Managing an Induction Motor Vibration
Kevin Reynolds, JW Hodson III & Lynn Fulton

BP

Whiting Indiana
Main Air Blower Motor

- 10,000 Horsepower 13,200 volt 4 pole motor
- Purchased Fall 1994
- Required in-rush current limit design for startup
- Vibration Acceptance criteria on test stand
 - 1.1 mil (p-p) 1X shaft vibration
 - 0.8 mil (p-p) 2X shaft vibration
 - 2.0 mil (p-p) overall
Early History

- Startup May 1995
- Vibration at startup was 1 to 1.5 mils
- By August 1995 shaft vibration levels increased to 2.6 mils
- October 17, 1995 had a failure of the IB air deflector ring to ground tripping motor
- December 1995 new design air deflector installed and motor field balanced
Vibration Levels Increased over Time

- IB vibration levels slowly trend upward from 1996 to Spring 2001
- Verified vibration was due to some motor problem
- Eliminated “red Herring” of “bad grout”
May 1995 – Jan 2001 Vib
Vibration Limits

- 0.0075 inch bearing clearance
- Limited Vibration to 85% bearing Clearance both probes
- Shutdown levels 0.0064 inches P-P
- Needed Preemptive activity to assure we could keep the machine in operation
Aug 98 - Aug 00 Amb vs. Vib

Plot-0

J-1C MOTOR IB RADIAL

AMBIENT TEMPERATURE

8/15/1997 12:00:00 AM

2.00 Year(s)

8/15/1999 12:00:00 AM

G07504

MILS

G07505

MILS

T05998

DEG F
Ambient Temperature increase causes increase in motor vibration

- Added air 2 conditioner units to cool inlet air to the Motor
- Cost effective
- Deferred motor maintenance
Rotor Problem

- Rotor could be in axial bind causing bow
- Possible loose bars
- Plan on pulling motor at best opportunity
Uniform buildup
Additional Inspection decided to pull rotor
Lamination Pieces found in bottom of motor

- Original design required limited inrush current
- Acceleration time increased
- More air flow required

- Vendor eliminated every other row of duct spacers in order to increase air flow
Loose and missing Laminations
Missing duct spacers
Vibration Cause

- Laminations without duct spacers shift to block air path and break off when not “clamped” by spacers.
- Increases at each startup could be explained by additional laminations breaking off on acceleration (not likely).
- Rotor expanded during heating and could not return to original position due to excessive restriction of tapered positioning pins. (most likely)
Original Rotor Configuration
Repair
Visual inspection after welding
Machined O.D.
Balanced
Vibration after startup
Parallel path was to obtain a new motor with low inrush current design

- Repair method had not been used before
- Failure rate of the repair was unknown
- Timing for new motor was in sync TAR
New Motor

- New Motor rejected on test stand
- Test stand startup current too high
- Developed list of solutions
Options

- Rebuild new motor – 5 months minimum
- Different motor connection to system to minimize inrush current – work could be done during TAR
- Meantime, old motor still in service
New Connection Caused

- Different motor torque characteristics when we changed from Wye to Delta

- Review of couplings, gear, and compressor capability – SF ok.
New Motor after Installation
Present Day Vibration

Mtr 1x, 1y, 2x, 2y

J-1C MOTOR OB RADIAL
J-1C MOTOR IB RADIAL
J-80T INLET AIR

2/1/2005 1:39:19 PM
6/19/2006 1:39:19 PM
1.38 Year(s)

G07502
0.69
MILS
G07504
0.54
MILS
T09770
91.561
DEG F
Thank You

Questions?