The Evaluation of the Coefficient of Friction Used to Calculate Hub Slip Torque

Participating Authors:

Pat McCormack

Manager Industrial Couplings Engineering

Goodrich Corporation

104 Otis Street

Rome, NY 13441-4714

Ph: 315-838-1281 Fax: 315-838-1476

e-mail: pat.mccormack@goodrich.com

Monica Crowe

Design Engineer

Goodrich Corporation

104 Otis Street

Rome, NY 13441-4714

Ph: 315-838-1281

Fax: 315-838-1476

e-mail: monica.crowe@goodrich.com

Jeff Buck

Shell Global Solutions

Rotating Equipment (GSER)
Westhollow Technology Center

3333 Highway 6 South Houston, TX 77082-3101

Ph: 281-544-7238 Fax: 281-544-7705

e-mail: jeff.buck@shell.com

Bill Robichaux

Engineering Group Manager

Shell Chemical LP

Electrical & Mechanical

15536 River Road Norco, LA 70079

Ph: 504-465-7747

Fax: 504-465-7176

e-mail: bill.robichaux@shell.com

Field Problems which Initiated Testing:

- Hub slipped during operation on 3 different couplings (various size, speed, and power applications)
- Damage (galled material) on shaft end and hub:

 Effects are: costly shaft weld repair, hub replacement, unplanned outage, increased turnaround work scope

Recent Field Changes:

 Environmental Regulations recommend replacing solvent: Varsol with Acetone

(to remove corrosion protective coating)

- Unit re-rates have dropped slip torque margins (margins still meet API 671- 3rd edition, 1.75x)
- Suspected reasons why hubs slipped:
 - Acetone may not properly remove corrosion protection coating
 - corrosion protection coating may lower the coefficient of friction
 - calculated slip torque values may not correspond to actual slip torque values (very important when slip torque margins are lowered)

Questions to Answer:

- How will corrosion preventive compounds affect calculated slip torque values?
- What method may be used to successfully remove the corrosion preventive compound just prior to installation?
- What is the correlation between calculated slip torque values and actual tested slip torque values?

Calculating Static Hub Slip Torque

 Step 1- Define the interference fit and calculate the pressure required to overcome it

Where:

 I_{max} = specified interference fit (in)

E = Young's Modulus (lb/in²)

C_e = ratio of average bore diameter to outside diameter

 D_b = bore diameter (in)

$$p = \frac{I_{\text{max}}E(1 - C_e^{-2})}{2D_b}$$

AGMA 9003-A91 (Eq. 4.4)

Calculating Static Hub Slip Torque

 Step 2- Solve for slip torque using the calculated pressure from Step 1

Where:

p = pressure required to break the interference fit (psi)

 D_b = average bore diameter (in)

L = length of hub engagement (in)

 μ = apparent coefficient of friction

$$T = \frac{p\pi D_b^2 L\mu}{2}$$

AGMA 9003-A91 (Eq. 4.1)

Test Components

- Replicated Machinery Shaft End
- Hydraulically Installed Taper Bore Hub
 - With 2 Buna-N O-Rings& 2 Teflon Back UpRings
- Contoured Flexible
 Diaphragm Coupling (to take up misalignments in test equipment)

Test Equipment

Million-Inch Pound Static Torque Test Stand

Test Set-Up

Replicated Machinery Shaft End

Test Conditions- Corrosion Protection Coating

- Test #1 & 2 = .002 in/in interference ratio
- Test #3 & 4 = .0025 in/in interference ratio
- Constant conditions for all 4 tests:
 - Corrosion protection coating (Dow MOLYKOTE[®] Metal Protector Plus) applied to hub bore
 - Shaft end was left bare (dry metal)

Results- Test #1-4

- Hub could not be installed on shaft end (coating did not provide friction fit)
- No slip torque data was obtained

MOLYKOTE is a registered trademark of Dow Corning Corporation. ©0-2002 Dow Corning Corporation. All rights reserved.

Test Conditions- Clean with Acetone

- Test #5 = .002 in/in interference ratio
- Test #6 = .0025 in/in interference ratio
- Constant conditions for both tests:
 - Remove corrosion protection coating (Dow MOLYKOTE ® Metal Protector Plus) on hub bore with Acetone
 - Shaft end was left bare (dry metal)

Test Conditions- Clean with Solvent WD-40

- Test #7 = .002 in/in interference ratio
- Test #8 = .0025 in/in interference ratio
- Constant conditions for both tests:
 - Remove corrosion protection coating (Dow MOLYKOTE ® Metal Protector Plus) on hub bore with Solvent WD-40
 - Shaft end was left bare (dry metal)

Results (Tests #5-8)

Note: data is based on newly machined components in a clean environment

Results (Tests #5-8)

Coefficient of friction solved from actual test data = 0.18 average

Note: data is based on newly machined components in a clean environment

Black Light Test

Hub as received from manufacturer- with corrosion protection coating

Black Light Test

 Clean with Acetone & coating still remains

Corrosion protection coating still remains on bore (bright blue finish)

 Clean with solvent WD-40 & coating is fully removed

Conclusions

- 1. Corrosion preventive compounds (Dow MOLYKOTE ® Metal Protector Plus) can affect slip torque values
- 2. Cleaning methods can affect slip torque values
- 3. Calculated slip torque values for the tests conducted were lower than actual slip torque values:

Using:

```
\mu = 0.12, for corrosion protection coating (Tests #5 & 6)
```

 μ = 0.15, for hydraulically installed steel to steel parts (Tests #7 & 8)

Recommendations

- Contact manufacturers to identify what corrosion protection coatings are applied to parts.
- Determine the best method for removing the corrosion protection coating, and if possible, develop a procedure to verify cleanliness.
- 3. Clearly define hub installation techniques to establish a procedure for consistent, repeatable results.

