Abstract

37th Turbomachinery Symposium

Case Study:

TORSIONAL OSCILLATION TROUBLE ON VFD MOTOR DRIVEN RECIP COMPRESOR

Authors:

Joe Corcoran
Manager Global Services & Training, Kop-Flex

John Kocur, Jr. Ph.D
Machinery Specialist, ExxonMobil

High vibration problems including failed coupling parts on a VFD motor driven reciprocating compressor are analyzed and the root causes and solutions are discussed in this costly field issue.
TORSIONAL OSCILLATION TROUBLE ON VFD MOTOR DRIVEN RECIP COMPRESSOR

Joe Corcoran
Manager Global Services & Training, Kop-Flex

John Kocur, Jr. Ph.D
Machinery Specialist, ExxonMobil
Initial Problem

- VFD Controlled Electric Motor Driving a 4 Throw Reciprocating Compressor (1230 Kw @ 600 RPM – 1000 RPM)
- Connected by an Elastomeric Block Type Coupling
- High Vibrations Noticed on the Motor
Initial Problem
Initial Problem

- In Depth Vibration Readings Taken to Determine Root Cause
- 5 mm/sec @ 83.2 Hz Horizontal on Motor NDE
- Approximately 5x Running Speed
- However, Frame Measurements Led to Discovery of Foundation Bolts not Tightened Properly
Initial Problem

- Bolts Tightened and New Measurements Taken
- Now Dominant Frequency is @ 66.5 Hz Axial, with Amplitudes Above 6 mm/s on Both Ends of Motor
- Approximately 4X Running Speed
- Everything is Questioned, Including Coupling
- Coupling has 10 Blocks in Cavities, but Only 5 are Driving; so Coupling Problem Could Explain 5X but not 4X
Tightening of Bolts Changed the Dominant Frequency

Natural Frequencies on the Motor (non-tightened bolts) Measured at 42, 73, and 95 Hz

High Vibration Coming from Amplification of Resonance of Motor Base/Frame Suspected

Dynamic Stiffness of Motor Feet/Base Connection Needs to be Increased
Measurement Results

<table>
<thead>
<tr>
<th></th>
<th>06-nov-07</th>
<th></th>
<th>08-nov-07</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>X</td>
</tr>
<tr>
<td>Compressor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall [mm/s]</td>
<td>2.8</td>
<td>4.6</td>
<td>2.9</td>
<td>4.0</td>
</tr>
<tr>
<td>Max [mm/s] @ Hz</td>
<td>1.3 @ 183</td>
<td>1.3 @ 100</td>
<td>1.2 @ 183</td>
<td>1.8 @ 66.5</td>
</tr>
<tr>
<td>[mm/s] @ 66.5 Hz</td>
<td>0.6</td>
<td>0.4</td>
<td>0.4</td>
<td>1.8</td>
</tr>
<tr>
<td>[mm/s] @ 83.2 Hz</td>
<td>0.3</td>
<td>0.9</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>E-motor NDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall [mm/s]</td>
<td>2.4</td>
<td>6.4</td>
<td>1.6</td>
<td>7.6</td>
</tr>
<tr>
<td>Max [mm/s] @ Hz</td>
<td>1.8 @ 66.5</td>
<td>5.0 @ 83.2</td>
<td>1.0 @ 66.5</td>
<td>6.5 @ 66.5</td>
</tr>
<tr>
<td>[mm/s] @ 66.5 Hz</td>
<td>1.8</td>
<td>1.8</td>
<td>1.0</td>
<td>6.5</td>
</tr>
<tr>
<td>[mm/s] @ 83.2 Hz</td>
<td>0.4</td>
<td>5.0</td>
<td>0.4</td>
<td>1.2</td>
</tr>
<tr>
<td>E-motor DE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall [mm/s]</td>
<td>2.3</td>
<td>3.9</td>
<td>2.0</td>
<td>7.3</td>
</tr>
<tr>
<td>Max [mm/s] @ Hz</td>
<td>1.8 @ 66.5</td>
<td>2.5 @ 66.5</td>
<td>1.4 @ 66.5</td>
<td>6.3 @ 66.5</td>
</tr>
<tr>
<td>[mm/s] @ 66.5 Hz</td>
<td>1.8</td>
<td>2.5</td>
<td>1.4</td>
<td>6.3</td>
</tr>
<tr>
<td>[mm/s] @ 83.2 Hz</td>
<td>0.5</td>
<td>1.4</td>
<td>0.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>

E-motor Overall ? 2.5 mm/s
Coupling Problem Suspected

- Motor Foot Bolts Regrouted
- At or About the Same Time the “Smell of Burned Rubber” was Noticed Around the Machine
- At the First Opportunity, the Machines were Shut Down for Inspection
- Rubber Blocks were Damaged
Coupling Problem Suspected

- Did the Coupling Cause the Machine Vibration Leading to its Failure? or
- Did the Machinery Vibrations Cause the Failed Coupling?
Coupling Problem Suspected

- Original Torsional Analysis Reviewed by Coupling Vendor

- Issues Found
 - Only One Coupling Stiffness Used in Model (Block Coupling Stiffness Varies with Torque and Alignment, Amongst Other Factors)
 - Tolerance
 - Durometer, Age
 - Temperature
Coupling Problem Suspected

MASS ELASTIC SYSTEM

\[J_1 = \left(\frac{1}{2} \text{ BLOCKS + HUB} \right) = 40.13 \text{ LB-IN-SEC}^2 \]

\[K_1 = \text{ BLOCK STIFFNESS} = 4.65 \times 10^6 \text{ LB-IN/RAD} \]

\[J_2 = \left(\frac{1}{2} \text{ SPACER + SLEEVE ASSEY + 1/2 BLOCKS} \right) = 51.34 \text{ LB-IN-SEC}^2 \]

\[K_2 = \text{ SPACER STIFFNESS} = 480 \times 10^4 \text{ LB-IN/RAD} \]

\[J_3 = \left(\frac{1}{2} \text{ SPACER + RIGID} \right) = 43.70 \text{ LB-IN-SEC}^2 \]
Coupling Problem Suspected

Torsional stiffness of “WB” Couplings can be calculated by the same method as shown for the “CB” Couplings.
Coupling Problem Suspected

- Damping of the Rubber Blocks not Modeled

\[
C = \frac{K}{(M \times w)} \quad [\text{lb} \times \text{in} \times \text{sec} / \text{rad}]
\]

\[
K - \text{coupling stiffness (table)} \quad [\text{lb} \times \text{in} / \text{rad}]
\]

\[
M - \text{magnification factor} \quad [\text{dimensionless}]
\]

\[
W - \text{torsional vibration freq.} \quad [\text{rad/sec}]
\]

for Duro 80 \(M_{\text{Natural Rubber}} = 5.0 \); \(M_{\text{SBR}} = 3.0 \)

- Most Importantly, the Vibratory Torque Capacity of the Blocks was Exceeded
Coupling Problem Suspected

- Coupling was Selected early Using a Service Factor
- Coupling Dynamic Torque Capacity was +/-63,000 lb-in up to Vibration Frequency of 500 cpm and less beyond
- The Torsional Report Predicted Values Varied with Different Cases, but Largest Value was +/- 75,000 lb-in in the Running Speed Range, but Not at a Resonant Frequency
- An Issue of Poor Communication Between the Coupling Supplier and Analysts
Coupling Problem Suspected

<table>
<thead>
<tr>
<th>Case</th>
<th>Predicted Torque [Nm]</th>
<th>Allowable Torque [Nm]</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Case 1</td>
<td>23250</td>
<td>7569</td>
<td>35900</td>
</tr>
<tr>
<td>Case 2</td>
<td>17303</td>
<td>452</td>
<td>35900</td>
</tr>
<tr>
<td>Case 3</td>
<td>14686</td>
<td>4429</td>
<td>35900</td>
</tr>
<tr>
<td>Case 4</td>
<td>21699</td>
<td>7360</td>
<td>35900</td>
</tr>
<tr>
<td>Case 5</td>
<td>19291</td>
<td>5162</td>
<td>35900</td>
</tr>
<tr>
<td>Case 6</td>
<td>19396</td>
<td>6522</td>
<td>35900</td>
</tr>
</tbody>
</table>
Possible Solutions

- Replace Coupling with One with Higher Vibratory Torque Capacity (would take too long to manufacture)

- Introduce Flywheel(s) into System to Reduce the Vibration Magnitude which would also Change the Resonant Frequencies

- Internal Flywheels were Available from the Compressor Manufacturer, but did not have Enough Inertia to Reduce Amplitude
Actual Solution

- A Large Flywheel Bolted to the Coupling Hub/Spacer Connection
- Plus Using High Damping Material Blocks of the Same Size as Before but with Lower Dynamic Magnification Factor (3 vs. 5)
- This Put Resonant Points into the Running Speed Range, but the Magnitudes were Sufficiently Reduced to be Within the Coupling Vibratory Torque Capacity
Actual Solution

1025 lb
375000 lb-in²
Actual Solution
Actual Solution

Vibratory Torque at Predicted Natural Frequency

- Resonant Nat. Rubber
- Resonant (SBR)
- Limits @ Res. RPM

Vibratory Torque [Nm]

Case (RPM)

2 (716 rpm) 5 (606 rpm) 11 (637 rpm) 13 (716 rpm) 14 (660 rpm) 19 (716 rpm)
Actual Solution

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>716</td>
<td>52646.4</td>
<td>5948.3</td>
<td>5843.5</td>
<td>0.98</td>
<td>5101.8</td>
<td>0.86</td>
</tr>
<tr>
<td>5</td>
<td>606</td>
<td>57225.5</td>
<td>6465.6</td>
<td>4287.1</td>
<td>0.66</td>
<td>3928.2</td>
<td>0.61</td>
</tr>
<tr>
<td>11</td>
<td>637</td>
<td>55815.6</td>
<td>6306.3</td>
<td>1790.7</td>
<td>0.28</td>
<td>1814.9</td>
<td>0.29</td>
</tr>
<tr>
<td>13</td>
<td>716</td>
<td>52646.4</td>
<td>5948.3</td>
<td>5688.7</td>
<td>0.96</td>
<td>4887.5</td>
<td>0.82</td>
</tr>
<tr>
<td>14</td>
<td>660</td>
<td>54834.5</td>
<td>6195.5</td>
<td>4625.6</td>
<td>0.75</td>
<td>4143.7</td>
<td>0.67</td>
</tr>
<tr>
<td>19</td>
<td>716</td>
<td>52646.4</td>
<td>5948.3</td>
<td>3655.5</td>
<td>0.61</td>
<td>3291.2</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Lessons Learned

- Complete Torsional Analysis in a Timely Manner and Review with ALL Equipment Suppliers

- Equipment Suppliers Need to be Clear on the Limitations and Assumptions in Their Data Used for the Torsional Model

- On Trains Prone to Torsional Issues, Complete an Analysis – Do Not Use Service Factors

- Even if the Analysis is Complete, There are Many Possibilities for Errors, So an Actual Vibration Measurement is Recommended
 - Before Equipment is Needed to be in Operation
 - At the Most Possible Loading Conditions