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ABSTRACT 

 
A Quadratic Cumulative Production Model for the Material Balance of 

an Abnormally Pressured Gas Reservoir. (December 2003)  
 

Felix E. Gonzalez Romero, 
 

B.S., Universidad Central de Venezuela; 
 

M.Eng., Universidad Simon Bolivar 
 

Chair of Advisory Committee: Dr. Thomas A. Blasingame 
 
 
The premise of this research is the concept, development, and application of an approximate relation for 

the material balance of abnormally pressured gas reservoirs.  The approximation is formulated directly 

from the rigorous material balance for the case of an abnormally pressured gas reservoir.  This result is 

given by: 
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We note that the primary assumption in this derivation is that ωGp )))((or  ( pippec − <1.  Further, we can 

proceed by assuming that ω is either constant or some arbitrary function.  If we assume ω=constant, then 

the following form results: 
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At first glance there may be concern that this approximation is not sufficiently valid for field applications 

— however, we have shown this relation to be an extraordinarily accurate approximation of the rigorous 

material balance.  This result is suited not only for use as a characteristic model, but also for use as a data 

analysis mechanism (i.e., this result is used to develop a suite of analysis plots, plotting functions, a type 

curve, etc.).  We note that we also address the case of ω being a linear function of Gp, and we note that this 

result is typically identical (or essentially identical) to the case of ω being assumed to be constant. 
 

In this work we provide the following new results: 
 

 A suite of 6 (six) plotting functions based on the p/z-Gp
2 material balance model. 

 A suite of 4 (four) ω-Gp performance plots which are used to calibrate analysis. 

 A new type curve in terms of a dimensionless pressure function (pD=(pi/zi-p/z)/pi/zi) versus a dimen-

sionless cumulative production function (GpD=Gp/G), where the type curve solution is based on the 

new p/z-Gp
2 material balance model. 
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We also use the "Gan" analysis approach (3 (three) specialized plots), where this analysis is based on the 

observation of 2-straight line trends on a p/z-Gp plot for an abnormally pressured reservoir.  The Gan 

analysis is used primarily for orientation, particularly with regard to the 4 new ω-Gp performance plots. 
 

In order to establish a comprehensive validation of the new method for applications to performance data 

from abnormally pressured reservoirs, we provide a complete analysis suite for the following cases. 
 

 4 (four) numerical simulation cases (3 "dry gas" cases, 1 "gas condensate" case). 

 20 (twenty) field cases taken from the petroleum literature, or acquired from industry sources. 
 

It is relevant to note that all validation cases have been successfully evaluated using the new methodology 

and we propose that this new technique will become a standard practice for the analysis of reservoir 

performance data obtained from abnormally pressured gas reservoirs. 
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CHAPTER I 
 

INTRODUCTION 
 

1.1 Introduction 

In this work we establish the validity of an approximation to the rigorous gas material balance equation for 

the specific case of an abnormally pressured gas reservoir.  The genesis of this work is both the wide 

variety of solutions for this case (i.e., our desire to develop an accurate and practical general solution for 

the case of an abnormally pressured gas reservoir) as well as the need for a methodology that can be 

considered essentially rigorous.  Our approach does utilize an approximation, but we will show that this 

approximation is the minimum expansion of a binomial series that results in a very consistent and accurate 

model for the material balance of abnormally pressured gas reservoirs. 

 
1.2 Objectives 

The primary objectives of this work are: 
 

 To develop a quadratic formulation of the rigorous material balance for the case of an abnormally 

pressured gas reservoir in terms of cumulative gas production.  This result is given as: (the deriva-

tion is given in Appendix A) 
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 To develop plotting functions for the analysis of reservoir performance behavior based on the 

quadratic cumulative production formulation of the rigorous material balance for the case of an 

abnormally pressured gas reservoir.  We note that we use 10 (ten) specific data plotting functions as 

part of this work — others are available, but we favor the 10 functions used due to consistency and 

data representation/visualization.  These functions are derived in Appendix B. 
 

 To develop and validate a dimensionless "type curve" solution based on Eq. 1.1 and an auxiliary 

functions (i.e., the "pressure integral" of Eq. 1.1 based on Gp) (Appendix C). 
 

 To validate and demonstrate the plotting functions and analysis relations (based on the plotting 

functions) using simulated reservoir performance cases (4) and various field performance cases 

(20).  While our validation efforts may not be "exhaustive," we would define our validate procedure 

as conclusive and sufficient.  In short, all cases (simulation and field data) were successfully 

analyzed using this new analysis methodology. 
 

_________________________ 

This thesis follows the style and format of the SPE Journal. 
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 To provide a comprehensive analysis/interpretation methodology using a dynamic (or linked) 

analysis approach where all model functions are tied to a common set of control parameters.  As 

such, we implemented the analysis module as a spreadsheet in MS Excel. 
 

1.3 Statement of the Problem 

The rigorous material balance for the case of an abnormally pressured gas reservoir was developed by 

Fetkovich, et al,1 and is given as: 
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Where Fetkovich, et al. define the "effective compressibility" function, )( pec , as: 
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Considering the case where Ginj=Winj=Wp=We=0, we obtain the common form of the gas material balance 

relation for the case of "abnormal pressure" effects.  This result is given as: 
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Gan and Blasingame2 utilized Eq. 3 to develop a sequence of spreadsheet-based analyses for estimating 

the gas-in-place, G, as well as the pore volume compressibility function, cf.  The premise of the Gan and 

Blasingame approach is that two linear trends are often observed on a plot of p/z versus Gp for the case of 

an abnormally pressured gas reservoir — the first trend is the "abnormal" pressure trend, and the second is 

the "normal" pressure (or depletion) trend.  The "abnormal" pressure trend is given by: 
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The "normal" (or depletion) pressure trend is given by: 
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Gan and Blasingame applied this methodology to several cases of simulated reservoir performance, and as 

many field cases that could be found in the literature or from industry sources.  The proposed methodology 

was shown to be robust and accurate for virtually all cases.  This limitation of this approach (and of all 

existing analyses for abnormally pressured gas reservoirs) is that the only indication of "abnormal 

pressure" behavior is the decline in the p/z versus Gp performance from an apparent linear trend.  In other 

words, no methodology exists in practice which can be used to verify the influence of abnormal pressure 
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prior to some indication in p/z versus Gp performance.  We do note that the Moran and Samaniego3 

approach — i.e., the use of the d(p/z)/dGp function does hold some utility in being able to distinguish 

"normal" and "abnormal" pressure behavior uniquely — however, this method is not well suited to field 

use due to the behavior of the d(p/z)/dGp function derived from field performance data. 
 

It can be argued that the magnitude of reservoir pressure compared to the hydrostatic gradient can indicate 

abnormal pressure behavior4 — however, predicting the onset of "normal pressure" behavior is not 

possible based solely on p/z versus Gp performance.  Gan and Blasingame did propose a series of 

diagnostic checks to establish the existence of abnormal pressure effects, as well as provide an approxi-

mate correlation for the onset of "normal pressure" behavior.  However, these are simply supplemental 

mechanisms to assist with the proposed "two straight line p/z analysis. " 
 

As noted above, Moran and Samaniego3 provide an innovative and rigorous approach for the analysis of 

p/z—Gp performance which utilizes the concept of d(p/z)/dGp (and other derivative functions).  This work 

could (and probably should) be seen as a breakthrough analysis technique — it is proposed as an analog to 

derivative analyses used in well testing and the theoretical aspects of this approach are well-founded.  

Unfortunately, the quality of p/z data are almost always inadequate for such analysis — and added to this 

issue that of data quantity (typically less than 10 p/z—Gp points are available for a given reservoir), and 

the Moran and Samaniego method becomes an approach that is theoretically sound, but impractical for 

most field applications. 
 

The motivation for the present work was the recognition that the Moran and Samaniego approach has the 

ability to provide "early" insight into "abnormal pressure" effects.  We note that the Gan and Blasingame 

approach, while useful in concept and application, could be improved upon given a single (simple) model 

function (as opposed to using two models (i.e., the abnormal and normal pressure straight-line p/z versus 

Gp trends)).  Gan and Blasingame do provide a single model which uses the unit-step function as switch 

(triggered by the p/z inflection value (p/z)infl) — however, this model is empirical in development and 

application and we only reference its existence for completeness). 
 

Given these motivations, we proceeded to develop the general p/z—Gp approximation as well as the 

"quadratic" (p/z—Gp
2) and "cubic" (p/z—Gp

3) approximations.  The major results of this development are 

summarized below, and the details of this development are provided in Appendix A.  We provide the 

development of an approximate formulation of the rigorous material balance for the case of an abnor-

mally-pressured gas reservoir in terms of cumulative gas production and an auxiliary function (ω). 
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Specifically, the general result (derived in Appendix A) is given by: 
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where the ω-function is defined by: 
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Eq. 1.7 is approximate in the sense that the (1+ωGp) term is actually comprised of the first two terms in 

the binomial (or geometric) series expansion for 1/(1-ωGp) (recall that the binomial series is defined for 

this case as 1/(1-x) = 1 + x + x2 + x3 + ...). 
 

Expanding Eq. 1.7, we have: 
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Assuming that the ω-function is constant (hence, we refer to this as the "ω-parameter"), we can simplify 

Eq. 1.9 to yield the following form: 
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Where the α and β coefficients are defined by: 
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As noted earlier in this work, we use Eq. 1.1 (i.e., the quadratic cumulative production model) a basis to 

develop plotting functions which are used for the analysis of p/z versus Gp data.  The development of these 

plotting functions is discussed in the next section. 
 
1.4 Plotting Functions 

The plotting functions for the analysis of a given p/z—Gp data are derived in Appendix B.  In this work we 

use a "multiplot spreadsheet" approach for the analysis of p/z—Gp data, where this approach incorporates 

each plotting function as well as the appropriate model relation.  This approach allows us to simultaneous-

ly "match" multiple data functions with the appropriate model response using a dynamic trial and error ap-

proach.  This approach may seem tedious, but it is actually straightforward and concise.  Interested readers 

should not presume that statistical regression analysis will provide superior results as compared to the 

proposed "hand" analysis.  In fact, our proposed approach should be superior to statistical methods in most 

cases due to data quality/quantity issues. 
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As noted, the plotting functions for the analysis of p/z versus Gp data are derived and summarized in 

Appendix B of this proposal. 
 
1.5 Validation and Application 

We provide a comprehensive validation process that utilizes synthetic reservoir performance (i.e., cases 

where we know the input and output responses), as well as field data obtained from the petroleum litera-

ture.  We consider the case of "abnormal pressure" effects which originate from a pressure-dependent 

formation (or pore volume) compressibility function. 
 

As noted earlier, as part of the validation sequence we utilize 24 separate cases of performance data for 

abnormally pressured gas reservoirs — 4 (four) cases were derived using numerical simulation, and 20 

(twenty) cases were obtained from the petroleum literature or industry sources.  The analysis for all 24 

(twenty-four) cases are documented in complete detail in Appendix D. 
 
1.6 Summary and Conclusions 

1. Quadratic Cumulative Production Model: We have successfully derived an approximate general 

model in terms of cumulative gas production for the case of an abnormally pressured gas reservoir.  

The general form of this result is given as: 
 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
− −≡−−≈ ))((1  where)1(    2

 pppc
G

G
z
p

G
G

z
p

Gz
p

z
p

ie
p

p
i
i

p
i
i

i
i ωωω  

 

This model has a mathematical limitation imposed by the expansion of the compressibility-pressure 

drop term using a binomial series.  In addition to this general result, we have also derived specific 

results using the cumulative gas production in "quadratic" and "cubic" formulations (respectively): 
 

constant) (where     )1(1 2
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Eq. 1 (the "quadratic" formulation) is the basis for most of the plotting/analysis relations provided in 

this work. 
 

2. Plotting Functions derived from the Quadratic Cumulative Production Model: Using Eq. 1.1 (i.e., the 

"quadratic" cumulative production formulation), we have derived a sequence of plotting functions (for 

use in plots where the specified plotting function is plotted versus the cumulative gas production) (all 

plotting functions are developed and presented in Appendix B).  These plotting functions have been 

shown to be extraordinarily effective for identifying the appropriate linear, quadratic, or even cubic 

data trends.  Each function is formulated to accentuate a particular aspect of the model (Eq. 1.1) and 
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the entire sequence of plotting functions is typically used to ensure uniformity in the analysis/inter-

pretation of the data. 
 

3. Auxiliary Analysis: (ω-Gp performance plots) We have proposed and validated 4 (four) auxiliary plots 

which illustrate the performance of the ω variable function). ))((  or the( pippec −  Our goal is to 

establish these "auxiliary analysis" plots as a basis for relating the ω variable with the estimate of gas-

in-place.  The primary function of these plots is the utility of establishing the ω—Gp behavior for a 

particular case — the most common use of these plots is as the "watch" plots during the interactive 

analysis (these plots clearly illustrate the influence of Gp during the interactive analysis  
 

4. Type Curve Solution: As part of our strategy to establish the new p/z—Gp
2 model as the preferred 

mechanism for the analysis of reservoir performance data for the case of an abnormally pressured 

gas reservoir, we developed a new "type curve" solution using the dimensionless form of the new 

quadratic cumulative production model.  The governing relations for this development are: 
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We note that we did not utilize the new type curve as a "standalone" analysis plot, but rather, we 

used this plot as another component of our dynamic analysis methodology.  In particular, the plot 

was useful in establishing the "goodness-of-fit" for a given set of parameters. 
 

5. Gan Analysis: Our goal in this work was to use the Gan-Blasingame analysis (ref. 2) to orient our 

"matching" process in selecting values of the control parameters.  While we recognize that the Gan-

Blasingame analysis may not be as thorough the proposed methodology, we were able to use the 

Gan-Blasingame analysis to guide and refine our other analyses.  In particular, the use of the 2 

separate straight-line p/z—Gp trends (i.e., a high (or "abnormal") pressure trend (early) and a low 

(or "normal") pressure trend (late)) is essentially independent of other methods, and provides 

balance in the analysis.  The most sensitive tool in the Gan-Blasingame analysis sequence, the 

))(( pppc ie − versus (p/z)/(pi/zi) plot, is a particularly in the proposed interactive analysis. 
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1.7 Future Efforts 

The following future efforts are recommended: 
 

1. External Drive Energy: Extend this methodology for cases of external drive energy. 
 

2. Additional Validation: Continue the validation using additional field and numerical simulation per-

formance cases.  Focus on estimating the cf(p) profiles for a given case. 
 

3. Software: Implement the entire analysis sequence into a standalone software package. 

 
1.8 Organization of the Thesis 

The outline of the proposed research thesis is as follows: 
 

 Chapter I ⎯ Introduction 
 Research Problem 
 Research Objectives 
 Summary 

 

 Chapter II ⎯ Literature Review — Material Balance for Abnormally Pressured Gas Reservoirs 
 Specialized Results and Material Balance Relations 
 Methods which Require Knowledge of Formation Compressibility 
 Methods which Do Not Require Knowledge of Formation Compressibility 
 Field Cases — Abnormally Pressured Gas Reservoirs 
 Issues Related to Abnormally Pressured Gas Reservoirs 

 

 Chapter III ⎯ A Simplified Model for the Material Balance of Abnormally Pressured Gas 
Reservoirs (the "Quadratic Cumulative Production" Model) 

 Model Development 
 Plotting Functions for Data Analysis 
 Application Procedure 
 Example Analysis of Field Data — Anderson L Reservoir 

 

 Chapter IV ⎯ Summary, Conclusions, and Recommendations for Future Work 
 Summary 
 Conclusions 
 Recommendations for future work 

 

 Nomenclature 
 

 References 
 

 Appendices 
 

 Appendix A ⎯ Development and Validation of a Simplified Model for the Material Balance 
of Abnormally Pressured Gas Reservoirs ("Quadratic Cumulative Production" 
Model) 

 Appendix B ⎯ Development of Plotting Functions for the "Quadratic Cumulative Production" 
Form of the Material Balance Relation for Abnormally Pressured Gas 
Reservoirs 
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 Appendix C ⎯ Development of a Type Curve Solution for the Analysis of p/z—Gp Data for 
the Case of an Abnormally Pressured Gas Reservoir Using the "Quadratic 
Cumulative Production" Form of the Material Balance Relation 

 Appendix D ⎯ Field Validation of the "Quadratic Cumulative Production" Form of the Gas 
Material Balance Relation 

 

 Vita 
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CHAPTER II 
 

LITERATURE REVIEW — MATERIAL BALANCE FOR 

ABNORMALLY PRESSURED GAS RESERVOIRS 
 

In this chapter we present a sample of the literature sufficient to support our proposed work as well as 

ensure that we have not embarked on a previously pursued path.  We believe that our concepts and 

developments are original, and we have found no evidence that any analogous developments have been 

proposed or investigated.  Our goal is to provide a basis for our new approach relative to the existing 

material balance relations, as well as provide access to a wide variety of field data cases which can be used 

for validation purposes. 
 

As we begin our literature review, we will first categorize the various topics and references related to this 

subject as this will aid in our review and discussion of existing methodologies.  The categorization of 

literature for this work is given in Table 2.1.  We have assembled the data in the following categories for 

reference: 

 Specialized Results and Material Balance Relations 
 Methods which Require Knowledge of Formation Compressibility 
 Methods which Do Not Require Knowledge of Formation Compressibility 
 Field Cases — Abnormally Pressured Gas Reservoirs 
 Issues Related to Abnormally Pressured Gas Reservoirs 

 
2.1 Specialized Results and Material Balance Relations 

The material balance proposed by Fetkovich, et al.1 in 1991 (published in 1998) is one of the most signifi-

cant works in gas reservoir engineering developed over the last 30 years.  This result is given as: 
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Where Fetkovich, et al. define the "effective compressibility" function, ),( pec  as follows: 
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For our purposes (i.e., focusing on "abnormal pressure" effects), we set Ginj=Winj=Wp=We=0, which yields: 
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Table 2.1 – Categorization of literature for this work. 

 

Reference  Author Topic 
Specialized Results and Material Balance Relations 

1  Fetkovich, et al.  Generalized Gas Material Balance for High Pressures 
2  Gan and Blasingame  Semi-Analytical p/z Technique for Abnormally Pressured Gas Reservoirs 
3  Moran and Samaniego  d(p/z)/dGp Technique for Material Balance Analysis 
4  Prasad and Rogers  Generalized Tank Model (notes hydrostatic p/z point) 
5  Bourgoyne  Shale Water as a Pressure Support Mechanism in Superpressure Reservoirs 
6  Yale, et al.  Application of Variable cf for Improved Reservoir Analysis 
7  Ambastha  Material Balance Analysis for Volumetric/Abnormally Pressured Reservoirs 
8  Chu, et al.  Gas Reservoir Performance in Abnormally High Pressure Carbonates 
9  Wang  General Material Balance for Normally/Abnormally Pressured Reservoirs 

Methods which Require Knowledge of Formation Compressibility 
10  Hammerlindl  Predicting Gas Reservoir in Abnormally Pressured Reservoirs 
11  Ramagost and Farshad  p/z Abnormally Pressured Gas Reservoirs 
12  Begland and Whitehead  Depletion Performance of Volumetric High-Pressured Gas Reservoirs 
13  Elsharkawy  Estimating Gas In-Place for Abnormal Pressured Gas Reservoirs 
14  Wang, et al.  Analysis of Overpressured Reservoirs with A New Material Balance Method 

Methods which Do Not Require Knowledge of Formation Compressibility 
15  Roach  Analyzing Geopressured Reservoirs-A Material Balance Technique 
16  Bernard  Gulf Coast Geopressured Gas Reservoirs: Drive Mechanism/Perf. Prediction 
17  Poston and Chen  Simultaneous Determination of cf and G in Abnormally Pressured Reservoirs 
18  Poston and Chen  Case History Studies: Abnormal Pressured Gas Reservoirs 
19  Guehria  A New Approach to p/z Analysis in Abnormally Pressured Reservoirs 

Field Cases — Abnormally Pressured Gas Reservoirs 
20  Harville and Hawkins  Rock Compressibility and Failure in Geopressured Gas Reservoirs 
21  Duggan  The Anderson "L" – An Abnormally Pressured Gas Reservoir in South Texas 
22  Bourgoyne  Shale Water/Pressure Support Mechanism — Abnormal Formation Pressure 

Issues Related to Abnormally Pressured Gas Reservoirs 
23  Jones  Hydrodynamics of Geopressure in the Northern Gulf of Mexico Basin 
24  Fertl and Timko  Parameters for Identification of Overpressure Formations 
25  Fertl  A look at Abnormally Pressured Formations in the U.S.S.R 
26  Gill  Shale Mineralogy and Overpressure: Case Histories of Pressure Detection 
27  Quitzau and Bassiouni  The Possible Impact of the Geopressure Resource on Oil and Gas Exploration
28  Engineer  Cal Canal Field: A Tight/Abnormally Pressured Gas Condensate Reservoir 
29  Pilkington  Pressure and Temperature Data — Exploration/Overpressure Detection 
30  Harari, et al.  Pore Compressibility Study of Arabian Carbonate Reservoir Rocks 
31  Yassir and Bell  Abnormally High Fluid Pressures/Associated Porosities and Stress Regimes 

 

 

We also require the various definitions that Fetkovich, et al. employed in this derivation, specifically, we 

need the definitions of . and wf cc  These definitions are given as: 
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and the "total water formation volume factor," Btw is defined as: 
 

gswswiwtw BRRBB  ][ 
615.5
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and the instantaneous formation and water compressibility terms are defined by: 
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and, finally, the "nonpay/aquifer contribution ratio" (M) is defined by: 
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For our work (and in general for the case of an abnormally pressured gas reservoir), M is assumed to be 

negligible.  We recommend that formulations which include the M-parameter should be developed and 

applied only for the case where it is strongly believed that a "nonpay" or aquifer contribution of energy 

exists.  We also note that we will generally assume the cumulative water compressibility term )( wc to be 

constant, but we also acknowledge that there is no real loss of generality to retain a pressure-dependent 

relation for the cumulative water compressibility term.  In contrast, we will generally consider that the 

cumulative formation compressibility )( fc is pressure-dependent and we will attempt to estimate )( fc  

using Eq. 2.2.  Rearranging Eq. 2.2, and solving for the cumulative formation compressibility term 

),( fc we have: 
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Although it is useful to have an estimate of the )( fc function (which is obviously pressure dependent), it is 

more practical (and valuable) to estimate the instantaneous formation compressibility function, cf.  In order 

to develop an identity, we equate Eqs. 2.2 and 2.7, and solve for cf — this gives: 
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Although an approximate formulation, we will next discuss the Gan and Blasingame2 methodology which 

utilizes the Fetkovich, et al.1 material balance formulation as a basis for "correlating" the abnormal and 

normal pressure behavior of a gas reservoir (via the ))(( pppc ie − function). 
 

Gan and Blasingame proposed the following relations for the "2 straight lines" that are typically observed 

on a p/z versus Gp plot for the case of an abnormally pressured gas reservoir: 
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A schematic plot of p/z versus Gp for the case of an abnormally pressured gas reservoir is shown in Fig. 

2.1. 

 

 
 

Figure 2.1 – Schematic behavior of p/z versus Gp for an abnormally pressured gas reser-
voir — note the influence of the abnormal and normal pressure production 
sequences (adapted from ref. 2). 
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Gan and Blasingame developed the following relations for the ))(( pppc ie − function based on the "2 

straight lines" that are typically observed on a p/z versus Gp plot for the case of an abnormally pressured 

gas reservoir: 
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A schematic plot of the ))(( pppc ie − function versus (p/z)/(pi/zi) for the case of an abnormally pressured 

gas reservoir is shown in Fig. 2.2. 

 

 
 

Figure 2.2 – Schematic behavior of the ))(( pippec −  function versus (p/z)/(pi/zi) on 
"Gan Plot 1" (ref. 2).  Note the influence of the "inflection point." 

 
 

Analysis is performed using the Gan-Blasingame methodology by adjusting the location of the "inflection 

point" and the gas-in-place, G.  The primary weakness of this methodology is that it requires a clear and 

distinct "normal pressure" trend to be observed on the p/z versus Gp plot, which is typically the case in 

practice — however, because this methodology cannot be used until the second trend is observed, this is a 

major limitation.  Another limitation is more theoretical — the use of a second linear p/z—Gp trend for the 
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normal pressure behavior in an abnormally pressured gas reservoir is an empirical hypothesis, based on 

observation, there is no direct mechanism (to our knowledge) to rigorously derive a second, normal 

pressure p/z—Gp trend.  In Fig. 2.3 we present schematic p/z versus Gp plot to illustrate the influence of 

the "inflection point" (i.e., the changeover point for the abnormal and normal pressure systems).  We will 

comment that the selection of the inflection point is somewhat subjective — and balancing this selection 

with an estimate of the gas-in-place was noted by Gan and Blasingame2 to be problematic in some cases 

(particularly field cases with limited data).  

 

 
 

Figure 2.3 – Schematic behavior of p/z versus Gp for an abnormally pressured gas reser-
voir illustrating the influence of the "inflection point" (ref. 2). 

 
 

As a final comment, we note that Prasad and Rogers4 proposed a similar 2 straight line p/z—Gp methodo-

logy as Gan and Blasingame, but Prasad and Rogers made no attempt to develop a systematic analysis 

methodology.  We note this as point of clarification between the two works.  We also note that Prasad and 

Rogers provided a large database of p/z—Gp data in their work, this data has been utilized systematically 

by other researchers (as well as ourselves) to provide validation examples for the case of a reservoir 

exhibiting abnormal pressure behavior (see Figs. 2.4 and 2.5 for examples from Prasad and Rogers). 
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Figure 2.4 – Example p/z versus Gp plot for the case of an abnormally pressured gas 
reservoir illustrating a secondary trend starting at an inflection point defined 
by the hydrostatic (or normal) pressure (Reservoir 33) (ref. 4). 

 

 

 
 

Figure 2.5 – Example p/z versus Gp plot for the case of an abnormally pressured gas 
reservoir illustrating a secondary trend starting at an inflection point defined 
by the hydrostatic (or normal) pressure (Reservoir 117) (ref. 4). 
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We next discuss the method of Moran and Samaniego3 — where this approach utilizes the d(p/z)/dGp 

function.  At first glance this is both intuitive and potentially very useful — particularly for the interpreta-

tion of data from an abnormally pressured gas reservoir.  Unfortunately, the reality of reservoir perfor-

mance data is that these data simply contain too much noise and/or too little accuracy for the d(p/z)/dGp 

function to be of much value.  We recommend the consideration of this approach, but we also recognize 

that very serious practical limitations exist.  A schematic plot of the d(p/z)/dGp versus Gp for various 

reservoir conditions is shown in Fig. 2.6. 
 

 

 
 

Figure 2.6 – Schematic d(p/z)/dGp versus Gp profiles for various reservoir cases (ref. 3). 
 

 

The next material balance model to be addressed is that of Bourgoyne, et al.5 — where these authors 

proposed and developed a completely new material balance model for the case of a "superpressure" gas 

reservoir.  We will note that this model appears to function very well for the cases that Bourgoyne, et al. 

provide — and we are aware of some use of this technique in the petroleum industry.  However, the 

methodology has not become a mainstream technique, and further, it is not likely to supplant recent 

developments such as the Fetkovich, et al. material balance relation (ref. 1).  For the sake of completeness, 

we document the solution of Bourgoyne, et al.5 below. 
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where: 
 

M = Ratio of aquifer volume to reservoir volume, fraction  

cs = Shale compressibility, 1/psi 

Vsh = Shale fraction of the reservoir and aquifer volume, fraction 

 

In Fig. 2.7 we present the analysis of Bourgoyne, et al. for the case of "North Ossun" Field in South 

Louisiana.  The model trend shown on Fig. 2.7 is that of Eq. 2.15, fitted by Bourgoyne, et al.  We believe 

that Bourgoyne, et al. have provided a reasonable estimate of gas-in-place using this method (114 BSCF) 

(our work yielded an estimate of 86.5 BSCF (see Appendix D)).  We conclude that the Bourgoyne, et al. 

model (i.e., Eq. 2.15) appears to be a feasible model for the analysis of reservoir performance data from an 

abnormally pressured gas reservoir, although we would recommend this technique only as a component in 

a suite of other analyses. 
 

 
 

Figure 2.7 – p/z versus Gp for North Ossun Field (South Louisiana), data fitted and 
extrapolated using the model proposed by Bourgoyne, et al. (ref. 5). 
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Our remaining discussions of material balance models will simply address other models that have been 

proposed in recent times, and give a brief perspective on the utility of such models.  Yale, et al.6 proposed 

a modified formulation of a material balance that is analogous in approach to that of Fetkovich, et al.1 — 

although Yale, et al. used a formulation in terms of formation volume factors to represent the various 

energy components, whereas Fetkovich, et al. use the "cumulative compressibility" approach.  We recom-

mend the Fetkovich, et al. formulation — but we note that Yale, et al. also provide a significant body of 

data concerning the estimation (and correlation) of the instantaneous formation compressibility, cf.  This is 

a major contribution and this work should not be overlooked.  Yale, et al. produced a "type curve" for 

formation compressibility that is shown in Fig. 2.8 — this work could help to orient analysis in the case of 

abnormal-ly pressured gas reservoirs. 

 

 
 

Figure 2.8 – "Type curve" of formation compressibility versus pressure — Yale, et al. 
correlation (ref. 6). 

 

 

In reference 7, Ambastha proposes and validates a "type curve" concept for a pD (dimensionless p/z 

function) versus GpD (dimensionless Gp function) for the case of an abnormally pressured gas reservoir.  

This is a significant innovation — unfortunately, the format of the type curves cause the data to be skewed 

to a relatively small view field.  We have proposed an alternative type curve in this present work, and we 

recommend our format as it provides more resolution of the model and data functions. 
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Chu, et al.8 propose a modification of the Fetkovich, et al.1 approach, and we note this work due to its 

consideration of the cumulative compressibility function in a different manner than Fetkovich, et al.  

Given the level of detail presented by Chu, et al., we are uncertain as to any advantage of their proposed 

approach over that of Fetkovich, et al. 
 

We also note the new material balance relations proposed by Wang9 for various cases including the case of 

an abnormally pressured gas well.  Wang provides as similar argument to Chu, et al.8 that Fetkovich, et 

al.1 provide "no mathematical derivation to validate their treatment of overpressure effect."  Wang then 

proposed an alternate development of the "overpressure effect" (as did Chu, et al.) — in particular, Wang 

used a mathematical expansion for the formation compressibility function.  We will not dispute that the 

Fetkovich, et al. approach does not directly incorporate a specific mechanism for abnormal pressure 

effects — however, we do note that the Fetkovich, et al. approach does provide a "lumped" variable ap-

proach (via the effective cumulative compressibility function) to address the abnormal pressure issue.  At 

this time, we are satisfied that the Fetkovich, et al. approach is the most reasonable basis for our work. 

 
2.2 Methods Which Require Knowledge of Formation Compressibility 

In this section we consider the material balance methods for abnormally pressured gas reservoirs which do 

require prior knowledge of the formation compressibility.  In simple terms, each of these methods (refs. 

10-14) all require formation compressibility as an input variable — formation compressibility (or effective 

compressibility) is not estimated simultaneously, but is used as a fixed parameter in the proposed analysis. 
 

Hammerlindl10 is credited with recognizing and quantifying the influence of abnormal pressure effects on 

the estimation of gas-in-place (see Fig. 2.9).  Ramagost and Farshad11 developed the "correction" of the 

p/z versus Gp plot that became the most common method of analysis for abnormally pressured gas reser-

voirs.  The pertinent equations for this methodology are provided below. 
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Where the effective compressibility function, ce, is given by: 
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Recalling the definition of the "cumulative effective compressibility" function, ),( pce given by Fetkovich, 

et al.,1 we have: 
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The definitions of the effective compressibility function, ce, and the "cumulative effective compressibility" 

function, ),( pce are similar by design — and we could simply imply that whether constant or a function of 

pressure such a "lumped" variable is necessary for providing an analysis using conventional p/z—Gp data.  

Ramagost and Farshad propose a "corrected" p/z plot of p/z [1- ce(pi -p)] versus Gp — and we note that this 

has easily been the most popular technique for the analysis of reservoir performance data obtained from 

abnormally pressured gas reservoirs.  The limitation is that the ce variable (whether constant, or treated as 

a variable) must be known in advance.  This is a serious limitation and is the motivation for a variety of 

developments which pursued the simultaneous determination of ce and the gas-in-place. 

 

 
 

Figure 2.9 – Effect of effective compressibility on the estimation of gas-in-place — North 
Ossun Field (South Louisiana) (ref. 10). 

 

 
We note that the other references in this section (Begland and Whitehead12, Elsharkawy13, and Wang, et 

al.14) have the same limitation of requiring knowledge of the various compressibility functions and satura-

tions prior to analysis.  We next review the methods proposed for analysis without direct knowledge of 

these compressibility functions and saturations prior to analysis.  We will note in advance that several of 

these methods are based on the construction of a linearized plotting function — which we will also note 

sometimes does not evolve. 
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2.3 Methods Which Do Not Require Knowledge of Formation Compressibility 

In this section we address solutions which do not require knowledge of formation compressibility prior to 

analysis.  As noted in the previous section, this issue motivated the development of a simultaneous solu-

tion for the determination of ce and the gas-in-place — of which virtually all developments can be traced 

to Roach,15 where Eq. 2.19 was rearranged to yield a linear plotting function.  This process yields the 

following results: 
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Where the x and y variables are defined as: 
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References 15-16 all use Eq. 2.21 as a basis for estimating ce and G.  Guehria19 used an automated regres-

sion algorithm to estimate the formation compressibility function required in the material balance relation 

that was proposed in that work.  Reference 19 is included in this section because it represents a case where 

the formation compressibility profile is estimated simultaneously (albeit using a regression algorithm).  

The issue of using regression in material balance calculations is relevant — Fetkovich, et al.1 note that 

direct analysis techniques are preferred to "a pure statistical best fit that may lead to unrealistic solutions" 

— in this case a possibly negative cf profile.  We recognize that the case of a negative cf profile can be 

safeguarded, but the point that a direct solution is preferred should not be diminished or ignored — such 

solutions will always be more consistent than a statistically-derived regression of the data and model. 

 
2.4 Field Cases — Abnormally Pressured Gas Reservoirs 

In this section we briefly address the 20 (twenty) "data cases" used in this work (refs. 2, 4, 11, and 18-22).  

The most important issue is that we have tried to limit our "data cases" to those field case histories which 

can be effectively documented (i.e., we have focused on cases which have been analyzed in the literature) 

and we have limited our own industry cases to a minimum (2 cases from ref. 2).  We also note that it is not 

our intention to reproduce the results of previous investigations — but rather, our goal is an independent 

analysis and interpretation of the data using our proposed methodology. 

 
2.5 Issues Related to Abnormally Pressured Gas Reservoirs 

This section addresses the various issues related to abnormally pressured gas reservoirs — in particular, 

the mechanisms which cause abnormal pressure effects and the pressure-dependent compressibility 

behavior.  References 23-26, 29 and 31 address the origin and distribution of abnormal pressure effects, 
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while refs.27-28 address the economic and operational issues related to abnormal reservoir pressures, and 

refs. 6, 20, and 30 consider the pressure dependence of formation compressibility. 
 

The issue of the identification of abnormal pressure effects was addressed much earlier than the any 

proposals for reservoir engineering solutions that would incorporate such effects.  Obviously, abnormal 

pressure effects have a much more immediate impact on drilling and well completion operations.  As such, 

inductive methods using well log and formation pressure and temperature data were developed to address 

the identification of abnormal pressures.  Fertl and Timk24 developed a series of schematic plots 

illustrating the effect of abnormal pressures on well log responses as shown in Fig. 2.10.  Jones23 provided 

the data in Tables 2.2 and 2.3 as evidence of abnormal pressure for various locations in the U.S. Gulf 

Coast region.  Pilkington29 established a graphical correlation of abnormal pressure gradients as a function 

of temperature and reservoir fluids (see Fig. 2.11).  All of this information helps to orient the analyst on 

what constitutes abnormal formation pressures and what factors are likely to produce abnormal pressures 

(at least in the U.S. Gulf Coast region). 
 

Our final discussion point in this chapter is devoted to the comparison of instantaneous and cumulative 

formation compressibility.  Fetkovich, et al.1 present a comparison of a specific case of instantaneous and 

cumulative formation compressibility, and we have reproduced their work in Fig. 2.12.  We recognize that 

these functions have different definitions, and we concede that the definition (and use) of "cumulative 

formation compressibility" is somewhat idealized.  However, we believe that efforts should be made to 

assess the instantaneous formation compressibility prior to analysis — if for no other reason than this data 

may help orient the analysis/interpretation. 

 

 
 

Figure 2.10 – Influence of abnormal pressure effects on typical well log responses (ref. 24). 
 



23

 
Table 2.2 – Geopressured aquifers in southern Louisiana and adjacent areas of the conti-

nental shelf (ref. 23). 
 

 
 

 
Table 2.3 – Geopressure ratio (geostatic ratio) and composition of formation water in 

geopressured aquifers of Texas and Louisiana, Northern Gulf of Mexico 
Basin. (ref. 23). 
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Figure 2.11 – Correlation of pore pressure gradient with temperature and reservoir fluid 
types (ref. 29). 

 

 

 
 

Figure 2.12 – Comparison of instantaneous and cumulative formation compressibility func-
tions (ref. 1). 
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CHAPTER III 
 

A SIMPLIFIED MODEL FOR THE MATERIAL BALANCE OF 

ABNORMALLY PRESSURED GAS RESERVOIRS 

(THE "QUADRATIC CUMULATIVE PRODUCTION" MODEL) 
 

3.1 Model Development 

The most relevant issue to consider regarding the validity of this work is that we have utilized the Fet-

kovich, et al.1 material balance formulation and we have established an approximating condition that 

permits us to formulate an explicit, closed form approximation to the Fetkovich, et al. material balance in 

terms of p/z and Gp.  We have systematically established the stated approximating condition, and while our 

simplified material balance model may not be considered exact, we will show that the approximating 

condition is essentially universal (i.e., it was shown to be valid for every case we considered).  Equally 

important is the observation that our new simplified material balance relation yielded correct estimates of 

gas-in-place for every case considered — and the model was shown to be tuned to performance data using 

at stages as small as 5-10 percent depletion (i.e., Gp/G<0.10). 
 

Our starting point is the Fetkovich, et al.1 material balance formulation where Ginj=Winj=Wp=We=0, and we 

only consider the effect of the cumulative effective compressibility function, ).( pce  This form is: 
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Defining the ω-function, we have 
 

 ))(( pippecGp −≡ω ........................................................................................................................(3.2) 
 

Defining the ω-function, we have 
 

 ))(( 1 pippec
pG

−≡ω ......................................................................................................................(3.3) 
 

Alternatively, we can also define the ω-function using the p/z, pi/zi, G, and Gp terms in Eq. 3.1, this 
effort gives 
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We have defined the ω-function as a mechanism to assess the abnormal pressure behavior if the reservoir 

system — we correlate ω with the cumulative gas production, Gp in order to establish a correlation.  

Substituting Eq. 3.2 into Eq. 3.1 and rearranging, we obtain the following result: 
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At this point Eq. 3.5 is completely identical to Eq. 3.1, we have only used the ω-function as a variable of 

substitution for the  ))(( pippec − term in Eq. 3.1.  Our next step is to attempt to obtain an alternate form 

of Eq. 3.5 that will directly (and uniquely) relate p/z and Gp — in its current form, Eq. 3.5 has some utility, 

but we would like a more useful form, perhaps a polynomial.  As an aside, we can rearrange Eq. 3.5 

directly to obtain the following form: 
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The rational formulation given by Eq. 3.6 can not be reduced further, and is not practical as an analysis 

relation.  The question remains as to the character ω-function — we will proceed considering three 

possibilities — ω is constant, ω is linear with Gp, or ω is simply a generic function of Gp (no functional 

form is implied).  From the developments presented so far, these are bold claims — however, using 24 

(twenty-four) validation cases in Appendix D, we provide substantial evidence that ω can either be 

assumed constant or assumed to be a simple linear function of Gp. 
 

Another assumption that can be made is regarding the behavior of the ωGp product — we will state that 

we believe ωGp<1.  Therefore, we can use a binomial (or geometric) series expansion for 1/(1-ωGp) (recall 

that the binomial series is defined for this case as 1/(1-x) = 1 + x + x2 + x3 + ...), and we will only use a 

single term expansion (i.e., 1/(1-ωGp) =. 1+ωGp).  Making this substitution in Eq. 3.5, we have: 
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Now, if we assume that the ω-function is constant (hence, we refer to this as the "ω-parameter"), Eq. 3.7 

can be expanded to yield: 
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Where the α and β coefficients are defined by: 
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The obvious question at this point is what does the ω-function look like?  Is there any reason to believe 

that the ω-function will be constant or even a simple function of Gp?  In Appendix A we provide a 

complete development and discussion of the rationale we use to establish the character of the ω-function 

and the  ))(( pippec − product.  In this chapter we will only focus on the behavior of the ω-function 

relative to the validation of Eq. 3.8.  As such, we present plots of ω versus Gp/G for two sample cases (see 
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Appendix D for all analyses).  We have chosen to plot ω versus Gp/G (rather than G) so that we can 

establish the validity of the ω profile as a function of the depletion in the reservoir (i.e., Gp/G). 
 

The first case is "Case 1," a numerical simulation case using an input cf profile obtained from the 

Fetkovich, et al.1 reference.  The second case is "Case 3," the classic literature example for an abnormally 

pressured gas reservoir — the "Anderson L" case presented in ref. 21.  In Fig. 3.1 we present a plot of the 

ω versus Gp/G profile for "Case 1," the numerical simulation case.  We note development of a clear linear 

trend in the ω versus Gp/G data function — validating our hypothesis to some degree.  We have construct-

ed model trends for the ω constant and linear cases — and both model trends appear to be relevant.  We 

have elected to place the model trend for the ω=constant case in the middle of the ω versus Gp/G trend.  

This appears to be a good balance and suggests that our concept (i.e., ω ≈ constant) is reasonable — parti-

cularly considering the applications to field data. 
 

 

 
 

Figure 3.1 – Behavior of the ω-parameter versus Gp/G for a simulated dry gas reservoir 
case.  Note that in this case the maximum depletion of the model is approxi-
mately 70 percent — which justifies the (relatively) poor agreement of the 
constant model with the data trend. 

 
 

The second case is "Case 3," the Anderson L field data case (South Texas, USA) (from ref. 21).  For this 

case, we present the plot of the ω versus Gp/G in Fig. 3.2.  In this case we prefer to place the constant ω 

trend towards the top of the ω versus Gp/G data distribution, this placement represents a balance of the 

analysis on this particular plot, as well as the match of the various data functions for this case using the 
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other data plots which are being simultaneously matched.  We also note that the apparent linear trend of ω 

versus Gp/G is both reasonable and consistent.  Our primary concern is the viability of this analysis plot 

for field data, and, at least in this particular case, we would say that the ω—Gp/G methodology is both 

sound and accurate. 
 

 

 
 

Figure 3.2 – Behavior of the ω-parameter versus Gp/G for the "Anderson L" field case 
example21 (South Texas, USA).  Note that this case shows an apparent deple-
tion of about 50 percent — this is a possible explanation for the reasonably 
good correlation of data with both the constant and linear models. 

 
 

The "proof" of Eq. 3.8 (i.e., the quadratic cumulative production model) lies in the validity of the constant 

ω-parameter determined from the previous analysis (i.e., Figs. 3.1 and 3.2).  Substituting ω = 0.00042 

1/BSCF for "Case 1" into Eq. 3.8, we obtain the p/z versus Gp profile shown in Fig. 3.3.  Similarly, for 

"Case 3" (Anderson L Field) we substitute ω = 0.00529 1/BSCF into Eq. 3.8 and generate the profile 

shown in Fig. 3.4.  We note an extraordinarily accurate fit of the data trends in both Figs. 3.3 and 3.4, 

which we believe validates our concept for the p/z—Gp
2 material balance relation (i.e., Eq. 3.8). 
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Figure 3.3 – p/z versus Gp plot for the simulated performance of an abnormally pressured 
gas reservoir (variable compressibility only) (dry gas reservoir case). 

 
 

 
 

Figure 3.4 – p/z versus Gp plot for the "Anderson L" field case example21 (South Texas, 
USA) (a suspected abnormally pressured gas reservoir case). 
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In summary, we have established a group of diagnostic plots based on the characteristics of the effective 

compressibility-pressure drop term, ))(( pippec − (defined using Eq. 3.1), as well as the ω-function 

(defined using Eq. 3.4).  We recognize that there may be a slight bit of confusion between the new ω-

function and the ))(( pippec − function (recall that  )))(( )(1/ pippecGp −≡ω  — however, we believe it 

is necessary to maintain the original Fetkovich, et al.1 variable )))(( ,( pippeci.e. − for the purpose of 

establishing the validity of Eq. 3.8 (see Appendix A for specific details).  Further, we also believe it is 

necessary to establish the ω-function as an independent variable for the purpose of our approximate 

material balance relations for the case of a reservoir exhibiting abnormal pressure effects. 
 

For reference, we present the following itemized list of new diagnostic plots developed in this work: 

(again, the specific details are given in Appendix A) 

 Log-log plot of ))(( pippec − vs. Gp/G (yields a power law trend). 

 Cartesian plot of [ ]))((11 pippec/ −− vs. Gp/G (yields a linear trend). 

 Cartesian plot of ω vs. Gp (user selects a constant ω value or a linear ω versus Gp trend). 

 Cartesian plot of ω vs. Gp/G (user selects a constant ω value or a linear ω versus Gp trend). 
 
3.2 Plotting Functions for Data Analysis 

In this section we focus on the presentation and implementation of plotting functions developed using Eq. 

3.8 (the specific plotting functions are developed in Appendix B, in full detail).  We present an inventory 

of the plotting functions we have selected to use in this work as follows: 
 

Plotting Function 1 (PF1): ∆(p/z) versus Gp  (quadratic)...........................................................(3.11) 
 

Plotting Function 2 (PF2): ∆(p/z)/Gp versus Gp  (linear) ...........................................................(3.12) 
 

Plotting Function 3 (PF3): p
p

p
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G

G
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0
1 ∫ vs. Gp  (quadratic)........................................(3.13) 
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Each of these 6 (six) plotting functions (PF1-PF6) is used to provide unique insight into the character of the 

basis function (Eq. 3.8) — we will present an illustrative example of these functions next. 
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As an illustrative example, in Table 3.1 we present the plotting functions for "Case 1" (our base numerical 

simulation case — a dry gas reservoir with cf(p) obtained from ref. 1). 

 
Table 3.1 – Summary of plotting functions used to implement the quadratic cumulative 

production material balance relation for abnormal pressure effects (applied to 
Case 1 (numerical simulation case)). 

 
Base 

Relation 
 

Name 
 
Plotting Functions 

 
Character 

 
Fig. 

Eq. 3.11 (PF1) 
 

∆(p/z) versus Gp 

 
Quadratic 

 

3.5 

Eq. 3.12 (PF2) 
 

∆(p/z)/Gp versus Gp 

 
Linear 

 

3.6 

Eq. 3.13 (PF3) 

 

p
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G
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1 ∫ vs. Gp Quadratic 
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Eq.3.14 (PF4) 
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Eq. 3.15 (PF5) 
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Eq. 3.16 (PF6) 
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3.10 

 
 

It is tempting to presume that we could extend the "quadratic" plotting functions (PF1, PF3, and PF5) to 

some other format and that these functions could yield independent estimates of gas-in-place.  We have 

not pursued this effort (nor have we pursued independent analysis of the "linear" plotting function (PF2, 

PF4, and PF6)) — primarily because our "analysis" goal is to achieve a consistent estimate of gas-in-place 

across all data functions (including the diagnostic plots, the Gan-Blasingame plots (ref. 2), the new pD-GpD 

type curve, and the p/z—Gp summary plots).  We achieve this goal by performing a dynamic, 

simultaneous match of all data functions in a spreadsheet program — using a single set of control 

parameters. 
 

In Fig 3.5 (PF1) we note that the "quadratic" characteristic behavior of PF1 is clearly evident — we also 

note excellent agreement in the data and model functions.  Similarly, in Fig 3.6 (PF2) we find that PF2 

does exhibit the expected linear trend against Gp — however, we also note a characteristic oscillation of 

the data about the linear model trend.  We will comment that this oscillation in the data function is likely a 

legitimate feature of this numerical simulation data — we do not believe this behavior to be an artifact.  
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Recall that our base model (Eq. 3.8) is approximate, and this oscillation merely proves that our model (and 

its related plotting functions) is approximate. 
 

On the other hand, based on extensive application to field data (presented in Appendix D), we can state 

that essentially none of the field data cases exhibit such oscillations (we only observe random variations 

about the trend as one might expect from field data).  We will also comment that of the other 2 simulation 

cases (i.e., Case 2 and Case 23 (see Appendix D)) only Case 23 exhibits an "oscillation" feature (we will 

note that for Case 2, only a few data exist).  We propose that this feature is due to the character of the cf(p) 

function input into the simulation (see Appendix D (Fig. D.1.q)), and we also note that the cf(p) function 

(obtained from ref. 1) could be considered an extreme case. 
 

We present (PF3) in Fig. 3.7 and we note very good agreement of the data and model functions.  Similarly, 

we note in Fig. 3.8 (PF4) the same behavior that we observed in Fig. 3.6 (i.e., oscillation of the data 

functions about a linear model trend).  In Fig. 3.9 (PF5) we note a good agreement of the model and data, 

and we will comment that this is a "difference function," as such we would expect that any minor 

deviations observed in previous plotting functions may be exaggerated (as we note in the middle of the 

quadratic trend).  Likewise, in Fig. 3.10 (PF6) we find a reasonable match of the (oscillating) data function 

about the linear model trend — as in Fig. 3.9, (PF6) is also a "difference function" and we would expect 

some exaggeration of features observed on the plotting functions presented earlier.  We again comment 

that all of the analyses shown in this sequence (i.e., the generation of the model function) were performed 

as a simultaneous match of all plots using control values of the gas-in-place and other parameters (we note 

that the gas-in-place parameter dominates the analysis).  
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Figure 3.5 – Plot of ∆(p/z) vs. Gp — Case 1. 
 
 
 

 
 

Figure 3.6 – Plot of ∆(p/z)/Gp vs. Gp —Case 1. 
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Figure 3.7 – Plot of p
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0
1 ∫ vs. Gp — Case 1. 

 
 
 

 
 

Figure 3.8 – Plot of p
p

p
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G

G
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0
1
2 ∫ vs. Gp — Case 1. 
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Figure 3.9 – Plot of p
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Figure 3.10 – Plot of
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3.3 New Type Curve for Material Balance Analysis 

In Appendix C we develop and present a new type curve solution that includes the dry gas material 

balance (no abnormal pressure effects), as well as the case of a gas reservoir with abnormal pressure 

effects as represented by Eq. 3.8.  We note that Eq. 3.8 is also valid for the case of no abnormal pressure 

effects (i.e., ω=0). 
 

Beginning with an alternate form of Eq. 3.8, we have 
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In developing a "type curve" solution we must resort to "dimensionless" variables — therefore, we employ 

the following dimensionless variables in this effort: 
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Substituting Eqs. 3.18, 3.19, and 3.20 into Eq. 3.17, we obtain the "dimensionless" form of the "quadratic 

cumulative production" material balance relation for an abnormally pressured gas reservoir: 
 

2
   )1( pDDpDDDp GG ωω +−= .........................................................................................................(3.21) 

 

Defining the "dimensionless pressure integral" function pDDp
pD

pD
Dip dG

G

G
 

0
1 ∫= — and substituting 

Eq. 3.21 into this definition yields: 
 

2
      

3
1 

2
1)1(  pDDpDDDip GG ωω +−= ..............................................................................................(3.22) 

 

We present the "gas material balance type curve" in Fig. 3.11, where we note that we have used both the 

"dimensionless" pressure and pressure integral functions, pD and pDi (respectively) on this type curve. 
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Reviewing Fig. 3.11 we note that our definition of pD (and pDi) has yielded very good model trends — 

where it should be both straightforward and consistent as a data analysis tool.  In this work we have not 

employed Fig. 3.2 as an independent data analysis tool, but rather, as a component in the dynamic match-

ing methodology we implemented in MS Excel.  It is worth noting that we did use the type curve as a 

"start-up" analysis mechanism in our implementation (i.e., we used this plot to start or orient our analysis), 

and we also used Fig. 3.11 routinely as a "check" for our other analysis (ωD is estimated independently on 

this plot (regardless of how the plot is implemented for analysis)).  In summary, the type curve plot has 

shown to be extremely valuable in the analysis sequence for our analysis and interpretation of abnormally 

pressured gas reservoirs. 
 

 
 

Figure 3.11 – pD and pDi versus GpD "type curve" plot for the "quadratic cumulative pro-
duction" material balance relation for an abnormally pressured gas reservoir. 

 

As a final comment, we will note that on occasion, the pD (and pDi) data function at small values of GpD 

(maybe the first 1-2 points) appears to "curl" slightly (generally upwards).  Based on our definition of the 

pD variable (Eq. 3.19), this feature appears to be related to an incorrect estimate of initial reservoir 

pressure (pi), which yields an incorrect estimate of pi/zi.  This was seldom an issue, and the remainder of 

the data tended to match the type curve extremely well. 
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We are reluctant to recommend that the pi/zi estimate be corrected based on the curl of the pD—GpD data 

function at small values of GpD because such actions may "ripple" through the remainder of the analyses.  

We will state that we believe that it is both appropriate and prudent that such corrections be made — 

however, we will leave such decisions to those who apply this methodology — with our noted caveat that 

any "correction" of pi/zi will affect the other analyses used in our methodology. 
 
3.4 Discussion of Application Procedure 

We have clearly stated that our "analysis" consists of adjusting a universal set of control parameters in 

order to obtain the best match of all of the plotting functions, diagnostic plots, etc.  As such, we utilize a 

"linked" analysis of all data in a spreadsheet program environment (MS Excel), and we do not attempt a 

best match of each individual plot.  In Fig. 3.12 we provide a "screen capture" of this module for the 

Anderson L Reservoir (Case 3). 

 

 
 

Figure 3.12 – Screen capture of the proposed analysis sequence in MS Excel. 
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The analysis methodology illustrated in Fig. 3.12 is referenced to all of the model functions, as well as the 

relevant data functions (e.g., ω and )))(( pippec − where the affected functions are updated as the control 

parameters are adjusted.  We note that we generally focus on the Gan-Blasingame2 plots (Row 1: 3 

topmost plots) as "watch" plots, and we use the ω-Gp and the pGpippec −− ))(( function plots (Row 4: 5 

bottommost plots) as our dominant "control" plots.  The plotting functions (Rows 2 and 3 (7 plots total)) 

are used primarily for orientation and assessment of data quality, as is also the type curve plot (the 

rightmost plot, lying across Rows 1-3). 
 

The control parameters are located at the topmost portion of the module (note that the control parameters 

are varied using "slide bars," where a particular slide bar can be overwritten using an input value).  We 

believe that our approach is consistent and robust — and we particularly appreciate that this approach 

controls the entire analysis process dynamically — any parameter change is reflected globally throughout 

all of the data and model functions. 
 

3.5 Example Analysis of Field Data — Anderson L Reservoir (Case 3) 

In Table 3.2 we present the inventory of the data analysis plots developed for the Anderson L Reservoir 

(our "Case 3" in Appendix D).  We simply present these results for the consideration of the reader.  We 

note that all analyses were performed exactly as described above — a set of parameters was optimized 

using a dynamic/simultaneous analysis of all data in MS Excel.  As we stated earlier in this work, we do 

not recommend that this analysis sequence by automated in any fashion — user input and control are criti-

cal as a regression algorithm may pursue solutions which are non-optimal at best, or physically incon-

sistent at worst. 
 

Our primary goal in this presentation of results for the Anderson L Reservoir case is to demonstrate con-

clusively that underlying "quadratic cumulative production" material balance approximation is accurate 

and robust — we believe this is clearly proven by the evidence presented for this case as well as the cases 

presented in Appendix D. 
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Table 3.2 – Summary of plots and plotting functions for the example analysis of the 

Anderson L Reservoir (South Texas, USA) (Case 3, Appendix D). 
 

Base 
Relation 

 
Plotting Functions 

 
Fig. 

Eq. 3.17 p/z versus Gp (base plot) 
 

3.13 

Eq. 3.11 ∆(p/z) versus Gp 
 

3.14 

Eq. 3.12 ∆(p/z)/Gp versus Gp 
 

3.15 

Eq. 3.13 p
p

p
dGzp

G

G
 )/∆(

0
1 ∫ vs. Gp 

 
3.16 

Eq.3.14 p
p

p
dGzp

G

G
 )/∆(

0
1
2 ∫ vs. Gp 

 
3.17 

Eq. 3.15 p
p

p
dGzp

G

G
zp  )/∆(

0
1)/∆( ∫− vs. Gp 

 
3.18 

Eq. 3.16 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
− ∫ p

p

pp
dGzp

G

G
zp

G
 )/∆(

0
1)/∆(1 vs. Gp 

 
3.19 

Eq. 3.1 ))(( pippec − vs. Gp/G  3.20 

Eq. 3.1 [ ]))((11 pippec/ −− vs. Gp/G  3.21 

Eq. 3.4 ω vs. Gp  3.22 

Eq. 3.4 ω vs. Gp/G  3.23 

Eq. 3.17 p/z vs. Gp (results plot for ω—Gp analysis)  3.24 

Eq. 3.21/22 pD and pDi vs. GpD  3.25 

"Gan Plot 1" ))(( pippec − vs. (p/z)/(pi/zi)  3.26 

"Gan Plot 2" (p/z)/(pi/zi) vs. Gp/G  3.27 

"Gan Plot 3" p/z vs. Gp (results plot for Gan analysis)  3.28 

(various) cf(p) vs. G (results/comparison plot)  3.29 
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Figure 3.13 – Base plot of p/z vs. Gp — Case 3. 
 
 

 

 
 

Figure 3.14 – Plot of ∆(p/z) vs. Gp — Case 3. 
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Figure 3.15 – Plot of ∆(p/z)/Gp vs. Gp — Case 3. 
 

 

 
 

Figure 3.16 – Plot of p
p

p
dGzp

G

G
 )/∆(

0
1 ∫ vs. Gp — Case 3. 
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Figure 3.17 – Plot of p
p

p
dGzp

G

G
 )/∆(

0
1
2 ∫ vs. Gp — Case 3. 

 
 

 
 

Figure 3.18 – Plot of p
p

p
dGzp

G

G
zp  )/∆(

0
1)/∆( ∫− vs. Gp — Case 3. 
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Figure 3.19 – Plot of
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
− ∫ p

p

pp
dGzp

G

G
zp

G
 )/∆(

0
1)/∆(1 vs. Gp — Case 3. 

 
 

 

 
 

Figure 3.20– Plot of ))(( pippec − vs. Gp/G — Case 3. 
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Figure 3.21 – Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 3. 
 
 

 

 
 

Figure 3.22 – Plot of ω vs. Gp — Case 3. 
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Figure 3.23 – Plot of ω vs. Gp/G — Case 3. 
 
 

 

 
 

Figure 3.24 – Comparison plot of p/z vs. Gp — Case 3. 
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Figure 3.25 – Plot of dimensionless p/z functions vs. GpD — Case 3. 
 

 

 
 

Figure 3.26 – Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 3. 
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Figure 3.27 – Plot of (p/z)/(pi/zi) vs. Gp/G — Case 3. 
 
 
 

 
 

Figure 3.28 – Summary plot of p/z vs. Gp — Case 3. 
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Figure 3.29 – Plot of pore volume compressibility computed using Fetkovich, et al. ap-
proach and compared to laboratory data — Case 3 (Anderson L Reservoir 
(assumed Swi=0.25)). 
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CHAPTER IV 
 

SUMMARY, CONCLUSIONS, AND 

RECOMMENDATIONS FOR FUTURE WORK 
 

4.1 Summary 

The most important summary comment that can be made regarding this work is that we believe that the 

quadratic cumulative production model (i.e., the p/z-Gp
2 material balance model) derived in this work is 

the most appropriate approximation developed to date for the case of an abnormally pressured gas reser-

voir.  Our efforts have derived the p/z-Gp
2 approximation (as well as another more general approximation) 

directly from the rigorous gas material for the case of an abnormally pressured gas reservoir. 
 

Our analysis methodology includes 10 (ten) new specialized plots (6 (six) new data plotting functions and 

4 (four) new diagnostic plots), as well as a new type curve solution and the utilization of the Gan-

Blasingame approach2 (which includes 3 (three) additional specialized plots).  We have implemented all of 

these plots in a simultaneous analysis sequence using a spreadsheet program module in MS Excel.  For 

validation, we have used 4 (four) numerical simulation cases and 20 (twenty) field data cases (see 

Appendix D for a complete inventory of cases) — where we note that all of these cases were successfully 

analyzed using our new analysis methodology.   
 

4.2 Conclusions 

The following conclusions are made based on the results obtained from this work 
 

1. Quadratic Cumulative Production Model: (i.e., the p/z-Gp
2 material balance model) The p/z-Gp

2 

material balance model for an abnormally pressured gas reservoir is derived from the rigorous gas 

material balance in Appendix A.  This result is given as: 
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i ωωω .....................................(4.1) 

 

The primary assumption in this derivation is that ωGp )))((or  ( pippec − <1.  Further, we can 

proceed to develop a variety of relations by assuming that ω is either constant or is defined by some 

arbitrary function of Gp (e.g., a linear trend of ω versus Gp).  For the case of ω=constant, we have: 
 

2
 pp

i
i GG

z
p

z
p

βα −−≈ ................................................................................................................(4.2) 
 

Where α and β could be defined arbitrarily — however, we prefer the following identities esta-

blished using the assumption that ω=constant: 
 

i
i

z
p

G
)1( ωα −≡ ...........................................................................................................................(4.3) 
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i
i

z
p

G
ωβ ≡ ...................................................................................................................................(4.4) 

 

2. Plotting Functions derived from the Quadratic Cumulative Production Model: In this work we 

derived the following plotting functions based on the quadratic cumulative production model (i.e., 

Eq. 1.x):  
 

Plotting Function 1 (PF1): ∆(p/z) versus Gp  (quadratic).............................................................(4.5) 
 
 

Plotting Function 2 (PF2): ∆(p/z)/Gp versus Gp  (linear) .............................................................(4.6) 
 

 

Plotting Function 3 (PF3): p
p

p
dGzp

G

G
 )/∆(

0
1 ∫ vs. Gp  (quadratic)..........................................(4.7) 

 

Plotting Function 4 (PF4): p
p

p
dGzp

G

G
 )/∆(

0
1
2 ∫ vs. Gp  (linear) ...............................................(4.8) 

 

Plotting Function 5 (PF5): p
p

p
dGzp

G

G
zp  )/∆(

0
1)/∆( ∫− vs. Gp  (quadratic)............................(4.9) 

 

Plotting Function 6 (PF6): 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
− ∫ p

p

pp
dGzp

G

G
zp

G
 )/∆(

0
1)/∆(1 vs. Gp (linear)......................(4.10) 

 

The utility of these 6 (six) plotting functions (PF1-PF6) is that we can like the analysis (i.e., we tie 

the model function(s) to a common estimate of gas-in-place (G) for the purpose of consistency 

using a spreadsheet type of program).  If we wanted to use a plotting function to estimate a parti-

cular property, we would only employ the "linear" cases (i.e., PF2, PF4, and PF6).  However, we 

prefer the "unified" analysis approach where we use a common set of results and observe the per-

formance of the model functions relative to the data functions for each particular plot. 
 

3. Auxiliary Analysis: (ω-Gp performance plots) We have proposed 4 (four) auxiliary plots which 

consider the performance of the ω variable function) ))((  or the( pippec − as a mechanism to "cali-

brate" the estimation of the ω variable with the estimate of gas-in-place.  In our experience, these 

plots have become the "driver" in the analysis process as we tend to use these plots to gauge 

changes in various properties (particularly the gas-in-place). 
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For reference, the four ω-Gp performance plots are as follows: (recall that ))(( pippecGp −≡ω ) 

 Log-log plot of ))(( pippec − vs. Gp/G (yields a power law trend). 

 Cartesian plot of [ ]))((11 pippec/ −− vs. Gp/G (yields a linear trend). 

 Cartesian plot of ω vs. Gp (user selects a constant ω value or a linear ω versus Gp trend). 

 Cartesian plot of ω vs. Gp/G (user selects a constant ω value or a linear ω versus Gp trend). 
 

4. Type Curve Solution: We have developed a new "type curve" solution using the new quadratic 

cumulative production model as the basis function for this plot (we note that, for generality, the 

model is written in a dimensionless form).  The type curve model is given by the following dimen-

sionless pressure and pressure integral relations:  
 

2
   )1( pDDpDDDp GG ωω +−= ..................................................................................................(4.11) 
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where the following dimensionless definitions are used: 
 

GD  ωω = ..................................................................................................................................(4.13) 
 

⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
−=

ii
ii

ii
Dp

zp
zpzp

zp
zp

/
//

/
/1 .............................................................................................(4.14) 

 

G
G

G p
pD = ..............................................................................................................................(4.15) 

 

As were all of the other plots, the type curve solution was implemented as a dynamic plot in our 

analysis spreadsheet.  This plot is useful for a visualization of the data/model match, where the 

model remains fixed.  Determination of the ωD parameter from the type curve match is useful for 

validating the global estimate of gas-in-place being used to control the entire analysis module. 
 

5. Gan Analysis: The Gan analysis (ref. 2) consists of 3 (three) separate plots which utilize the 

hypothesis that, for an abnormally pressured gas reservoir, we should expect to observe 2 separate 

straight-line trends (i.e., a high (or "abnormal") pressure trend early in the life of the reservoir, and 

a low (or "normal") pressure trend late in the life of the reservoir).  While the Gan method is an 

approximation, it is very useful for orienting our analysis sequence (similar to the ω-Gp perfor-

mance plots).  In analyzing field data, we found the Gan "Plot 1" (i.e., ))(( pippec − versus (p/z)/ 

(pi/zi)) particularly useful for identifying characteristic behavior (i.e., abnormal pressure effects). 
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4.3 Recommendations for Future Work 

We put forth the following recommendations as mechanisms to extend this research work  
 

1. External Drive Energy: Consider the extension of this methodology for cases of external drive 

energy (e.g., water influx, gas injection, etc.). 
 

2. Additional Validation: Continue the validation of this approach by applying the methodology to 

additional field cases as well as provide an exhaustive effort using numerical simulation.  In this 

work we chose a "typical" cf(p) profile from Fetkovich, et al.1 — there are a wide variety of 

laboratory derived cf(p) profiles in the literature, and we recommend that these profiles should also 

be considered. 
 

3. Software: Implement the entire analysis sequence into a standalone software package (as opposed 

to performing the analysis in a spreadsheet program). 
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NOMENCLATURE 

 
 

Field Variables: (Pressure, Formation, and Fluid Properties) 

Bw = ................................................. Water formation volume factor, RB/STB 

Bg = ................................................. Gas formation volume factor, RB/MSCF 

Bgi = ........................................ Initial gas formation volume factor, RB/MSCF 

ce = ...........................................Instantaneous effective compressibility, 1/psi 

ec  = ..............................................Cumulative effective compressibility, 1/psi 

ct = .................................... Instantaneous pore volume compressibility, 1/psi  

fc  = ........................................Cumulative pore volume compressibility, 1/psi 

cf = .................................... Instantaneous pore volume compressibility, 1/psi 

cw = ................................................Instantaneous water compressibility, 1/psi  

wc  = ...........................................Cumulative total water compressibility, 1/psi 

G = ................................................................Gas-in-place, MSCF (or BSCF) 

Gapp = .................................................Apparent gas-in-place, MSCF (or BSCF) 

Ginj = .................................................... Injected gas volume, MSCF (or BSCF) 

Gp = ......................................... Cumulative gas production, MSCF (or BSCF) 

M = .................................Ratio of aquifer to reservoir volume, dimensionless 

p = ............................................................... Average reservoir pressure, psia 

pi = ................................................................... Initial reservoir pressure, psia 

Rsw = ........................................................... Solution gas water ratio, SCF/STB 

Swi = ............................................... Irreducible water saturaion, dimensionless 

We = .................................................................... Cumulative water influx, RB 

Winj = ..............................................................Cumulative water injection, STB 

Wp = ...........................................................Cumulative water production, STB 

z = ................................................Gas compressibility factor, dimensionless 

zi = ........................................ Gas compressibility factor at pi, dimensionless 

∆p = .................................................................................... Pressure drop, psia 

ω = ........................................................ Abnormal pressure model parameter 
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Dimensionless Variables: 

GpD = ................................................Dimensionless cumulative gas production 

pD = ....................................................................... Dimensionless p/z function 

pDi = .......................................................... Dimensionless p/z integral function 

ωD = ................................. Dimensionless abnormal pressure model parameter 
 

Greek Symbols: 

α = ................................................................................... Parameter, 1/BSCF 

β = .................................................................................. Parameter, 1/BSCF2 

φ = .......................................................................................Porosity, fraction 

ω = ................................................................................... Parameter, 1/BSCF 
 

Subscript: 

e = ....................................................................................................Effective 

i = ......................................................................................................... Initial 
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APPENDIX A 
 

DEVELOPMENT AND VALIDATION OF A SIMPLIFIED MODEL FOR THE 

MATERIAL BALANCE OF ABNORMALLY PRESSURED GAS RESERVOIRS 

("QUADRATIC CUMULATIVE PRODUCTION" MODEL) 
 

The general material balance relation for an abnormally pressured gas reservoir is given as follows by 

Fetkovich, et al.:1 
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Where Fetkovich, et al. define the "effective compressibility" function, )( pec , as follows: 
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Setting Ginj=Winj=Wp=We=0, we obtain the common form of the gas material balance relation (i.e., we are 

simply interested in the issue of "abnormal pressure" effects): 
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Fetkovich, et al. proposed Eq. A.1 (or Eq. A.3) based on the concept that the "cumulative compressibility" 

function (i.e., )( pec ) provides a better representation of the "abnormal pressure" effects observed in gas 

reservoir behavior (caused primarily by pore and water compressibility).  Eq. A.3 has become the 

generally accepted reference model for the behavior of abnormally pressured gas reservoirs, although we 

do note that the implementation proposed by Fetkovich, et al. is tedious and is over-constrained by data 

requirements.  Our goal is to utilize Eq. A.3 and develop an appropriate (and accurate) approximation for 

p/z — Gp behavior such that simplified performance models and plotting functions can be proposed and 

utilized. 
 

The first step is to isolate the )( pec  function in Eq. A.3 — solving for the ))(( pippec −  and )( pec  

terms in Eq. A.3 gives us the following forms: 
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We note that Fetkovich, et al. use these results (in particular, Eq. A.4b) as a "matching" function for 

comparison with results generated using Eq. A.2.  In contrast, we are interested in the behavior of the 

))(( pippec −  function (Eq. A.4a) — and, in particular, isolating the behavior of ))(( pippec −  versus 

Gp.  We propose that the following approximate model for the behavior of ))(( pippec −  versus Gp: 
 

pGpippec ω  ))(( ≈− ........................................................................................................................ (A.5) 
 

We can readily note from Eq. A.4a that Gp function exerts a strong influence on the ))(( pippec −  

function — however, it is neither intuitive (nor obvious) that Eq. A.5 represents a valid model for the 

behavior of the ))(( pippec −  function.  We must use synthetic and field data in order to validate our 

concept and establish Eq. A.5 as a viable model for the ))(( pippec −  function.  We provide 2 validation 

cases in this Appendix — the first case is a dry gas reservoir case simulated using the cf(p) function 

provided in Fig. 3 of the Fetkovich, et al. work (ref. 1) and the second case is the "Anderson L" reservoir 

case (ref. 4) which is regarded as a literature standard for field cases of abnormally pressured gas 

reservoirs. 
 

 
 

Figure A.1 – Behavior of the ))(( pippec −  function versus Gp/G for a simulated dry gas 
reservoir case.  The cf(p) function (i.e., the instantaneous pore volume 
compressibility) used in this case was obtained from Fig. 3 of the Fetkovich, 
et al. work.1 
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Figure A.2 – Behavior of the ))(( pippec −  function versus Gp/G for the "Anderson L" 
field case example21 (South Texas, USA). 

 

In Fig. A.1 we present the behavior of ))(( pippec −  versus Gp/G functions for the synthetic (dry gas) 

case on a log-log format and we note that a strong "power law" trend is evident up to large values of Gp (in 

particular, very large levels of depletion).  We note a similar behavior of these functions for the "Anderson 

L" field data case in Fig. A.2 — in fact, the match appears very strong considering the quantity and quality 

of the data.  At this point we note that the concept model given by Eq. A.5 is an intermediate step — we 

are actually interested in the behavior of the function [ ]))((11 pippec/ −−  as this is the multiplier for the 

right-hand-side (RHS) of the material balance equation.  Our proposed mode for the [ ]))((11 pippec/ −−  

function is: 
 

[ ] pGpippec/ ξ+≈−− 1  ))((11 ......................................................................................................... (A.6) 
 

We could have simply proceeded directly to the [ ]))((11 pippec/ −−  function, as opposed to 

investigating the ))(( pippec −  function — however, it is our contention that Eq. A.5 can be used to 

establish Eq. A.6 (via expansion of the [ ]))((11 pippec/ −−  term using a geometric series based on Eq. 

A.5).  Recalling the definition of a geometric series, we have: 
 

[ ] 1)1(                          31  11 2 <<−++++≈− x...xxxx/ ................................................................ (A.7) 
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A single-term expansion of Eq. A.7 can be written as: 
 

[ ] 1)1(                                                1  11  <<−+≈− xxx/ ................................................................ (A.8) 
 

Substituting ))(( pippecx −=  into Eq. A.8 and function gives us: 
 

[ ] 1)))(((        ))((1  ))((11 <−−+≈−− pippecpippecpippec/ .................................................... (A.9) 
 

Substituting pGpippec ω  ))(( ≈−  into the right-hand-side (RHS) of Eq. A.9 yields: 
 

[ ] 1)(                      1  ))((11 <+≈−− pp GGpippec/ ωω ................................................................. (A.10) 
 

Comparing Eqs. A.6 and A.10 we find that ωξ   ≈ — which is not a rigorous proof of Eq. A.5, but does 

directionally confirm our concept model for the form given by Eq. A.6.  In Fig. A.3 we present the 

function [ ]))((11 pippec/ −−  versus Gp/G (on a Cartesian grid) for the simulated performance case — we 

note a very reasonable match of the data and model functions, where this comparison suggests that Eq. A.6 

is a viable model for the behavior of the [ ]))((11 pippec/ −−  function.  We present the results for the 

Anderson L field case in Fig. A.4 and we confirm a very strong agreement of this data and the proposed 

model (Eq. A.6). 
 

Recalling the original material balance (neglecting Ginj, Winj, Wp, and We) we have Eq. A.3: 
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For completeness, we need to establish the identity for the [ ]))((11 pippec/ −−  function — to do so we 

solve Eq. A.3 for the [ ]))((11 pippec/ −−  function.  This gives: 
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As noted above, Eq. A.11 is given more for completeness than for application/validation. 
 

We now present the development of the approximate material balance relation for dry gas reservoirs 

experiencing abnormal pressure effects which result from pressure-dependent pore volume compressibility 

(no water influx, water injection/production terms, etc. are considered in this development). 
 

As a start, we divide through Eq. A.3 by the [ ]))((1 pippec −−  term to yield a more convenient form of 

the material balance equation for this case.  This gives: 
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Figure A.3 – Behavior of the [ ]))((11 pippec/ −−  function versus Gp/G for a simulated 
dry gas reservoir case.  The cf(p) function (i.e., the instantaneous pore 
volume compressibility) used in this case was obtained from Fig. 3 of the 
Fetkovich, et al. work.1 The purpose of this presentation is to establish the 
linearity of the [ ]))((11 pippec/ −−  function versus Gp/G. 

 

 
 

Figure A.4 – Behavior of the [ ]))((11 pippec/ −−  function versus Gp/G for the "Ander-
son L" field case example21 (South Texas, USA).  A strong linear trend is 
evident for this particular case. 
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Substituting Eq. A.10 into Eq. A.12 we have: 
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Expanding terms in the right-hand-side (RHS) of Eq. A.13, we obtain: 
 

⎥⎦
⎤

⎢⎣
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Gz
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z
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At this point we simply consider the ω-parameter to be an arbitrary constant required by the model.  We 

have made no attempts to quantify the ω-parameter, other than to provide the definition of the ω-parameter 

 )))(( ( pippecG.,e.i p −≡ω — where we note that we will generally consider ω to be a function, but the 

specific goal of this particular derivation is to establish the relevance ω as a constant (i.e., a parameter).  

Substituting the definition of the ω-parameter (Eq. A.5) into the material balance relation (specifically, the 

form given by Eq. A.4a), we have the following definition of the ωGp product: 
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Or, moving the Gp function to the right-hand-side (RHS), we have: 
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From inspection of Eq. A.16 we note that the ω-parameter actually a function (i.e., there is no obvious 

indication that ω would be constant) — however, the only mechanism we can use to prove our contention 

that the ω-parameter is at least "approximately" constant is to consider synthetic and field data estimations 

of this parameter.  As such, the ω-parameter is plotted against Gp in Figs. A.5 and A.6 for the case of 

simulated gas reservoir performance and the Anderson L field case, respectively. 
 

We note in Fig. A.5 (the simulated data case where Gp,tot/G ≈ 0.7) that our estimate of ω=4.2x10-4 is a 

reasonable average of the values for 0<Gp<500 BSCF — although we acknowledge that this estimate is 

certainly open to other interpretations.  For the Anderson L reservoir case (Fig. A.6) we find an 

extraordinary match of our estimate (ω=4.5x10-3) compared to the data trend — in this case Gp,tot/G ≈ 0.5 

— which probably accounts for the much better performance of the data for this case (as compared to the 

simulated data case).  Revisiting Eq. A.14 and expanding the right-hand-side (RHS) term, we have: 
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Or, using shorthand notation, Eq. A.17 becomes: 
 

2
 pp

i
i GG

z
p

z
p

βα −−≈ .................................................................................................................... (A.18) 

 



65

 

 
 

Figure A.5a – Behavior of the ω-parameter versus Gp for a simulated dry gas reservoir case.  
Note that the prescribed value of the ω-parameter lies within the data trend. 

 

 
 

Figure A.5b – Behavior of the ω-parameter versus Gp/G for a simulated dry gas reservoir 
case.  Note that in this case the maximum depletion of the model is 
approximately 70 percent — which justifies the (relatively) poor agreement 
of the constant model with the data trend. 
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Figure A.6a – Behavior of the ω-parameter versus Gp for the "Anderson L" field case 
example4 (South Texas, USA).  We note excellent agreement between the ω-
parameter function and the prescribed value of ω for this case. 

 

 
 

Figure A.6b – Behavior of the ω-parameter versus Gp/G for the "Anderson L" field case 
example21 (South Texas, USA).  Note that this case shows an apparent 
depletion of about 50 percent — this is a possible explanation for the 
reasonably good correlation of data with both the constant and linear models. 
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Where the α and β coefficients are given by: 
 

i
i

z
p

G
)1( ωα −≡ ...............................................................................................................................(A.19) 

 

i
i

z
p

G
ωβ ≡ ....................................................................................................................................... (A.20) 

 

Eq. A.18 is the most basic building block of this work — our goal is to utilize this model as an appropriate 

approximation for the rigorous gas material balance case for an abnormally pressured reservoir (i.e., Eq. 

A.3).  From this point forward we will consider Eq. A.18 to be valid as a material balance model — and, 

as such, we will use Eq. A.18 as the basis for plotting functions, reserve calculations, etc — specifically 

for the case of an abnormally pressured gas reservoir. 
 

As an aside, we will note that the plots of the ω-parameter versus Gp (Figs. A.5a and A.6a) do indicate a 

slightly decaying linear trend for the behavior of the ω-parameter as a function of Gp (see trends shown on 

Figs. A.5a and A.6a).  We have also prepared plots of the ω-parameter versus Gp/G in order to establish 

the influence of reservoir depletion on the ω-parameter (Figs. A.5b and A.6b).  The most important 

conclusion that can be derived from Figs. A.5 and A.6 (both formats) is that the behavior of the ω-

parameter is unique and can be approximated as a constant or as a linear function of Gp (or Gp/G).  This 

conclusion forms the basis for the development of the "quadratic" and "cubic" cumulative production 

relations for gas material balance (the quadratic relation is given by Eq. A.18 and the cubic relation is 

derived below). 
 

Presuming a linear trend for the ω-Gp behavior we have: 
 

pbGa −≡  ω .................................................................................................................................... (A.21) 
 

Substitution of Eq. A.21 into Eq. A.13 gives us: 
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Expanding terms on the right-hand-side (RHS), we have: 
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Presuming a linear trend for the ω-Gp behavior we have: 
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The general form of Eq. A.23 is given by: 
 

32
   ppp

i
i GĉGb̂Gâ
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Where the coefficients    and , ĉb̂,â are defined as: 
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G
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i
i

z
p

G
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We believe that the implementation of Eq. A.24 (the "cubic" cumulative production relation for gas 

material balance) would be problematic and generally less stable than the "quadratic" material balance 

model (i.e., Eq. 18).  Hence, our focus in this work will be the development of plotting functions and 

analysis relations for Eq. 18. 
 

The practical application of the "quadratic" and "cubic" cumulative production relations for gas material 

balance (Eqs. A.18 and A.24) is the comparison of these models to p/z versus Gp data.  As such, we will 

provide 2 example applications — a synthetic gas reservoir performance case and the "Anderson L" gas 

reservoir field case (see Figs. A.7 and A.8). 
 

In Fig. A.7 we provide data for the synthetic data case and we immediately note (as before) that this case 

has experienced significant reservoir depletion.  The initial linear trend is that of the "apparent" gas-in-

place model which has been the starting point of traditional analyses of material balance data from 

abnormally pressured gas reservoirs.  We do not utilize the "apparent" gas-in-place trend and only note its 

presence for reference. 
 

The specific trends of interest on Fig. A.7 are those given by the constant "ω" model (Eq. A.18) and the 

linear "ω" model (Eq. A.24).  We have previously referred to Eq. A.18 as the "quadratic" cumulative 

production relation for gas material balance (abnormally pressured reservoir case), and Eq. A.24 is the 

"cubic" Gp relation.  For reference, the governing relation for the ω-parameter is given by Eq. A.16: 
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And the p/z — Gp model in terms of ω is given by Eq. A.13: 
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Since these are validation cases and we have all of the relevant data, we note that the "ω" models shown in 

Fig. 7 were "tuned" for this case using Fig. A.5a — i.e., the constant or linear estimates of the ω-

parameter are determined using data (shown on Fig. A.5a), as opposed to using Eqs. A.18 and A.24 as 

regression models.  In practice we will use Eq. A.18 to derive plotting functions to estimate the relevant 

model parameters — however, in this case, our goal is to illustrate the connection between the "ω" models 

and the p/z — Gp behavior. 
 

In this particular case we note that using a constant value of ω is fairly straightforward — specifically the 

influence of a particular ω value can be established by sampling.  In contrast, the "best fit" of the ω — Gp 

data (i.e., the proposed straight-line trend on Fig. A.5a) yields a reasonable match of the p/z — Gp data on 

Fig. A.7.  On the other hand, the optimal match of the p/z — Gp data on Fig. A.7 using a generalized 

model for ω=a+bGp yields a linear trend that lies substantially away from the ω — Gp data on Fig. A.5a 

(for clarity, this "optimal" trend is not included on Fig. A.5a). 
 

Obviously, for practical applications we will not have the "answer" (i.e., G) at our disposal and 

construction of Figs. A.5a and A.5b will not be possible (as a direct analysis technique), so this issue is 

more of a concept/ validation concern.  We note that multiple optimizations of the linear ω — Gp trend are 

possible, and we must simply accept that Eqs. A.18 and A.24 (i.e., the final forms using the constant and 

linear (Gp) models for the ω-parameter) are viable mechanisms for applications in material balance 

analysis. 
 

Similar conclusions are made for the "Anderson L" (South Texas, USA) field case.  In particular, we note 

the coordination between the analyses of the ω-parameter on Fig. A.6a and the corresponding p/z — Gp 

plot, Fig. A.8.  In fact, we can note that the data for the Anderson L case appear to perform better than the 

synthetic reservoir performance case (again, this could be a production of the lower level of reservoir 

depletion experienced by the Anderson L case.  As with the synthetic reservoir performance case, we 

again note that the models presented in Fig. A.8 are tied directly to the ω — Gp behavior presented in Fig. 

A.6a.  Specifically, the "ω" models presented in Fig. A.8 have not been tuned using statistical regression. 
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Figure A.7 – p/z versus Gp plot for the simulated performance of an abnormally pressured 
gas reservoir (variable compressibility only) (dry gas reservoir case). 

 

 
 

Figure A.8 – p/z versus Gp plot for the "Anderson L" field case example21 (South Texas, 
USA) (a suspected abnormally pressured gas reservoir case). 
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APPENDIX B 
 

DEVELOPMENT OF PLOTTING FUNCTIONS FOR THE "QUADRATIC 

CUMULATIVE PRODUCTION" FORM OF THE MATERIAL BALANCE 

RELATION FOR ABNORMALLY PRESSURED GAS RESERVOIRS 
 

The base relation for this work is the "quadratic cumulative production" relation for the material balance 

of abnormally pressured gas reservoirs (derived specifically for the pressure-dependent pore volume 

compressibility case).  This result was derived in Appendix A and is given by: 
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 (Data Plot: p/z versus Gp (quadratic trend)) 
 

Where the α and β coefficients are given by: 
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G
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For convenience, we define the "p/z difference function" as: 
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 (Data Plot: ∆(p/z) versus Gp (quadratic trend)) 

 

Dividing through Eq. B.1 by the cumulative gas production (Gp), we have: 
 

p
p

G
G

zp
βα +=  
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 (Data Plot: ∆(p/z)/Gp versus Gp (linear trend)) 

 

While we are intrigued by the work of Moran and Sameniego3 which uses the derivation of the p/z 

behavior, we believe that application of this approach will always be limited due to data quality and 

quantity.  However, we believe that the development of "auxiliary" "p/z" functions is a practical necessity 

for the analysis of reservoir performance data which are affected by abnormal pressure effects.  Therefore, 

we propose a series of "integral" functions based on Eq. B.2 as auxiliary functions for the purpose of data 

analysis (specifically, data plotting functions). 
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Integrating Eq. B.2 with respect to Gp yields: 
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 (Data Plot: p
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0∫ versus Gp (cubic trend)) 

 

Dividing Eq. B.3 by Gp yields the primary "integral" function of interest: 
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Dividing Eq. B.3 by 2
pG yields an auxiliary "integral" function: 
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Subtracting Eq. B.4 from Eq. B.1 gives us: 
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1)/∆( ∫− vs. Gp (quadratic trend)) 

 

Dividing Eq. B.6 by Gp yields the "integral-difference" formulation, that, at least in concept, is analogous 

to the "derivative" functions proposed by Moran and Sameniego.3  This result is given as: 
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 (Data Plot: 
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Our analysis procedure will employ all of the plots are designated (i.e., Eqs. A.18, B.1 to B.7).  The 

procedure will be implemented using a spreadsheet approach where the coefficients pi/zi, α, and β are 

specified — pi/zi is typically known (or can be estimated) as the initial condition while α and β are 

estimated by trial and error.  The α and β parameters can be tied to a single "ω" value (per Eqs. A.19 and 
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20) or these coefficients can be estimated independently.  We recommend a spreadsheet approach using 

hand manipulation of the coefficients over the statistical optimization of the coefficients using regression 

methods.  A visual analysis of multiple data functions simultaneously allows the user to constrain the 

analysis and avoid physically inconsistent parameter estimates (e.g., negative values). 
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APPENDIX C 
 

DEVELOPMENT OF A TYPE CURVE SOLUTION FOR THE ANALYSIS OF 

p/z—Gp DATA FOR THE CASE OF AN ABNORMALLY PRESSURED GAS 

RESERVOIR USING THE "QUADRATIC CUMULATIVE PRODUCTION" 

FORM OF THE MATERIAL BALANCE RELATION 
 

As with previous developments, the base relation for the work in this Appendix is the "quadratic 

cumulative production" relation for the material balance of abnormally pressured gas reservoirs (derived 

specifically for the pressure-dependent pore volume compressibility case (see Appendix A).  The 

"quadratic cumulative production" relation is given by: 
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Where the α and β coefficients are given by: 
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Substituting Eqs. A.19 and A.20 into Eq. A.18 gives us: (we presume that Eq. A.18 is valid and use (=) 

rather than (≈)) 
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Defining a dimensionless "ωD" parameter, we have 
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Substituting Eq. C.1 Eq. A.14 yields: 
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Rearranging terms on the right-hand-side (RHS) of Eq. C.2 gives us: 
 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−−= − 2

2
 )1(1

G

G
G

G
z
p

z
p p

D
p

D
i
i ωω ................................................................................................ (C.3) 

 

Further rearranging terms Eq. C.3, we have: 
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or, 
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Carefully reviewing Eqs. C.4a and C.4b, we observe the following "intuitive" dimensionless variables: 
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Substituting Eqs. C.5 and C.6 into Eq. C.4a (or C.4b), we obtain the "dimensionless" form of the 

"quadratic cumulative production" material balance relation for an abnormally pressured gas reservoir: 
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In order to develop an "auxiliary" function to aid in this analysis, we define the "dimensionless pressure 

integral" function as follows for this case: 
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Substituting Eq. C.7 into Eq. C.8, we have: 
 

[ ] pDpDDpDD
pD

pD
Dip dGGG

G

G
   2

   )1(
0

1 ωω +−∫= ................................................................... (C.9) 

 

Completing the integration in Eq. C.9 yields: 
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Multiplying through by the 1/GpD term, we have: 
 

2
      

3
1 

2
1)1(  pDDpDDDip GG ωω +−= ............................................................................................. (C.10) 

 

In Fig. C.1 we present the "type curve" based on Eqs. C.7 and C.10 for the "dimensionless" pressure and 

pressure integral functions, pD and pDi, respectively. 
 

In order to use Fig. C.1, we use the data function defined by Eq. C.5 for pD: 
 

ii
Dp

zp
zp

/
/1( data) −= ....................................................................................................................... (C.11) 

We will use the definition of the "pressure integral" function (Eq. C.8) to develop an expression for 

computing the data function for pDi.  Recalling Eq. C.8, we have 
 

pDDp
pD

pD
Dip dG

G

G
 

0
1 ∫= ........................................................................................................... (C.8) 
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Figure C.1 – pD and pDi versus GpD "type curve" plot for the "quadratic cumulative pro-
duction" material balance relation for an abnormally pressured gas reservoir. 

 

Defining a variable of substitution, Gp=GGpD (i.e., using Eq. C.6), we have 
 

pDp GGG =  
 

Taking the derivative of this variable of substitution, we obtain: 
 

pDp dGGdG  =  
 

Or, solving for dGpD, we have 
 

pGpD dGdG  1
= .............................................................................................................................. (C.12) 

 

Evaluating the limits of the new variable of substitution, Gp, we obtain: 
 

pppDpD

ppD
GGGG
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 0;

at 
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Substitution of Eq. C.13 into Eq. C.12, and using the new limits (in terms of GpD), we obtain: 
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Canceling the G terms, we have: 
 

pDp
p

p
Dip dG

G

G
  data)data) (

0
1( ∫= ............................................................................................. (C.13) 

 

Where Eq. C.13 is the "data formulation" for pDi, and we note that (pDi)data is used as a variable in the type 

curve matching process. 
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APPENDIX D 
 

FIELD VALIDATION OF THE 

"QUADRATIC CUMULATIVE PRODUCTION" FORM 

OF THE GAS MATERIAL BALANCE RELATION 
 

In this Appendix we present the analysis and interpretation of an exhaustive library of field and numerical 

simulation cases of reservoir performance of "abnormally pressured" natural gas reservoirs.  In particular, 

we apply our new analysis technique to each case, as well as the Gan and Blasingame technique (ref. #) 

and a few simplified plots (e.g., the apparent gas-in-place plot).  Our primary objective in this Appendix is 

to establish a definitive sequence of analysis and interpretation which successfully illustrates the 

application of our new methodology. 
 

The summary table of results for the cases considered in this Appendix is shown in Table D.1. 
 

Table D.1 — Analysis and interpretation results for the cases considered in this work. 
 

   Pressure Reference Gan (ref. 8)  This Work
   Gradient G G  G

Case  Reservoir Name  Reference (psi/ft) (BSCF) (BSCF)  (BSCF)
0 Base Simulation (cf(p)=0))  This work --- --- N/A  686.4
1 Dry Gas  This work --- --- N/A  686.4
2 Gas Condensate  This work --- --- N/A  20.5
3 Anderson L (South Texas)  Ref 21 0.843 72.0 75.5  73.5
4 Offshore Louisiana  Ref 11 0.85 470.0 497.5  441.6
5 Southeast Texas  Ref 19 0.83 211.0 268.0  262.6
6 North Ossun Field  Ref. 20 0.725 118.0 89.6  86.5
7 Stafford  Ref 2/unp --- 25.0 22.8  23.5
8 Reservoir 117  Ref 4 0.77 562.5 461.3  503.4
9 Reservoir 268  Ref 4 0.67 30.5 32.5  30.2

10 Cajun Reservoir  Ref 2 --- 220.0 214.0  207.6
11 South La (Bourgoyne)  Ref 22 --- 16.0 13.8  13.3
12 GOM Reservoir  Ref 2/unp --- 22.4 15.4  15.1
13 Reservoir 33  Ref 4 0.81 217.0 215.1  208.9
14 Reservoir 41  Ref 4 0.69 41.0 48.6  49.3
15 Example 4  Ref 14 0.749 48.1 36.3  53.8
16 Reservoir 70  Ref 4 0.68 11.0 12.1  11.8
17 Reservoir 195  Ref 4 0.64 53.1 51.7  50.2
18 Field 38  Ref 18 --- 80.1 70.0  68.8
19 ROB 43-1  Ref 18 --- 101.0 107.6  117.0
20 GOM Case 2  Ref 18 --- 142.0 163.5  180.8
21 Reservoir 197  Ref 4 0.62 14.5 14.6  13.7
22 Louisiana Reservoir  Ref 19 --- 109.0 128.5  137
23 Simulated Dry Gas  Ref 2 --- --- 51.8  51.8
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Figure D.1.a — Plot of p/z vs. Gp — Base Simulation Case (i.e., Case 0). 
 

 

 
 

Figure D.1.b — Plot of ∆(p/z) vs. Gp — Base Simulation Case. 
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Figure D.1.c — Plot of ∆(p/z)/Gp vs. Gp — Base Simulation Case. 
 

 

 
 

Figure D.1.d — Plot of p
p

p
dGzp

G

G
 )/∆(

0
1 ∫ vs. Gp — Base Simulation Case. 
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Figure D.1.e — Plot of p
p

p
dGzp

G

G
 )/∆(

0
1
2 ∫ vs. Gp — Base Simulation Case. 

 

 

 
 

Figure D.1.f — Plot of p
p

p
dGzp

G

G
zp  )/∆(

0
1)/∆( ∫− vs. Gp — Base Simulation Case. 
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Figure D.1.g — Plot of
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Figure D.1.h — Plot of ))(( pippec − vs. Gp/G — Base Simulation Case. 
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Figure D.1.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Base Simulation Case. 
 

 

 
 

Figure D.1.j — Plot of ω vs. Gp — Base Simulation Case. 
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Figure D.1.k — Plot of ω vs. Gp/G — Base Simulation Case. 
 

 

 
 

Figure D.1.l — Comparison plot of p/z vs. Gp — Base Simulation Case. 
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Figure D.1.m — Plot of dimensionless p/z functions vs. GpD — Base Simulation Case. 
 

 
 

Figure D.1.n — Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Base Simulation Case. 
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Figure D.1.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Base Simulation Case. 
 

 

 
 

Figure D.1.p — Summary plot of p/z vs. Gp — Base Simulation Case. 
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Figure D.2.a — Plot of p/z vs. Gp — Case1 (abnormal pressure effects are present in these data). 
 

 

 
 

Figure D.2.b — Plot of ∆(p/z) vs. Gp — Case 1. 
 



88

 

 
 

Figure D.2.c — Plot of ∆(p/z)/Gp vs. Gp —Case 1. 
 

 

 
 

Figure D.2.d — Plot of p
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G

G
 )/∆(

0
1 ∫ vs. Gp — Case 1. 
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Figure D.2.e — Plot of p
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 )/∆(

0
1
2 ∫ vs. Gp — Case 1. 

 

 

 
 

Figure D.2.f — Plot of p
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1)/∆( ∫− vs. Gp — Case 1. 
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Figure D.2.g — Plot of
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Figure D.2.h — Plot of ))(( pippec − vs. Gp/G — Case 1. 
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Figure D.1.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 1. 
 

 

 

 
 

Figure D.2.j — Plot of ω vs. Gp — Case 1. 
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Figure D.2.k — Plot of ω vs. Gp/G — Case 1. 
 

 

 

 
 

Figure D2.l — Comparison plot of p/z vs. Gp — Case 1. 
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Figure D.2.m — Plot of dimensionless p/z functions vs. GpD — Case 1. 
 

 
 

Figure D.2.n — Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 1. 
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Figure D.2.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 1. 
 

 

 

 
 

Figure D.2.p — Summary plot of p/z vs. Gp — Case 1. 
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Figure D.2.q — Plot of Pore Volume Compressibility computed using Fetkovich, et al. 
approach and compared to laboratory data — Case 1. 
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Figure D.3.a — Base plot of p/z vs. Gp — Case 2. 
 

 

 

 
 

Figure D.3.b — Plot of ∆(p/z) vs. Gp — Case2. 
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Figure D.3.c — Plot of ∆(p/z)/Gp vs. Gp — Case 2. 
 

 

 

 
 

Figure D.3.d — Plot of p
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1 ∫ vs. Gp — Case 2. 
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Figure D.3.e — Plot of p
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2 ∫ vs. Gp — Case 2. 

 

 

 
 

Figure D.3.f — Plot of p
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1)/∆( ∫− vs. Gp — Case 2. 
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Figure D.3.g — Plot of
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Figure D.3.h — Plot of ))(( pippec − vs. Gp/G — Case 2. 
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Figure D.3.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 2. 
 

 

 

 
 

Figure D.3.j — Plot of ω vs. Gp — Case 2. 
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Figure D.3.k — Plot of ω vs. Gp/G — Case 2. 
 

 

 

 
 

Figure D.3.l — Comparison plot of p/z vs. Gp — Case 2. 
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Figure D.3.m — Plot of dimensionless p/z functions vs. GpD — Case 2. 
 

 
 

Figure D.3.n — Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 2/ 
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Figure D.3.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 2. 
 

 

 

 
 

Figure D.3.p — Summary plot of p/z vs. Gp — Case 2. 
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Figure D.4.a — Base plot of p/z vs. Gp — Case 3. 
 

 

 

 
 

Figure D.4.b — Plot of ∆(p/z) vs. Gp — Case 3. 
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Figure D.4.c — Plot of ∆(p/z)/Gp vs. Gp — Case 3. 
 

 

 

 
 

Figure D.4.d — Plot of p
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1 ∫ vs. Gp — Case 3. 
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Figure D.4.e — Plot of p
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2 ∫ vs. Gp — Case 3. 

 

 

 
 

Figure D.4.f — Plot of p
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Figure D.4.g — Plot of
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Figure D.4.h — Plot of ))(( pippec − vs. Gp/G — Case 3. 
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Figure D.4.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 3. 
 

 

 

 
 

Figure D.4.j — Plot of ω vs. Gp — Case 3. 
 



109

 

 
 

Figure D.4.k — Plot of ω vs. Gp/G — Case 3. 
 

 

 

 
 

Figure D.4.l — Comparison plot of p/z vs. Gp — Case 3. 
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Figure D.4.m — Plot of dimensionless p/z functions vs. GpD — Case 3. 
 

 
 

Figure D.4.n — Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 3. 
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Figure D.4.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 3. 
 

 

 

 
 

Figure D.4.p — Summary plot of p/z vs. Gp — Case 3. 
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Figure D.4.q — Plot of Pore Volume Compressibility computed using Fetkovich, et al. 
approach and compared to laboratory data — Case 3 (Anderson L Reservoir 
(assumed Swi=0.25)). 

 



113

 

 
 

Figure D.5.a — Base plot of p/z vs. Gp — Case 4. 
 

 

 

 
 

Figure D.5.b — Plot of ∆(p/z) vs. Gp — Case 4. 
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Figure D.5.c — Plot of ∆(p/z)/Gp vs. Gp — Case 4. 
 

 

 

 
 

Figure D.5.d — Plot of p
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1 ∫ vs. Gp — Case 4. 
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Figure D.5.e — Plot of p
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2 ∫ vs. Gp — Case 4. 

 

 

 
 

Figure D.5.f — Plot of p
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1)/∆( ∫− vs. Gp — Case 4. 
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Figure D.5.g — Plot of
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Figure D.5.h — Plot of ))(( pippec − vs. Gp/G — Case 4. 
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Figure D.5.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 4. 
 

 

 

 
 

Figure D.5.j — Plot of ω vs. Gp — Case 4. 
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Figure D.5.k — Plot of ω vs. Gp/G — Case 4. 
 

 

 

 
 

Figure D.5.l — Comparison plot of p/z vs. Gp — Case 4. 
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Figure D.5.m — Plot of dimensionless p/z functions vs. GpD — Case 4. 
 

 
 

Figure D.5.n — Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 4. 
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Figure D.5.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 4. 
 

 

 

 
 

Figure D.5.p — Summary plot of p/z vs. Gp — Case 4. 
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Figure D.6.a — Plot of p/z vs. Gp — Case 5. 
 

 

 

 
 

Figure D.6.b — Plot of ∆(p/z) vs. Gp — Case 5. 
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Figure D.6.c — Plot of ∆(p/z)/Gp vs. Gp — Case 5. 
 

 

 

 
 

Figure D.6.d — Plot of p
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1 ∫ vs. Gp — Case 5. 
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Figure D.6.e — Plot of p
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2 ∫ vs. Gp — Case 5. 

 

 

 
 

Figure D.6.f — Plot of p
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1)/∆( ∫− vs. Gp — Case 5. 
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Figure D.6.g — Plot of
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Figure D.6.h — Plot of ))(( pippec − vs. Gp/G — Case 5. 
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Figure D.6.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 5. 
 

 

 

 
 

Figure D.6.j — Plot of ω vs. Gp — Case 5. 
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Figure D.6.k — Plot of ω vs. Gp/G — Case 5. 
 

 

 

 
 

Figure D.6.l — Comparison plot of p/z vs. Gp — Case 5. 
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Figure D.6.m — Plot of dimensionless p/z functions vs. GpD — Case 5. 
 

 
 

Figure D.6.n — Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 5. 
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Figure D.6.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 5. 
 

 

 

 
 

Figure D.6.p — Summary plot of p/z vs. Gp — Case 5. 
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Figure D.7.a — Plot of p/z vs. Gp — Case 6 
 

 

 

 
 

Figure D.7.b — Plot of ∆(p/z) vs. Gp — Case 6. 
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Figure D.7.c — Plot of ∆(p/z)/Gp vs. Gp — Case 6. 
 

 

 

 
 

Figure D.7.d — Plot of p
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Figure D.7.e — Plot of p
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Figure D.7.f — Plot of p
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1)/∆( ∫− vs. Gp — Case 6. 
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Figure D.7.g — Plot of
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Figure D.7.h — Plot of ))(( pippec − vs. Gp/G — Case 6. 
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Figure D.7.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 6. 
 

 

 

 
 

Figure D.7.j — Plot of ω vs. Gp — Case 6. 
 



134

 

 
 

Figure D.7.k — Plot of ω vs. Gp/G — Case 6. 
 

 

 

 
 

Figure D.7.l — Comparison plot of p/z vs. Gp — Case 6. 
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Figure D.7.m — Plot of dimensionless p/z functions vs. GpD — Case 6. 
 

 
 

Figure D.7.n — Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 6. 
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Figure D.7.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 6. 
 

 

 

 
 

Figure D.7.p — Summary plot of p/z vs. Gp — Case 6. 
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Figure D.8.a — Base plot of p/z vs. Gp — Case 7. 
 

 

 

 
 

Figure D.8.b — Plot of ∆(p/z) vs. Gp — Case 7. 
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Figure D.8.c — Plot of ∆(p/z)/Gp vs. Gp — Case 7. 
 

 

 

 
 

Figure D.8.d — Plot of p
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Figure D.8.e — Plot of p
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Figure D.8.f — Plot of p
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Figure D.8.g — Plot of
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Figure D.8.h — Plot of ))(( pippec − vs. Gp/G — Case 7. 
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Figure D.8.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 7. 
 

 

 

 
 

Figure D.8.j — Plot of ω vs. Gp — Case 7. 
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Figure D.8.k — Plot of ω vs. Gp/G — Case 7. 
 

 

 

 
 

Figure D.8.l — Comparison plot of p/z vs. Gp — Case 7. 
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Figure D.8.m — Plot of dimensionless p/z functions vs. GpD — Case 7. 
 

 
 

Figure D.8.n — Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 7. 
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Figure D.8.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 7. 
 

 

 

 
 

Figure D.8.p — Summary plot of p/z vs. Gp — Case 7. 
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Figure D.9.a — Base plot of p/z vs. Gp — Case 8. 
 

 

 

 
 

Figure D.9.b — Plot of ∆(p/z) vs. Gp — Case 8. 
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Figure D.9.c — Plot of ∆(p/z)/Gp vs. Gp — Case8. 
 

 

 

 
 

Figure D.9.d — Plot of p
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Figure D.9.e — Plot of p
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Figure D.9.f — Plot of p
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Figure D.9.g — Plot of
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Figure D.9.h — Plot of ))(( pippec − vs. Gp/G — Case 8. 
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Figure D.9.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 8. 
 

 

 

 
 

Figure D.9.j — Plot of ω vs. Gp — Case 8. 
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Figure D.9.k — Plot of ω vs. Gp/G — Case 8. 
 

 

 

 
 

Figure D.9.l — Comparison plot of p/z vs. Gp — Case 8. 
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Figure D.9.m — Plot of dimensionless p/z functions vs. GpD — Case 8. 
 

 
 

Figure D.9.n — Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 8. 
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Figure D.9.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 8. 
 

 

 

 
 

Figure D.9.p — Summary plot of p/z vs. Gp — Case 8. 
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Figure D.10.a — Plot of p/z vs. Gp — Case 9. 
 

 

 

 
 

Figure D.10.b — Plot of ∆(p/z) vs. Gp — Case 9. 
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Figure D.10.c — Plot of ∆(p/z)/Gp vs. Gp — Case 9. 
 

 

 

 
 

Figure D.10.d — Plot of p
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Figure D.10.e — Plot of p
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Figure D.10.f — Plot of p
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Figure D.10.g — Plot of
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Figure D.10.h — Plot of ))(( pippec − vs. Gp/G — Case 9. 
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Figure D.10.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 9. 
 

 

 

 
 

Figure D.10.j — Plot of ω vs. Gp — Case 9. 
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Figure D.10.k — Plot of ω vs. Gp/G — Case 9. 
 

 

 

 
 

Figure D.10.l — Comparison plot of p/z vs. Gp — Case 9. 
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Figure D.10.m — Plot of dimensionless p/z functions vs. GpD — Case 9. 
 

 
 

Figure D.10.n —  Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 9. 
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Figure D.10.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 9. 
 

 

 

 
 

Figure D.10.p — Summary plot of p/z vs. Gp — Case 9. 
 



161

 

 
 

Figure D.11.a — Plot of p/z vs. Gp — Case 10. 
 

 

 

 
 

Figure D.11.b — Plot of ∆(p/z) vs. Gp — Case 10. 
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Figure D.11.c — Plot of ∆(p/z)/Gp vs. Gp — Case 10. 
 

 

 

 
 

Figure D.11.d — Plot of p
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Figure D.11.e — Plot of p
p

p
dGzp

G

G
 )/∆(

0
1
2 ∫ vs. Gp — Case 10. 

 

 

 
 

Figure D.11.f — Plot of p
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Figure D.11.g — Plot of
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Figure D.11.h — Plot of ))(( pippec − vs. Gp/G — Case 10. 
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Figure D.11.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 10. 
 

 

 

 
 

Figure D.11.j — Plot of ω vs. Gp — Case 10. 
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Figure D.11.k — Plot of ω vs. Gp/G — Case 10. 
 

 

 

 
 

Figure D.11.l  — Comparison plot of p/z vs. Gp — Case 10. 
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Figure D.11.m — Plot of dimensionless p/z functions vs. GpD — Case 10. 
 

 
 

Figure D.11.n —  Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 10. 
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Figure D.11.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 10. 
 

 

 

 
 

Figure D.11.p  — Summary plot of p/z vs. Gp — Case 10. 
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Figure D.12.a — Plot of p/z vs. Gp — Case 11. 
 

 

 

 
 

Figure D.12.b — Plot of ∆(p/z) vs. Gp — Case 11. 
 



170

 

 
 

Figure D.12.c — Plot of ∆(p/z)/Gp vs. Gp — Case 11. 
 

 

 

 
 

Figure D.12.d — Plot of p
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Figure D.12.e — Plot of p
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Figure D.12.f — Plot of p
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Figure D.12.g — Plot of
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Figure D.12.h — Plot of ))(( pippec − vs. Gp/G — Base Simulation Case 11. 
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Figure D.12.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 11. 
 

 

 

 
 

Figure D.12.j — Plot of ω vs. Gp — Base Simulation Case 11. 
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Figure D.12.k — Plot of ω vs. Gp/G — Case 11. 
 

 

 

 
 

Figure D.12.l — Comparison plot of p/z vs. Gp — Case 11. 
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Figure D.12.m — Plot of dimensionless p/z functions vs. GpD — Case 11. 
 

 
 

Figure D.12.n —  Plot of ))(( p
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Figure D.12.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 11. 
 

 

 

 
 

Figure D.12.p  — Summary plot of p/z vs. Gp — Case 11. 
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Figure D.13.a — Plot of p/z vs. Gp — Case 12. 
 

 

 

 
 

Figure D.13.b — Plot of ∆(p/z) vs. Gp — Case 12. 
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Figure D.13.c — Plot of ∆(p/z)/Gp vs. Gp — Case 12. 
 

 

 

 
 

Figure D.13.d — Plot of p
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Figure D.13.e — Plot of p
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Figure D.13.g — Plot of
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Figure D.13.h — Plot of ))(( pippec − vs. Gp/G — Base Simulation Case 12. 
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Figure D.13.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 12. 
 

 

 

 
 

Figure D.13.j — Plot of ω vs. Gp — Base Simulation Case 12. 
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Figure D.13.k — Plot of ω vs. Gp/G — Case 12. 
 

 

 

 
 

Figure D.13.l — Comparison plot of p/z vs. Gp — Case 12. 
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Figure D.13.m — Plot of dimensionless p/z functions vs. GpD — Case 12. 
 

 
 

Figure D.13.n —  Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 12. 
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Figure D.13.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 12. 
 

 

 

 
 

Figure D.13.p —  Summary plot of p/z vs. Gp — Case 12. 
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Figure D.14.a — Plot of p/z vs. Gp — Case 13. 
 

 

 

 
 

Figure D.14.b — Plot of ∆(p/z) vs. Gp — Case 13. 
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Figure D.14.c — Plot of ∆(p/z)/Gp vs. Gp — Case 13. 
 

 

 

 
 

Figure D.14.d — Plot of p
p

p
dGzp

G

G
 )/∆(

0
1 ∫ vs. Gp — Case 13. 

 



187

 

 
 

Figure D.14.e — Plot of p
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Figure D.14.f — Plot of p
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Figure D.14.g — Plot of
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Figure D.14.h — Plot of ))(( pippec − vs. Gp/G — Base Simulation Case 13. 
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Figure D.14.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 13. 
 

 

 

 
 

Figure D.14.j — Plot of ω vs. Gp — Base Simulation Case 13. 
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Figure D.14.k — Plot of ω vs. Gp/G — Case 13. 
 

 

 

 
 

Figure D.14.l — Comparison plot of p/z vs. Gp — Case 13. 
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Figure D.14.m — Plot of dimensionless p/z functions vs. GpD — Case 13. 
 

 
 

Figure D.14.n —  Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 13. 
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Figure D.14.o Plot of (p/z)/(pi/zi) vs. Gp/G — Case 13. 
 

 

 

 
 

Figure D.14.p— Summary plot of p/z vs. Gp — Case 13. 
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Figure D.15.a — Plot of p/z vs. Gp — Case 14. 
 

 

 

 
 

Figure D.15.b — Plot of ∆(p/z) vs. Gp — Case 14. 
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Figure D.15.c — Plot of ∆(p/z)/Gp vs. Gp — Case 14. 
 

 

 

 
 

Figure D.15.d — Plot of p
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Figure D.15.e — Plot of p
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Figure D.15.f — Plot of p
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Figure D.15.g — Plot of
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Figure D.15.h — Plot of ))(( pippec − vs. Gp/G — Base Simulation Case 14. 
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Figure D.15.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 14. 
 

 

 

 
 

Figure D.15.j — Plot of ω vs. Gp — Base Simulation Case 14. 
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Figure D.15.k — Plot of ω vs. Gp/G — Case 14. 
 

 

 

 
 

Figure D.15.l — Comparison plot of p/z vs. Gp — Case 14. 
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Figure D.15.m — Plot of dimensionless p/z functions vs. GpD — Case 14. 
 

 
 

Figure D.15.n —  Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 14. 
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Figure D.15.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 14. 
 

 

 

 
 

Figure D.15.p — Summary plot of p/z vs. Gp — Case 14. 
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Figure D.16.a — Plot of p/z vs. Gp — Case 15. 
 

 

 

 
 

Figure D.16.b — Plot of ∆(p/z) vs. Gp — Case 15. 
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Figure D.16.c — Plot of ∆(p/z)/Gp vs. Gp — Case 15. 
 

 

 

 
 

Figure D.16.d — Plot of p
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Figure D.16.e — Plot of p
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Figure D.16.f — Plot of p
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Figure D.16.g — Plot of
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Figure D.16.h — Plot of ))(( pippec − vs. Gp/G — Base Simulation Case 15. 
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Figure D.16.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 15. 
 

 

 

 
 

Figure D.16.j — Plot of ω vs. Gp — Base Simulation Case 15. 
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Figure D.16.k — Plot of ω vs. Gp/G — Case 15. 
 

 

 

 

 
 

Figure D.16.l — Comparison plot of p/z vs. Gp — Case 15. 
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Figure D.16.m — Plot of dimensionless p/z functions vs. GpD — Case 15. 
 

 
 

Figure D.16.n —  Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 15. 
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Figure D.16.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 15. 
 

 

 

 
 

Figure D.16.p — Summary plot of p/z vs. Gp — Case 15. 
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Figure D.17.a — Plot of p/z vs. Gp — Case 16. 
 

 

 

 
 

Figure D.17.b — Plot of ∆(p/z) vs. Gp — Case 16. 
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Figure D.17.c — Plot of ∆(p/z)/Gp vs. Gp — Case 16. 
 

 

 

 
 

Figure D.17.d — Plot of p
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Figure D.17.e — Plot of p
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Figure D.17.f — Plot of p
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Figure D.17.g — Plot of
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Figure D.17.h — Plot of ))(( pippec − vs. Gp/G — Base Simulation Case 16. 
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Figure D.17.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 16. 
 

 

 

 
 

Figure D.17.j — Plot of ω vs. Gp — Base Simulation Case 16. 
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Figure D.17.k — Plot of ω vs. Gp/G — Case 16. 
 

 

 

 
 

Figure D.17.l — Comparison plot of p/z vs. Gp — Case 16. 
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Figure D.17.m — Plot of dimensionless p/z functions vs. GpD — Case 16. 
 

 
 

Figure D.17.n —  Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 16. 
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Figure D.17.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 16. 
 

 

 

 
 

Figure D.17.p — Summary plot of p/z vs. Gp — Case 16. 
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Figure D.18.a — Plot of p/z vs. Gp — Case 17. 
 

 

 

 
 

Figure D.18.b — Plot of ∆(p/z) vs. Gp — Case 17. 
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Figure D.18.c — Plot of ∆(p/z)/Gp vs. Gp — Case 17. 
 

 

 

 
 

Figure D.18.d — Plot of p
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Figure D.18.e — Plot of p
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Figure D.18.f — Plot of p
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Figure D.18.g — Plot of
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Figure D.18.h — Plot of ))(( pippec − vs. Gp/G — Base Simulation Case 17. 
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Figure D.18.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 17. 
 

 

 

 
 

Figure D.18.j — Plot of ω vs. Gp — Base Simulation Case 17. 
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Figure D.18.k — Plot of ω vs. Gp/G — Case 17. 
 

 

 

 
 

Figure D.18.l — Comparison plot of p/z vs. Gp — Case 17. 
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Figure D.18.m — Plot of dimensionless p/z functions vs. GpD — Case 17. 
 

 
 

Figure D.18.n —  Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 17. 
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Figure D.18.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 17. 
 

 

 

 
 

Figure D.18.p — Summary plot of p/z vs. Gp — Case 17. 
 



225

 

 
 

Figure D.19.a — Plot of p/z vs. Gp — Case 18. 
 

 

 

 
 

Figure D.19.b — Plot of ∆(p/z) vs. Gp — Case 18. 
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Figure D.19.c — Plot of ∆(p/z)/Gp vs. Gp — Case 18. 
 

 

 

 
 

Figure D.19.d — Plot of p
p

p
dGzp

G

G
 )/∆(

0
1 ∫ vs. Gp — Case 18. 
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Figure D.19.e — Plot of p
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Figure D.19.g — Plot of
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Figure D.19.h — Plot of ))(( pippec − vs. Gp/G — Base Simulation Case 18. 
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Figure D.19.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 18. 
 

 

 

 
 

Figure D.19.j — Plot of ω vs. Gp — Base Simulation Case 18. 
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Figure D.19.k — Plot of ω vs. Gp/G — Case 18. 
 

 

 

 
 

Figure D.19.l — Comparison plot of p/z vs. Gp — Case 18. 
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Figure D.19.m — Plot of dimensionless p/z functions vs. GpD — Case 18. 
 

 
 

Figure D.19.n —  Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 18. 
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Figure D.19.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 18. 
 

 

 

 
 

Figure D.19.p — Summary plot of p/z vs. Gp — Case 18. 
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Figure D.20.a — Plot of p/z vs. Gp — Case 19. 
 

 

 

 
 

Figure D.20.b — Plot of ∆(p/z) vs. Gp — Case 19. 
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Figure D.20.c — Plot of ∆(p/z)/Gp vs. Gp — Case 19. 
 

 

 

 
 

Figure D.20.d — Plot of p
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Figure D.20.e — Plot of p
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Figure D.20.g — Plot of
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Figure D.20.h — Plot of ))(( pippec − vs. Gp/G — Base Simulation Case 19. 
 



237

 

 
 

Figure D.20.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 19. 
 

 

 

 
 

Figure D.20.j — Plot of ω vs. Gp — Base Simulation Case 19. 
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Figure D.20.k — Plot of ω vs. Gp/G — Case 19. 
 

 

 

 
 

Figure D.20.l — Comparison plot of p/z vs. Gp — Case 19. 
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Figure D.20.m — Plot of dimensionless p/z functions vs. GpD — Case 19. 
 

 
 

Figure D.20.n —  Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 19. 
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Figure D.20.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 19. 
 

 

 

 
 

Figure D.20.p — Summary plot of p/z vs. Gp — Case 19. 
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Figure D.21.a — Plot of p/z vs. Gp — Case 20. 
 

 

 

 
 

Figure D.21.b — Plot of ∆(p/z) vs. Gp — Case 20. 
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Figure D.21.c — Plot of ∆(p/z)/Gp vs. Gp — Case 20. 
 

 

 

 
 

Figure D.21.d — Plot of p
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Figure D.21.e — Plot of p
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Figure D.21.f — Plot of p
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Figure D.21.g — Plot of
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Figure D.21.h — Plot of ))(( pippec − vs. Gp/G — Base Simulation Case 20. 
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Figure D.21.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 20. 
 

 

 

 
 

Figure D.21.j — Plot of ω vs. Gp — Base Simulation Case 20. 
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Figure D.21.k — Plot of ω vs. Gp/G — Case 20. 
 

 

 

 
 

Figure D.21.l — Comparison plot of p/z vs. Gp — Case 20. 
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Figure D.21.m — Plot of dimensionless p/z functions vs. GpD — Case 20. 
 

 
 

Figure D.21.n —  Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 20. 
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Figure D.21.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 20. 
 

 

 

 
 

Figure D.21.p — Summary plot of p/z vs. Gp — Case 20. 
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Figure D.22.a — Plot of p/z vs. Gp — Case 21. 
 

 

 

 
 

Figure D.22.b — Plot of ∆(p/z) vs. Gp — Case 21. 
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Figure D.22.c — Plot of ∆(p/z)/Gp vs. Gp — Case 21. 
 

 

 

 
 

Figure D.22.d — Plot of p
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Figure D.22.e — Plot of p
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Figure D.22.f — Plot of p
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Figure D.22.g — Plot of
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Figure D.22.h — Plot of ))(( pippec − vs. Gp/G — Base Simulation Case 21. 
 



253

 

 
 

Figure D.22.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 21. 
 

 

 

 
 

Figure D.22.j — Plot of ω vs. Gp — Base Simulation Case 21. 
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Figure D.22.k — Plot of ω vs. Gp/G — Case 21. 
 

 

 

 
 

Figure D.22.l — Comparison plot of p/z vs. Gp — Case 21. 
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Figure D.22.m — Plot of dimensionless p/z functions vs. GpD — Case 21. 
 

 
 

Figure D.22.n — Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 21. 
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Figure D.22.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 21. 
 

 

 

 
 

Figure D.22.p — Summary plot of p/z vs. Gp — Case 21. 
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Figure D.23.a — Plot of p/z vs. Gp — Case 22. 
 

 

 

 
 

Figure D.23.b — Plot of ∆(p/z) vs. Gp — Case 22. 
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Figure D.23.c — Plot of ∆(p/z)/Gp vs. Gp — Case 22. 
 

 

 

 
 

Figure D.23.d — Plot of p
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p
dGzp

G
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 )/∆(

0
1 ∫ vs. Gp — Case 22. 
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Figure D.23.e — Plot of p
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0
1
2 ∫ vs. Gp — Case 22. 

 

 

 

Figure D.23.f — Plot of p
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1)/∆( ∫− vs. Gp — Case 22. 
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Figure D.23.g — Plot of
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Figure D.23.h — Plot of ))(( pippec − vs. Gp/G — Base Simulation Case 22. 
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Figure D.23.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 22. 
 

 

 

 
 

Figure D.23.j — Plot of ω vs. Gp — Base Simulation Case 22. 
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Figure D.23.k — Plot of ω vs. Gp/G — Case 22. 
 

 

 

 
 

Figure D.23.l — Comparison plot of p/z vs. Gp — Case 22. 
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Figure D.23.m — Plot of dimensionless p/z functions vs. GpD — Case 22. 
 

 
 

Figure D.23.n —  Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 22. 

 



264

 

 
 

Figure D.23.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 22. 
 

 

 

 
 

Figure D.23.p — Summary plot of p/z vs. Gp — Case 22. 
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Figure D.24.a — Plot of p/z vs. Gp — Case 23. 
 

 

 

 
 

Figure D.24.b — Plot of ∆(p/z) vs. Gp — Case 23. 
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Figure D.24.c — Plot of ∆(p/z)/Gp vs. Gp — Case 23. 
 

 

 

 
 

Figure D.24.d — Plot of p
p

p
dGzp
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0
1 ∫ vs. Gp — Case 23. 
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Figure D.24.e — Plot of p
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0
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2 ∫ vs. Gp — Case 23. 

 

 

 
 

Figure D.24.f — Plot of p
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1)/∆( ∫− vs. Gp — Case 23. 
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Figure D.24.g — Plot of
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Figure D.24.h — Plot of ))(( pippec − vs. Gp/G — Base Simulation Case 23. 
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Figure D.24.i — Plot of [ ]))((11 pippec/ −− vs. Gp/G — Case 23. 
 

 

 

 
 

Figure D.24.j — Plot of ω vs. Gp — Base Simulation Case 23. 
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Figure D.24.k — Plot of ω vs. Gp/G — Case 23. 
 

 

 

 
 

Figure D.24.l — Comparison plot of p/z vs. Gp — Case 23. 
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Figure D.24.m — Plot of dimensionless p/z functions vs. GpD — Case 23. 
 

 
 

Figure D.24.n —  Plot of ))(( pippec − vs. (p/z)/(pi/zi) — Case 23. 
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Figure D.24.o — Plot of (p/z)/(pi/zi) vs. Gp/G — Case 23. 
 

 

 

 
 

Figure D.24.p — Summary plot of p/z vs. Gp — Case 23. 
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