
Is computer programming beneficial to architects and architecture

students for complex modeling and informed performative design

decisions?

Rania Labib
College of Architecture, Architecture department, Texas A&M University, USA

rlabib@tamu.edu

Abstract

For the last few decades, digital tools have become an important part of architectural design. Architects
and architecture students create their designs using one or more digital applications. Although most of
these applications are advanced and can be used for various tasks – such as parametric design and
building performance simulations –, they lack some capabilities that are crucial to solving problems that
might arise during the design and simulation process. Therefore, programming knowledge is invaluable to
those in the field of architecture for customizing digital applications to perform and automate tasks that
are out of the scope of built-in functions.

In this research study, detailed examination of various case studies of custom-coded design programs is
discussed. The programs written in Python proved to be crucial to organizing visual scripts by making
them less confusing and more efficient. In addition to using computer programming within visual scripting
environments, this paper presents a case study of computer programs written in Python, JavaScript, and
HTML that were used to organize an enormous amount of data produced by hundreds of glare
simulations. The custom programs performed the process of organizing, analyzing and visualizing large
amounts of data in a time-efficient manner, thereby facilitating informed decisions for better performative
design.

Keywords: computer programming, Python for Grasshopper, data visualization, programming for
architecture students, programming for architects, programming for high performance building design

ADVANCED BUILDING SKINS | 233

1. Introduction

Computational tools and techniques have been a fundamental part of architectural design in recent
decades. They have enabled architects to deal with forms that previously could not have been drawn or
built and that require non-standard engineering methods for their fabrication. For example, there has
been elevated attention toward parametric modeling in the last few years. This is mainly due to the
emergence of visual parametric modeling tools, which hide the algorithmic complexity of a model behind
an easy-to-use visual programming interface that can be manipulated without programming skills. These
programs decrease the technical skills required to compute and contribute to their widespread adoption in
architectural design. Parametric tools facilitate the exploration of alternative designs within a single model
by using parameters and formulae to control the geometric and constructive aspects of architectural
models [1].

The integration of digital and computational tools in architectural design has become a necessity. In
recent years, digital computational methods – such as those found in parametric design, energy
simulation, daylight calculations, and environmental analysis – have been adapted by both architectural
firms and architecture schools. Consequently, many educators and researchers have identified the need
for architecture students to become familiar with the rapidly-developing tools known as parametric [2] [3],
computational modeling tools[4] [5], or algorithmic programs [6] [1]. As such, architects and architectural
students are increasingly adapting to the use of these tools. Although these software have proven to be
crucial in completing difficult tasks – be that modeling complex geometries or simulating performance –,
some problems may be beyond their reach. Computer coding and scripting can be invaluable in
addressing these challenges by customizing the built-in functions within various digital tools, thereby
allowing users to perform difficult tasks that were not possible before. Additionally, computer coding can
be used to automate repetitive tasks, reducing the time required to perform these large, time-consuming
processes. Furthermore, computer scripting can be used to solve design problems and can even analyze
and visualize huge datasets such as those data required in energy modeling.

While it is clear that computer programming and scripting are considered essential tools in architectural
practice, few universities across the US introduce computer coding to their undergraduate and graduate
architecture programs. Although there are many books, primers, and online video tutorials to teach
architects and designers computer programming and scripting [7] [8] [9] [10], there has been an extreme
lack of computer programming and scripting classes offered in university settings within architecture
schools. This is a significant problem as it becomes very difficult for architects to navigate the ample
resources found both in print and online to teach themselves programming in non-school setting.

This paper discusses the benefits of teaching computer programming and scripting to architectural design
students within their program’s curriculum; it would enable these future architects to customize their digital
tools for a better design process and to prepare students for a computing era that will ultimately facilitate
a new generation of performative, responsive, and smart buildings and cities.

2. Extending visual scripting capabilities

Visual programming dates back to the 1960s, when the GRAIL system was introduced to the world. The
GRAIL system allowed computer users to input data using a graphic interface and a tablet that was very
similar to modern graphic tablets [12]. Interest in parametric and generative design has increased over
the last two decades due to the introduction of digital fabrication machines, which allow the fabrication of
complex, free-form architectural geometries that were not possible to model before. Parametric and
generative modeling have been adopted by many architects and architecture students due to the recent
availability of visual parametric modeling tools, which disguise the algorithmic complexity of models with a
clear visual programming interface. These changes decrease the technical skills required to use these
programs and contribute to their universal adoption in architectural design. The integration of such tools in
architectural practice has been expanding since 2003, when Bentley Systems introduced Generative
Components, a graphic-based generative modeling software used within MicroStation [13]. Many
universities across the United States adopted generative design tools into their architecture courses after
the release of Grasshopper, a visual programming plugin for Rhinoceros [14]. Generative modeling tools

234 | Conference Proceedings of the 12th Conference of Advanced Building Skins

help designers explore various model configurations within one design by changing parameters that are
input by the user. On many occasions, however, students end up with a geometry that differs from their
desired model for a number of reasons, such as the complexity or number of design parameters. When
this occurs, it can be very challenging for students to edit the script to achieve the desired model. In many
cases, students abandon their initial design ideas and use the resulting model instead. To prevent this, it
is crucial to explore ways of overcoming such challenges.

2.1 Computer coding for visual scripting organization and simplification

Although visual programming can simplify complex programming with drag and drop components, many
challenges can arise during the modeling process. For example, when designers run into modeling
problems due to missing or inappropriate input, they may not be able to fix the model due to the
complexity of the visual script file. Such files often contain hundreds of components that are connected to
each other leading to creating a visual tangle [15]. Moreover, it can be difficult to understand the structure
of the file when the person editing it is not the original author, as is common practice in the collaborative
work environment of architecture education.

Visual scripting environments such as Grasshopper usually contain built-in components that are used for
modelling, where each component contains hidden code that cannot be edited by the user. Those
components usually receive several user inputs that are pre-set by the hidden code and produce a
specific output. A variety of modeling tasks are required to produce medium or complex geometries within
visual scripting environments. However, many of the visual components in Grasshopper perform only one
task and, therefore, an enormous number of components are often needed to complete the desired
model. This, in turn, leads to a visual tangle that can cause confusion, particularly for those inexperienced
with programming.

To overcome these challenges in a visual scripting file, custom computer code can be used to create
visual components that perform multiple tasks at a time, thus reducing the number of components needed
for modeling. This makes the script organized and simple to understand by not only the original author but
also other people who are working with him or her.

An example is illustrated in Figures 1, where a pyramid is imported into a visual scripting environment. To
perform simple transformation tasks on the pyramid – such as copy, morph, or mirror –, the program
needs information about the individual surfaces that make the pyramid or the point coordinates that define
each surface. A script that contains 24 Grasshopper components and 16 panels for user inputs is used to
extract the 4 surfaces and the vertices of theses surfaces (Figure 1). To simplify the script and better
organize it, a custom component was created with Python to extract the information obtained using the
visual script illustrated in Figure 1. The information extracted included the coordinates of one vertex, one
individual surface, three vertices of one surface, and all surfaces of the pyramid. Figure 2 show this
custom component and the Python code inside it. The code successively explodes the pyramid into
surfaces, edges, and vertices, then stores all resulting data into organized lists. These lists can be called
as component outputs that can then be used in the modeling process. Figure 2b shows that all four
outputs are identical to those obtained in Figure 1. In this example, the author combined 40 components
and panels into a single component with multiple outputs, thus creating a simplified, organized and easy
to understand script.

2.2 Computer coding for complex tasks within visual scripting

In addition to simplifying and organizing a visual script, computer coding can also be used to perform
tasks that are otherwise impossible to do in a visual scripting environment. One example is the process of
recursive modeling. Recursion in computer science is “a process where the final result of a solution to a
specific problem depends on the solution of smaller instances of the same problem” [16]. A Recursive
function is a function that can be used to call itself, this type of function is impossible to call within visual
scripting software packages because it is impossible to get the result of the function and feed it back into
the same function. By using a programming language, however, one can create such functions by having
them define their output based on outputs from previous versions.

ADVANCED BUILDING SKINS | 235

Figure 3 shows an example of a script written in Python that contains a recursive function. This function is
used to model smaller, modular, three-sided pyramids through various iterations. The code is written
inside a custom-made Grasshopper block that takes user input and produces an output defined by the
code, which in turn contains two functions: mirrorBrep and recursiveBrep. The function mirrorBrep defines
a process where a simple geometry – in this case, a simple three-sided pyramid – is exploded and
reflected around one of its surfaces. The function recursiveBrep defines a process where the pyramid is
reflected repeatedly around the newest pyramid created to form a more complex geometry. Figure 4
shows the resulting geometry at different iterations, where the structure becomes more complex as the
number of iterations increases. Although the process defined in the first function can be accomplished
using drag and drop components, the amount of components needed to perform such a process are
excessive and would lead to a confusing visual script. Additionally, the Python code in the second
function completes a task that is impossible using drag and drop components. Therefore, custom coded
components are crucial in order to organize and simplify visual scripts, as well as to extend the
capabilities of off-the-shelf visual scripting environments.

Figure 1: Grasshopper file to explode a pyramid into three surfaces and 4 points.

236 | Conference Proceedings of the 12th Conference of Advanced Building Skins

Figure 2a: Custom-coded Grasshopper component used to explode the pyramid, the output obtained is the same
output obtained in figure 1.
Figure 2b: The Python code inside the custom-coded component

Figure 3: Custom-coded Grasshopper component used for recursion, the code shown illustrates the function
recursiveBrep that is used for recursive modeling

ADVANCED BUILDING SKINS | 237

Figure 4: pyramid recursion modeling at different iterations

3. Extending the capabilities of building performance simulation tools

Building energy consumption accounts for 30% of global energy consumption, and this provides
designers with a great opportunity for energy conservation [17]. To address this issue, architectural
students and architects have started to embrace a new set of increasingly popular building simulation
tools to support energy-efficient design. Programs that simulate building performance are powerful tools
for examining a number of aspects such as energy consumption, thermal comfort and daylight
performance. The number of these simulation tools available to architects has been rapidly increasing in

238 | Conference Proceedings of the 12th Conference of Advanced Building Skins

recent years. They differ in many ways, from their behind-the-scene engine and user interfaces, to their
output format and ability to communicate with modeling software. Architecture students and architects are
faced with a steep learning curve when using new simulation tools. Therefore, they tend to select tools
that offer a clear graphic interface to run building performance simulations. However, these interfaces do
not make all the features of building analysis available to everyone. Therefore, it is crucial to understand
how these tools are designed and how they communicate with their back engine in order to have accurate
and fully-realized building simulations [18]. Most of the tools currently available are open source tools,
meaning that users with programming skills can modify the underlying source code to tailor the software
to their needs. Architecture students in integrated design studios that combine design with building
performance are often tasked with a design problem that has an emphasis on one or more building
performance criteria. Students tend to use simulation tools that are widely available as plugins for
commonly used modeling environments. By using these plugins, architects and architecture students can
find themselves with huge amounts of data and files, making it very difficult to examine the performance
of a proposed design. The following section will examine a case study in which programming knowledge
helped the author visualize the data produced by a simulation tool.

3.1 Performance simulation results analysis

As previously noted, simulation tools produce data files that may contain an overwhelming amount of
numbers. Although these files hold the results of potentially helpful simulations, it is difficult to read the
data contained within them, let alone visualize it. To address this issue, computer programming
languages such as Python and MATLAB can be used to organize, analyze, and even visualize data for
better understanding of the results produced by simulation software. This ultimately leads to better
assessment of the proposed design’s performance. In a case study where the author of this paper
needed to investigate the effects of glare on the visual comfort of a building’s occupants. This building
had 20 floors with 10 offices each, totaling 200 offices affected by the refection of the sun off another
building’s highly reflective façade. To better address the visual comfort of the workers stationed in these
200 rooms, it was necessary to perform a daylight glare analysis for each of these views. This analysis
was repeated for each view every time the façade optical material is changed. Glare results were
produced by the simulation tools Honeybee and Ladybug [19] for each room, and these results were
subsequently stored in individual files that had nearly 8,640 hourly daylight glare probability (DGP)
values. Glare simulations were performed 4 times, producing 800 files or a total of 6,912,000 DGP
values.

To understand the data, various boxplot graphs for each view were needed to show the maximum,
minimum, and mean values for each specific hour of the day through each month for an entire year. It
was clear that manually extracting the information needed for these graphs from 800 files would be a very
difficult and time-consuming process. Therefore, the author wrote a set of computer programs using
Python to efficiently perform the following processes:

1- Check and validate the files to prepare the results for analysis. This step was needed due to
unexpected interruptions in the simulations that produced files with missing data.

2- Extract the minimum, maximum, and mean DGP value for each view at 15:00 every day for the entire
year. It later stored the extracted values in a custom Excel sheet that allows the automatic creation of
boxplot graphs. Figure 5 shows some of the lines of the code that was used to complete this process.

3- Extract the minimum, maximum, and the mean DGP value for each view across an entire month, and
then store these values in an Excel sheet that automatically creates boxplot graphs. Figure 6 shows a
sample boxplot.

As shown, the custom Python code was crucial to extracting, organizing and analyzing the data required.
This data helped the author to better assess occupants’ visual comfort and the façade performance for an
informed facade design decision.

ADVANCED BUILDING SKINS | 239

Figure 5: Partial view of the code used to iterate over 800 files to extract the information needed to create boxplots

Figure 6: An example of the boxplots easily created by the Python program

3.2 Simulation results visualization

As shown above, Python is not only a great tool for data analysis but also for data visualization. Its
abilities can be greatly improved when used in conjunction with JavaScript to produce easy-to-understand
plots such as interactive pie charts, polar charts, wind roses, and heatmaps.

For the purpose of visualizing data produced by the simulation tool for the 200 views previously
discussed, a custom Python program was written with embedded HTML and JavaScript code; it produced
interactive heatmaps that visualized the DGP values of every hour between 6:00 and 18:00 for the whole
year. A static image of one such interactive heatmap produced by the custom program is shown in Figure
7. Additionally, the code was incorporated into a Grasshopper component to allow immediate access to
the code within a visual scripting environment (Figure 8)

240 | Conference Proceedings of the 12th Conference of Advanced Building Skins

Figure 7: A heatmap produced by the custom-written Python program

Figure 7: A custom coded component used in conjunction with Honeybee to create heatmaps for all analyzed views
contained within the project’s folder

4. Conclusion

Architects and architecture students typically use off-the-shelf applications to do the majority of their
modeling. However, computer programming can extend the abilities of this modeling software to perform
tasks that are impossible to do with an off-the-shelf application. Additionally, computer programming may
be the ultimate tool in organizing and simplifying visual script files, thereby leading to a speedy modeling
process that helps students and professionals meet project deadlines. Computer programming skills are
crucial to make modeling processes more time-efficient for those in the field of architecture. Moreover,
computer programming also facilitates the process of organizing, analyzing, and visualizing complex
simulation data for building performance that might be impossible to analyze manually. Therefore, custom
programs are considered essential to make informed decisions for high performance building design.

In conclusion, computer programming can assist today’s architects and architecture students in
overcoming the challenges that result from using new digital tools. Integrating computer programming into
architectural education could be instrumental to preparing future architects to better organize, simplify,
and visualize heir design ideas in an efficient way, and most importantly make informed design decisions.

ADVANCED BUILDING SKINS | 241

References:

[1] K. Terzidis, Algorithmic architecture, vol. 1. Architectural Press, 2006.

[2] I. G. Dino, “Creative design exploration by parametric generative systems in architecture,” Metu J.
Fac. Archit., vol. 29, no. 1, pp. 207–224, 2012.

[3] D. J. Gerber, “Parametric practices: Models for design exploration in architecture.” Harvard
University, p. 511, 2007.

[4] A. Menges and S. Ahlquist, Computational Design Thinking: Computation Design Thinking. Wiley,
2011.

[5] M. Burry, Scripting cultures: Architectural design and programming. John Wiley & Sons, 2011.

[6] P. Coates, Programming. architecture. Routledge, 2010.

[7] W. Jabi, “Parametric Design for Architecture,” Int. J. Archit. Comput., vol. 11, no. 4, pp. 465–468,
2013.

[8] M. Jezyk, “Python and Revit | The Dynamo Primer.” [Online]. Available:
http://dynamoprimer.com/en/09_Custom-Nodes/9-5_Python-Revit.html. [Accessed: 19-Jun-2017].

[9] McNeel, “RhinoScript Wiki [McNeel Wiki],” 2005. [Online]. Available:
https://wiki.mcneel.com/developer/rhinoscript. [Accessed: 19-Jun-2017].

[10] W. J. Mitchell, R. S. Liggett, and T. Kvan, The art of computer graphics programming: a structured
introduction for architects and designers. Van Nostrand Reinhold Company, 1987.

[11] M. McCracken, T. Wilusz, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-D. Kolikant, C. Laxer,
L. Thomas, and I. Utting, “A multi-national, multi-institutional study of assessment of programming
skills of first-year CS students,” ACM SIGCSE Bull., vol. 33, no. 4, p. 125, 2001.

[12] T. O. Ellis, J. F. Heafner, and W. L. Sibley, “The GRAIL Project: An experiment in man-machine
communications,” RAND CORP SANTA MONICA CA, 1969.

[13] R. Aish, “Extensible computational design tools for exploratory architecture,” Archit. Digit. age Des.
Manuf. Spon Press. New York, NY, 2003.

[14] R. McNeel, “Grasshopper generative modeling for Rhino,” Comput. Softw. (2011b), http//www.
Grasshopp. com, 2010.

[15] R. Woodbury, Elements of parametric design. Taylor and Francis, 2010.

[16] P. L. Pirolli and J. R. Anderson, “The role of learning from examples in the acquisition of recursive
programming skills.,” Can. J. Psychol. Can. Psychol., vol. 39, no. 2, p. 240, 1985.

[17] IEA, Key World Energy Statistics 2014. Organisation for Economic Co-operation and
Development, 2014.

[18] T. Maile, M. Fischer, and V. Bazjanac, “Building energy performance simulation tools-a life-cycle
and interoperable perspective,” Cent. Integr. Facil. Eng. Work. Pap., vol. 107, pp. 1–49, 2007.

[19] M. P. Mostapha Sadeghipour Roudsari, U. S. A. Adrian Smith + Gordon Gill Architecture, Chicago,
M. S. Roudsari, M. Pak, and A. Smith, “Ladybug: a Parametric Environmental Plugin for
Grasshopper To Help Designers Create an Environmentally-Conscious Design,” 13th Conf. Int.
Build. Perform. Simul. Assoc., pp. 3129–3135, 2013.

242 | Conference Proceedings of the 12th Conference of Advanced Building Skins

