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INTRODUCTION 
 

A natural gas cycling facility is being constructed as an 
initial production system at the Point Thomson field on 
Alaska’s North Slope. Condensate produced from the reservoir 
will be sent by pipeline to join an existing pipeline at Badami 
and from there to the well-known Trans-Alaska oil pipeline. 
Approximately 200 MMCSFD of natural gas will be returned to 
the reservoir at 10,000 psi via two parallel, two stage, 10,000 
HP reciprocating gas injection compressors. Power generation 
for the site is provided by four gas turbine driven generators. 
Two gas fueled units are rated at 7.9 MWe while the other two 
dual fuel units are fitted with waste heat recovery and produce 
slightly less power due to additional exhaust losses. The 
compressor trains consume approximately two thirds of the 
facility’s electrical load from the power generation system that 
is isolated from a power grid due to the remoteness of the site 
and operates in island mode. 

Initial engineering reviews indicated the potential for large 
electrical current pulsations on the 13.8 kV bus due to the 
normal torsional characteristics of the reciprocating compressor 
trains. These current pulsations could interact with the 
generator and potentially exciting torsional natural frequencies 
of the gas turbine driven trains. One of the main concerns was 
the generator drive’s epicyclic gearing being exposed to 
torsional variations that could cause micropitting of the gear 
teeth. As part of the initial engineering for the compressor 
trains, the motor manufacturer performed initial screening 
calculations for current pulsation. It was predicted that the 
current pulsation amplitudes could exceed 20 percent under 
some operating conditions. Later, revised analyses by the motor 
manufacturer showed reduced values. Further analyses were 
required using a more refined calculation method to examine 
the expected interactions with the gas turbine generator trains. 

Various compressor operating conditions were simulated 
via marriage of electrical and mechanical systems into a single 
digital model to determine the worst case scenario for 
evaluation and risk assessment. Results showed excitations 
imposed upon the generator torsional system at frequencies of 
compressor speed and its harmonics. Employing the refined 
methods, overall current and torque oscillations of 
approximately 4 percent of average values were predicted with 
the dominant frequency being 6 Hz, which is equal to 
compressor speed of 360 rpm. This is significantly lower than 
original predictions that exceeded 20 percent. 

This paper describes the studies, results and 
recommendations the project team used to quantify the 
electrical current pulsation induced excitations and design 
precautions implemented to assure long-term reliable operation. 
The first part below provides the groundwork for understanding 
the concern for micropitting the generator drive train’s gear 
teeth. The second part discusses the typical individual torsional 
analyses of the compressor and generator trains. The third part 
illustrates the combined electrical and mechanical model and 
results derived for the interactions of two separate torsional 
systems coupled by an electrical bus. 
 

 
GAS TURBINE DRIVEN GENERATORS – GRID-BASED 
VERSUS ISLAND-MODE 
 

Gas turbine driven electric generators are installed 
worldwide to provide power to a variety of markets, but the two 
main sector divisions are the oil and gas industry and industrial 
power generation. In both of these markets, turbine generators 
span a continuum of applications that are bookended at the one 
end by those that are run against electrical grids and at the other 
end by those that are run in isolated island mode to provide the 
complete electrical energy needs for a particular location. 

The differences in reactive loads experienced at the 
generator terminals between grid-based versus island-mode 
installations can lead to differences in the operating 
characteristics in terms of dynamic load fluctuations. In 
general, grid-based installations tend to be more stable, 
provided the grid is stable, and do not experience much in the 
way of dynamic loading at steady-state conditions. Island-mode 
installations run the gamut from stable to dynamic depending 
upon the equipment and processes at a site, but they generally 
tend to experience more dynamic loading than grid-based 
installations. Though these dynamic loads are usually well 
within the design capabilities of the electrical and mechanical 
sub-systems of the turbomachinery, they sometimes are 
significant enough in magnitude, frequency or duration to 
warrant closer engineering review. 

The Point Thomson project is one such program that 
received additional engineering review. The items that led to 
this further consideration were: 
- This is an island-mode application where four gas turbine 

generator packages will provide power for the entire site 
through a main 13.8 kV switchgear electrical bus. 

- Two 10,000 hp synchronous motors driving two reciprocating 
compressors will make up a significant portion of the plant 
load seen at the electrical bus. 

- The two reciprocating compressors will at times run with 
their mechanical linkages in phase and this is predicted to 
cause a mechanical torque pulsation that will feed back into 
the synchronous motors, then to the common electrical bus 
and then be experienced as torque pulsations by the 
mechanical components of the generator sets. 

- The initial preliminary estimates of the resultant power 
fluctuations experienced at each generator shaft end indicated 
that they could be as high as 1.675 MW peak-to-peak at a 
frequency of 6 Hz – potentially for a significant portion of the 
equipment’s operating life. 

- The site is in a remote, environmentally sensitive location on 
the North Slope of Alaska. 

 
GAS TURBINE GENERATOR SETS WITH EPICYCLIC 
REDUCTION GEAR DRIVES 
 

As mentioned above, four gas turbine generator sets were 
provided to the Point Thomson site (see Figure 1). Each of 
these features a custom-designed epicyclic reduction gear drive 
that sits in between the engine and generator. The epicyclic 
gearbox arrangement is advantageous in that it allows for 
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compact, in-line transmission of power from engine to 
generator (see Figure 2). Since it is one of the core sub-systems 
of the drive train, it was important to give it a robust review for 
this project.  

From a gear design perspective, gas turbine generator sets 
are considered to be one of the smoothest running industrial 
applications having the smallest and least frequent dynamic 
excursions from nominal load induced on the gearing by the 
driving and driven equipment. This is reflected in the design 
phase by applying low overload/application factors as 
multipliers to the nominal design loads. The higher and more 
frequent the typical dynamic loads experienced by a gear unit 
in various applications, the higher the multipliers are to the 
nominal design loads. This covers the gross effects of 
externally induced dynamic loading on common load-
dependent failure modes like fatigue (both surface and bending 
modes) and, to a lesser extent, scuffing and wear. A typical 
factor for the Point Thomson gas turbine driven generators is 
1.1 (Radzevich and Dudley, 1994.) 

 
 
 
 
 
 

 
Figure 1. Schematic of a Gas Turbine Generator Package at 

Point Thomson (Courtesy of Solar Turbines) 
 

 
Figure 2. Schematic of an Epicyclic Reduction Gear Drive at 

Point Thomson (Courtesy of Solar Turbines) 
 

In addition to the gross effects of dynamic loading on 
common load-dependent gear failure modes, if it is severe 

enough, dynamic load changes can also disrupt the Elasto-
Hydrodynamic Lubrication (EHL) film thickness between the 
gear teeth. This is particularly true in epicyclic gear units that 
have floating members that adjust their running positions in 
response to changing load vectors during dynamic load 
changes. 

Testing of a typical gas turbine with an epicyclic reduction 
gear drive reveals that this adjustment to running position 
occurs regularly with instantaneous load step changes during 
normal operation of the equipment. Figure 3 shows two data 
plots from one of these tests. The bottom plot shows power 
versus time for various load steps that occurred during the 
testing of this package and the top plot shows resulting 
vibration amplitudes recorded from the reduction gear drive’s 
case-mounted accelerometer during the same period of testing. 
Note that for each load change shown on the bottom plot, there 
is a corresponding spike in acceleration on the reduction gear 
drive housing shown in the top plot. Over the years, related 
testing on various epicyclic gear units equipped with proximity 
probes has verified that these instantaneous changes in 
accelerometer readings correlate to instantaneous positional 
shifts of the floating internal gear members in response to 
changes in load vectors. 

Normally, these positional adjustments of the floating gear 
members are seen as a good thing – floating capability is a 
mandatory feature that must be part of any sound epicyclic gear 
design if it is to have any chance at achieving an adequate 
service life. But experience in various other gear industries 
indicates that these shifts in loaded gear member position can 
also be accompanied by disruptions to the EHL film between 
the mating teeth (Heidenreich and Herr, 2012.) If these 
disruptions are severe and frequent enough, they can lead to 
another gear tooth failure mode called micropitting. 

 
CONSIDERATION OF FAILURE MODES – 
IMPORTANCE OF MICROPITTING 
 

Dynamic loading contributes to gross effects on common 
load-dependent gear failure modes that are easily accounted for, 
but dynamic loading can also have effects on more difficult to 
assess, less load-dependent failure modes like micropitting. 
Table 1 gives a listing of the five main gear tooth failure modes 
that could be affected by dynamic load fluctuations with a 
comparative summary of the mechanisms, the predictability, 
how they are accounted for in design rating of a gear set, and 
the probability of occurrence as a primary failure mode. Of all 
of the failure modes on the list, micropitting was seen as the 
one that needed the most careful consideration for the Point 
Thomson Project. The potential to have relatively large 
magnitude dynamic load fluctuations occurring for significant 
portions of the operating life of the equipment, along with the 
related positional adjustments of an epicyclic gear drive’s 
floating members, meant that there was a high potential for 
disruption of the EHL film thickness over these periods. This is 
why micropitting was seen as the failure mode having the most 
increased probability of occurring: unfortunately it also has the 
least degree of predictability. 

Micropitting is a fatigue failure of the meshing surfaces of 

Turbine 
Exhaust 

Turbine 
Inlet 

Epicyclic
Gearbox 

Generator 
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a pair of gears characterized by smaller pits than are 
experienced when macropitting occurs (Drago, et al. 2010.) Pits 
on the order of 10 to 20 microinches in size can originate when 
local lubricant film thickness is insufficient. Localized contact 
of surface asperities fatigues the gear material. The surface 
asperities are a function of the gear manufacturing processes 
and range in size based upon the finishing techniques 
employed. Typically, it is expected that the EHL film will be 
thick enough to prevent contact between the asperities on one 
gear with those on a mating gear. Externally imposed dynamic 
loads that could disrupt the EHL film thickness was a major 
concern for the Point Thomson Project. 

 

 
Figure 3. Test of Turbine Generator w/ Epicyclic Gear Unit 
Load Changes vs. Vibration (Courtesy of Solar Turbines) 
 
Much has been written about micropitting over the years 

and a full treatment of it is beyond the scope of this paper, but 
there are several summary points that should be made: 

 
- Micropitting is a relatively recent concern for gearing as it 

has probably only been recognized as a separate failure mode 
since the early 1990’s. It occurred in gear applications since 
the 90’s. In most of these occurrences, it was usually called 
grey staining or frosting and was incorrectly identified as a 

wear mechanism or sometimes confused with the more well-
understood failure mode of macropitting. 

- Many of the things that influence micropitting are well 
understood but there is not yet a reliable, internationally 
recognized method to predict a gear design’s susceptibility to 
this failure mode. The best approach available today is to 
compare ways to make a design more robust against this 
failure mode. 

- Micropitting can occur in many different types of applications 
with completely different operational characteristics, but 
certain industries see it more frequently than others. 

- Turbomachinery applications are not known to be very 
susceptible to this failure mode, but certain industries (for 
example, wind energy power generation, where the gear 
trains are regularly exposed to relatively large magnitude 
dynamic load fluctuations for significant portions of the 
operating life) are known to experience a relatively high 
frequency of micropitting issues. 

 
Table 1. Failure Modes of Gear Teeth 

Name Mechanism 
Predict-
ability 

Effect of 
Load 
Fluctu-
ation 

Probability 
of  
Occurrence

* 
Tooth 
Breakage Bending Fatigue Good 

Increases 
Ka 

Slightly 
Increased 

Macro 
pitting 

Surface fatigue 
(sub-surface) Good 

Increases 
Ka 

Slightly 
Increased 

Scuffing Adhesion Fair 
Little 
Effect 

Slightly 
Increased 

Wear Abrasion Poor 
Disrupts 
EHL 

NOT 
Increased 

Micro 
pitting 

Deformation/ 
Cracking of Surface 
Asperities Poor 

Disrupts 
EHL Increased 

*As primary mode of failure 
 
Taking all of the above into consideration, it was deemed 

appropriate for the Point Thomson project to pursue some 
methods to mitigate risk and reduce the potential of 
encountering micropitting issues. One of the most important 
and proven ways to make a gear design more robust against 
micropitting is to put the finish-ground gear through a final 
superfinishing stage using a chemically accelerated vibratory 
process (Arvin, et al. 2002, Bell, et al. 2012, Errichello, 2011, 
Michaud, et al. 2011, Winkelman, et al., 2010.) 
 
SUPERFINISHING – IMPROVING MICROPITTING 
FACTOR OF SAFETY 
 

Micropitting is known to be influenced by: 

- Operating conditions (e.g., load, speed and sliding 
temperature) 

- Lubricant conditions (e.g., viscosity, additive packages and 
cleanliness) 

- Surface conditions (e.g., roughness, lay, texture) 
 

For a given application, any number of the above items 
cannot be changed (e.g., load or speed or lubrication), but 
usually some of the items can be improved to reduce the risk of 
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micropitting. And as mentioned above, one of the proven 
methods of increasing a gear design’s capacity to withstand 
micropitting is to improve the surface through superfinishing. 
For a given design that is finish-ground, superfinishing can be 
used to improve the surface and greatly improve the margin 
against micropitting. Surface roughness quality is usually 
described by a Ra value which stands for roughness average 
and is one of several parameters used in gear tooth machined 
surface evaluation (Talati, 2011.) 

Typically, precision high-speed turbomachinery gearing is 
case-carburized and finish-ground. The grinding process 
usually achieves a surface finish with a roughness of between 
32 and 20 micro-inches Ra. The surface is characterized by 
long shallow peaks and valleys in the direction of the grinding 
wheel travel (see Figure 4) and the carburized peaks represent 
sharp, discontinuous, brittle asperities that can serve as 
initiation sites for micropitting. 

Chemically accelerated vibratory superfinishing, is a 
benign finishing process that removes these peaks and leaves 
the surface of the gear tooth smooth, neutral and free of 
initiation sites for micropitting. Surface finishes achieved with 
superfinishing are typically on the order of less than 4 micro-
inches Ra; less than 1 micro-inch is readily achievable, 
depending upon the needs of the application. 
 

 
Figure 4. Carburized Ground Gear – Micropitting Initiates on 

Grinding Mark Peaks (Courtesy of Solar Turbines) 
 

ISO/TR 15144-1 (2010) provides a method for evaluating 
and calculating a safety factor against micropitting. Equation 
(1) is as follows: 

GF, min
, min

GFP
S S 




 
  (1) 

 

Where, 
S  is the safety factor for micropitting 
GF,min is the minimum specific lubricant film thickness in 

contact area 
GPF   is the permissible specific lubricant film thickness 
S,min   is the minimum required safety factor for micropitting 
 

One thing to note about this calculation is that it assumes 
that the permissible specific film thickness is known. Thus, it 
assumes that there is a way to calculate it or to know if a given 
design is on the cusp of micropitting. However, one can also 
use this equation to calculate a comparison of micropitting 
safety factors for gears finished with a superfinishing process 
versus as-ground finishes. Since the specific film thickness is 
defined as the actual EHL film thickness divided by the 
effective mean surface roughness, in a given application where 
the actual EHL film thickness is the same regardless of finish, 
the film thicknesses cancels out. What is left is the ratio of the 
reciprocals of the two different effective mean surface 
roughness values for before and after superfinishing. This 
yields a comparative safety factor against micropitting. Another 
way to look at it would be as a margin of increase. Table 2 
compares two typically achievable surface roughness values for 
superfinishing (e.g. Ra=4 and Ra=1) against two typically 
achievable surface roughness values for as-ground gears (e.g., 
Ra=32 and Ra=20). 

Thus, if an as-ground gear design at 32 micro-inch surface 
roughness were on the cusp of micropitting (i.e., the safety 
factor 1.0), switching to an superfinishing process that achieved 
a surface roughness of 4 micro-inches would yield a safety 
factor of 8.0 which is an 8X margin of increase. 
 

Table 2. Micropitting Safety Factor Comparison 
(ref. ISO 15144-1, 2010) 

Compare SF = (1/Ra, SF) / (1/Ra, Ground) 

  
Ratio SF to 32 
micro-inches 

Ratio SF to 20 
micro-inches 

@Ra, SF = 10 3.2 2.0 

@Ra, SF =  4 8.0 5.0 

@Ra, SF =  1 32.0 20.0 

 
MECHANICAL SYSTEMS 
 
Reciprocating Compressors 

The two parallel, two-stage, four cylinder, natural gas 
compressors are a four-throw, horizontally-opposed design 
driven at 360 RPM by direct coupled synchronous motors. The 
synchronous drive motors are a single bearing design that 
attaches to the compressor flywheel. First stage suction 
pressure is approximately 2,600 psi and final discharge pressure 
is 10,000 psi. Capacity control is achieved via a recycle 
arrangement capable of 100 percent flow. At design operating 
conditions, the compressors consume approximately two-thirds 
of the electrical power being generated on site. 

The action of the reciprocating mechanisms in the injection 
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- Compressor modifications – 6-throw vs. 4-throw 
crankshaft – NF 

- Motor modifications – two bearing motor with 
torsionally softer shaft; induction motor – NF 

- Coupling modifications – torsionally soft and/or 
damper couplings – NF 

- Reducing oscillatory energy in the electrical system by  
- using VFD motors for compressor drivers – NF 
- Using static electrical filters to detune frequency – NF 

- Isolate oscillatory energy within the generator train (prior to 
the gearbox) by 

- Increasing mass inertia of the generator windings – NF 
- Generator modifications – flywheel addition – NF 
- Judiciously torsionally tune coupling between gearbox 

and generator 
- Provide spare gearbox and store on site 
 
SELECTED MODIFICATIONS 

 
- Improve gear teeth surface finish with superfinishing 

- A margin increase of 8x was achieved (see Figure 13) 

- Increase lube oil viscosity to increase EHL film thickness 
- Change the lube oil for the gas turbine generator from 

ISO VG 32 to ISO VG 46 
- Increase polar mass inertia of the compressor flywheel which 

was implemented early in the project 
- The flywheel polar mass inertia was increased as much 

as possible within the starting constraints of the motor 
prior to investigating the current pulsations 

- Tune the torsional stiffness of the coupling between the 
gearbox and generator to provide additional separation 
margin between the first torsional natural frequency and the 
external excitation at 18 Hz 

- The coupling torsional stiffness was reduced from 
122E6 in-lbf/radian to 54E6 in-lbf/radian 

- Provide a spare gearbox stored onsite 
- Due to the remoteness of the Point Thomson site on the 

North Slope of Alaska, and the long delivery time for a 
new gearbox, a new spare gear box was purchased. Any 
anticipated gear failure because of  micropitting was 
considered to be contained within the gearbox casing

 

 
 

Figure 13. Example of Tooth Surface Roughness Before and After Superfinishing (Courtesy of Solar Turbines 
 
Figure 13 shows actual measurement examples of one of the 
Point Thomson epicyclic gear’s tooth surface finish before and 
after chemically accelerated vibratory superfinishing. The 
upper trace before superfinishing has an Ra of 19.3 while the 
lower trace after superfinishing has an Ra of 2.4. This example 
illustrates an increase in safety factor for micropitting of 8.1x 
according to a ratio of Equation (1) applied before and after 

superfinishing. While the example may not show measurements 
at exactly the same tooth profile location, sufficient before and 
after measurements were recorded to confirm the safety margin 
improvement was achieved. The after trace is on a different 
vertical scale, such that a more pronounced effect is actually 
achieved than is evidenced in a visual review of Figure 13. 
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Table 7. Partial Summary of Cases Investigated 

Case 
Facility 

Electrical 
Load 

No of 
Comprs. 
Online 

Two Compressor 
 Phase Angle Shift of 

Motor Torque Pulsations 
degrees 

No of 
Gens. 
Online 

Peak-to-
Peak 

Generator 
Power 

Oscillation 
kW 

Peak-to-
Peak 

Generator/
Gear 

Torque 
Oscillation 

in-lbf 

Compressor 
Operation 

1 Winter 2 0       In Phase 3 278 13460 Normal
15.1 Winter 2 18 3 249 11933 Normal
15.2 Winter 2 36 3 225 8170 Normal
15.3 Winter 2 72 3 196 10309 Normal
15.4 Winter 2 108 3 159 9959 Normal
15.5 Winter 2 144 3 107 5980 Normal

9 Winter 2 180   Out of Phase 3 68 7310 Normal

1 Winter 2 0       In Phase 3 278 13460 Normal
2 Summer 2 0       In Phase 3 272 13032 Normal
5a Winter 2 0       In Phase 4 220 10470 Normal
7 Winter 1 0       In Phase 3 157 7578 Normal

16 Summer 2 0       In Phase 3 380 16500 
1st Stage

Valve Failure

16 Summer 2 180   Out of Phase 3 200 11400 
1st Stage

Valve Failure

17 Summer 2 0       In Phase 3 540 21500 
2nd Stage

Valve Failure

17 Summer 2 180   Out of Phase 3 350 16100 
2nd Stage

Valve Failure

1 Winter 2 0       In Phase 3 278 13460 Normal
18 Winter 2 0       In Phase 3 275 10100 Normal

CONCLUSIONS 
 
Based upon the analysis of the current pulsations for the 

combined electrical and mechanical systems the following 
conclusions can be stated: 

 
- Significant electrical system current pulsations are not 

normally present nor a concern in machinery systems similar 
to those at Point Thomson since reciprocating compressor 
loads are typically small compared to grid size. Thus they are 
not normally checked when dynamic analyses such as 
torsional natural frequency and forced vibration calculations 
are made. The fact that this phenomenon exists for the Point 
Thomson Project is unique because this is an electrical island 
with the reciprocating compressor being the major load on the 
generator. 

- Electrical system pulsations do not normally cause significant 
torsional vibration, but in this case a torsional resonance 
condition exacerbated the situation as very little damping is 
available to control maximum response amplitudes. 

- The turbine and gear manufacturer expressed concern for 
micropitting failure in the gearbox in its drive train due to 

power fluctuations imposed upon the generators’ terminals by 
the injection compressor drive motors. 

- Current and power pulsations have been adequately modeled 
between the injection compressor drive motor and the power 
generators. The predicted amplitudes are much lower than 
originally reported by the motor manufacturer but were 
sufficient to warrant closer engineering review. 

- The modeled system’s worst case power pulsation was 
predicted to be 0.28 MW under normal operating conditions. 

- The effects of the predicted 0.28 MW power pulsation could 
be reduced by generator train coupling stiffness tuning. 

- Relative phasing (misalignment of TDC) of the two injection 
compressors during operation can reduce the power 
oscillations. However, the degree of misalignment cannot be 
controlled, so a worst case scenario of in phase operation 
must be assumed for continuous operation. 

- Superfinishing can be used as a benign method to improve 
gear tooth surface finish and increase the margin of safety 
against micropitting. 

- Operating with all four gas turbine generators online reduces 
the predicted torsional excitation experienced at the gear 
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teeth. However, maintaining sufficient load on the turbine to 
achieve emissions requirements must be considered. 
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