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ABSTRACT 
 
 

The Imbibition Process of Waterflooding in  

Naturally Fractured Reservoirs. (December 2003) 

Christian Huapaya López, B.S., National University of Engineering, Peru 

Chair of Advisory Committee: Dr. Robert A. Wattenbarger 

 

 

This thesis presents procedures to properly simulate naturally fractured reservoirs 

using dual-porosity models. 

The main objectives of this work are to: (1) determine if the spontaneous 

imbibition can be simulated using a two phase CMG simulator and validate it with 

laboratory experiments in the literature; (2) study the effect of countercurrent imbibition 

in field scale applications; and (3) develop procedures for using the dual-porosity to 

simulate fluid displacement in a naturally fractured reservoir. 

Reservoir simulation techniques, analytical solutions and numerical simulation for 

a two phase single and dual-porosity are used to achieve our objectives. 

Analysis of a single matrix block with an injector and a producer well connected 

by a single fracture is analyzed and compared with both two phase single and dual-

porosity models.  

Procedures for obtaining reliable results when modeling a naturally fractured 

reservoir with a two phase dual-porosity model are presented and analyzed. 
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CHAPTER I 

INTRODUCTION*

 

1.1 Imbibition phenomenon 

Imbibition plays an important role in recovering oil from water-wet matrix in a 

naturally fractured reservoir subjected to waterflood. 

 Using the action of capillary forces, it allows the recovery of oil within the 

matrix blocks that cannot be reached by the external pressure gradients during 

waterflood.  Capillary pressure is a function of capillary radius, interfacial tension, and 

wettability of the rock. 

Imbibition is an immiscible displacement process, whereby a fluid which is 

within a porous medium is spontaneously expelled by another fluid surrounding the 

medium. This phenomenon results from differential attraction forces between the pore 

walls and the fluids. 

Spontaneous countercurrent imbibition, in which water and oil flow through the 

same face in opposite directions, is a dominant mechanism for the exchange between 

matrix and fractures in water-wet rocks. In spontaneous imbibition, wetting fluid is 

drawn into rock by capillary suction as the non-wetting fluid is expelled.  

 

1.2 Background and motivation 

A naturally fractured reservoir is a porous rock formation in which stress have 

created planar discontinuities that either positively or negatively affect fluid flow by 1) 

increasing reservoir permeability  2) increasing porosity, and/ or  3) increasing 

permeability anisotropy. 

Fractured sandstone reservoir rock contains two porosity systems; 1) 

intergranular void spaces between the grains of the rock have high porosity and low 

permeability, and 2) fractures have low porosity and high permeability, typically greater 

an order of magnitude grater permeability from between the intergranular pores.  

                                                           
This thesis follows the style and format of Journal of Petroleum Technology. 
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Secondary porosity is the porosity created by post-genetic processes as fracturing 

and dissolution. Dual-porosity is the combination of the two. Both primary and 

secondary porosity are progressively destroyed as sediments are buried, mainly by 

processes of cementation and compaction. Typically, intergrarnular pores stores most of 

the fluids (90 percent) whereas fractures act as transmission channels through the 

fracture.  

Numerous hydrocarbon reservoirs in the world are naturally fractured. 

Estimating the efficiency of water injection processes in recovering hydrocarbons from  

these reservoirs remain complicated by poor knowledge of fracture network geometry 

and production behavior of the matrix blocks in contact with water along fractures. 

De Swaan1 and Mattax and Kyte2 investigated the mechanism of countercurrent 

imbibition and developed relationships describing cumulative oil recovery versus time. 

The work validates these equations by numerical simulations at both laboratory and field 

size scales. 

Naturally fractured reservoirs are simulated using both single and dual porosity 

models, assuming a continua, matrix and fractures within each grid block. Dual- porosity 

models deal with transfer coefficients and shape factor related with dimension of matrix 

blocks surrounded by the wetting fluid. Two-phase single and dual-porosity models are 

compared and procedures for simulating naturally fractured reservoirs undergoing 

waterflood properly are proposed. 
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When performing numerical simulation of naturally fractured reservoirs using 

dual-porosity model there is uncertainty in the results of this model due to different finite 

difference formulations. Dual-porosity model assumes that the matrix blocks are 

instantaneously immersed in water, which   is the main factor for discrepancy in 

production. 

Results will be used for simulating naturally fractured reservoirs properly using 

dual-porosity model for field scale.  
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Introduction 

Empirical transfer functions deal primarily with fluid flow interaction between 

the matrix and the fracture. Flow interaction between matrix and fracture is what happen 

in a naturally fractured reservoir undergoing waterflood. Geometric shape factors are 

related with the geometry of matrix block considering the fracture spacing in each 

direction. The last section focused on modeling naturally fracture reservoirs. 

  

2.2 Empirical transfer functions 

De Swaan1 presented a theory of waterflooding in naturally fractured reservoirs 

for the case of two incompressible fluids. This theory accounts for varying water 

saturations in fractures that occur when water is injected in naturally fractured reservoirs. 

De Swann compared results of his theory with numerical simulations of Kleppe and 

Morse2.  

Matax and Kyte3 studied the one-dimension and three-dimension spontaneous 

imbibition in alundum and sandstone cores of different lengths with fluids of varient 

viscosity were used in the experiments. The time required to recover a given fraction of 

oil from matrix pores was related to the square of the distance between fractures. In 

these experiments, carried out as static imbibition, core samples were surrounded with 

static brine. A critical rate was defined as the rate at which water advance in the fracture 

equals that in the matrix block. The laboratory experiments were up scale to full field 

dimensions applying Rapoport’s laws.  
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Aronofsky4 assumed an exponential equation to describe the exchange of oil and 

water for a single matrix block initially saturated with oil and completely immersed in 

water. Kazemi5 developed an analytical solution of the Bucley-Leveret displacement in a 

fracture surrounded by matrix block undergoing imbibition. Results are similar to de 

Swaan’s. 

 

2.3 Geometric factor methods 

Warren and Root6 models a fractured reservoir formed by identical rectangular 

parallelepipeds separated by an orthogonal network of fractures. For this model only two 

parameters are sufficient to characterize a naturally fractured reservoir, one parameter 

relating fluid capacitance of the secondary porosity and the other relating the scale of 

heterogeneity in the system. The model assumes interporosity flows occur under pseudo-

steady state conditions. 

 

Gilman and Kazemi7 developed a much more realistic model that considers 

matrix blocks of variable lengths. They presented two-phase dual- porosity simulator, in 

which the matrix/fracture transfer coefficients include gravity forces. Gravity potential 

between matrix and fracture nodes is addressed.  Their shape factor was calculated as 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++= 222

1114
zyx LLL

σ               (1) 

 

Lx, Ly, Lz are the matrix block dimensions. 

 

Rangel and Kovscek8 derived a time dependent shape factor considering varying 

filling and instantly filled matrix block. The shape factor was shown to vary with time. 

However, the shape factor in commercial simulators is erroneously considered constant. 
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Thomas et al9 developed a fully implicit three-phase model simulator for 

naturally fractured reservoirs based on an extension of the matrix/fracture transfer 

function of Warren and Root and accounts for gravity, capillary pressure and viscous 

forces. 

Bourblaux and Kalaydjian10 executed laboratory experiments of cocurrent and 

countercurrent imbibition occurring in a single block of a strongly water-wet matrix and 

tested them with a numerical model. As relative permeability curves are determined for 

cocurrent flow the use of these for countercurrent should be different. Numerical 

simulation suggested that relative permeability curves for oil and water should be 

reduced by a factor of 30% in order to agree with experimental results. 

Gurpinar and Kossack11 performed numerical simulation with a core plug grid 

size for a single porosity model and compared it with a fine and coarse grid blocks for 

dual- porosity model. Fracture width used in the simulation runs was 0.1 ft, which is too 

big and not representative for natural fracture in a reservoir. Also, the pseudo capillary 

pressure was used in the dual porosity model in order to match it with the solution of 

their single porosity model. 

Lee and Kang12 modeled fracture aperture heterogeneity using statistic analysis 

and analyzed the oil recovery of the fractured cores undergoing water injection using 

these statistic parameters.  

 

2.4 Modeling naturally fractured reservoirs  

Single porosity models predict flow through a continuous media and can be used 

to predict fluid behavior through a single block in naturally fractured reservoirs. 

Impractical when the numbers of fractured blocks applied to an entire field for the 

numbers of grid blocks. 
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Naturally fractured reservoir performance can be managed with dual-porosity 

models, which define two set of properties such as porosity and permeability per grid 

block, one for the matrix system and the other for the fracture system. In a dual-porosity 

model movement is assumed to occur between matrix blocks and fractures. Some 

models of the matrix/ fracture system geometry are presented as Warrent6 and Gilman 

and Kazemi7. The flow of fluids through the reservoir occurs through the fracture 

system. 

The main difference between the dual-permeability model and the standard dual 

porosity model is that the movement of fluids can be between matrix-matrix and 

fracture-fracture flow between the simulation grid blocks. 
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CHAPTER III 

SPONTANEOUS IMBIBITION 

 

 If a core is totally immersed in water, water will be absorbed and oil will be 

released. Spontaneous countercurrent imbibition is the principal mechanism for the 

exchange of fluids between matrix and fractures. In spontaneous imbibition the flow of 

oil and water occurs in contrary directions over the same face of a matrix block. The 

rate of imbibition depends on wettability of the rock13, pore structure, interfacial tension, 

viscosity, initial water saturation and relative permeabilities14.  

Therefore, a good understanding of this physical process will tremendously 

improve the modeling of fluid flow in naturally fracture systems. 

  

3.1 Spontaneous imbibition model 

In this case we are simulating a core in which only one face is exposed to water 

and the others are covered with plastic. So in this way we are simulating spontaneous 

imbibition in only one-dimension. 

Fig. 3-1 represents a core with one side exposed to water and shows the pressure 

distribution along the system one moment before the imbibition starts. The pressure of 

the oil in the core zone is the pressure of the whole system both water and core zone. 

The pressure of the water in the core zone is lower than the pressure of oil due to the 

capillary pressure in the porous media at initial conditions. 

 

Simulation runs were compared with the laboratory experiments of Mattax and 

Kyte3. They concluded that the time to recover certain amount of oil depends on the 

distance between the fractures and the scale equation is expressed in the following way 

kmatrixblocww Lu
kt

Lu
kt ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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2
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φ

σ
φ

            (2) 
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Fig. 3-1 – Representation of 1-D spontaneous imbibition. 

 

Parallelepiped shapes maintaining the same cross-area and the same length were 

modeled as the cores because the CMG simulator cannot model the cylindrical shapes of 

the actual cores. Mattax and Kyte conducted laboratory experiments not only for 

different viscosities of oil and water but also for different lengths of the alundum core. 

The properties of these alundum cores for the cases A, B and C are shown in Table 3-1. 
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Table 3-1 – Properties of rock and fluid 

 

  Sample  Sample Dry Air Porosity Oil  Water Oil-Water 

Case Length Area Permeability   Viscosity Viscosity 
Inter. 

Tension 
 (cm) (cm2) (darcies) (%) cp cp (dyne/cm) 

                
A 5.08 11.36 1.475 29.1 8.5 0.9 35 
B 11.049 11.36 1.545 28.3 8.5 0.9 35 
C 11.049 11.36 1.545 28.3 121.8 12.9 36 

 

Fig. 3-2 shows oil recovery from the cores. Dots show the laboratory data and 

line the numerical simulation. Values of relative permeabilities and capillary pressure 

curves were assumed in order to match simulation with the experimental results. The 

water zone was modeled with one grid block with a high value of permeability of 10 

darcy and a value of porosity of 100%. In addition, the cores were modeled with very 

fine grid blocks next to water zone and with coarser grid blocks as they are getting 

further from the water zone.  

The plot demonstrates that countercurrent flow and spontaneous imbibition can 

be simulated with the CMG simulator. 

A water saturation profile along the cores for different times is plotted for the 

three cases. 

Fig. 3-3 shows the case A, which has a core length of 5.08 cm. It can be seen that 

after 60 minutes of water imbibition, the water saturation in the face of the core has not 

great difference with the one at the end of the core. This is because the water imbibing 

the core takes short time to reach the other end of the core. Also, an average water 

saturation of 84% is within the core, which is reached after 200 minutes and most of the 

movable oil has moved to the water zone. 
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Fig. 3-3 – Water saturation profile for case A. 

 

 

Figs. 3-4 and Fig. 3-5 show cases B and C respectively,  both cases have the same core 

length of 11.05 cm and same permeability, the only difference between  the two cases is 

that the viscosities of the oil and the water are higher but maintaining  the same viscosity 

ratio of 9.4 in both cases. In case B the water imbibes the core faster than in case C, this 

is due to higher viscosities of the fluids and the restricted countercurrent flow. As can be 

noticed the water at the end of the core has rarely felt the presence of water. Also, 

comparing case B and C, it is easily determined that the viscosities of the fluids are very 

important in the recovery of spontaneous imbibition. 
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Fig. 3-4 – Water saturation profile for case B. 
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Fig. 3-5 – Water saturation profile for case C. 
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CHAPTER IV 

COMPARING ANALYTICAL SOLUTION WITH DETAILED MODEL 

 

4.1 Introduction 

Numerical simulation of naturally fractured is difficult due to the difficulty in 

predicting fracture networks and exchange of fluids between matrix and fracture 

systems.  

Several papers discuss the matrix/fracture transfer function1,3,5,15,16. Mostly of 

them assumed that the fracture is instantaneously immersed in water. However, De 

Swaan assumed varying water saturation through the fracture.  

In this chapter a comparison between a 2-D single porosity model (detailed 

model) and De Swaan’s formulation is presented.   

 

4.2 Analytical formulation 

Aronofsky’s model assumed that the matrix is instantaneously submerged in 

water. Aronofsky predicted that 

 

)1( teRR λ−
∞ −=                (3) 

 

Where λ is a fitting parameter and  is the ultimate cumulative oil recovery 

from the imbibition process. It can also be expressed in the following way. 

∞R

 

1

1

τ

τ

t
e

R
q

−∞=                 (4) 

 

However, De Swaan’s model supposed that water saturation through the fracture 

is varying with time. This model represents when water is injected into the fracture and 

imbibes the matrix block progressively until reach the producer well. 

The following was assumed in this model; 
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1) Water tends to advance in high-transmissibility fractures. The water in the fracture is   

absorbed as it advances and time passes. Besides that, the water in the fracture is 

imbibed into the matrix and the matrix releases an equivalent amount of oil. 

2) If a matrix block is immersed totally in water, it will absorb water and release oil at a 

rate exponential (Aronofsky). The rate of water imbibition per unitary fracture length 

is given by. 

 

θ
θτ

τθ dSe
R

q w
t

o

tu
Iu

I

∂
∂

= ∫ −−∞ /)(

1
             (5) 

3) The continuity equation in a lineal reservoir is given by  
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4) The fractional flow of every phase is identical with the phase’s mobile saturation 

  fj= Sj                  (7) 
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For different time necessary to inject the fracture’s mobile volume at constant 

injection rate (tif)  

For t < tif 

0=Sw                (9) 

tiNp w=               (10) 
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For t > tif 
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4.3 Detailed model 

 A numerical simulation of a 2-D single porosity model (detailed model) was used 

assuming rock and fluid properties of Spraberry trend area17. This area is located in the 

Midland Basin, a geological province of the Permian Basin, in West Texas. The pay-

depth is at about 7000-8000 ft, and consists of fine-grained sandstones, coarse siltstones, 

and organic rich shales. 

 The areas of Spraberry have signs of having natural fractures. Core analysis and 

well logs show that the matrix has permeability order of 0.05 md and porosity 6 to 14 

percent. Effective permeability obtained from buildup tests, step rate injection range 

from 1 to 200 md17.  

 Table. 4-1 and Fig. 4-1 show the properties of Spraberry.  

 

      Table 4.1- Properties of rock and fluid of Spraberry. 
 

Matrix Porosity  0.1 

Matrix Permeability (md) 0.1  

Fracture permeability (md) 17000  

Fracture aperture (ft) 0.00108  

Initial pressure (psi) 2300  

Water viscosity (cp) 0.51 

Oil viscosity (cp)  1.3 
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Fig. 4-1 –Relative permeability and capillary pressure curves for matrix and fracture.  

 

 For simplicity, the relative permeabilities used in the fracture were assumed to be 

straight lines, which mean that relative permeabilities are equal to their respective 

saturations see Fig. 4-1. Lantz18 shows how to calculate relative permeabilities that 

should be used in an immiscible simulator to model this type of process.  Fig. 4-2 

represents the relative permeability curves according to Lantz’s equations for this model 

with the conditions of viscosity of oil and water of 1.3 cp. and 0.51cp. respectively. The 

relative permeabilities in Fig. 4-2 were not used in this work but should be used in future 

work. 
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Fig. 4-2 –Relative permeability curves for the fracture using Lantz’s method. 
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Fig. 4-3 –Schema of the fracture network of Spraberry (after Schechter).  

 

 The formation is subdivided into the Lower, Middle and Upper Spraberry 

members. Only, units 1U and 5U from the upper Spraberry give significant production. 

A schema of the fracture network for Spraberry is shown in Fig. 4-3. 

 

Fig. 4-4 Pilot of waterflood pattern in the O’Daniel area used to create a 

simulation model composed of one producer well and one injector connected for a single 

fracture. 
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Fig. 4-4 –O’ Daniel pilot area map and model to be simulated. 

 

 

Fig. 4-5 model to be simulated: injector and producer well connected by a single 

fracture in a single matrix block. Fracture spacing is 3.17 ft. and a formation thickness is 

10 ft, averages values for 1U unit in the Spraberry area. Injector and a producer are 

separated 1060ft, which is approximately the distance between the wells 48W and 39. 
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Fig. 4-6 – Comparison of water cut between the 51x11x1 and 51x25x1 models. 
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In both models the water injected is equal to the amount of fluid recovered from 

the producer well, in this case the maximum constant water injection that this model can 

maintain is 0.1 bbl/d. This constrain was established in order to compare it with the De 

Swaan solution. The total movable oil in the model is 217.6 bbls, which means that a 

recovery of 82.7 percent is obtained after 25 years. Most of the recovery, 67.2 percent is 

obtained in the first five years due to countercurrent flow. In addition, another model of 

101x11x1 was compared with the one of 51x11x1 showing exactly the same results. 

This means that a base model of 51x11x1 is very representative. 

 

4.5 Comparison between analytical and numerical solution  

 

In order to use De Swaan’s equations values of tif and the time necessary to inject 

the matrix recoverable oil volume at iw (tiN) are determined 

 

w

fef
if i

xh
t

φ
=               (13) 

 

w

u
iN i

xR
t ∞=              (14) 

 

The value of tiN obtained is 6 years and the value of tif was considered zero 

because the pore volume of the fracture is very small compared with the pore volume of 

the matrix block. As the imbibition constant (τ1) is unknown, it was adjusted to match 

with the results of the detailed model. A very acceptable match is presented in Fig. 4-8 

and Fig. 4-9 for a value of τ1 of 1.5. 
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Fig. 4-8 – Comparing water cut generated by De Swaan and detailed model. 
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Fig. 4-9 – Comparing cumulative oil generated by De Swaan and detailed model. 

 

The Swaan’s formulation can also be used for field scaled models when 

determining tiN  and calibrating  τ1 with  a previous simulation result.  
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CHAPTER V 

COMPARING DETAILED MODEL WITH DUAL POROSITY MODEL 

 

5.1 Introduction 

Naturally fractured reservoirs are probably the most complex of all the reservoir 

systems. The orientation, width, spacing and permeability are necessary to describe the 

fractures network. All of the mentioned above but the permeability determines the 

geometry of the matrix block. The determination of a matrix/fracture system for 

modeling a dual porosity system is very difficult. 

A single matrix block can be simulated using a single porosity simulator with 

fine grid blocks19. However, this method is not practical when doing field scale 

simulation of a naturally fractured reservoir. 

Commercial numerical models can manage flow of fluids in naturally fractured 

reservoir. However, the results of those may not be representatives. In commercial dual-

porosity and dual-permeability simulators, the interporosity flow rate is proportional to 

the shape factor, which is assumed to be a constant value considering the geometry of 

the matrix block. 

 In this chapter, some procedures for getting reliable results when modeling 

naturally fractured reservoirs undergoing waterflood using dual porosity models are 

given. 

 

5.2 Dual-porosity formulations 

 In dual porosity models the fluid flow in each grid block is only between matrix 

and fracture. The finite difference equations for dual porosity models developed by 

Gilman and Kazemi7 and used by CMG20 simulator for oil and water are the following. 

For fracture 
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For matrix 

                         (16) 

 

 

The transfer of the fracture, Tαf 

 

⎟
⎠
⎞

⎜
⎝
⎛
∆
∆∆

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

x
zy

Bu
kk

T
f

r
f

αα

α
α

φ
001127.0            (17) 

 

The transfer of the matrix, Tαma 
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The shape factor, σ 
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In Eq. 18 ω is an upstream weighting factor. When ω is one, flow is from matrix to 

fracture and when zero flow is from fracture to matrix.  relies on the transfer of 

water between  matrix and  fracture. If the term  is canceled the finite difference 

equation for the fracture in Eq. 16 is the same as the equation for a single porosity. This 

term depends directly of the shape factor σ, and assuming that the whole matrix block is 

instantaneously immersed in water. 
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5.3 Modeling dual-porosity 

 Several papers discuss modeling dual-porosity21,22,23,24,25. As we want to compare 

a detailed model with a dual porosity model for a single matrix block, we will construct 

a dual-porosity model with the same properties. That is   fracture spacing is 3.17 ft., 

distance between the wells is 1060 ft and rock-fluid properties are those in Table 4.1.  

Fig. 5-1 shows a scheme of the one dimension dual porosity model. 

 

 

 
Fig. 5-1 – Top view of a scheme of a dual-porosity model. 

 

Grid block sensitivity is performed to determine the minimum number of grid blocks 

that can be used with no great difference in the performance results. Models with 

51x1x1, 26x1x1, 11x1x1, 4x1x1 grid block were simulated. Comparison between the 

finest and coarsest grid block models of water cut and cumulative oil are shown in Fig. 

5-2 and Fig. 5-3 respectively. 
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Fig. 5-2 – Comparing water cut for 51x1x1 and 4x1x1 dual-porosity models. 
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It can be easily seen that the finer and coarser grid block give exactly the same results. 

This means that for this case, the dual-porosity model is not sensitive to the grid block 

size and that the refinement of the grid blocks in a dual-porosity simulation has no effect 

in the performance of fluid displacement. This also means that modeling with the coarse 

one dimension dual-porosity model uses less computational time that the detailed model,  

give same performance  and  is cheaper computationally.   

 

5.4 Comparing detailed model with dual-porosity model 

 After doing grid block sensitivity analysis between the detailed dual-porosity 

models, now the next step is to compare both models, the results from the detailed model 

are considered the solutions, in Fig. 5-4 shows both model to be compared. 
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Fig. 5-4 – Top view of a scheme of the detailed and dual-porosity models. 
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Fig. 5-5 – Comparing cumulative oil for detailed and dual-porosity models. 

 

Fig. 5-5 Cumulative oil curve calculated with the dual-porosity model doesn’t 

match the detailed model. This discrepancy is because the shape factor in the CMG 

simulator doesn’t take into account partially immersed fractures, and assume constant 

shape factor. A constant shape factor is not realistic because  matrix block cannot be 

assumed in contact with the wetting phase8 all the time; in these two models the fracture 

is filled with oil at initial conditions and experiences a varying water saturation of the 

fracture as time passes. The cumulative oil at the beginning doesn’t match, the 

cumulative oil is considerable low and after ten years both cumulative oil curves match.  
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5.5 Using pseudo-capillary pressure curve in the dual-porosity model 

 One attempt to match the detailed model with the dual-porosity model was to 

increase the value of the transfer of water between the matrix block and the fracture 

system. This can be performed by increasing the shape factor, which means to reduce the 

fracture spacing. However, when reducing the fracture spacing more parallel fractures 

within the same matrix block appears and the volume of the matrix system is reduced 

and consequently the volume of the fracture system is increased. This method is not 

considered because is not physically the same as the detailed model in Fig. 5-4. In 

addition, when increasing the shape factor two completely different models are being 

modeled. 

  

 Based on the scaling laws given by Rapoport and applied in some other 

papers3,11, an increase in the capillary pressure curve was performed maintaining the 

same values of connate water saturation and residual oil saturation. Table 5-1 shows the 

original values of capillary pressure and the pseudo capillary pressures used for 

matching the detailed model.  

 

  Table 5-1 Capillary pressure curves for detailed model 

        and dual-porosity model 

 

Sw 

Pc 
original 

(psi) 
Pc match 

(psi) 
0.32 8 200 

0.371429 5.10346 60 
0.422857 3.23304 10 
0.474286 1.48148 1.8 
0.525714 1 1 
0.577143 0 0 
0.628571 0 0 

0.68 0 0 
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Fig. 5-6 and Fig. 5-7 show the match after applying the pseudo capillary pressure curve 

in the dual-porosity model.  When trying to match the detailed model with values of 

capillary pressure higher of 200 psi no significant improvement was observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-6 – Cumulative oil after applying pseudo-capillary pressure curve in the  
    dual-porosity model. 
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CHAPTER VI 

DISCUSION 

 

6.1 General discussion 

 A valid match between the detailed and dual-porosity model after using a pseudo 

capillary pressure curve was obtained. Cumulative oil and produced cumulative water 

were matched. The only distance points between the producer and the injector wells, 

where there is a coincidence between the centers of the grid block are the ones where the 

two wells are located. Therefore, the average water saturations in the matrix for different 

times is determined in these locations. 

 

Fig. 6-1 represents a scheme of the injector and producer wells and the zones 

where the average water saturations are determined. 

 

Table 6-1, Table 6-2 and Table 6 -3 show the average water saturation for the 

detailed and dual-porosity models. The value of the average water saturation for the 

dual-porosity model was obtained directly from the output file of this model. However, 

for determining the average water saturation for the detailed model (51x11x1) the values 

of water saturation in the center of each grid block that represent the matrix, in this case 

only five grid blocks due to the symmetry of the model. In addition, the average water 

saturation for the detailed model was determined volumetrically.  

    

In the dual-porosity model the average matrix water saturations for the grid 

blocks where the wells are located shows small differences compared with its equivalent 

detailed model. This happen because the CMG simulator doesn’t take into account a 

varying shape factor with time, which accounts for partially water immersed fractures. 

Instead, it assumes a shape factor that is constant all the time, which is not realistic. 
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Sw  Injector 
Well 

 
Fig. 6-1 – Scheme of half of the matrix’s model.  

 

Fig. 6-2, Fig. 6-3 and Fig. 6-4 show the water saturation profile in the matrix for both 

models. The three cases show a very acceptable match along the wells 

.  

Table 6-1 Comparing the average water saturation in the matrix  

block for detailed  and dual-porosity model after 3 years 

  Water saturation Water saturation 
  along the along the 
  injector well producer well 

  
for detailed 

model 
for detailed 

model 
  0.541 0.35 
  0.553 0.358 
  0.565 0.364 
  0.574 0.368 
  0.576 0.369 
Average Sw for detailed model 0.551 0.351 
Average Sw for dual-porosity model 0.489 0.478 

 

   

Matrix block 

Sw 

Producer
Well 
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Table 6-2 Comparing the average water saturation in the matrix 

  block for detailed  and dual-porosity model after 6 years 

  Water saturation Water saturation 
  along the along the 
  injector well producer well 
  for detailed model for detailed model 
  0.566 0.509 
  0.57 0.537 
  0.574 0.555 
  0.576 0.568 
  0.577 0.573 
Average Sw for detailed model 0.569 0.528 
Average Sw for dual-porosity model 0.566 0.558 

 

 

 

 

Table 6-3 Comparing the average water saturation in the matrix 

 block for detailed and dual-porosity model after 9 years 

 

  Water saturation Water saturation 
  along the along the 
  injector well producer well 

  
for detailed 

model 
for detailed 

model 
  0.572 0.563 
  0.574 0.567 
  0.576 0.571 
  0.577 0.574 
  0.577 0.575 
Average Sw for detailed model 0.574 0.566 
Average Sw for dual-porosity model 0.574 0.572 
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Fig. 6-2 – Water saturation profile in the matrix between injector and producer wells 

                 after 3 years  for detailed and dual-porosity models. 

 
Fig. 6-3 – Water saturation profile in the matrix between injector and producer wells 

     after 6 years for detailed and dual-porosity models. 
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Fig. 6-4 – Water saturation profile in the matrix between injector and producer wells 

      after 9 years  for detailed and dual-porosity models. 
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CHAPTER VII 

CONCLUSIONS 

 

A method described to simulate properly naturally fractured reservoir undergoing 

waterflood is described. The following conclusions can be drawn based on this research 

work: 

 

1. The following procedures are used to simulate a fractured matrix grid block. 

a) Estimate the rock-fluid properties of the matrix, fracture spacing, fracture 

permeability, fracture orientation and pressure of the system.  

b) Create a two-dimensional single porosity model of a fracture with its fracture 

spacing undergoing waterflood with the properties obtained in (a). This model 

should be fine enough parallel and perpendicular to the fracture to represent it 

correctly.  

c) Construct a one dimensional dual-porosity model using pseudo capillary pressure 

and match this model with the single porosity model already constructed. A 

sensitivity grid block size to the dual-porosity model should be also performed.  

d) Use this dual porosity model for performing field scale simulation involving the 

area in study. 

2.   Dual-porosity model is not sensitive to the size of the numerical grid block. 

3.  De Swaan’s equations can be used in field scale models.  

4. Fluid viscosities play and important role in the countercurrent imbibition process,  

when higher the viscosities of the fluids the more time needed foe recovering certain 

amount of the non-wetting phase. 

 

 

   

 

 

 



 40

NOMENCLATURE 

 

Variables 

B = formation volume factor, L3/L3 [rcf/scf] 

D =depth of grid block, L, [ft] 

f =fractional flow,[fraction] 

g =fluid gradient, m/L2t2 

iw =injection rate, L3/t, [stb/D] 

k = permeability of the reservoir, L2, [md] 

kr = relative permeability, L2, [md] 

L = matrix block dimension, L [ft] 

Np =cumulative oil produce, L3,[bbls] 

p = fluid pressure, m/Lt2, [psi] 

q = imbibition rate,L3/t, [stb/D] 

R =recovered oil, L3, [bbls] 

∞R  =maximum movable oil recovery, L3, [bbls] 

S = saturation, [fraction] 

t = time, t, [days] 

ti =time necessary to inject the fracture recoverable oil ,t, [years] 

tiN = time necessary to inject the matrix recoverable oil ,t, [years] 

T = fluid transmissibility, L4 t/m, [stb/d-psi] 

Vb =bulk volume of the reservoir, L3, [rcf] 

∆x =grid block dimension in x direction,L, [ft] 

∆y =grid block dimension in y direction,L, [ft] 

∆z =grid block dimension in z direction,L, [ft] 

∆ =finite-diference operator 

∆t =value at time n+1minus value at time n 
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Subscripts 

f = fracture 

g = gas 

i = initial condition (usually refer to initial pressure) 

L = flow-path (high permeability layer) 

ma = matrix 

u = unitary fracture length 

x = x direction 

y = y direction 

z = z direction 

α =water and oil phase 

 

Greek Symbols 

φ = porosity, [fraction] 

φfe = effective porosity of fracture, [fraction] 

σ  = shape factor, L-2 [ft-2] 

σ1 = interfacial tension, [m/t2] 

ω = weighting factor, [dimensionless] 

λ = fitting parameter, [t-1] 

τ1 =the time necessary to produce 63% of recoverable oil, [t] 

θ =integration parameter 
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APPENDIX A 

THE DATA FILE FOR THE DUAL-POROSITY MODELUSING 

PSEUDO CAPILLARY PRESSURE CURVE 

 
RESULTS SECTION INOUT 

*INUNIT *FIELD 

 

*OUTUNIT *FIELD  

 

*INTERRUPT *RESTART-STOP 

*RANGECHECK *ON   

*XDR *ON   

*MAXERROR  20 

 

RESULTS XOFFSET 0. 

RESULTS YOFFSET 0. 

RESULTS ROTATION 0 

RESULTS AXES-DIRECTIONS 1. -1. 1. 

 

GRID VARI 4 1 1 

KDIR DOWN 

DUALPOR 

SHAPE GK 

 

TRANSFER 0 

DI CON 353.333 

DJ CON 3.16908 

DK CON 10.  

DTOP  

  4*7000. 

 

 

 

 

**$ RESULTS PROP NULL MATRIX  Units: Dimensionless  

**$ RESULTS PROP Minimum Value: 1  Maximum Value: 1 

**$ 0 = NULL block, 1 = Active block 

NULL MATRIX CON 1. 
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**$ RESULTS PROP NULL FRACTURE  Units: Dimensionless  

**$ RESULTS PROP Minimum Value: 1  Maximum Value: 1 

**$ 0 = NULL block, 1 = Active block 

NULL FRACTURE CON 1. 

 

**$ RESULTS PROP PINCHOUTARRAY  Units: Dimensionless  

**$ RESULTS PROP Minimum Value: 1  Maximum Value: 1 

**$ 0 = PINCHED block, 1 = Active block 

PINCHOUTARRAY CON 1. 

RESULTS SECTION GRID 

 

RESULTS SPEC 'Grid Thickness' MATRIX 

RESULTS SPEC SPECNOTCALCVAL 0 

RESULTS SPEC REGION 'Layer 1 - Whole layer' 

RESULTS SPEC REGIONTYPE 1 

RESULTS SPEC LAYERNUMB 1 

RESULTS SPEC PORTYPE 1 

RESULTS SPEC CON 10 

RESULTS SPEC STOP 

 

RESULTS SPEC 'Grid Top' MATRIX 

RESULTS SPEC SPECNOTCALCVAL 0 

RESULTS SPEC REGION 'Layer 1 - Whole layer' 

RESULTS SPEC REGIONTYPE 1 

RESULTS SPEC LAYERNUMB 1 

RESULTS SPEC PORTYPE 1 

RESULTS SPEC CON 7000 

RESULTS SPEC STOP 

RESULTS PINCHOUT-VAL       0.0002 'ft' 

RESULTS SECTION NETPAY 

RESULTS SECTION NETGROSS 

RESULTS SECTION POR 

 

RESULTS SPEC 'Porosity' MATRIX 

RESULTS SPEC SPECNOTCALCVAL 0 

RESULTS SPEC REGION 'Layer 1 - Whole layer' 

RESULTS SPEC REGIONTYPE 1 

RESULTS SPEC LAYERNUMB 1 

 



 48

RESULTS SPEC PORTYPE 1 

RESULTS SPEC CON 0.1 

RESULTS SPEC STOP 

 

**$ RESULTS PROP POR MATRIX  Units: Dimensionless  

**$ RESULTS PROP Minimum Value: 0.05  Maximum Value: 0.1 

POR MATRIX IVAR  

  0.05 2*0.1 0.05 

 

 

**$ RESULTS PROP POR FRACTURE  Units: Dimensionless  

**$ RESULTS PROP Minimum Value: 0.000170396  Maximum Value: 0.000340793 

POR FRACTURE IVAR  

  0.000170396 2*0.000340793 0.000170396 

 

RESULTS SECTION PERMS 

 

**$ RESULTS PROP PERMI MATRIX  Units: md 

**$ RESULTS PROP Minimum Value: 0.1  Maximum Value: 0.1 

PERMI MATRIX CON 0.1 

 

**$ RESULTS PROP PERMI FRACTURE  Units: md 

**$ RESULTS PROP Minimum Value: 17000  Maximum Value: 17000 

PERMI FRACTURE CON 1.7E+04 

 

**$ RESULTS PROP PERMJ MATRIX  Units: md 

**$ RESULTS PROP Minimum Value: 0.05  Maximum Value: 0.1 

PERMJ MATRIX IVAR  

  0.05 2*0.1 0.05 

 

 

**$ RESULTS PROP PERMJ FRACTURE  Units: md 

**$ RESULTS PROP Minimum Value: 8500  Maximum Value: 17000 

PERMJ FRACTURE IVAR  

  8500. 2*1.7E+04 8500. 

 

 

**$ RESULTS PROP PERMK MATRIX  Units: md 

**$ RESULTS PROP Minimum Value: 0.1  Maximum Value: 0.1 
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PERMK MATRIX CON 0.1 

 

**$ RESULTS PROP PERMK FRACTURE  Units: md 

**$ RESULTS PROP Minimum Value: 17000  Maximum Value: 17000 

PERMK FRACTURE CON 1.7E+04 

RESULTS SECTION TRANS 

RESULTS SECTION FRACS 

 

**$ RESULTS PROP DIFRAC  Units: ft 

**$ RESULTS PROP Minimum Value: 0  Maximum Value: 0 

DIFRAC CON 0 

 

**$ RESULTS PROP DJFRAC  Units: ft 

**$ RESULTS PROP Minimum Value: 1.5845  Maximum Value: 1.5845 

DJFRAC CON 1.5845 

 

**$ RESULTS PROP DKFRAC  Units: ft 

**$ RESULTS PROP Minimum Value: 0  Maximum Value: 0 

DKFRAC CON 0 

RESULTS SECTION GRIDNONARRAYS 

CPOR  MATRIX   3.E-05 

PRPOR MATRIX   2300. 

 

CPOR  FRACTURE 3.E-05 

PRPOR FRACTURE 2300. 

 

RESULTS SECTION VOLMOD 

RESULTS SECTION SECTORLEASE 

**$ SECTORARRAY 'Fracture*2' FRACTURE  Definition. 

SECTORARRAY 'Fracture*2' FRACTURE ALL 

  4*1 

 

**$ SECTORARRAY 'Matrix*2' MATRIX  Definition. 

SECTORARRAY 'Matrix*2' MATRIX ALL 

  4*1 

 

RESULTS SECTION ROCKCOMPACTION 

RESULTS SECTION GRIDOTHER 

RESULTS SECTION MODEL 
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MODEL *OILWATER 

**$ OilGas Table 'Table A' 

*TRES     138. 

 

*PVT *EG 1 

**  P        Rs             Bo          EG       VisO          VisG      

    14.7      3.37      1.0351    4.907985  5.9522    0.011977 

    27.05     4.65      1.0355    9.0445    5.8846    0.011985 

    39.4      6.        1.036     13.19303  5.8153    0.011993 

    51.76     7.41      1.0365    17.357    5.7448    0.012002 

    64.11     8.85      1.037     21.5297   5.6739    0.012012 

    76.46     10.35     1.0376    25.7145   5.6028    0.012023 

    88.82     11.88     1.0381    29.9148   5.5317    0.012034 

    101.17    13.44     1.0387    34.1239   5.4609    0.012045 

    113.52    15.03     1.0392    38.3452   5.3906    0.012057 

    125.88    16.66     1.0398    42.5822   5.3208    0.01207  

    138.23    18.31     1.0404    46.8279   5.2518    0.012082 

    150.59    19.99     1.041     51.0894   5.1835    0.012095 

    162.94    21.69     1.0416    55.3597   5.116     0.012108 

    175.29    23.41     1.0422    59.6423   5.0495    0.012122 

    187.65    25.16     1.0429    63.9408   4.9839    0.012135 

    200.      26.92     1.0435    68.2481   4.9193    0.012149 

    860.      139.92    1.0862    316.4086  2.7222    0.013156 

    1520.     273.72    1.1406    594.155   1.8192    0.014542 

    2180.     420.13    1.2038    877.637   1.3583    0.01628  

    2840.     575.92    1.2744    1135.694  1.084     0.018405 

    3500.     739.3     1.3517    1353.175  0.9036    0.020974 

*DENSITY *OIL 55. 

*DENSITY *GAS 0.0514 

*DENSITY *WATER 66.2 

*CO       2.151437E-05 

*BWI      0.949 

*CW       2.955295E-06 

*REFPW    2300. 

*VWI      0.516558 

*CVW      0 

 

RESULTS SECTION MODELARRAYS 

RESULTS SECTION ROCKFLUID 

 



 51

 

*ROCKFLUID 

 

 

*RPT 1  

*SWT  

0.320000  0.000000  1.000000  200.000000    

0.371429  0.008000  0.452000  60.000000    

0.422857  0.020000  0.292000  10.000000    

0.474286  0.036000  0.180000  1.800000    

0.525714  0.056000  0.124000  1.000000    

0.577143  0.078000  0.068000  0.000000    

0.628571  0.104000  0.0325173  0.000000    

0.680000  0.138000  0.000000  0.000000    

 

 

 

*RPT 2  

*SWT  

0.000000  0.000000  1.000000  8.000000    

0.100000  0.100000  0.900000  0.100000    

1.000000  1.000000  0.000000  0.000000    

 

*KROIL *STONE2 *SWSG 

 

 

RESULTS SECTION ROCKARRAYS 

 

**$ RESULTS PROP RTYPE MATRIX  Units: Dimensionless  

**$ RESULTS PROP Minimum Value: 1  Maximum Value: 1 

RTYPE MATRIX CON 1. 

 

**$ RESULTS PROP RTYPE FRACTURE  Units: Dimensionless  

**$ RESULTS PROP Minimum Value: 2  Maximum Value: 2 

RTYPE FRACTURE CON 2. 

RESULTS SECTION INIT 

*INITIAL 

*USER_INPUT 

**$ Data for PVT Region 1 
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RESULTS SECTION INITARRAYS 

 

RESULTS SPEC 'Pressure' MATRIX 

RESULTS SPEC SPECNOTCALCVAL 0 

RESULTS SPEC REGION 'Layer 1 - Whole layer' 

RESULTS SPEC REGIONTYPE 1 

RESULTS SPEC LAYERNUMB 1 

RESULTS SPEC PORTYPE 1 

RESULTS SPEC CON 2300 

RESULTS SPEC STOP 

 

RESULTS SPEC 'Pressure' FRACTURE 

RESULTS SPEC SPECNOTCALCVAL 0 

RESULTS SPEC REGION 'Layer 1 - Whole layer' 

RESULTS SPEC REGIONTYPE 1 

RESULTS SPEC LAYERNUMB 1 

RESULTS SPEC PORTYPE 2 

RESULTS SPEC CON 2300 

RESULTS SPEC STOP 

 

**$ RESULTS PROP PRES MATRIX  Units: psi 

**$ RESULTS PROP Minimum Value: 2300  Maximum Value: 2300 

PRES MATRIX CON 2300. 

 

**$ RESULTS PROP PRES FRACTURE  Units: psi 

**$ RESULTS PROP Minimum Value: 2300  Maximum Value: 2300 

PRES FRACTURE CON 2300. 

 

**$ RESULTS PROP PB MATRIX  Units: psi 

**$ RESULTS PROP Minimum Value: 100  Maximum Value: 100 

PB MATRIX CON 100. 

 

**$ RESULTS PROP PB FRACTURE  Units: psi 

**$ RESULTS PROP Minimum Value: 100  Maximum Value: 100 

PB FRACTURE CON 100. 

 

**$ RESULTS PROP SO MATRIX  Units: Dimensionless  

**$ RESULTS PROP Minimum Value: 0.68  Maximum Value: 0.68 
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SO MATRIX CON 0.68 

 

**$ RESULTS PROP SO FRACTURE  Units: Dimensionless  

**$ RESULTS PROP Minimum Value: 1  Maximum Value: 1 

SO FRACTURE CON 1. 

RESULTS SECTION NUMERICAL 

*NUMERICAL 

*DTMAX 30. 

*DTMIN 1.E-10 

*NEWTONCYC 800 

*NORTH 400 

*ITERMAX 200 

*NCUTS 800 

*NORM *PRESS 435.113 

*NORM *PBUB 435.113 

  

RESULTS SECTION NUMARRAYS 

RESULTS SECTION GBKEYWORDS 

RUN 

 

 

 

 

 

 

DATE 1901 01 01. 

WELL  1 'Injector'  

INJECTOR MOBWEIGHT 'Injector'  

INCOMP WATER  

OPERATE MAX BHW  0.1 CONT 

OPERATE MAX BHP  3100. CONT 

 

GEOMETRY K 0.25 0.37 1. 0. 

PERF GEOA   'Injector' 

 1 1 1 1. OPEN FLOW-FROM 'SURFACE'  

 

 

WELL  2 'Producer'  

PRODUCER 'Producer'  
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OPERATE MAX STL  0.11 CONT 

OPERATE MIN BHP  500. CONT 

 

GEOMETRY K 0.25 0.37 1. 0. 

PERF GEOA   'Producer' 

 4 1 1 1. OPEN FLOW-TO 'SURFACE'  

 

 

OPEN 'Injector' 

 

OPEN 'Producer' 

 

DATE 1901 02 01. 

 

DATE 1901 03 01. 

. 

. 

. 

DATE 1940 01 01. 

 

STOP 

***************************** TERMINATE SIMULATION ***************************** 

 

RESULTS SECTION WELLDATA 

RESULTS SECTION PERFS 
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