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ABSTRACT

One of the foremost concerns facing turbomachinery users today
is that of torsional vibration. In contrast to lateral rotordynamics
problems, torsional failures are especially heinous since the first

symptom of a problem is often a broken shaft, gear tooth, or
coupling. The difficulty of detecting incipient failures in the field
makes the performance of a thorough torsional vibration analysis
an essential component of the turbomachinery design process.

The primary objective of this paper is to provide such a
procedure for the special case where the turbomachine is driven by
a synchronous motor. Synchronous motors are one of the most
notorious sources of torsional vibration problems because of the
large pulsating torques they generate during startups. The torsional
shaft stresses generated by these large pulsations are usually
greater than the shaft material endurance limits, thereby causing
the lives of such machines to be limited.

The determination of the number of startups that these machines
can survive is, therefore, a critical portion of their design process.
It is the authors’ experience that there is a great deal of confusion
over the proper way to do this. The full impact of this confusion
was seen on a recently designed compressor train where the use of
one method showed the allowable number of starts to be zero while
a second procedure predicted infinite life. In an attempt to alleviate
this confusion, a logical, step-by-step procedure, based on the
strain-life theory of failure, was generated and is presented herein.
An example illustrating how the authors used this procedure to
design a critical 66,000 hp air compressor is also presented. The
authors believe that employment of this method may well save the
user from the need to introduce an expensive Holset-style damping
coupling into some future compressor train.

INTRODUCTION

Torsional vibration is a subject that should be of concern to all
turbomachinery users. By some accounts, torsional vibration is the
leading cause of failures in turbomachinery drive trains. Some
typical effects of uncontrolled torsional vibration are failed
couplings, broken shafts, worn gears and splines, and fractured
gear teeth. Accordingly, a thorough torsional vibration analysis
should be included as an integral part of the turbomachinery design
process. A comprehensive procedure for performing this analysis is
provided in Corbo and Malanoski (1996).

The criticality of performing this analysis is heightened
whenever the system is driven by an AC synchronous motor.
Synchronous motors are one of the most notorious sources of
torsional vibration problems because of the torque pulsations they
produce during startups. Since the magnitudes of these pulsations
are usually substantial, the resulting shaft stresses are often above
the material endurance limits, making the shafts susceptible to
fatigue. Accordingly, there is usually a definite limit to the number
of startups that a synchronous motor-driven train can safely be
subjected to. It is the aim of this paper to provide users with a
practical analytical procedure for predicting this limit and to
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highlight the criticality of proper selection of the factors employed
in the analysis.

The paper begins with a brief description of synchronous motors
and the mechanisms that make them such a hazard from a torsional
vibration standpoint. A step-by-step procedure is then given for
calculating the number of starts that a synchronous motor-driven
machine can be safely subjected to. The initial steps, generation of
a lumped parameter model, calculation of natural frequencies, and
generation of Campbell diagrams, are only given a cursory
treatment since they are described in detail in other publications.
However, the later steps, performance of the time-transient analysis
and, especially, determination of the shaft fatigue lives, are treated
in detail.

The authors have observed that most of the existing procedures
for predicting fatigue life utilize the traditional stress-life theory of
failure and the traditional conservative torsional stress safety factor
of 2.0. Although the predicted fatigue life and allowable number of
starts are highly sensitive to both these factors (due to the log-log
nature of the S-N curve), use of this method is acceptable for many
machines since it errs on the conservative side.

However, the authors have, on occasion, found the traditional
procedure to be too conservative. After performing a considerable
amount of research, the authors have developed a more
sophisticated procedure that, while still remaining conservative,
provides a more accurate assessment of fatigue life. In the new
procedure, the traditional stress-life theory is replaced with the
strain-life theory of failure, which has consistently been found to
be more accurate. Additionally, the authors found justification for
using a safety factor less than the traditional 2.0 value.
Furthermore, the authors implemented a rigorous method for
accounting for surface finish, size, stress concentration, and notch
sensitivity effects as a function of life. This is an area that the
authors have observed to be a source of considerable confusion for
most engineers.

The mechanics of employing the more sophisticated procedure
are illustrated on a 66,000 hp air compression train and its
advantages over the traditional method are clearly pointed out. The
high sensitivity of the calculated number of starts to the assumed
surface finish, size, stress concentration, notch sensitivity, and
safety factors is also demonstrated.

SYNCHRONOUS MOTORS

AC synchronous motors are often used instead of induction
motors in applications where precise speed control or higher
efficiencies are desired. Unfortunately, these advantages of
synchronous motors do not come without a price since, in the
authors’ experience, synchronous motors are the most notorious
source of torsional vibration problems in turbomachinery. The
primary reason for this is that synchronous motors generate large
sinusoidal pulsating torques that can easily excite torsional
vibrations during the startup process.

The pulsating torques occur because, unlike induction motors,
synchronous motors are not self-starting. This is due to the fact that
the stator’s magnetic field begins rotating at synchronous speed
virtually instantaneously after power is applied. With the stator
rotating and the motor at rest, alternating forward and reverse
torques are applied to the rotor. This causes the rotor to swing back
and forth by minuscule amounts and effectively prevents the
buildup of any significant accelerations in either direction.

Since synchronous motors are not self-starting, they are
normally equipped with squirrel-cage (AKA amortisseur)
windings, which provide starting torque and also provide damping
during steady-state running. These windings are utilized to
accelerate the motor as an induction motor from zero speed to a
speed slightly below synchronous speed. Starting is usually
performed with no voltage applied to the rotor’s field winding.
When synchronous speed is approached, DC field voltage is
applied and the rotor is pulled into synchronism.

Pulsating torques are created during this procedure due to the
fact that synchronous motor rotors contain salient poles, which are
magnetic protrusions enclosed by field coils. The resulting
asymmetry causes the motor’s output torque to vary as a function
of rotor position. This effect is in direct contrast to pure induction
motors that have symmetric rotors and a generated torque that is
independent of rotor location.

Synchronous motors are often modeled as having two axes of
symmetry, the direct axis and the quadrature axis. The direct axis
refers to a centerline that passes directly through one of the rotor’s
salient poles. When the direct axis is in perfect alignment with the
magnetic field established by the stator, the magnetic reluctance
between rotor and stator reaches a minimum value. Accordingly,
the torque produced in this position, known as the direct axis
torque, represents an extreme (maximum or minimum) value
produced during a revolution of the rotor.

On the other hand, the quadrature axis is a centerline that is
perpendicular to the direct axis. The condition where this axis is
aligned with the stator’s magnetic field represents the point of
maximum magnetic reluctance. The resulting torque, which is
referred to as the quadrature axis torque, represents the opposite
extreme from the direct axis torque.

Accordingly, as the rotor rotates, the torque varies in a roughly
sinusoidal fashion between the limits imposed by the direct axis
and quadrature axis torques. The mean value of these two is
referred to as the average torque and represents the torque available
to provide acceleration to the system’s inertias. Superimposed on
this torque is a pulsating torque whose magnitude is one-half the
difference between the direct and quadrature axis torques. Figure 1
illustrates the various torque components as a function of speed for
a hypothetical synchronous motor.

Figure 1. Typical Synchronous Motor Torque-Speed Curve.

The frequency of the torque pulsations is the frequency at which
the stator’s rotating magnetic field passes a rotor pole. Since the
stator’s magnetic field rotates at synchronous speed, the excitation
frequency is a function of the difference between synchronous
speed and rotor speed, which is known as slip speed. Specifically,
excitations occur at twice slip frequency where slip frequency is
defined by the following equation:

fslip = f1 • (Ns�N) / Ns (1)

where:
fslip = Slip frequency (Hz)
fl = Line frequency (Hz)
Ns = Synchronous speed (rpm)
N = Rotor speed (rpm)
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The motor’s synchronous speed is given by the following
equation:

Ns = 120 • f1 / Np (2)

where:
Ns = Synchronous speed (rpm)
fl = Line frequency (Hz)
Np = Number of poles in motor

The ramifications of Equation (1) are extremely important. It is
seen that the frequency of torque pulsations, twice slip frequency,
decreases as rotor speed increases. Thus, at zero speed, the
excitation frequency is equal to two times line frequency or 120 Hz
in the United States. As the motor is accelerated, the excitation
frequency decreases linearly until it reaches zero when the motor
achieves synchronous speed.

The impact that this behavior has on the torsional vibration
response of the machine is best illustrated by the Campbell diagram
for a hypothetical system presented in Figure 2. In a Campbell
diagram, all the unit’s torsional natural frequencies are plotted as
horizontal lines and the operating (synchronous) speed is denoted by
a vertical line. The synchronous motor excitation line is then
generated by connecting the point corresponding to twice line
frequency (120 Hz) on the y-axis with the point corresponding to
synchronous speed (1800 rpm) on the x-axis. Any intersection
points between the excitation line and the natural frequency lines
(there are three in the figure) are known as interference points. These
represent potential resonances that can be triggered during startup.

Figure 2. Typical Synchronous Motor Campbell Diagram.

It is easily seen from the figure that the motor generates
interferences with all natural frequencies that are below twice line
frequency. This situation is, by no means, unique to the example
selected. In fact, all systems driven by synchronous motors will
contain interferences with all natural frequencies below twice line
frequency that could be excited during starting. This is a significant
source of potential problems since most practical turbomachinery
drive trains have several natural frequencies within this range.

UNDAMPED ANALYSIS

From the preceding discussion, it is easily seen that all
turbomachinery drive trains driven by synchronous motors must be
subjected to a rigorous torsional vibration analysis during the
design phase of the program to assure structural adequacy. It is,
therefore, the primary intent of this paper to present such a
procedure.

Under normal circumstances, the torsional analysis should be
performed within 10 weeks of order placement to allow shaft sizes

and geometries to be modified without affecting delivery. In
addition, it should be provided to each of the individual component
vendors to obtain their concurrence. Unfortunately, this analysis is
typically among the last analyses to be performed during the
design phase so that changes resulting from its performance often
impact equipment delivery schedules, sometimes dramatically. The
authors cannot overemphasize the perils involved in following this
typical path.

The first step in the analysis procedure is the generation of a
lumped parameter model such as the simplified one shown in
Figure 3. The model consists of a series of interconnected disk and
shaft elements. The disks represent the machine’s significant
inertial components while the shafts behave as torsional springs.
Detailed guidelines for generating such a model from hardware
drawings are provided in Corbo and Malanoski (1996).

Figure 3. Sample Lumped Parameter Model.

Once the model is completed, the system’s undamped natural
frequencies should be calculated. Since there is a plethora of
computer codes available for performing this computation, no
further elaboration is required. Once the computer results are
obtained, the authors recommend performing a quick “sanity
check” using hand analysis to validate the computer analysis.
Several quick methods for doing this are provided in Corbo and
Malanoski (1996).

Once the undamped analysis has been validated, a Campbell
diagram, similar to that of Figure 2, should be generated. The
Campbell diagram allows the determination of the system’s
potential resonance points and provides an excellent overview of
the machine’s torsional vibration behavior, analogous to the role
played by the critical speed map in a lateral rotordynamics study.
For the sake of simplicity, this discussion will focus solely on the
excitation generated during the synchronous motor startup.
Naturally, in all real systems, there are other excitations present
that also must be included in the Campbell diagram.

Once the Campbell diagram has been generated, it should be
checked for interference points. In the highly unlikely scenario that
there are no such points present, the analysis is finished and the
system can be sanctioned. However, the much more probable
situation is that there are several such points. In this case, the
impact of passing through those resonance points must be
evaluated via a transient response analysis of the startup.

TRANSIENT RESPONSE ANALYSIS

In the transient response analysis, the synchronous motor’s
excitations are applied to the system and the resulting vibratory
torques and stresses are computed for each shaft element. Damping
due to various sources is included in the model. The induced
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torques and stresses are then compared to allowable values to
determine if the system is structurally adequate.

As was previously stated for undamped natural frequency
analysis, there are a number of computer codes available for the
transient analysis of torsional systems. The large majority of them
use numerical, time-stepping procedures. In these, the differential
equations of motion for the lumped model’s disks are integrated
numerically using methods such as Runge-Kutta and the
Newmark-β method. The analysis begins at time zero with all
parameters set to their initial values. The numerical
approximations, which define a parameter’s new value in terms of
its previous value, are then used to determine all parameter values
after the first time increment. This procedure is continued in a
time-marching manner until the machine reaches synchronous
speed. This procedure, therefore, estimates the time history of all
relevant parameters in the system. Chen (1995), Evans, et al.
(1985), and Szenasi and von Nimitz (1978) all discuss numerical
integration methods in much greater detail.

In using algorithms employing the Runge-Kutta numerical
integration procedure, the one with which the authors are most
familiar, the selection of the time step is critical from the
standpoint of solution stability. Per the authors’ experience, the
time step must be made less than approximately one-fifth of the
period corresponding to the machine’s highest natural frequency.
Since a torsional model has as many degrees of freedom (and
natural frequencies) as the number of shaft elements in the model,
the highest natural frequency for a typical turbomachinery drive
train, whose model often contains more than 50 shaft elements, can
be astronomically high. Accordingly, if such a model were to be
subjected to a time-transient analysis using the Runge-Kutta
method, the required time step would be so infinitesimally small
that the analysis would be totally impractical.

The authors normally solve this problem by reducing the lumped
parameter model to a much smaller model, usually consisting of
about five disk elements. Since such a model has only four natural
frequencies, reasonable time steps can be employed when working
with it. Reduction in model size carries a couple of other benefits,
as well. First of all, the amount of data generated in the transient
analysis of a five-disk model, although still substantial, is much
more manageable than that generated when using a much larger
model. Secondly, since time-marching analyses require a
substantial amount of computer time, the reduction in model size
makes the computer time more reasonable. This consideration, a
huge one just a few years ago, has lessened in significance with the
advent of modern high-speed computers. An example case where
an initial model containing 130 stations is reduced to one having
only seven is provided by Bogacz, et al. (1990).

The reason that a large multidisk model can be replaced by a
much simpler five-disk one without much sacrifice in accuracy is
that, in the large majority of practical cases, the only natural
frequencies that participate significantly in the synchronous motor
startup are the first two (and the second mode’s participation is
often minor). In fact, Sohre (1965), Pollard (1980), and Wright
(1975) all state that most synchronous motor resonance problems
involve only the first (also known as the fundamental) mode. Thus,
as long as the simplified model’s first two natural frequencies,
particularly the first, are reasonably close to those of the original
model, the accuracy of the analysis is preserved.

Two basic principles are utilized in the conversion of multidisk
models to five-disk ones. The first is that relatively small inertias
have very little effect on the machine’s first two natural
frequencies. These disks can, therefore, be ignored and the shaft
elements on either side of them can be combined as springs in
series. The second principle is that shafts having relatively large
torsional stiffnesses behave as if they were rigid in the first two
modes. Accordingly, these elements can be discarded and the
inertias on either side of them can be simply added together.

Although some judgment must be exercised in deciding where
to place the five disks, some general rules can be stated. The large

majority of applications involving synchronous motors that the
authors are familiar with involve the motor driving a compressor
through a speed-increasing gearbox. In such cases, the authors
generally locate one disk at the motor’s rotor, one at the gear mesh,
and one at the compressor’s main wheel. The other two are usually
located in the vicinity of the two couplings, one on each side of the
gear mesh.

Since some of the transient response programs that the authors
have seen do not have the capability of handling multiple shafts
rotating at different speeds, it is often necessary to make the five-
disk model an “equivalent model” that runs at the motor shaft
speed. This model has exactly the same dynamic characteristics
and natural frequencies as the actual system. To generate the
equivalent model, the parameter values for all elements on the
motor shaft are left unchanged. However, all elements on the
compressor shaft must be transformed via the following equations:

Jeq = J • N2 (3)

keq = k • N2 (4)

where:
Jeq = Equivalent inertia referenced to motor shaft
J = Actual inertia
N = Gear ratio (ratio of compressor speed to motor speed)
keq = Equivalent stiffness referenced to motor shaft
k = Actual stiffness

Since the equivalent inertia referred to the motor shaft is equal
to the product of the actual inertia and the square of the gear ratio,
there is usually a significant difference between the equivalent and
actual values. It is, therefore, crucial that the compressor inertia
data used for sizing the motor be clearly labeled with regard to the
speed that it is relative to.

Once the five-disk model is obtained, an undamped analysis
should be run to ensure that its first two natural frequencies have
not deviated significantly from those of the original model. If some
deviation is observed, the five-disk model should be tweaked to
reduce the discrepancies to acceptable levels.

Once the model to be used for the transient analysis is complete,
the next step is to specify the machine’s performance and damping
characteristics. The performance characteristics that are needed
include the motor’s average and pulsating torque and the
compressor’s load torque as a function of speed over the entire
speed range from standstill to synchronous speed. The need for the
pulsating torque is obvious since it represents the excitation being
applied to the system. However, the motor’s average and
compressor’s load torques are also important since they determine
the machine’s acceleration rate.

During startups, the net torque available to accelerate the
machine is equal to the motor’s average torque minus the load
torque. The system acceleration rate in the vicinity of the resonant
speed is crucial because it determines the length of time (dwell
time) that the machine spends at resonance. The longer the dwell
time, the more likely the machine is to experience problems, for
two reasons. First, longer dwell times introduce a larger number of
damaging high-stress cycles. Second, longer dwell times mean
larger torque peaks since they give the response more time to build
up toward the steady-state value (which corresponds to an infinite
dwell time). Accordingly, designers should aim to maximize the
system’s acceleration rate in the vicinity of the fundamental
mode’s resonant speed.

The motor torque should be based on the voltage at the motor
terminals, not line voltage. A conservative approach is to not
account for any voltage recovery as the train increases in speed.
The compressor torque is generally based on throttling the
compressor suction to reduce the required horsepower. Care must
be taken for refrigeration systems since the compressor suction
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pressure may settle out at a much higher pressure than under
normal operation.

Damping must also be applied to the system in order to limit the
response at resonance (which is theoretically infinite for the
undamped case) to finite values. The damping due to localized
sources can be calculated using the methods given in Corbo and
Malanoski (1996) and applied to the appropriate elements.
However, the authors have found this to be a time-consuming and
often unnecessary step.

Instead, the authors advocate accounting for damping by merely
applying a generic damping ratio to each shaft element in the
model. This generic ratio accounts for effects, such as hysteretic
and slip damping, that are present in all real systems but are
extremely difficult to quantify.

A search of the literature revealed some difference in opinion on
the magnitude of the damping factor that should be applied. Chen,
et al. (1983), cite a typical range of three to five percent of the
critical value for geared systems. Anwar and Colsher (1979) are in
basic agreement, giving a range of two to five percent. Mruk, et al.
(1978), give exactly the same range. Wright (1975) recommends
the use of a factor of 1.25 percent for ungeared systems and 2.0
percent for geared machines.

The reason why geared systems are distinguished from ungeared
ones is that geared systems generally contain more damping. There
are two primary reasons for this. The first is that most
turbomachinery gearshafts are supported on fluid-film journal
bearings. Although the viscous friction that is inherent in these
bearings provides very little damping, if there is any lateral motion
accompanying the torsional vibration, the fluid in the bearing’s
radial clearance is forced to flow circumferentially, thereby
generating a squeeze-film effect. Simmons and Smalley (1984),
Draminsky (1948), and Shannon (1935) all describe torsional
systems in which this was the predominant source of damping in
the system. Of course, the torsional-lateral coupling necessary to
generate this phenomenon is present only in geared machines.

The second is that, in synchronous motor startups, the cyclic
torques occurring at gear meshes at resonance are normally greater
than the transmitted torque. In this situation, known as a torque
reversal, the resulting negative net torque causes the gear drive
surfaces to separate and the teeth to move through their backlash
until they make contact on their nondrive surfaces. Once the torque
becomes positive again, the teeth are driven back through their
backlash until they resume contact on their original surfaces. This
results in successive impacts of the gear teeth that dissipate energy
via generation of shock waves and eddies. This so-called impactive
damping increases the overall system damping.

Thus, the one conclusion that can be drawn from the various
references is that the minimum amount of damping that can be
expected for a typical geared machine consisting of a motor,
gearbox, and compressor is two percent of the critical value. Since
the authors have found this value to be conservative for such
machines, this is the value recommended for use in the absence of
actual test data.

Some care should be taken when applying this generic damping
ratio since the authors are aware of common misinterpretations that
yield incorrect damping coefficients for the individual shaft
elements. The damping coefficients for each shaft element, which
will all be different, should be calculated using the following:

Cn = 2 • Γ • kn / �ωn (5)

where:
Cn = Damping coefficient for nth shaft (lbf-sec/in)
Γ = Damping ratio
kn = Stiffness of nth shaft (lbf/in)
ωn = First torsional natural frequency (rad/sec)

Since torque reversals are commonly encountered, another
characteristic of geared machines that is sometimes accounted for

in the transient analysis is the backlash between the gear teeth.
Including this tends to reduce the predicted peak torques at
resonance since the motor’s excitation torques are not applied to
the compressor shaft during torque reversals. However, Chen, et al.
(1983), and the authors have found that the impact of including this
effect is usually minor and, thus, recommend conservatively
ignoring it.

Once the transient model is completed, the time-transient
analysis program should be run to obtain the torque versus time
history for each relevant shaft element in the model. A typical plot
will look like Figure 4 where the torque cycles at a fairly steady
level until resonance with the fundamental natural frequency is
approached. At this point, the torque magnitudes begin increasing
until they reach a peak at the resonance point. After this, the torque
magnitudes begin to decrease until the resonance zone is exited,
after which the torques remain fairly constant at a relatively low
level.

Figure 4. Typical Synchronous Motor Response.

DETERMINATION OF SHAFT FATIGUE LIVES

Once the torque versus time history for a shaft element is
known, the life of the shaft can then be calculated. The first step in
life determination is the identification of the maximum and
minimum torque values for each cycle within the resonance zone.
There are a number of ways to convert the results of a transient
analysis, which are typically in the form of Figure 4, into a list of
cycles having minimum and maximum torques. For the sake of
clarity, the descriptions of these methods along with the authors’
recommendations will be held off until the example problem is
discussed.

The next step is identification of the region or regions within the
shaft element that constitute the “weak links” and are most likely
to fail. These regions almost always contain geometric stress risers
such as steps in shaft diameter and are usually located at relatively
small diameters. The one exception to this occurs when the shaft
contains a keyway. Since the stress concentration factors arising at
keyways are normally very high, regions containing keyways
should always be checked out even if they are at large diameters.
For the regions of interest, the maximum and minimum torques
should be converted to maximum and minimum shear stress values
using the following equation from strength of materials:

τ = T • R / Ip (6)

where:
τ = Shear stress (psi)
T = Torque (in-lbf)
R = Shaft outside radius (inch)
Ip = Shaft area polar moment of inertia (in4)



The maximum and minimum shear stresses so obtained should
then be combined to obtain the cyclic stresses occurring in each
torque cycle. It should be noted that in fatigue problems such as
this where the mean stress is non-zero, it is technically necessary
to calculate both the mean and cyclic stresses in order to determine
life. However, Evans, et al. (1985), Walker, et al. (1981), and the
authors have found that in synchronous motor startups, the
magnitude of the mean stress is so much lower than that of the
cyclic stress that the mean stress can be safely ignored. Thus, only
the cyclic stress needs to be calculated, using the following
equation:

τcyclic = 0.5 • (τmax�τmin) (7)

where:
τmax = Maximum stress
τmin = Minimum stress
τcyclic = Cyclic stress

Determination of the cyclic stress is the easy part of the life
prediction procedure. The part that confuses many engineers is the
determination of the allowable stress that this cyclic stress should
be compared to. Although the authors do not pretend the procedure
that follows is the only legitimate one that can be used for this, they
do believe it is more accurate than the large majority of methods
currently being used.

Strain-Life Theory of Failure

The primary difference between the advocated procedure and
most other procedures currently being used is that it relies on the
strain-life theory of failure rather than the traditional S-N curve
(stress-life theory). When the traditional S-N curve is employed, it
is implicitly assumed that the life of a part is directly dependent on
the level of stress it carries. On the other hand, the strain-life theory
is based on the empirical finding that the parameter that determines
the life of a part is strain (i.e., displacement), not stress (i.e., load).

In the traditional stress-life method, stress is plotted versus
number of cycles on log-log paper. Shigley and Mischke (1989)
speak for many authors when they advocate the following simple
method for generating the S-N curve. In the absence of more
precise test data, the tensile endurance limit can be approximated
as being equal to one-half of the material’s ultimate tensile strength
and should be taken to correspond to a life of 106 cycles. In the low
cycle fatigue regime, the strength at a life of 103 cycles should be
set equal to 90 percent of the ultimate tensile strength. The
complete S-N curve can then be generated by connecting these two
points by a straight line on a log-log plot of stress versus life.

Shigley and Mischke (1989) point out that the S-N curve
generated via the above procedure has the following governing
equations:

S (N) = a • Nb (8)

a = (.90 • UTS)2 / Se (9)

b = � 1 / 3 • log (.90 • UTS / Se) (10)

where:
N = Number of fully-reversing cycles
S(N) = Cyclic stress corresponding to a life of N cycles (psi)
UTS = Ultimate tensile strength (psi)
Se = Tensile endurance limit (psi)
a, b = Empirical constants

The use of the S-N curve is quite simple. For a given fully-
reversing stress level, the above equations or the plot can be used
to find the life corresponding to that stress.

Although the traditional stress-life method is a perfectly
acceptable procedure for evaluating the fatigue lives of shafts, it
tends to be conservative due to the following two effects:

• Most experts agree that the endurance limit corresponds to a life
somewhere between 106 and 107 cycles. Accordingly, assuming
that the life corresponding to the endurance limit strength is only
106 cycles is conservative.

• Shigley and Mischke (1989) state that in order for a fatigue
failure to occur, cyclic plastic deformations must be present. Boyer
(1986) concurs, stating that fatigue failures are the product of the
simultaneous action of cyclic stresses, tensile stress, and plastic
strain. Since the presence of plastic strain is needed for a fatigue
failure to occur, the life of a part is a function of both its strength
and its ductility. Since the stress-life method does not account for
ductility effects, it tends to under-predict the lives of parts made
from ductile materials.

The strain-life theory deviates from this by assuming that the life
of a part is dependent on the level of strain, not stress, occurring in
the part. Shigley and Mischke (1989) speak for most experts in the
field when they claim that the strain-life theory is the best existing
theory for predicting fatigue failures. This is consistent with the
authors’ experience that the stress-life method, while being
perfectly valid, tends to be conservative. On the other hand, the
strain-life theory, while still erring on the conservative side, is a
much more accurate predictor of shaft life.

The basis of the strain-life theory is that the relationship between
applied strain and life is as illustrated in Figure 5, taken from
Shigley and Mischke (1989). It is seen from the figure that the total
strain in a part is the sum of the elastic strain and the plastic strain.
It is also seen that both the elastic and plastic strains are linearly
related to part life when plotted on log-log paper. For this reason,
this theory is also commonly referred to as the universal slopes
theory. It is further seen that, in the high cycle fatigue (HCF)
regime, that the total strain is primarily elastic strain. On the other
hand, in the low cycle fatigue (LCF) region, the plastic strain
predominates.

Figure 5. Typical Strain Versus Life Curve.

Boyer (1986) points out that most people arbitrarily set the
dividing line between low and high cycle fatigue somewhere
between 104 and 105 cycles. However, a more accurate dividing
criterion is whether the predominant component of strain imposed
during cyclic loading is elastic or plastic. In fact, Mischke (1982)
defines the dividing line between LCF and HCF as the point where
the elastic and plastic strains are equal.

The baseline equation for the strain-life theory is the Coffin-
Manson equation, which assumes that the total strain versus life
curve behaves in the manner of Figure 5:

ε(N) = (σf` / E) • Nb�εf` • Nc (11)
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where:
N = Life (cycles)
ε(N) = True strain corresponding to a life of N cycles
σf� = True stress at fracture during tensile test (psi)
εf� = True strain at fracture during tensile test
b = Elastic strain exponent (slope of elastic strain line)
c = Plastic strain exponent (slope of plastic strain line)
E = Elastic modulus (psi)

Equation (11) is the equation that the authors advocate using for
determining the strain versus life behavior of a given shaft
subjected to torsional vibration. The elastic and plastic strain
exponents are material characteristics that can be obtained from
Boyer (1986), Shigley and Mischke (1989), or any other resource
containing material fatigue properties. The true stress and true
strain at failure can be directly obtained from the tensile test results
per the following:

σf` = UTS / (1�RA) (12)

εf` = In (1 / (1�RA)) (13)

where:
UTS = Ultimate tensile strength (psi)
RA = Reduction in area 

It is seen that whereas the stress-life method did not take the
material’s ductility into account, the strain-life method accounts
for the material’s reduction in area, a direct measure of ductility.

Equation (11) gives the strain versus life characteristics for any
shaft element of interest. However, unless a finite element code is
employed during the transient startup analysis, the strains imposed
on the shafts are usually unknown. Instead, the known parameter
for each shaft element is stress. The logical question is then how
the relation of Equation (11) can be converted into an equation,
similar to Equation (8), relating stress and life.

In an attempt to answer this question, the authors consulted with
a number of fatigue experts of their acquaintance. The consensus
of these experts was that the strain-life curve should be converted
into a stress-life curve by merely multiplying the strains by the
material’s elastic modulus, E. This is not purely correct since the
assumption that the stress is equal to the product of the strain and
the elastic modulus is only valid for elastic strains. As is shown by
Mischke (1982), the relationship between plastic stresses and
strains is much more complex.

However, the experts justified their recommendation by noting
that for the large majority of synchronous motor startup
calculations, the portion of the curve that is of interest is the portion
where the elastic strain is greater than the plastic strain. This is
because the proposed version of API 617 indicates that compressors
being driven by synchronous motors are generally capable of
surviving at least 1500 starts. Thus, using Miner’s cumulative
damage rule, which will be described in detail later, with a limiting
summation value of 0.5 and assuming 10 torsional cycles per start,
the smallest number of allowable cycles will be 30,000 (1500 • 10
/ 0.5). In fact, in the example provided later to illustrate the authors’
procedure, the smallest number of allowable cycles is 61,600,
which lies in the HCF region of the strain versus life curve for most
engineering materials. Accordingly, the error introduced by making
an approximate conversion of plastic strain to stress is small.

In order to test the validity of this recommendation, the authors
used the recommended procedure on a 4340 steel shaft and compared
its results with those obtained using the much more complicated
procedure given by Mischke (1982). As expected, the allowable
stress at a life of 1000 cycles predicted by the recommended
procedure was about three times that predicted by the more
sophisticated method. However, at a life of 10,000 cycles, the
recommended procedure over-predicts the strength by about 35
percent and at a life of 30,000 cycles, it is only 7.5 percent high. At

lives above 40,000 cycles, there is virtually no difference between the
two methods. Accordingly, it is concluded that merely multiplying
the strains of Equation (11) by the elastic modulus to obtain stresses
is perfectly valid for the large majority of synchronous motor startup
problems that the user is likely to encounter. However, the user
should always remember the limitations of this method when dealing
with small numbers of cycles.

Strength Derating Factors

Multiplication of Equation (11) by the elastic modulus yields the
baseline tensile stress versus life curve for the shaft material of
interest. This curve must then be multiplied by a number of factors
to obtain the shear stress versus life curve for the actual shaft
element, as follows:

τ (N) = S (N) • Fsh • ka • kb / (kf • SF) (14)

where:
τ(N) = Allowable shear stress for a life of N cycles (psi)
N = Number of fully-reversing cycles
S(N) = Allowable tensile stress for a life of N cycles (psi)
Fsh = Shear factor
ka = Surface finish factor
kb = Size factor
kf = Fatigue stress concentration factor
SF = Safety factor

In the authors’ experience, determination of the derating factors
in Equation (14) is one of the most confusing and misunderstood
aspects of analyzing synchronous motor startups. For that reason,
the proper method for determining each of these factors will be
discussed in detail.

Shear Factor

The shear factor, Fsh, is included to reflect that a material’s
strength in shear is less than its tensile strength. This factor is
merely the ratio of a material’s shear strength to its tensile strength
for the same number of applied cycles. There are two major failure
theories, both discussed in Shigley and Mischke (1989), for
determining this factor. The more conservative theory is the
maximum shear stress theory that predicts this ratio is 0.50. The
second theory is the distortion energy (AKA von Mises) theory that
gives this ratio as 0.577.

The authors are acquainted with some engineers, such as
Szenasi and von Nimitz (1978), who believe that the maximum
shear stress theory should be used for synchronous motor startups
because it is more conservative. However, it is the authors’
experience that the distortion energy theory is a more accurate
predictor of the actual shaft strength. This viewpoint is shared by
Banantine, et al. (1990), Juvinall (1967), and Shigley and Mischke
(1989). Accordingly, the authors advocate the use of the distortion
energy theory and a shear factor of 0.577.

Surface Finish Factor

The surface finish factor, ka, accounts for the fact that the
susceptibility of a part to fatigue failures can be drastically reduced
by improving its surface finish. This is because the scratches, pits,
and machining marks, which are more prevalent in a rough surface,
add stress concentrations to the ones already present due to part
geometry. Since most published material properties are obtained
from tests performed on finely polished specimens, the fatigue
strengths of most parts will be less than the published values. The
surface finish factor represents the ratio of the part’s fatigue strength
to that of the test specimen, based on surface finish considerations.

Shigley and Mischke (1989) provide the following equation for
calculating the surface finish factor:

ka = a • UTSb (15)



where:
ka = Surface finish factor
UTS = Ultimate tensile strength (ksi)
a, b = Empirical coefficients dependent on manufacturing method

Coefficients a and b are given in Table 7-4 of Shigley and Mischke
(1989) for various surface finishing processes. For machined
surfaces, a is equal to 2.70 and b equals �0.265. Although it is not
explicitly listed in the table, the surface finish factor for a polished
surface is 1.0.

Most of the engineers of the authors’ acquaintance account for
surface finish effects by utilizing the above factor to derate the
strength at all lives on the S-N curve. The authors feel that this is
over-conservative since Boyer (1986) points out that the surface
finish factor calculated using the above equation only applies to the
endurance limit at 106 cycles. At all other lives, the effect of
surface finish is reduced until a life of 1000 cycles is reached,
where it has no effect whatsoever (ka = 1.0).

Although Boyer (1986) does not give any methodology for
determining the surface finish factor at lives between 1000 and 106

cycles, using the same arguments that are provided later for the size
and stress concentration factors, the authors have assumed that the
relationship between surface finish factor and life is linear when
plotted on log-log coordinates. Utilizing that assumption, the
relevant equations for surface finish factor as a function of life can
be shown to be as follows:

ka (N) = 10b / Nm (16)

m = log [ka (1000) / ka (106)] / 3.0 (17)

b = log {[ka (1000)]2 / ka (106)} (18)

where:
ka(N) = Surface finish factor for a life of N cycles
ka(106) = Surface finish factor for 106 cycles (from Equation (15))
ka(1000) = Surface finish factor for 1000 cycles (1.00)
m = Slope of ka versus N line on log-log coordinates
b = Intercept of ka versus N line on log-log coordinates

Thus, it is seen that the surface finish factor varies from a
maximum value of 1.0 at 1000 cycles to a minimum value of that
given by Equation (15) at 106 cycles.

Size Factor

The size factor accounts for the empirical observation that when
two shafts are manufactured from the same batch of material and
tested at the same level of surface strain, the larger diameter shaft
will almost always fail in a lower number of cycles than the other
shaft. There are three general theories for why this size effect
exists. The first recognizes that fatigue failures almost always
initiate at the location of a flaw in the material. Since a shaft
containing a larger volume of material is statistically more likely to
contain such a flaw, the susceptibility of a shaft to fatigue failure
increases with shaft diameter.

The second theory is very similar to the first except that it is
based on surface area instead of volume. This theory states that
since almost all fatigue failures initiate at a flaw on the surface of
a part, larger parts are more vulnerable since they have larger
surface areas and are, thereby, more likely to contain surface flaws.

The third theory, as espoused by Banantine, et al. (1990), is
based on the assumption that the susceptibility of a part to fatigue
failure is directly dependent on the volume of the thin layer of
surface material that is subjected to a stress level within 95 percent
of the stress at the surface. Since a larger component will have a
shallower stress gradient than a smaller part, the larger part will
have a larger volume subjected to this high stress. This makes the
larger part more vulnerable to fatigue failures. Empirical results

that reveal that size effects are much less important for axial
loadings, where there is no stress gradient, than for bending or
torsional loadings provide backing for this hypothesis.

Regardless of what mechanism is at work, there is no question
that larger shafts subjected to torsional loadings will fail in less
cycles than smaller shafts. Additionally, since most shafts used in
practical turbomachines are larger than the 0.25 to 0.30 inch
diameter shafts usually used to generate published strength data,
the size effect almost always involves a reduction in strength. This
is accounted for via the size factor, kb, which is defined as the ratio
of the strength of the part to the strength of the test specimen.

In a search of the literature, the authors found a number of
empirical relations for size factor. A number of these are
summarized in Table 13-3 of Shigley and Mischke (1986). One that
is not tabulated is given by Shigley and Mischke (1989) as follows:

kb = (d / 0.3)�0.1133 (19)

where:
kb = Size factor
d = Shaft diameter (inch)

Another relation that the authors have found to be useful is given
by Banantine, et al. (1990):

kb = 0.869 • d�0.097 (20)

where:
kb = Size factor
d = Shaft diameter (inch)

Regardless of which method is used to determine it, the authors
have found that, similar to the surface finish factor, many engineers
erroneously believe that the size factor should be applied to the
entire S-N curve. This is refuted by Banantine, et al. (1990), who
state that the size effect is observed mainly in the HCF regime.
Juvinall (1967) agrees, stating that the effect of part size on static
strength and strength at 1000 cycles is much less pronounced than
at 106 cycles and is commonly neglected.

Accordingly, using the same reasoning as was used for the
surface finish factor, the authors advocate using the size factor
obtained from the above empirical relations only with the strength
for 106 cycles. At a life of 1000 cycles, a size factor of unity should
be employed, and at all lives between these two points, the size
factor versus life characteristic should be assumed to follow a
linear relation when plotted on log-log coordinates. The relevant
equations are very similar to those previously given for the surface
finish factor:

kb (N) = 10b / Nm (21)

m = log [kb (1000) / kb (106)] / 3.0 (22)

b = log {[kb (1000)]2 / kb (106)} (23)

where:
kb(N) = Size factor for a life of N cycles
kb(106) = Size factor for 106 cycles (from Equation (19) or (20))
kb(1000) = Size factor for 1000 cycles (1.00)
m = Slope of kb versus N line on log-log coordinates
b = Intercept of kb versus N line on log-log coordinates

Stress Concentration Factor

The fatigue stress concentration factor, kf, is included in
Equation (14) since, in the authors’ experience and that of Jackson
and Umans (1980), almost all torsional vibration fatigue failures
occur at locations of geometric stress concentrations such as fillet
radii or keyways.
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The fatigue stress concentration factor, kf, is arrived at by first
determining the geometric stress concentration factor, kt. This
factor is solely dependent on the geometry of the stress raiser and
is totally independent of the part’s material and condition.
Peterson (1974) gives geometric stress concentration factors for
virtually any geometry that the user is likely to encounter. Finite
element analysis is another effective method for determining
values of kt.

The geometric stress concentration factor is determined
assuming that the part is made from an ideal material that is
isotropic, elastic, and homogeneous. Fortunately, the deviations
from these assumptions that occur in real materials tend to reduce
the impact of the stress raiser. To account for these real effects, a
second stress concentration factor, kf, which is always less than or
equal to kt, is defined as follows:

kf = 1 � q (kt�1) (24)

where:
kf = Effective stress concentration factor
kt = Geometric stress concentration factor
q = Material notch sensitivity

It is seen that the geometric and effective stress concentration
factors are related by a parameter, q, which represents how
sensitive the material is to notches. The notch sensitivity factor is
defined by the above equation and, by definition, is always
between zero and one. A material having a notch sensitivity of zero
is totally insensitive to notches such that its effective stress
concentration factor is always 1.0, regardless of notch geometry.
On the other hand, a material having a notch sensitivity of one is
extremely sensitive to the presence of notches and, as a result, its
geometric and effective stress concentration factors are equal.

In general, the notch sensitivity factor is dependent on the
material, its heat treatment, and the size of the notch in question.
Juvinall (1967) and Shigley and Mischke (1989) both give plots
that can be used to determine the notch sensitivity factor for most
practical cases. Once the notch sensitivity is obtained, it should be
combined with the geometric stress concentration factor using
Equation (24) to obtain the effective stress concentration factor, kf.

As was the case with the surface finish and size factors, the
effective stress concentration factor determined in the above
manner only applies at a life of 106 cycles. However, unlike the
surface finish and size factors, there is some disagreement over
how much the impact of stress concentrations is reduced at a life of
1000 cycles. Shigley and Mischke (1989) recommend that, similar
to the cases for surface finish and size factors, the life of 1000
cycles be treated as a static loading case, which has a
corresponding kf value of 1.0. Evans, et al. (1985), are more
conservative, recommending that the square root of the kf value
corresponding to 106 cycles be used at 1000 cycles.

To resolve this discrepancy, the authors turned to Juvinall (1967)
who acknowledges that many experts have assumed that the effects
of stress raisers are negligible at lives up to 1000 cycles. However,
he goes on to say that recent experiments have clearly indicated
that this assumption is overly optimistic. Accordingly, the authors
have adopted the method of Evans, et al. (1985), by using the
following equation:

kf (1000) = [kf (106)]0.5 (25)

where:
kf(1000) = Effective stress concentration factor for 1000 cycles
kf (106) = Effective stress concentration factor for 106 cycles

Once the two endpoints are known, there is nearly unanimous
agreement on how kf values between 1000 and 106 cycles should
be determined. Shigley and Mischke (1989), Evans, et al. (1985),
and Juvinall (1967) all agree that the kf versus N characteristic is
linear when plotted on log-log coordinates. The reasoning behind

this is that doing so keeps the S-N curve linear on log-log
coordinates, which agrees with empirical findings. It is this
reasoning that was used previously for deciding that the surface
finish and size factors should also exhibit the same behavior as a
function of life. Parroting the equations previously provided for the
surface finish and size factors, the equations for determining kf are
as follows:

kf (N) = 10b / Nm (26)

m = log [kf (1000) / kf (106)] / 3.0 (27)

b = log {[kf (1000)]2 / kf (106)} (28)

where:
kf(N) = Effective stress concentration factor for a life of N

cycles
kf(106) = Effective stress concentration factor for 106 cycles

(from Equation (24))
kf(1000) = Effective stress concentration factor for 1000 cycles

(from Equation (25))
m = Slope of kf versus N line on log-log coordinates
b = Intercept of kf versus N line on log-log coordinates

It should be noted that the procedure provided herein utilizes the
stress concentration factor as a strength reduction factor (per
Equation (14)) rather than in the more conventional role of a stress
increasing factor. If kf were independent of life, the two methods
would be equivalent and could be used interchangeably. However,
since kf is a function of life, it must be used as a strength reduction
factor. Thus, the user should remember to not apply a stress
concentration factor to the cyclic stress obtained from Equation (7)
since stress concentration effects are already accounted for in the
S-N curve.

Safety Factor

In a previous paper (Corbo and Malanoski, 1996), the authors
reported that an extensive literature search revealed a near
unanimous consensus that a safety factor of 2.0 should be
employed when comparing calculated and allowable stresses for
torsional vibration analyses. However, these recommendations
were almost all concerning the safety factor to be applied to the
results of a steady-state torsional response analysis. In the authors’
experience, the primary reasons why a safety factor is needed for
torsional analyses are the inherent uncertainties in the magnitudes
of the excitation torques and in the generic damping ratio that is
normally applied to each shaft element in the system. However, as
Smalley (1983) has noted, the results of a transient response
analysis, such as the one under consideration, are much less
sensitive to errors in the damping coefficient than are the results of
a steady-state response analysis. Furthermore, the magnitudes of
the excitation torques in steady-state analyses are usually more
uncertain since they are usually based on rules of thumb whereas
synchronous motor startup analyses use the actual motor excitation
torques. Based on this, the authors have reasoned that a safety
factor somewhat lower than the steady-state value of 2.0 would be
appropriate for a synchronous motor startup analysis.

Accordingly, the authors sought to determine what transient
analysis safety factor would be equivalent to the universally
accepted steady-state safety factor of 2.0. In order to do this, the
authors made a series of transient and steady-state response runs on
a representative synchronous motor driven compressor. For all
runs, all parameters were held constant except for the damping
ratio, which was systematically varied. Thus, the difference in
excitation uncertainties was conservatively ignored and the
function of the safety factor was assumed to be solely to account
for damping coefficient uncertainties.



The results of these runs are plotted in Figure 6. The abscissa for
this plot is the assumed damping ratio while the ordinate is the
ratio of the maximum calculated cyclic torque to that obtained
using the baseline damping ratio of 2.0 percent. It is easily seen
that, as expected, the steady-state runs are far more sensitive to
variations in the assumed damping ratio than are the transient runs.
Furthermore, it is seen that a 2:1 variation in damping ratio results
in a 2:1 change in steady-state response since the response is
merely inversely proportional to the damping ratio. However, a 2:1
change in damping ratio results in only about a 30 percent change
in the peak torque of the transient analysis. Conservatively
assuming that the conventional steady-state safety factor of 2.0 is
used to accommodate a 2:1 uncertainty in damping, it is seen that
this same uncertainty can be accommodated with a safety factor of
about 1.3 for the transient case. For the sake of conservatism, the
authors recommend using a safety factor of 1.35 for transient
analyses.

Figure 6. Effects of Varying Damping Ratio.

Once all the derating factors have been determined, the
allowable shear stress versus number of cycles curve can be
obtained from Equation (14). For each life of interest, Equations
(16), (21), and (26) should be used to calculate the surface finish,
size, and effective stress concentration factors. These should then
be combined with the S-N curve obtained by multiplying Equation
(11) by the elastic modulus, the shear factor of 0.577, and the
safety factor of 1.35 to determine the allowable shear stress for that
life. A series of these calculations can then be used to generate the
τ-N curve.

Cumulative Damage Determination

The preceding text provides a method for determining the
allowable number of cycles for a given torsional cyclic stress level
calculated via Equation (7). If each startup consisted of a single
stress cycle repeated a given number of times, the machine’s
allowable number of starts could be easily determined. However,
since the cyclic torque versus time profile typically looks like that
of Figure 4, a shaft element will normally be subjected to a number
of different cyclic stress levels during a single startup.

Consequently, the shaft’s life must be predicted using some type
of cumulative damage algorithm. Accordingly, the authors
recommend employment of Miner’s linear damage rule, which is

described in detail by Miner (1945) and is probably the simplest
cumulative damage algorithm in common usage. The basis of
Miner’s rule is that each individual stress cycle where the stress is
above the endurance limit consumes a fraction of the part’s total
life. The fraction of life lost is given by the following:

fI = nI / NI (29)

where:
fI = Fraction of life lost
nI = Total number of applied cycles of given cyclic stress
NI = Allowable number of cycles for given cyclic stress

For example, if a shaft is subjected to 1500 starts and each start
has one loading cycle having a cyclic stress of 25,000 psi, the
number of applied cycles would be 1500. Furthermore, if the τ-N
curve generated for this shaft using the procedure previously
described revealed that the number of allowable cycles for a stress
level of 25,000 psi was 15,000 cycles, then N would be 15,000.
The fraction of the part’s life consumed by this loading cycle
would then be 10 percent (1500/15,000).

Theoretically, the part should fail when the summation of the
individual life fractions obtained from the above equation equals
unity. However, many experimenters have found that the sum at
which parts actually fail can vary somewhat from this value.
Juvinall (1967) tells of tests in which the summation at failure
varied from 0.61 to 2.20. Shigley and Mischke (1989) disagree
slightly, claiming that the observed range is from 0.70 to 2.20.
Based on these findings and their own experience, the authors have
adopted a value of 0.50 as a safe limit for synchronous motor
startups. Thus, a part is assumed to fail when:

Σ (nI / NI) = 0.50 (30)

Using this rule, the number of starts that a shaft can be safely
subjected to can be directly calculated. First, the allowable number
of cycles, NI, for each cyclic stress above the endurance limit that
the shaft is subjected to should be determined from the τ-N curve.
Then for an assumed number of starts, the number of applied
cycles for each cyclic stress, nI, should be calculated. The
fractional damages can then be calculated from Equation (29) and
the sum of the fractions can be compared to 0.50. The number of
starts that gives a sum of exactly 0.50 is the allowable number of
starts.

The authors are fully confident in the use of this procedure even
though they are fully aware that some experts such as Manson, et
al. (1965), correctly criticize Miner’s rule for its failure to account
for the order that the stresses are applied in. It is well known that
if a part is subjected to its peak stress cycle first and then subjected
to progressively decreasing stress cycles, it will fail much quicker
than if the stresses are applied in a random order. Under these
circumstances, use of Miner’s rule will over-predict the part’s life.
Juvinall (1967) asserts that parts have been observed to fail at a
summation of as low as 0.18 when the stresses were applied in this
manner.

On the other hand, if the stress cycles are sequentially increased
with the peak stress cycle being the last one applied, the life of a
part can be dramatically increased. In fact, many investigators have
observed that this phenomenon, known as coaxing, results in an
increase in the material’s endurance limit above its virgin value.
For these conditions, Miner’s rule under-predicts life, sometimes
dramatically. Juvinall (1967) has observed parts that have lasted all
the way up to a sum of 23.0 when loaded in this manner.

Fortunately, in synchronous motor startups, the loading is not
even close to either of these two extremes. It is the authors’
experience that in most synchronous motor startups, the peak stress
cycle is chronologically near the middle of the high-stress cycle
range such that the number of high-stress cycles occurring before
it is about equal to the number after it. This is illustrated in Figure
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4. Thus, for this case, the shortcomings of Miner’s method are felt
to be inconsequential. This conclusion is backed up by Evans, et al.
(1985), Wachel and Szenasi (1993), Anwar and Colsher (1979),
Joyce, et al. (1978), and Jackson and Umans (1980), all of whom
recommend using Miner’s rule in the evaluation of synchronous
motor startups.

The number of stress cycles that must be included in the Miner’s
summation varies with the application. As a rule of thumb, Sohre
(1965) states that a typical startup involves from 10 to 20 high-
stress cycles. The authors’ experience is in general agreement with
this, although they have seen startups having as few as seven such
cycles. The exact number of cycles that have to be considered in
the Miner’s summation is determined by converting the minimum
and maximum torque values into cyclic stresses via Equations (6)
and (7). These cyclic stresses should then be compared to the shear
endurance limit obtained from Equation (14) since the only cycles
that contribute to fatigue damage are those where the cyclic stress
exceeds the endurance limit. All such cycles need to be included in
the Miner’s summation. All other cycles can be discarded.

OTHER STRUCTURAL CONSIDERATIONS

In addition to the ability of the shafts to withstand the required
number of starts, several other structural issues must be looked at
when evaluating the results of a synchronous motor startup
analysis. The peak torques occurring in specialty components such
as gears, splines, and couplings should be compared to the
component’s maximum torque rating to prevent overloading. The
peak torques occurring at interference fits retaining impellers or
coupling hubs should also be checked to verify that they are not
large enough to cause relative motion to occur.

In stark contrast to the steady-state situation, torque reversals
occurring at components, such as gears, splines, or couplings, that
contain backlash are not a concern in the transient case. Under
normal circumstances, these components are continuously loaded
in one direction and the system operates totally unaware of the
backlash. However, if the magnitude of the induced vibratory
torque exceeds the average transmitted torque, the net torque
becomes instantaneously negative and a torque reversal is said to
have occurred. Whereas this condition can be disastrous in the
steady-state, Szenasi and von Nimitz (1978) and Grgic, et al.
(1992), note that transient torque reversals are quite common and
are normally allowed for in the design of gears and geared
couplings.

MODIFICATIONS TO ALLEVIATE PROBLEMS

If the results of the startup analysis meet all the structural criteria
given above, the analysis is finished and the machine can be
sanctioned. However, in the event that the original design is found
wanting, some methods of rectification are as follows:

• Alter the starting procedure to start the compressor in the
unloaded condition—If the motor must start the compressor in the
loaded condition, the compressor load torque is usually quite high.
Accordingly, the system’s acceleration rate is relatively slow and
the dwell time at resonance is, thereby, relatively long. Starting the
compressor in the partially or fully unloaded condition will
normally speed up the acceleration significantly and reduce the
dwell time at resonance. This results in a reduction in peak torque
due to insufficient time for it to build up to its previous value as
well as a reduction in the number of damaging cycles per startup.

• Reduce the inertia of the load—Many authors have noted that
synchronous motor startups are more likely to generate problems
as the ratio of the load inertia to that of the motor increases. This is
probably due to an increased dwell time at resonance, similar to the
situation described above.

• Reduce the motor voltage during starting—Since the
magnitudes of the motor’s pulsating torques are approximately

proportional to the square of motor voltage, this can result in a
significant reduction in the system’s peak torques and stresses. The
downside of doing this is that it also reduces the motor’s average
torque, causing the startup to take longer and increasing the dwell
time at resonance. However, in the authors’ experience, the benefits
usually outweigh the drawbacks and many practical machines are
started at between 70 and 90 percent of full voltage.

• Change the motor shaft’s coupling to a special damping
coupling—The authors are familiar with many synchronous motor-
driven turbomachines that are equipped with a Holset-style
coupling on the motor shaft. These couplings contain an
elastomeric element that tends to damp out (via material
hysteresis) the pulsations generated in the motor. Additionally,
placement of this coupling on the motor shaft tends to isolate the
excitation source (motor) from the areas where trouble is
frequently encountered (gearbox and compressor).

• Make changes to increase the fundamental frequency—As was
stated previously, most synchronous motor startup problems
involve resonance with the fundamental frequency. It is the
experience of the authors, and many other experts, that the lower
this natural frequency is, the more likely the machine will
encounter problems. The explanation for this is twofold. First, as is
seen from Figure 2, the lower the fundamental frequency is, the
higher its resonant speed will be. Since most motors’ pulsating
torques increase significantly as synchronous speed is approached,
high resonant speeds usually mean large excitations. Second,
synchronous motor average torques tend to decrease near
synchronous speed such that the machine’s acceleration rate tends
to be relatively slow as synchronism is approached. Accordingly,
resonance dwell times are increased. Thus, any changes that can be
made (usually implemented at the motor coupling) to increase the
fundamental frequency are usually beneficial.

• Polish or shot-peen any troublesome shafts—The beneficial
effects that employing a finer surface finish have on fatigue life
have already been discussed. However, shot-peening critical shaft
surfaces can also result in significantly increased fatigue strengths,
sometimes by as much as 30 to 40 percent. The reason for this
improvement is that shot-peening leaves the surface in a state of
residual compression. Since fatigue failures can only occur if
tensile stresses are present, the residual compression must be
overcome before the surface stress can become tensile.

• Alter the motor design so that the crossover point occurs close
to resonance—As is depicted in Figure 1, many synchronous
motors have a point somewhere in their speed range where the
direct and quadrature axis torques are equal (crossover point).
Since the pulsating torque is equal to the difference in these two
torques, it is zero at this point. Accordingly, if the motor design can
be altered such that the crossover point occurs in the vicinity of
resonance, the potential for problems is greatly reduced.

• Alter the motor and/or system to increase the acceleration at
resonance—Since both the motor’s average torque and the
compressor’s load torque are highly nonlinear as a function of
speed, the net torque available to accelerate the machine tends to
vary as a function of speed. The net acceleration torque can, thus,
be plotted as a function of speed and changes enacted to locate the
problem resonant point at a point where the acceleration torque is
high to minimize the dwell time at resonance.

• Change the motor from a solid pole to a laminated rotor
design—In general, laminated rotors tend to generate lower
pulsating torques than do solid pole designs and, thus, are less
likely to generate problems. However, implementing this change
can introduce other problems. Since laminated pole synchronous
motors often have average torque versus speed curves that contain
large positive slopes, a negative damping effect that can trigger
instability problems can result. Additionally, laminated pole
motors tend to be more expensive.



If any modifications are implemented, a new system has been
created. Accordingly, the entire torsional analysis procedure must
be repeated to verify that the change has not introduced any new
problems.

OVERALL ANALYSIS PROCEDURE

All the steps of the analysis procedure have been described in
detail. To recap, a chronological listing of the steps to be taken is
as follows:

1. Generate lumped parameter model.
2. Determine undamped natural frequencies and mode shapes.
3. Verify undamped analysis results using hand calculations.
4. Generate Campbell diagrams.
5. Reduce lumped parameter model in preparation for transient
analysis (if necessary).
6. Verify that first two natural frequencies of reduced model are
same as for original model.
7. Run synchronous motor startup analysis

• Input motor average and pulsating torques and load torques as
functions of speed.

• Select appropriate damping ratio to apply to all shafts in model.
• Select time step to avoid numerical instabilities.
• Obtain torque versus time histories for all shaft elements.

8. Select shaft elements to run fatigue calculations on.
• Shafts having small diameters
• Shafts having significant stress concentrations
• Any shaft containing a keyway

9. For each shaft of interest, determine the strain-life curve from
Equation (11).
10. Generate the baseline tensile stress versus life curve by
multiplying the strain-life curve by the elastic modulus.
11. Determine the geometric stress concentration factor, kt, from
the shaft’s geometry.
12. Determine the notch sensitivity factor, q.
13. Determine the effective stress concentration factor, kf, for 106

cycles from Equation (24).
14. Determine the surface finish factor, ka, for 106 cycles.
15. Determine the size factor, kb, for 106 cycles.
16. Using Equations (16), (21), and (26), calculate kf, ka, and kb as
functions of life, N.
17. Using a shear factor of 0.577, a safety factor of 1.35, and
Equation (14), determine τ-N curve.
18. Using Equations (6) and (7), calculate cyclic shear stress,
τcyclic, for each high-stress cycle.
19. Use τ-N curve to find allowable number of cycles, N, for each
value of cyclic shear stress.
20. Determine number of starts that makes Equation (30) true. This
is the allowable number of starts.
21. Check for any other structural problems.
22. If necessary, implement modifications to alleviate structural
problems.
23. Repeat above procedure for new system resulting from step 22
changes.

EXAMPLE ILLUSTRATING PROCEDURE

The presented procedure is best illustrated by an example. The
authors recently completed the design of a 66,000 hp air
compression unit. The centrifugal compressor, which runs at 4298
rpm, is driven by a synchronous motor operating at 1800 rpm
through a one-stage step-up gearbox. Both the high- and low-speed
shafts contain flexible diaphragm couplings.

Per the advocated procedure, a lumped parameter model was
constructed for the entire drive train and undamped analysis was
run on it. The first two natural frequencies, whose mode shapes are
presented in Figures 7 and 8, were found to occur at 14.0 and 34.0
Hz. A Campbell diagram (not shown) was then generated to
account for the system’s steady-state excitations and no steady-
state resonance points were found. The motor shaft Campbell

diagram of Figure 9 was then generated to determine the potential
resonances triggered by the synchronous motor excitation.

Figure 7. Air Compressor First Mode Shape.

Figure 8. Air Compressor Second Mode Shape.

Figure 9. Air Compressor Campbell Diagram.
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It is seen from the figure that the synchronous motor excitations
create three resonance points—with the first, second, and third
natural frequencies. Per the authors’ experience, the resonance
with the third natural frequency was ignored since that frequency
seldom participates in synchronous motor responses, especially
when its resonance point is at such a low speed. Thus, the transient
response analysis focused on simulating the responses at the first
two natural frequencies with the fundamental being the primary
concern since its resonance point occurs at such a high speed (1590
rpm or 88 percent of synchronous speed).

To accommodate the limitations of the transient response
analysis program employed, the original model, which contained
74 stations, was reduced to an equivalent five-disk model. Each
shaft element in the model represented one of the primary shafts in
the drive train—motor shaft, gearshaft, pinion shaft, and
compressor shaft. Undamped analysis was then performed on the
reduced model and the first two natural frequencies were verified
to still be at 14.0 and 34.0 Hz.

Once the reduced model was validated, the transient analysis
was run. Since the undamped analysis revealed that the reduced
model’s highest (fourth) natural frequency occurred at 115.3 Hz,
its corresponding period was 0.0087 seconds. In accordance with
the guidelines provided previously, a generic damping ratio of two
percent of the critical value and a time step of 0.001 seconds were
employed. Gear backlash effects were ignored.

The results of the transient analysis consisted of the time
histories of the torque in all four shafts. These plots revealed that
the response as the system passed through the second natural
frequency resonance point was inconsequential. However, as
expected, a significant resonance was observed at a motor speed of
about 1608 rpm, representing excitation of the fundamental
frequency at 14.0 Hz.

The response in the resonance region for the motor shaft is
presented in Figure 10. It should be noted that the torque plotted as
the ordinate is expressed in the peculiar units of “per unit” (pu).
This is a shorthand method of expressing the ratio of the actual
torque to the motor’s rated torque at synchronous speed. For this
motor, one pu is equal to 2.31E6 in-lb.

Figure 10. Air Compressor Calculated Response.

Examination of the figure reveals that the torque is fairly smooth
up until resonance is approached. In this region, the mean torque is
seen to be positive, representing the torque required to drive the
load. The relatively small ripple that is superimposed on the mean
torque represents the relatively small response to the synchronous
motor’s pulsations.

Once the resonance zone is entered at about 21.2 seconds, the
ripple rises steadily until it reaches a peak at about 21.75 seconds.
At this peak, the maximum torque is seen to be almost 5.0 pu while

the minimum is almost �4.0 pu. Referral to the speed versus time
plot (not shown) revealed the speed at this peak to be about 1608
rpm, confirming that the unit is in resonance with its first natural
frequency. The peak torque is followed by several more high
torque cycles of progressively smaller amplitudes until the torque
once again levels off as the resonance zone is exited.

Although all four shafts had similar response profiles and were
analyzed to determine how many starts they could take, this
discussion will only consider the motor shaft. The first decision
that needed to be made was which portion of the shaft represented
the “weak link.” Although this decision is not always straightfor-
ward, in this case it was since the shaft’s smallest diameter also
contained a significant stress concentration. The shaft diameter at
that location was 13.17 inches.

Attention then turned to generating the allowable shear stress
versus number of cycles curve for this shaft. The shaft material was
4340 stainless steel, which had an ultimate strength of 120,000 psi
and a reduction in area of 40 percent. Accordingly, using Equations
(12) and (13), the Coffin-Manson coefficients were calculated to be
200,000 psi (σf`) and 0.5108 (εf`). Using these values with
empirically-determined proprietary values for the exponents, b and
c, in Equation (11), the strain-life curve was generated.
Multiplying all strain values by the elastic modulus of 28.5 million
psi then yielded the tensile stress versus life curve for the polished
test specimen.

Using the plot for a filleted shaft under torsional loading found
in Peterson (1974), the geometric stress concentration factor, kt,
was estimated to be 1.55. Using Juvinall (1967), the notch
sensitivity, q, was then determined to be 0.91. Substituting these
values into Equation (24), the effective stress concentration factor,
kf, for a life of 106 cycles was found to be 1.501.

Using Equation (15), the 106 cycle surface finish factor was
calculated to be 0.90 for the ground surface.  Determination of the
size factor was not as simple as merely using Equation (19) or (20)
since our shaft’s diameter was so large that it was outside the size
range that the providers of those relations claimed they were valid
for. Accordingly, proprietary test data were utilized to come up
with a size factor of 0.667 for a life of 106 cycles. It should be
noted that the predictions of Equations (19) and (20), 0.651 and
0.677, respectively, are close enough to the empirically derived
value that the authors feel that either of those equations can
probably be used in this size range.

Once the values of ka, kb, and kf were obtained for a life of 106

cycles, the values at all other lives were determined. Using the
equations provided previously, the slopes (m) and intercepts (b) for
these three parameters on log-log coordinates were determined to
be:

• Surface finish factor: m = 0.015252, b = 0.045757

• Size factor: m = 0.058625, b = 0.175874

• Stress concentration factor: m = �0.029373, b = 0.0

Using these values in Equations (16), (21), and (26), the
variations of the three factors with life were calculated and are
presented in Table 1. Then, employing these factors, a shear factor
of 0.577 and a safety factor of 1.35, the baseline tensile S-N curve
was converted to a τ-N curve using Equation (14). Selected values
from this curve are also tabulated in Table 1.

Once the τ-N curve was obtained, the next task was to determine
the number of applied stress cycles for each start and the stress
levels corresponding to each cycle. There are a number of ways to
convert the results of a transient analysis in the form of Figure 10
to a tabulation of stress cycles having minimum and maximum
stresses. Jackson and Umans (1980) discuss the peak counting
method in which each cycle is merely assumed to have a cyclic
torque that is equal to the peak torque obtained from the transient
analysis. For instance, the peak torque occurring in Figure 10 is
�4.811 pu. Thus, using the peak counting method, the cycle would
be assumed to consist of a torque range from �4.811 to �4.811 pu.



Table 1. Air Compressor Allowable Stresses.

This is obviously over-conservative since the minimum torques
displayed in Figure 10 all have magnitudes below 4.0 pu and is not
recommended for use.

Jackson and Umans (1980) then proceed to describe a less
conservative cycle counting procedure known as the rain-flow
method. Although this method is probably the most accurate one
available for analyzing profiles where the torque varies randomly,
the authors do not believe that its complexity is warranted for the
predictable profiles obtained from synchronous motor startups.
Instead, the authors have had considerable success using a simple
chronological counting procedure. The peak torque is identified
and the minimum torques preceding and succeeding the peak
torque are then checked. Whichever minimum torque has the
greater magnitude is paired with the peak torque and all other
torque peaks are then paired in the same manner.

Use of this procedure is illustrated by referral to Figure 10. As
stated previously, the peak torque is �4.811 pu. The minimum
torque peaks preceding and following this peak are �3.743 and
�3.848 pu, respectively. Since the following peak has a larger
magnitude, it is selected for pairing with the �4.811 pu peak.
Accordingly, the first torque cycle is assumed to be from �4.811
to �3.848 pu. All other cycles are determined by pairing the
positive peak with the negative peak immediately following it. The
resulting torque cycles obtained from applying this procedure to
the profile of Figure 10 are presented in Table 2.

Table 2. Air Compressor Cumulative Damage Assessment.

Once the method for determining torque cycles had been
decided on, the next order of business was determining how many
cycles needed to be considered. In order to determine this, the
torque values were converted into cyclic stress values via
Equations (6) and (7). These cyclic stresses were then compared to
the shear endurance limit, which is seen to be 11,194 psi from
Table 1. Thus, all cycles having a calculated cyclic stress of 11,194
psi or greater were retained and the remaining ones were discarded.
It is seen from Table 2 that doing this eliminated all but eight stress
cycles. In addition to the peak cycle, there are the four cycles
immediately preceding it (denoted in the table by N-1, N-2, etc.)
and the three cycles immediately following it.

For each of these cycles, the cyclic stress is used with the τ-N
curve to determine the allowable number of cycles, N. For instance,
for the peak cycle, which has a cyclic stress of 22, 298 psi, referral
to Table 1 reveals that N is somewhere between 6.0E4 and 7.0E4
cycles. Using the actual equation, N is computed to be 61,608
(6.16E4) cycles. The allowable number of cycles for all other stress
cycles was calculated in exactly the same manner.

The only remaining task is the calculation of the allowable
number of starts for this shaft. For this case, which is highly typical
of synchronous motor startups, each stress cycle is applied only
once per startup. Thus, if the unit were subjected to n startups, the
applied number of cycles for each tabulated cycle would be n.
Although n can still be determined by trial and error, rearrangement
of Equation (30) yields the following explicit relation for n:

n = 0.5 / Σ (1 / NI) (31)

where:
n = Allowable number of starts
NI = Allowable number of cycles for Ith cycle

Using this equation, the allowable number of starts is calculated
to be 7307. When this value is substituted for n in Table 2, it is
verified that the sum of the expended lives is approximately 0.50,
in accordance with Miner’s rule. Since this unit was required to
demonstrate structural integrity for 5000 starts, this shaft was
declared fully satisfactory.

ADVANTAGES OF NEW PROCEDURE
OVER TRADITIONAL METHOD

The reader may not yet grasp the significance of the advantages
that utilizing the shaft life prediction rules provided herein have
over the traditional method. After all, many of the rules, such as
assuming that the surface finish factor is variable instead of
constant, may appear to merely be small tweaks to the conventional
method. However, the log-log nature of the τ-N curve means that
small changes in predicted strength translate into large changes in
predicted life. This large gain can be appreciated by examination of
Table 1. It is seen that the strength for 104 cycles is 41,092 psi while
that for 105 cycles is 19,460 psi. It is, thereby, seen that a 2:1 change
in strength corresponds to a 10:1 change in life. Accordingly, use of
each of the rules presented herein yields a significant increase in
predicted life compared to the conventional method.

To illustrate how powerful these effects are, the authors have run
a number of cases for the motor shaft described in the previous
example and the results are presented in Table 3. Case A is the one
presented in the example using the new procedure. All other cases
were run by changing one of the new procedure’s rules back to its
counterpart in the traditional method. The impact of the rule
changes advocated herein can, thereby, be clearly seen.

In case B, the strain-life procedure for determining the τ-N curve
was replaced by the traditional stress-life method described
previously. It is seen that this change alone results in a reduction in
predicted life from 7307 to 2237 starts, a huge reduction. This is
consistent with the advantages of using the strain-life theory cited
by other authors.
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Table 3. Impact of Varying Model Assumptions.

In cases C, D, and E, the traditional method of applying the 106

cycle values of kf, ka, and kb to the entire S-N curve are employed.
It is seen that all these changes have significant impact, especially
that involving the size factor, kb. This large effect is due to the large
diameter shaft being studied and should not be as dramatic for
more conventional shaft sizes.

In case F, the method of calculating the shear strength from the
known tensile strengths has been changed from the maximum
shear stress theory to the distortion energy (von Mises) theory.
Although the two theories do not appear to differ that much (.500
versus .577 factor), the impact of the change is seen to be
substantial.

In case G, the stress safety factor has been changed from the
recommended value of 1.35 to the traditional value of 2.00. The
change in predicted life is amazingly high, suggesting that the large
majority of organizations performing torsional analyses are
conservative.

Finally, in case H, all the traditional rules are used together. It is
seen that doing this reduces the predicted number of starts from
7307 to a mere 56. Thus, the traditional method predicts that a
perfectly good shaft has virtually no startup capability whatsoever.
The authors hope that the advantages of using the new procedure
are now making themselves apparent to the reader.

CONCLUSION

A comprehensive procedure for the analysis of torsional
vibration in turbomachines being driven by synchronous motors
has been presented. The methodology is general enough that it
should be applicable to any synchronous motor-driven
turbomachine. The key points that should be emphasized are as
follows:

• A thorough torsional vibration analysis should always be
included as an integral part of the design process for any
turbomachine.

• Turbomachines driven by synchronous motors need to be
handled with extra caution due to the large pulsating torques they
generate during starting.

• The traditional method for calculating shaft fatigue lives (stress-
life method) is over-conservative. The strain-life theory provides a
much better calculation tool.

• There is currently a tremendous amount of confusion regarding
the proper manner in which fatigue strength reduction factors
should be applied. The method presented herein attempts to resolve
that confusion.

• The traditional torsional vibration stress safety factor of 2.0,
while being perfectly appropriate for steady-state situations, is too
conservative for transient analyses.

• Because of the log-log nature of the strength versus life curve,
small errors in calculated strengths can lead to large errors in life
prediction.

• Torsional vibration and fatigue life analysis are not exact
sciences that can be performed by just anybody. The importance of
the skill, judgment, and experience of the analyst should never be
underestimated.
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