

33rd Turbomachinery Symposium Case Study #5

Revamping-Leveraging Technology for Efficiency and Cost Savings

Jay King Dresser-Rand Company Olean, New York

Presentation Agenda

Case Study-Revamp Project(s):

Gas Transmission-Operating Range/Installed Cost

- Computational Fluid Dynamics
- Stage Performance-Component Matching

Ethylene Production-Capacity via Efficiency

- Flowpath/Stage Design
- Lessons Learned

Case #1-Efficiency for Energy Savings

Today's Technology

- Fully machined flowpath
- 2 piece Welded Impeller

Efficiency Improvement

- From 84% to 87.5%
- Performance Map
 - Wider operating range

DRIVER: Cost avoidance to install new Unit Piping/Foundation Changes.

Improved Flow Path Design

Computational Fluid Dynamics (CFD)

- Improved flow distribution
- Optimized stage component matching
- All stage components operating with minimum losses (i.e. IGV, impeller, diffuser, return channel)
- Application of low solidity diffusers (LSD's)

Repeated performance testing to validate and refine

CFD Study of Pipeline Compressor Volute

CFD Modeling:

Coupling the inlet with the impeller and the LSD

Collector and Volute

CFD Study of Pipeline Compressor Volute

CFD Qualitative Results:

Velocity vector plot in the collector (left) and volute (right) cross section at design point

Traditional Line-Ups:

- Large gaps between standard impellers available
- Use of inlet guide vanes to complete the coverage map

Today's Technology:

- Elimination of flow inlet guide vanes
- Many more impellers available for selection
- Designed to match "Best Efficiency Point".
- Better stage-to-stage match for peak performance

PTC-10 Factory Test Results

Case #2-Efficiency for Production

- 2 sidestreams
- 10% flow
 increase for
 « same » pow
 er/energy

Ethylene Cracker Compressor fitted with Today' Technology

Debottleneck/Capacity-Zero effect to Energy Cost

Riveted, Cast & Welded Impellers

- Simple circular-arc blade design
- Blade forms are bent in a die and riveted or welded to the disc.
- Very difficult to hold tight tolerances
- Rotating stall problems with parallel disc and cover design

"Z" Blade Rivet

Thru Blade Rivet

3-Piece Welded or Cast

Leading Edge Technology- Welded Impellers

Highlights

- All 3/5-axis milled
- 2/3 piece Construction
- Welded Construction
- High fatigue strength
- Predictable Performance
- New Materials

Stationary Flowpath Design

- Precision machined compressor internals
- Smooth surface finishes reduce frictional losses.
- Manufacturing Technology Complicated geometry machined with greater accuracy
- Consistent and repeatable performance

Discharge Pressure Vs Flow

Revamping-A cost effective means to leverage "Today's" Technology with "Yesterday" equipment assets.

When to Revamp...

Changes in operating conditions

- Gas composition/molecular weight
- Capacity
- Temperatures
- Pressures
- As a means to:
 - Reduce your Energy Consumption
 - Increase your Productivity
 - Reclaim lost Efficiency from Off-Peak Operation
 - Reduce Capital Investment-New Equipment and Installation

Revamping-A cost effective means to leverage "Today's" Technology with "Yesterday" equipment assets.

33rd Turbomachinery Symposium Case Study #5

Revamping-Leveraging Technology for Efficiency and Cost Savings

Jay King Dresser-Rand Company Olean, New York