WORLD-CLASS OUTSTANDING INTERNATIONAL PROGRAM | EXHIBITION | NETWORKING

AXIAL VIBRATION FOR A SYNCHRONOUS MOTOR, GEARBOX, COMPRESSOR TRAIN

Lucy Zhao TAM Presentation Sept 2013

42nd Turbomachinery 29th Pump SYMPOSIA

GEORGE R. BROWN CONVENTION CENTER 9.30 – 10.3.2013

Lucy Yu Zhao

- Lead Machinery Engineer Supply Chain Support, Linde Gas North America
- Principle Machinery Engineer GEO, Air Products
- Research Assistant ROMAC, University of Virginia
- Project Engineer Anshan Steel

9 30 - 10 3 2013

Content

- Problem Statement
- Mathematical Model
- Calculation Results
- Discussion
- Conclusion and Recommendation
- Lessons Learned

Problem Statement

- Synchronous Motor (20KW), Gearbox, Inlet compressor
- Train installed 2007 with 2mm axial vibration mainly on the motor (low speed) side.
- Amplitude @ <u>2 mm</u> with a frequency of <u>2.8</u> <u>Hz</u>(170/min). Gearbox running noisily.

2nd Turbomachinery 29th Pump symposia

GEORGE R. BROWN CONVENTION CENTER 9.30 - 10.3.2013

Mathematical Model

42nd Turbomachinery 29th Pump SYMPOSIA

9.30 - 10.3.2013

Courtesy of Jason Kaplan, ROMAC/University. of Virginia

Assumptions

- Gear mesh is infinite rigid relative to other axial springs in the system and gear mesh damping effect is neglected
- The compressor rotor is axially stationary as the thrust bearing stiffness is much higher when compared to coupling axial stiffness
- The coupling stiffness non-linearity is ignored at low load
- The thrust Bearing is infinite rigid and its damping effect ignored

42nd Turbomachinery 29th Pump symposia

Calculation Results

- M-motor = 1200kg
- K-ls-cplg-axial =
- M-gb =
- K-hs-cplg-axial =

1.7E6 N/M 3500 kg 2.4E6 N/M

- Ncrit1-axial = 1.4 Hz (85 CPM)
- The axial oscillation frequency is 2.8 Hz.
- The rotor oscillates at 2X Ncrit1-axial and is visible to the observer.

42nd Turbomachinery 29th Pump symposia

Discussion

- API Standards do not discuss axial critical speeds
- The coupling axial gap is a variable dimension due to ambient temperature and rotor thermal condition changes .
- Axial resonances are rarely observed events. The Author is aware of only a few known cases (<5)
- There is little literature or research available on this subject.
- It is common belief if the axial alignment and thrust bearing clearances are set properly excitation forces will not be large enough to excite the axial natural frequency

42nd Turbomachinery 29th Pump SYMPOSIA

Solution

- Motor magnetic center recheck with no change made
- Limited end float coupling installed. The vibration amplitude was reduced but not eliminated
- Extreme high axial alignment target was implemented with original disc pack coupling. Axial oscillation issue solved.

Conclusion & Recommendation

- The train experienced axial vibration at 2X of the train 1st axial natural frequency. Bull gear and pinion relative displacement was observed and calculated.
- Excitation force came from misalignment and motor magnetic centering force.
- The motor is not designed to run off magnetic center. The motor centering force is believed to be around 100-200 lbf/1000 HP.
- The motor centering force is believed to be non-linear to the axial displacement.
- The motor centering force coupled with misalignment was sufficient to trigger the observed axial oscillation.
- High axial vibration was resolved by better alignment.
- The study concluded axial vibration thresholds exist. They depend on axial excitation forces and axial mass-elastic property.
- More research in this directions is necessary to improve coupling design requirements and alignment criteria.

9.30 - 10.32013

Lessons Learned

- Compressor trains with very low axial stiffness coupling tend to have low frequency axial oscillations.
- High alignment targets can reduce the excitation force. The process can be time consuming and misalignment change with ambient condition.
- Damping effect is low in the discussed motor compressor train which makes this simplified simulation valid and relates well with what was observed.
- Running at 2X axial natural frequency can cause axial vibration and LCF at coupling and gearbox. This can be a significant reliability issue.
- Precaution shall be given to coupling design to increase the lowest axial critical speed frequency.

12nd Turbomachinery 29th Pump SYMPOSIA

George R. brown convention center 9.30 - 10.3.2013