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ABSTRACT 

The start-up of synchronous motor drive trains is usually 
associated with torsionally excited vibrations and low-cycle 
fatigue problems. Traditional calculation methods used for 
analysis of such a system involve computerized integrations 
with very small time steps and many degrees of freedom. 

A simple method is presented herein which uses the 
knowledge of system natural frequencies and mode shapes and 
a general dimensionless integration data plot. A sample prob
lem is included to demonstrate the application of the method. 
The results are compared with the more rigorous, traditional 
method to illustrate the accuracy of the simplified method. A 
procedure is also included to relate the dynamic torque to the 
torsional low-cycle fatigue limit, thus establishing a safe num
ber of starts. 

INTRODUCTION 

Large synchronous motors tend to have a decrease in 
acceleration just before they reach synchronous speed. At the 
same time, their vibratory exciting torque increases. This 
torque is at twice slip frequency, which coincides, for a mo
ment, with the lowest torsional system natural frequency 
somewhere during the running up process. In other words, the 
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usually large inertia system is excited torsionally during every 
start-up (Figure 1). The level of vibratory shear stress that is 
reached depends on how fast the motor can pass the "critical 
speed," how much damping is available in the shafting, and, of 
course, the size of the shafting at the weakest link, such as at 
the bearing journal, shaft end, coupling, etc. It is not uncom
mon to see shaft torsional low-cycle fatigue problems in these 
machinery trains, especially those associated with motors of 
"solid pole" structure [ l]. 
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Figure 1. Example of Synchrono�ts Motor Torsional Response. 

Traditionally, calculation of the transient torque is a 
lengthy and costly task, because it involves computerized 
integrations with very small time steps and many degrees of 
freedom. Presented herein is a simple method which uses the 
results of frequency and mode shape from the common Holzer 
method f(>r a torsional system and a specially generated dimen
sionless integration data plot The frequency and mode shape 
determined by the Holzer method is preliminary to any tor
sional system analysis, and it always precedes the transient 
calculation. 

SIMPLIFIED METHOD 

During the start-up, the motor will pass a speed band 
width around the critical speed where the system will be 
excited. Since the system is usually lightly damped, the speed 
band is relatively small, compared to the total speed range. 
The rate of speed increase and the motor exciting torque in the 
band width can be practically assumed as constants. The 
vibratory motion of the system at this critical speed is repre
sented by the modal equation: 

N [27r(2nN5(l - - ))t] 
N, 

where 
q1 modal (angular) displacement of first mode 
� system damping ratio 
V first mode shape displacement at motor 

(l) 

V; first mode shape displacement at ith station of rotor 
model 

T motor vibratory torque amplitude at 2 X slip 
frequency 

N 

first modal inertia* = 2: I;\? (lb-in-sec2) 
inertia at ith station of �otor model 
first torsional natural frequency (rad/sec) 
synchronous speed (cps) 
number of poles = 3 for N, 

motor speed (cps) 
time (sec) 

2 for Ns 
20 cps 
30 cps 

One can solve for q1 as a function of time, and then the 
vibratory torque at any shaft location (say between station i and 
station (i + l) with stiffness K;) is calculated as 

(2) 

To solve Equation l by integration in time, one first specifies 

where 

l T0 
N = N + - - t " 21r I, 

No initial speed (cps) 

(3) 

T0 steady state driving torque minus the load (!b-in) 

11 total system inertia (lb-in-sec2) 
Then substitute Equation 3 into Equation l and let 

B = 2n(N, - No) /N1 

Equation 1 becomes 

with 

A 

and 

(4) 

(.5) 

(6) 

When the instantaneous forcing [2] frequency is close to l, the 
system, represented by Equation 4, will be excited. When 
solving for q1, it is sufficient to integrate the equation in the 
range 0.8 � (B - aT) � 2.0. One can use the Runge-Kutta 
method or the simple Euler's scheme for the integration. As 
shown in the Appendix, a recursive formula derived from the 
convolution integral method provides another alternative. 

The maximum amplitude in Figure 2 is generated by 

using A = l. Note that, in Figure 2, q1 approaches�as a ap-
2� 

proaches zero. This is the steady state torsional resonance 
amplitude. By using Equations 2, 5, and 6 and Figure 2, one 
can easily calculate the maximum torque in the system with 
known first mode frequency and mode shape. 

*If the torsional frequency analysis applies a consistent mass approach, such as 
the finite element method, the modal inertias have to be calculated by modal 
transformation. Frequently they are normalized to the value of 1.0 with respect 
to the mode shapes. 
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Figure 2. Dimensionless Torque Amplification Chart (Modal 
Displacement vs. Rotor Acceleration Parameter) . 

PRACTICAL EXAMPLE 

Figure 3 shows a synchronous motor driving an axial 
compressor through a single, step-up gearbox. The motor is 
rated at 25,000 hp, with synchronous speed at 1200 rpm. The 
torsional system can be mathematically represented by three 
inertias: the motor, the gear and the compressor. The first 
mode frequency and mode shape are calculated by the Holzer 
method and are shown in Figure 4. The system torques versus 
speed characteristics during start-up are presented in Figure 5. 
Figure 6 is the torsional Campbell diagram showing the loca
tion of the critical speed where the motor's 2 X slip frequency 
coincides with the first torsional natural frequency at 972 rpm. 
From Figure 5, one can read the following at 81% of the 
synchronous speed (0.81 X 1200 = 972 rpm): 

T 0.71P.U. 
Tm 1.025 P. U. 
T 0.175 P.U. 
To 0.85 P.U. 

where 
P. U. = 63,025 X hp/rpm 

Using Equation 5, 

1.313 X 106 in-lb 

A = 1.296 X 10-3 rad 

Using Equation 6 with n = 3, the rotor acceleration parameter 
is 

a = 4.23 X 10-3 

From Figure 2, the amplification factor is 9. 15, assuming 

Synchronous 
Motor H 

Figure 3. System Diagram. 
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Figure 4 .  First Mode Shape and System Parameters. 
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� = .04. Therefore, the maximum modal displacement is 
(ql) max = 9.15 A = 1.186 X 10-2 rad. 

The maximum vibratory torque between the motor and 
the gear is, by Equation 2, 

Since the steady state torque is 1.025 P. U. at 81% speed, the 
maximum total torque is 

T = T1-2 + Tm = 5.29 P.U. 

The weakest section between the motor and the gear is at the 
motor bearing journal, with d = 9.5 in. The shear stress due to 
the maximum total torque is 

T, = 16 T/'1Td3 = 41.3 X 103 psi 

COMPARISON WITH 
TRADITIONAL METHOD 

The above example was treated by the traditional method 
[3], with three degrees of freedom. The result of the motor 
shaft torque is presented as the bottom trace of Figure 7. The 
corresponding simplified one-mode approach resulted in the 
top trace of Figure 7. The similarity between these two traces 
at the torsional resonance is obvious, and the accuracy of the 
simplified method is within 5%. Note that the top trace is 
plotted in the time scale (t), not the normalized time ('r). Also, 
it is vertically shifted by the amount of steady state driving 
torque (Tm). 
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Figure 7. Comparison of Motor Torques. 

LOW CYCLE FATIGUE ANALYSIS 

7.0 

In the lifetime of a synchronous motor drive machine, the 
number of starts is usually estimated to be 1,000 or more. 
During every start-up, the weak links in the rotor train will 
experience several high peak stress cycles. Here, in the exam
ple, the motor bearing journal, being a weak link, will have 
several instantaneous peak stresses higher than its yield when 
the stress concentration factor is considered. One must be sure 

that the "accumulated" damage at the torsional resonance will 
not break the journal in the designed life. Material fatigue data 
are available in the form shown in Figure 8, where 

� = 1 + TJ (K - 1) 
K = stress concentration factor 

TJ = notch sensitivity factor 
'Tw = shear fatigue limit (psi) 

0.5 

T, = calculated peak shear stress (psi) 

/3 = 1.0 

/3 = 1.5 

0.4 L.
.___J__J_.J....Ll..l.J..l.L...--l.-'-...L..J...LLJ.U,..----Ji........l_j_LLJ..l.J.L._...__J.....L..J....L.U.U 103 
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Figure 8. Low-Cycle Fatigue Data. 

For every peak at resonance, there corresponds a peak 
shear stress. The occurrence of each peak consumes a certain 
amount of the designed life. Table 1 shows how the peak 
stresses are related to the life in the conventional way. It 
indicates that the sum of all the consumed life fractions is 94%. 
Although it is less than 100%, and the 1,000 starts may be 
achievable, it does not leave much safety margin. Therefore, to 
increase the journal diameter from 9.5 in. to 10 in. is neces
sary. In order to avoid the detailed calculations of Table 1, 
which also need the time integration of the resonance peaks, it 
is proposed herein that the sum of the consumed life fraction 
be �fn = 5 X maximum peak life fraction, and also that it be 
less than 1.0. Experience suggests that this simple but conser
vative rule provides enough safety margin. 

Table 1. Low Cycle Fatigue Calculation. 

Calculated Cycles 1000 Starts 
Peak Shear Stress Stress to Life 

No. (1000 psi) Ratio Failure Fraction fn 

1 17.9 0.557 645142 0.002 
2 21.1 0.654 306690 0.003 
3 23.4 0.727 175583 0.006 
4 28.9 0.896 47787 0.021 
5 33.1 1.029 17189 0.058 
6 39.0 1.211 4263 0.235 
7 41.3 1.284 2440 0.410 
8 38.2 1.187 5134 0.195 
9 24.6 0.763 132853 0.008 

10 23.0 0.715 192686 0.005 
�fn 0.941 

NOTES: 

13 = 1.5, Tw = 32,000 psi 

�fn = 5 X .410 = 2.05 (by simple rule) 

Refer to Figure 7 for peak number. 
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DISCUSSION 

A number of important points related to the forcing 
frequency, the damping ratio, gear backlash, critical torque, 
and extension of the present procedure are discussed in the 
following: 

"Instantaneous" Forcing Frequency 

In Equation 4, the forcing frequency may appear to be (B
aT). But, one will find out in integration that at peak reso
nance, the value of (B-aT) is far from 1.0. Also, it is different for 
a different value of B assigned, while the resonance peak 
amplitudes stay the same. The truth is that we should be 
dealing with the "instantaneous" forcing frequency, i.e., 

d 
- [ (B - aT) T] = B - 2aT 
dT 

and that this frequency will not change with the value of B. It 
is, however, a function of the rotor acceleration parameter a. 

Damping Ratio 

It is evident from Figure 2 that the damping ratio, �' of the 
first system torsional mode is one of two dominant parameters 
for evaluating the peak resonance torque. Damping ratios of 
0. 03 to 0. 05 are the common values used for a torsional system 
without a large damping element, such as a Holset coupling. In 
practice, there are different physical interpretations of the 
damping ratio. For example, some engineers specify different 
Q (which equals V2�) factors for different sections of the shaft
ing. Strictly speaking, when one assigns a damping ratio to a 
lightly damped torsional mode, it means that every stiffness 
element in the model is in parallel with an equivalent, viscous 
damping of the value 

C = 2 ijw 

where w = the modal frequency (rad/sec). The damping is 
proportional to the stiffness [4] only. 

For the first torsional mode, only one section of the 
shafting is twisting the most. Therefore, it is reasonable to take 
the system damping ratio as the same as that section. 

Gear Backlash 

The authors' experiences suggest that the amount of the 
backlash in the synchronous motor gear system do not have 
significant effects on the first torsional mode. 

Critical Torque 

Also, the most serious transient torque problem is not at 
the instance of switch-on, nor in cases of short-circuits, but at 
the first mode resonance speed. 

Procedure Extension 

The one-mode approach presented herein may be extend
ed to systems with large damping and non-linear stiffness 
elements, as long as the first system model damping is not 
larger than 0.20 [4]. Further study is needed in the areas of 
equivalent damping ratio and linearized stiffness. 

CONCLUSION 

The simplified torsional transient method presented here
in provides a fast alternative for evaluating the low-cycle 
fatigue problem frequently encountered in synchronous motor 

machinery. It is ideal for decision-making at the early design 
stage, and for field trouble-shooting. 

APPENDIX 

The impulse response of the system represented by Equa
tion 4 is 

for small � and A = 1. 

The forced response can be calculated by the convolution 
integral: 

or 

where 

(A1) 

F 1 (T) = ./;T sin [(B - aA) A] e�ll. cos A dA (A2) 

F 2 (T) = - ../;T sin [(B - aA) A] e�ll. sin A dA (A3) 

Let 6T be a finite increment of T. Using equation A1, the 
following recursive equation is derived: 

where 

+ e- �(T+ L'>T) ( (F I COS T-F 2 sin T) sin6T 
+ 6F1 sin (T + 6T) 
+ F2 cos(T + 6T)] (A4) 

F1 (T + 6T) 

F2 (T + 6T) 

(A5) 

(A6) 

Equations A1 to A6 can be implemented into a simple compu
ter routine for calculating the transient modal response. 
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