. Note that 

this practice is most often reserved for pure solutions; mixtures can be analyzed, but only if it is 

known that the components do not interfere greatly with the absorptions of other constituents and 

all individual properties are known. This is of great importance considering that absorption is an 

additive process. For pure substances, the wavelengths of absorption peaks may be correlated 

with the types of bonds in a given molecule; this idea proves essential in determining the 

functional groups within a molecule. Quantitatively, UV-VIS spectrophotometry is a tool for the 

estimation of the amount of a compound in a sample. 

 

UV-VIS spectrophotometry is also used as a qualitative tool to better identify and interpret the 

physicochemical properties of a species. For example, absorbance can be changed depending on 

the molecule’s state of protonation (a function of the solution pH). Often this can be observed as 

a shift in the peak value. For this reason, unless solubility demands acidic or basic conditions, 

neutral conditions may be preferred for observation. Delocalization of bonds and changes in 

bond structures following interactions may also cause shifts in the maximum absorption. Lastly, 



17 

 

the identity of the chemical may be confirmed through its absorbance properties when UV-VIS 

techniques are used in conjunction with other analytical methods.  

 

For organic compounds, UV-VIS spectrophotometry may provide excellent insight for their 

intrinsic properties and roles in biological mechanisms. Under some physical or chemical 

interactions, functional groups may be produced or altered, yielding information regarding 

possible interaction mechanisms. For amino acids specifically, detection generally requires the 

absorbance of the carboxyl group (-COOH), which exhibits absorbance in the 200 to 210 nm 

range, as well as aromatic rings in the 250 to 280 nm range [31]. Any alterations experienced by 

these prominent molecular features would certainly express detectable changes in the absorption 

spectra. 
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CHAPTER II 

METHODS AND MATERIALS 

 

2.1 Amino acid sample preparation 

All chemicals were used as received from Sigma Aldrich with purity >99.9% and used without 

further purification. Stock solutions were produced by dissolving solid amino acids in deionized 

water (ELGA PURELAB Flex) at 0.1 M, excluding aspartic acid, glutamic acid, tryptophan, and 

tyrosine, whose concentrations were 0.03 M, 0.05 M, 0.05 M, and 0.002 M, respectively due to 

hydrophobicity. All solutions were stored at 4°C when not in use. 

 

Non-functionalized standard 5 nm gold nanoparticles (9.08E-8 M) in 0.1 mM phosphate-

buffered saline were obtained from CytoDiagnostics (Burlington, Ontario). 1 mL solutions for 

each amino acid were produced by combining 0.1 mL of the standard AuNP solution with 0.9 

mL of the amino acid solution, yielding solutions with a 9.08E-9 M nanoparticle concentration.  

Solid mPEG-SH (MW 2000) was obtained from Layson Bio, Inc. (Arab, Alabama). PEGylated 

nanoparticles (PEG-AuNP) were produced by combining an aqueous solution of 0.01 M mPEG 

and standard 5 nm AuNP solution in a 3000:1 molar ratio (according to reported molarities) to 

ensure proper decoration [32]. The resultant solution was agitated for 2 hours and left to set for 

more than 12 hours to complete the PEGylation process. No further processing was performed. 

For each amino acid, 1 mL solutions were produced by combining 0.1 mL of the PEG-AuNP 

solution with 0.9 mL of the aqueous amino acid solution, yielding an 8.84E-9 M nanoparticle 

concentration. It is assumed that interaction between mPEG and amino acid will be trivial due to 
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the low concentrations used in this experiment and because the hydrophilicity of the amino acid 

produces a repulsive interaction with PEG in solution [33].  

 

2.2 Electron beam irradiation 

Irradiations of all solutions were carried out at the National Center for Electron Beam Research 

(NCEBR) at Texas A&M University. The planned absorbed doses in these studies were selected 

at 10, 25, and 50 kGy. Alanine dosimetry methods were used to assess the actual absorbed dose 

to the irradiated samples: the free radical formed by alanine is very stable and yields a dose-

dependent electron paramagnetic resonance (EPR) signal. Alanine pellets irradiated with the 

samples were analyzed with a Bruker e-scan Alanine Dosimetry System. The actual delivered 

doses were approximately 0, 10.56, 28.61, and 53.92 kGy. Because of limited available 

quantities of the solutions, these samples were irradiated in 1.5 mL microcentrifuge tubes in 

which they were originally prepared to ensure no volume loss. While this presented a level of 

error in absorbed dose from varying geometry and air space, such effects were expected to be 

only ± 2 kGy for any given volume of solution. Effects of polypropylene degradation in the tubes 

were assumed negligible. 

 

2.3 UV-VIS spectrophotometry 

A NanoDrop 2000c UV-VIS spectrophotometer (Thermo Scientific) was used to evaluate the 

absorbance spectra of all amino acid solutions. Previous studies with organic matter have 

successfully utilized UV-VIS spectrophotometry to measure radiation response [34-36]. All 

measurements were carried out using the 2 μL pedestal on the device. Deionized water was used 

as a blank reference. Given that absorbance is proportional to path length, it was deemed 
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necessary after initial tests to use the spectrophotometer pedestal for measurement with a 

nominal path length of 1 mm instead of cuvette measurements due to the possibility of high 

absorbance obscuring results. Baseline correction for all spectra was developed at 750 nm under 

the assumption that no absorbance should occur at this wavelength. The reported concentration 

of the standard AuNP solution (9.08E-8 M) was verified by UV-VIS spectrophotometry using 

measured absorbance and the reported molar extinction coefficient in accordance with the Beer-

Lambert law. 
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CHAPTER III 

RESULTS 

 

3.1 Pure amino acid solutions 

To clearly determine how the addition of nanoparticles affects the radiolysis of amino acids, it 

was first necessary to study the amino acids in isolation. Because each has a unique molecular 

composition and structure, the radiolytic processes in these solutions cannot be truly generalized. 

In order to determine which amino acids could serve as a means of observing dose enhancement 

(as different amino acids can exhibit varying radioresistance), all twenty amino acids were 

irradiated and analyzed with UV-VIS spectrophotometry. 

 

Prior to irradiation, all solution samples appeared clear with no precipitates or residues present. 

An overview of observed results for pure amino acids is presented in Table 2.1 with reference to 

recorded spectra in the Appendix. All UV-VIS spectra were collected between 220 nm to 400 

nm. Due to the high absorbance of mPEG near 200 nm, data in the shorter UV range are omitted 

from analysis. 

 

Little changes were evident in water, both qualitatively and in UV-VIS absorbance. This 

behavior was expected, as radicals produced in water are short-lived (10
-12

 - 10
-6

 seconds) and its 

molecular state is very stable [7]. Few visible changes post-irradiation were noted in the other 

solutions, excluding histidine and tryptophan, which drastically changed color. Histidine turned 

yellow and became darker with increasing dose, and tryptophan became orange-red similarly, 

both of which are to be attributed to the production of chromophores as residues. Phenylalanine, 
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threonine, and tyrosine exhibited slight yellowing with no other significant changes. Cysteine 

and methionine developed sulfurous odors possibly due to the liberation of hydrogen sulfide. All 

irradiated samples exhibited a strong pungent odor due to the liberation of ammonia. 

 

Table 1.1. UV-VIS responses to radiation of pure amino acid solutions. Figures are presented in 

the Appendix. 

Figure 

Number 
Solution UV-VIS Spectrophotometry Observations 

A1 Water No significant observations 

A2 Alanine No significant observations 

A3 Arginine Peak broadening at 220 nm; marginally higher absorbance with dose  

A4 Asparagine New absorbance band at 276 nm increases in intensity with dose 

A5 Aspartic Acid Minor increases in absorbance as function of dose 

A6 Cysteine Minor increases in absorbance as function of dose 

A7 Glutamic Acid Minor increases in absorbance as function of dose 

A8 Glutamine 
Increasing absorbance and flattening between 250 nm and 320 nm 

with dose 

A9 Glycine Minor increases in absorbance as function of dose 

A10 Histidine 
New absorbance band at 282 nm depicts strong increase in intensity 

with dose 

A11 Isoleucine No significant observations 

A12 Leucine No significant observations 

A13 Lysine Minor flattening-out effect with dose 

A14 Methionine 
Increasing absorbance and flattening between 270 nm and 315 nm 

with dose 

A15 Phenylalanine 
Increasing intensity and minor right-ward shift of peaks from 223 nm 

and 258 nm; absorbance increases universally as function of dose 

A16 Proline No significant observations 

A17 Serine Broadening and increased absorption evident as function of dose 

A18 Threonine Broadening and increased absorption evident as function of dose 

A19 Tryptophan Peak broadening and increased absorption from 299 nm to 380 nm 

A20 Tyrosine Minor peak shift and broadening from 275 nm to 284 nm with dose 

A21 Valine No significant observations 
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The analysis of the UV-VIS spectra as a function of absorbed dose was carried out based on 

amino acid functional groups as described previously in Table 1.1. For some amino acid 

samples, the absorbance intensity of a given wavelength was exponentially related to absorbed 

dose, which suggested that radiolytic reactions of amino acids followed first order kinetics as 

established by the Arrhenius equation, as Eq. 3.1:  

 𝐴 =  𝐴𝑚𝑎𝑥(1 − exp(−𝐷/𝐷0)) + 𝐴0 (3.1) 

where A0 is the initial absorbance at zero absorbed dose, D0 is the absorbed dose required to 

increase the absorbance A by 37%, and Amax is the maximum increase in absorbance produced by 

irradiation. The fit was established by selecting wavelengths at which little or no absorption was 

evident in the control sample (0 kGy) and the dose response appeared consistent with no strong 

shifting. Among all amino acids, nine displayed excellent fit to this exponential saturation (Fig. 

3.1), indicating this model’s plausibility. Asparagine and methionine seem to better approximate 

linear trends in the dose range studied, but generally, saturation better reinforces the physical 

limitations of radical formation in solution. 

 

In considering the amino acid classifications, the observations from UV-VIS can be summarized. 

There were no observable changes in UV-VIS spectra for aliphatic amino acids. Likewise, acidic 

amino acids did not present strong changes. Aromatic amino acids showed increasing absorbance 

as a function of absorbed dose and minor right-ward peak shifts. Neutral amino acids yielded 

new absorbance bands increasing with intensity with absorbed dose. Basic amino acids displayed 

mixed results: lysine showed no observable changes in its UV-VIS spectrum; however, arginine 

showed peak broadening at 220 nm, and histidine displayed a new absorbance band at 282 nm 
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with a strong increase with absorbed dose. Lastly, sulfur-containing amino acids showed 

increases in absorbance as a function of absorbed dose, as well as increases in sulfurous odors. 

  

Figure 3.1. Dose-to-absorption response curves for a) asparagine at 278 nm, b) glutamine at 280 

nm, c) histidine at 282 nm, d) methionine at 298 nm, e) phenylalanine at 278 nm, f) serine at 280 nm 

g) threonine at 260 nm, h) tryptophan at 320 nm, i) tyrosine at 305 nm. 
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3.2 Amino acids with AuNPs 

Most solutions retained a transparent pink hue when initially combined with AuNPs and PEG-

AuNPs (which typically appear red), implying neither aggregation nor significant amino acid-

AuNP interactions occurred. However, some solutions experienced visible changes with bare 

AuNPs: prior to irradiation, small black agglomerations appeared in cysteine while aspartic acid 

and glutamic acid turned faintly purple, all of which indicate the presence of nanoparticle 

aggregation. This behavior is reasonable because these amino acids are the most acidic with 

isoelectric point (pI) values of 5.02, 2.98, and 3.08, respectively. It has been previously 

determined by Zakaria, et al. that pH, especially concerning increased acidity, plays a significant 

role in nanoparticle agglomeration, so the presence of aggregation prior to irradiation is justified 

[37]. These aggregations were then exacerbated with increasing dose as residues were produced. 

Much of these aggregations were not, however, observed when PEG-AuNP was combined with 

the amino acid solutions. 

 

Despite 5 nm AuNPs having a characteristic peak absorbance at 520 nm, changes in nanoparticle 

structure post-irradiation were not discernible via UV-VIS due to the low concentration used 

(this peak was not observable due to the magnitude difference between AuNP signal and that of 

the remaining solution). Visible changes were still evident: arginine, glutamine, methionine, and 

proline also showed some forms of aggregation post-irradiation, as these solutions became clear 

and displayed dark purple/black residues. However, while some solutions with PEG-AuNP lost 

color, only cysteine experienced any significant aggregation with PEG-AuNP. This demonstrates 

that overall PEGylation was performed correctly and was sufficient to prevent surface 
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interactions between the amino acid and nanoparticle. Because of its singularity, cysteine’s 

interaction is presumed to be mediated by its sulfhydryl group.  

 

Of those that exhibited significant changes in relation to dose, comparisons between the pure 

sample and those with functionalized and non-functionalized nanoparticles were grossly 

indeterminate. Solutions with nanoparticles achieved higher absorption than the isolated 

solutions universally (as displayed in Figures A1 - A21 in the Appendix), but there is no 

significant relation, for additions in absorbance were slight (ranging 0.01 - 0.04) when compared 

to the magnitude of optical density presented for each solution. For UV-VIS spectrophotometry, 

mixtures create additive absorbance, so the minor increases in absorbance may be attributed 

simply to the natural absorption of AuNPs, as this same range is expressed in control solutions of 

water (Fig. A1). PEGylated and bare nanoparticle differences were very slight due to similar 

absorbance values. Dose response relationships shown by three species in Fig. 3.2 also indicate 

little change between these groups and the isolated amino acids. If radiolytic enhancement is 

considerable in reality, it is trivial for the variables acknowledged in the current study, which 

include, but are not limited to, concentration, nanoparticle size, and irradiation method. 
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Figure 3.2: Dose-to-absorption response curves for a.) asparagine with bare AuNP 

at 278 nm, b.) asparagine with PEG-AuNP at 278 nm, c.) glutamine with bare AuNP 

at 280 nm, d.) glutamine with PEG-AuNP at 280 nm, e.) histidine with bare AuNP at 

282 nm, f.) histidine with PEG-AuNP at 282 nm. 
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CHAPTER IV 

DISCUSSION 

 

4.1 Radiolytic product interpretation 

For asparagine and histidine, the creation of a new absorption band is indicative of a stable 

residue (or combination of similar residues) that exhibit preferential formation under radiolysis, 

as the peak position is constant and increases in intensity with dose. Minor peak shifting 

experienced by phenylalanine and tyrosine may suggest pH variations, which can affect the 

absorption spectra of organic compounds and therefore must be taken into account [28]. 

Flattening or broadening of spectra are signs of inhomogeneities in solution and may indicate a 

wider distribution of radiolytic products. The presence of dissimilar species in solution also 

presents divergence from the conventional Beer-Lambert law. While differences in composition 

can be accounted for, it is necessary to know the species being formed. Therefore further 

analysis needs to be completed to better characterize the identities of these residues and the 

resultant solution properties. 

 

Regardless of encountered discrepancies, several pure solutions remained clear and experienced 

little change regardless of dose. These observations suggest certain amino acids exhibit stronger 

radioresistance and/or stability. In fact, alanine has been widely used in electron spin resonance 

dosimetry because of these properties: when irradiated in the solid state, alanine undergoes 

deamination and produces a very stable alkyl free radical that can be accurately measured to 

determine absorbed dose. With this understanding it may be possible to use other amino acids as 

indicators should the radiolytic products be characterized.  
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In this experiment hydrophobic aliphatic and acidic amino acids show no significant response to 

dose, whereas hydrophobic aromatic, polar neutral, and basic amino acids exhibited greater 

responses. Therefore, the molecular structure may play a significant role in the radiosensitivity of 

the amino acid, possibly presenting favored interactions. Oxidation by ROS is presumed to be 

the dominant interaction in the cleavage of amino acid, so knowing which substrates are 

susceptible to oxidation is useful in determining these radiolytic processes and products. 

 

Sulfurous odors were observed in cysteine and methionine, which demonstrates that oxidation 

may occur preferentially at groups containing sulfur.  Hatano established that the radiolysis of 

cysteine liberated its sulfhydryl group in both small and large radiation exposures, and these 

experiments confirmed the group’s increased sensitivity to oxidation caused by the ROS [38]. As 

demonstrated previously, these observations are of great interest in the determination of protein 

denaturation and destruction, as sulfhydryl liberation has been found in enzyme proteins [38]. 

Thus the characterization of a hydrogen sulfide product in irradiated cysteine is supported as a 

favorable interaction. 

 

Other residue structures may be hypothesized based on spectral observations and ongoing 

research. Increasing absorbance in the longer wavelength regions may indicate a distribution of 

products of higher molecular weight. To achieve this in pure solutions, there must be some 

oxidation and recombination of side chain amino acid radicals or additional radiolytic products. 

Previous studies have shown that the formation of dipeptides and cross-linking are possible 

under irradiation; these events can be measured and extended to the radiolysis of proteins [2, 11]. 
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It is possible that these products may exist in small concentrations in the solutions irradiated in 

this experiment. 

 

4.2 Saturation relationships 

The relationship between absorbance and radiation dose in aqueous amino acids with and 

without nanoparticles has been shown to generally follow an Arrhenius equation. This data trend 

corroborates with earlier studies by Rotblat and Simmons who measured five crystalline amino 

acids via microwave spectroscopy and demonstrated similar responses after exposure to electron 

beam irradiation [39]. While those studied were not the same species that showed relationships 

for this experiment, it can be noted that this relationship may hold true regardless of state. 

Differences in response from may be derived from solvent interactions as well as the method of 

measurement. The dose-absorption relationships of solutions containing nanoparticles were also 

shown not to vary drastically from isolated samples, suggesting that the presence of AuNP, at 

least for the concentration presented in the current study, did not greatly affect the identities or 

extent of residues generated by irradiation. 

 

4.3 Nanoparticle interactions 

Due to the indiscernibility of AuNPs in individual UV-VIS spectra, only observable interactions 

are noted for these purposes. AuNP aggregations appearing only post-irradiation were not 

evident in all solutions, but those amino acids that expressed evidence did so in more than one 

dose. It is thus proposed that aggregations were induced by interaction with the resultant 

solution, though the mechanism by which aggregation occurred is unknown. As stated before, 
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pH may be a probable cause, as well as the chemical characteristics of amino acid residues. 

Amino acids may either provide a site of reaction or protection from agglomeration. 

 

Cysteine is a singularity in that it was the only amino acid to show unique forms of aggregation 

on the PEG-AuNP solutions. This interaction is greatly presumed to be mediated by the 

substitution of the thiol linkage in PEG-SH, as sulfur has a high binding affinity to gold. It may 

then be postulated that cysteine has the possibility to decorate AuNP because of its side-chain 

composition, or that the sulfhydryl group liberated during irradiation may have replaced PEG-SH 

and exposed the nanoparticle surface to interactions otherwise prevented by the presence of PEG. 

 

In considering the effects of AuNPs on the UV-VIS spectra, the small recorded increase in 

absorption overall for those solutions containing either functionalized or non-functionalized 

AuNPs indicates little in terms of the efficacy of small nanoparticles for radiolytic enhancement 

under the present conditions. Further considerations need to be made to decipher the true cause 

for the little change observed, possibly through the modulation of AuNP concentration, 

nanoparticle size, or administered dose. 

 

4.4 Experimental limitations 

The limitations of this study may elucidate methods by which research with amino acids and 

AuNPs may be improved. Overall this experiment was extremely limited by the concentration of 

AuNPs used. No significant differences or distinct nanoparticle signals could be discerned in 

UV-VIS spectra because the concentration was below the threshold of observability. 

Nevertheless, radiolytic enhancement is still a possibility. While these experimental solutions 
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contained nanomolar concentrations of AuNP, previous in vitro and in vivo studies showing 

success in dose enhancement varied from nanomolar to millimolar [40]. In this regard it is 

evident that increasing the concentration of nanoparticles may have led to quite different 

observations and a more definitive conclusion. 

 

Yet such disparity raises the question of what conditions are most appropriate to observe dose 

enhancement. The aforementioned successes relied on an assortment of variables including 

nanoparticle size, surface functionalization, irradiation method, and cell lines or models used in 

addition to nanoparticle concentration. Nanoparticle size and radiation beam energies can also 

correlate for maximum efficacy, which may undermine the reliability of the results presented 

here, since only one particle size and one beam energy were considered. Biological mechanisms 

may also play a role in determining the efficacy, considering ROS production and cell 

radiosensitivity. Also, Butterworth, et al. determined that actual dose enhancements reported by 

these studies were much greater than those predicted by Monte Carlo methods [40]. Despite 

small nanoparticles being considered efficient energy carriers, considerable concentrations are 

still necessary to observe dose enhancement, and correlations between these variables are 

questionable. Considering these factors together it is difficult to generate viable conclusions 

based on the data of previous studies other than that radiosensitization was present to some 

degree.  Overall, the experiments reported here are intended to be much more basic and provide a 

more direct approach to assessing the actual dose enhancement of AuNPs in biological systems.  
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CHAPTER V 

CONCLUSION 

 

In the current study, twenty amino acids in solution were combined with functionalized and non-

functionalized AuNPs and irradiated to 10, 25 and 50 kGy by 10 MeV electron beam and 

subsequently analyzed using UV-Vis spectrophotometry. It was found that a causal relationship 

exists between absorbed dose and UV-VIS response in amino acids. This relationship can be 

successfully modeled by the Arrhenius equation to explain the nature of radical production 

during irradiation. While not all samples demonstrated significant saturation response, 

observable patterns in UV-VIS absorbance in several amino acids can be attributed to the 

formation of stable residues either as radicals or recombination products. Therefore structure and 

functionality are strong determinants of how amino acids conform under radiolysis.  

 

While some solutions differed physically with functionalized and non-functionalized AuNPs, 

absorbance values increased only slightly in comparison to pure amino acids. The same dose 

relationships were determined for these samples and remained relatively unmodified from the 

controls. Despite nanoparticle aggregations occurring in several samples before and after 

irradiation, the overall effects of these phenomena were indeterminate. With greater 

classification and understanding of the amino acid radiolytic products, it may be possible to 

better interpret AuNP interaction mechanisms. 

 

While nanoparticle-mediated dose enhancement has been previously claimed through in vitro 

and in vivo studies, this assertion is not substantiated by the present study. No significant 



34 

 

enhancement and changes in dose response relationships were observed by either bare or 

PEGylated nanoparticles. Because greater success has been shown in biological models, it is 

suggested that the radiosensitization property of AuNPs may be more correctly determined by 

other factors, including biological processes and cell sensitivity, rather than simply physical 

interactions. These observations do not discount the medicinal applications of AuNPs, but rather 

they elucidate the predominant mechanism of AuNP interaction in living systems. Even so, there 

are several issues that need to be addressed, such as nanoparticle size and radiation energy 

correspondence, in order to determine the validity of this claim. 

 

Overall, because there exists a plethora of factors to be considered in the analysis of nanoparticle 

efficacy under irradiation, further research should be conducted to isolate the greatest 

contributing factors to dose enhancement in biological systems. Pertinent factors including 

surface chemistry, particle size, concentrations, and radiation sources should be addressed in an 

isolated manner to determine their distinct biological effects. With this research accomplished, it 

may be possible to generate combinatorics to provide certain desired efficacies. 

 

The overarching purpose of this study is to cast a wide net in discerning radiolytic enhancement 

of gold nanoparticles by using amino acids as a basic molecular model. While these results 

remain inconclusive concerning the nature of nanoparticle interactions, it may be possible to 

expand upon this basis as previously suggested to better conclude the extent of dose 

enhancement with small gold nanoparticles. 
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APPENDIX 

 

 
 

Figure A1: UV-VIS absorbance spectra for water in isolation and with AuNPs and PEG-AuNPs. 
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Figure A2: UV-VIS absorbance spectra for alanine in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A3: UV-VIS absorbance spectra for arginine in isolation and with AuNPs and PEG-

AuNPs 
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.  

Figure A4: UV-VIS absorbance spectra for asparagine in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A5: UV-VIS absorbance spectra for aspartic acid in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A6: UV-VIS absorbance spectra for cysteine in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A7: UV-VIS absorbance spectra for glutamic acid in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A8: UV-VIS absorbance spectra for glutamine in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A9: UV-VIS absorbance spectra for glycine in isolation and with AuNPs and PEG-

AuNPs 
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Figure A10: UV-VIS absorbance spectra for histidine in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A11: UV-VIS absorbance spectra for isoleucine in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A12: UV-VIS absorbance spectra for leucine in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A13: UV-VIS absorbance spectra for lysine in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A14: UV-VIS absorbance spectra for methionine in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A15: UV-VIS absorbance spectra for phenylalanine in isolation and with AuNPs and 

PEG-AuNPs. 
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Figure A16: UV-VIS absorbance spectra for proline in isolation and with AuNPs and PEG-

AuNPs. 



54 

 

 

 

Figure A17: UV-VIS absorbance spectra for serine in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A18: UV-VIS absorbance spectra for threonine in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A19: UV-VIS absorbance spectra for tryptophan in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A20: UV-VIS absorbance spectra for tyrosine in isolation and with AuNPs and PEG-

AuNPs. 
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Figure A21: UV-VIS absorbance spectra for valine in isolation and with AuNPs and PEG-

AuNPs. 

 

 

 


