EXAMPLES OF BALANCING METHODS: FOUR-RUN AND LEAST-SQUARES INFLUENCE COEFFICIENTS

TROY FEESE, P.E.
ENGINEERING DYNAMICS INC.
SAN ANTONIO, TEXAS
Senior Engineer at Engineering Dynamics in San Antonio, TX
24 years performing torsional vibration, lateral critical speed, stability analyses, and FEA of structures / foundations
Field studies of rotating and reciprocating machinery
Lecturer at EDI Annual Seminar – San Antonio Riverwalk
Published papers / articles on torsional vibration, lateral critical speeds, and balancing
Member of ASME, Vibration Institute, Contributed to API 684, and GMRC Torsional Sub-Committee
BSME from The University of Texas at Austin (1990)
MSME from The University of Texas at San Antonio (1996)
Licensed Professional Engineer in Texas (1996)
Introduction

• Balancing is often required to reduce vibration at $1 \times$ running speed.

• Balancing in-place is also referred to as **Field Balancing** or **Trim Balancing**.

• Common balancing techniques:
 - Single-Plane Vector Method
 - Four-Run Method (No Phase)
 - Least-Squares Influence Coefficients
When Center of Gravity Differs from Axis of Rotation This Causes Imbalance

\[F = m \varepsilon \omega^2 \]

O = Journal Axis
CG = Center of Gravity
F = Centrifugal Force
m = Mass of Section
\varepsilon = Eccentricity
\omega = Angular Velocity
Sources of Imbalance

- Fan in dirty service.
- Variation in material density due to voids, porosity, or finish.
- Unsymmetrical parts.
- Bent shaft, erosion, wear, or other damage.
- Tolerances in fabrication, machining, or assembly.
- Shifting of parts due to shaft distortion, insufficient shrink fit, aerodynamic forces, or thermal effects.
Review of Vector Method

- V_O represents the original vibration reading (as found or baseline)
- V_T is the vibration due to the trial weight plus original vibration
- Vector I (influence) is determined by subtracting V_O (original) from V_T (trial)
Single-Plane Vector Method

\[\theta = 59^\circ \]

Desired Effect of Correction Weight

\((4@108^\circ) \)

\((3.1@229^\circ) \)

\((3.6@156^\circ) \)
• Correction Weight = Trial Weight \cdot \frac{|V_o|}{|I|}
• Location of CW is determined by angle θ
• Should remove TW before installing CW
CASE 1: Forced Draft (FD) Fan
• Plant Personnel Reported High Vibration of FD Fan After Replacing Roller Bearings

• Second Set of Bearings Were Installed, But Vibration Remained High

• Predominant Vibration at 1× Running Speed of 1745 RPM (29 Hz)

• Reported Difficulty Balancing the Fan
Fan Inlet Bearing

5 mils p-p at 1X
Operating Deflection Shape (ODS)

- 3D representation from basic dimensions
- Tri-axial accelerometer used to measure vibration in three directions at 18 points
- Vibration in displacement (mils p-p)
- Phase angles determined from transfer function and stationary accelerometer
- Modal software used to animate motion at 1× running speed (29 Hz)
Still-Frame Representation

1× ODS at 29 Hz

- Bearing Housing
- Bearing Pedestal
- Concrete Foundation

Rocking Motion
ODS Animation*

*Courtesy of Clear Motion Systems
San Antonio, TX
Characteristics of Bearing Housing Vibration

- Occurred Primarily at $1 \times$ Running Speed
- Highest at Top of Bearing in Horizontal Direction (5 to 6 mils p-p)
- Inlet and Coupling Ends Move In-Phase
- No Looseness Found Between Bearings, Pedestals, and Concrete Foundation
- High Vibration Measured on Concrete Foundation (3 to 4 mils p-p)
Insensitive to Load

- Closed Louvers for Test – Flow Reduced from 70,000 lb/hr to Essentially Zero
- No Significant Change in $1 \times$ Vibration Readings on Bearing Housings
- Similar Vibration Amplitudes and Phase Angles at Each Bearing
- Indicates Static Imbalance of Fan Impeller, Not Flow Induced Vibration
Bode Plot
Inlet Bearing Housing
Horizontal Direction

Phase Angle

Degrees

0

-180

17

1x Vibration

6 mils p-p

4 mils p-p

2 mils p-p

Speed (RPM)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Theoretical Imbalance Only

Phase Shift

Amplified Vibration

2 mils p-p

4 mils p-p

6 mils p-p

×

Vibration

Imbalance

Only
Fan Inspection Results

• No obvious mechanical damage.
• Fan impeller is dirty, which could affect balance condition.
• Five balance weights of various sizes already welded to fan impeller.
Four-Run Balance Method

- Requires vibration data at 1× running speed. Can be mils or in/sec as long as consistent units are used.
- Phase angle data *not* required.
- Simple, graphical method.
- Computer software *not* needed.
Four-Run Balance Method

Good method for balancing near resonance since it does not rely on phase angles. Results can easily be derived using polar plot paper and a compass. Assume static imbalance of fan impeller (single plane).

Steps:

1. Number fan blades from 0 to 11, opposite rotation
2. Readings taken with the fan running at 1745 RPM
3. Speed verified with optical tach and strobe light
4. Baseline was 4.4 mils p-p (no weights)

5. Locate blades where TW will be applied
6. Trial weight selected, washer weighed 3.2 oz

7. Washer welded to fan impeller near blade 0. Resulting vibration was 7.3 mils p-p.
8. Washer moved to fan blade 4 (120 deg)

TW at Blade 4
1.2 mils p-p
9. Washer moved to fan blade 8 (240 deg)

TW at Blade 8
7.0 mils p-p
10. Find Approximate Intersection Point of Circles Representing the Three Trial Runs

11. Correction Weight =
 \[\frac{3.2 \text{ oz} \cdot 4.4 \text{ mils}}{3.95 \text{ mils}} = 3.6 \text{ oz} \]
Balance Summary

- Fan blade 4 was optimum location
- Correction weight was 3.6 oz, slightly more than trial weight of 3.2 oz
- Bearing vibration was reduced to 1.2 mil p-p (0.1 ips peak at 29 Hz)
- Final balanced condition was considered acceptable for operation
Case 1 – Conclusions

• When balancing near a resonant condition, phase angles may vary. Using simple four-run method was good option for the FD fan.

• Natural frequencies of the fan rotor, impeller, and foundation should have a separation margin of at least 10% from the operating speed range to avoid high sensitivity to small amounts of imbalance, fouling, etc.

• The FD fan moves air at ambient temperature so thermal effects are not prevalent like an induced draft (ID) fan or turbine would be.
Case 2: Balancing Gas Turbine
Background

- Turbine has history of high vibration since commissioning 20 years ago.
- Previous balance attempts were largely unsuccessful.
- The keyphasor (KP) was unreliable making it difficult to reuse influence coefficients.
- Several other problems found with couplings, bearing pitting, and magnetism.
Vibration Measurements

Bently Panel for Shaft Proximity Probes (mils)

Bearing Housing Vibration (ips)
Observations

- A temporary optical KP was installed.
- Vibration amplitudes and phase angles were trended over several hours.
- It was determined that 3 hours were required to stabilize the turbine vibration while generating 35 MW of power.
- Previous balance attempts did not allow sufficient time for heat soaking of rotor.
Vibration Trend (3-Hr Period)

- **Startup**
- **Constant Load**
- **Shutdown**

- **Stable Values**
Influence Coefficients

- Determined from trial weights and vibration measurements.
- Goodman (1964) applied least squares.
- Assumed linear behavior.
- Can be used with multiple balance planes and operating speeds.
- Predicted residuals indicate if rotor can theoretically be balanced.
Influence Coefficients (cont.)

• Commonly used for dynamic balancing.
• Matrix operations may require calculator or computer program.
• Use vibration amplitude and phase at 1× running speed in multiple directions.
• Must subtract runout vectors from proximity probe readings.
Steps:

- Obtain baseline vibration (amplitude and phase) after machine is heat soaked and readings stabilize.
- Install trial weight and retake vibration readings.
- The angular location of trial weight is typically referenced to the key phasor, opposite shaft rotation.
- Repeat for each balance plane.
- The influence coefficients are calculated by subtracting the baseline from the trial data and dividing by the trial weight.
- Solve for the correction weight(s) needed to minimize residual vibration.
10% Force Method

“Rule of thumb” for sizing initial trial weight:

\[U = \frac{56347 \cdot W}{N^2} \]

Where:
- \(U \) = Residual Imbalance (oz-in)
- \(W \) = Journal Weight (lbs)
- \(N \) = Speed (RPM)
Balance Plane 1: Accessary Coupling (Gearbox End)
Balance Plane 2: Load Coupling (Generator End)

Trial Weight at Plane 2
One Nut Installed on Backside of Coupling

149.6 grams
Summary at Base Load

1X Vibration (mils p-p @ deg)

<table>
<thead>
<tr>
<th></th>
<th>Brg 1 Horz Dir</th>
<th>Brg 1 Vert Dir</th>
<th>Brg 2 Horz Dir</th>
<th>Brg 2 Vert Dir</th>
<th>Plane 1 Mass (g)</th>
<th>Plane 2 Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>5.1 @ 97</td>
<td>3.1 @ -173</td>
<td>3.9 @ -53</td>
<td>1.5 @ -13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TW PL1</td>
<td>4.85 @ 77</td>
<td>5.2 @ -176</td>
<td>7.3 @ -27</td>
<td>1.1 @ 69</td>
<td>307 @ 51</td>
<td>-</td>
</tr>
<tr>
<td>TW PL2</td>
<td>5.0 @ 71</td>
<td>3.9 @ 169</td>
<td>5.1 @ -37</td>
<td>0.74 @ 46</td>
<td>-</td>
<td>150 @ 45</td>
</tr>
<tr>
<td>Prediction</td>
<td>1.5 @ 66</td>
<td>1.4 @ 352</td>
<td>0.84 @ 342</td>
<td>1.3 @ 13</td>
<td>667 @ 174</td>
<td>505 @ 343</td>
</tr>
<tr>
<td>Correction</td>
<td>1.5 @ 107</td>
<td>0.2 @ 6</td>
<td>1.75 @ -41</td>
<td>1.5 @ 7</td>
<td>555 @ 180</td>
<td>440 @ 345</td>
</tr>
<tr>
<td>% Change</td>
<td>-70%</td>
<td>-93%</td>
<td>-55%</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By balancing on the turbine couplings, the shaft vibration was reduced from 5.1 to 1.75 mils p-p.
Orbit Plots:

As Found vs Balanced

- Left graph: Orbit plot for Turbine Bearing 1 Horz / Turbine Bearing 1 Vert, labeled as "As Found".
- Right graph: Orbit plot for Turbine Bearing 2 Horz / Turbine Bearing 2 Vert, labeled as "Balanced".

[Detailed description of the graph plots is not provided in the text fragment.]
Case 2 – Conclusions

- Turbine vibration readings are often sensitive to heat and load. During the testing, approx. 3 hours were required for the vibration readings to stabilize. Even after steady readings, vibration could still vary with load.

- Final correction weights were installed “out-of-phase” on both ends of the turbine. This indicates sensitivity to the conical whirl mode and not the rotor midspan mode, which would have “in-phase” vibration at both bearings.

- Large weights were required to balance the turbine, which indicates available balance planes are at ineffective locations compared with where the actual imbalance occurs in the rotor.
References

References (cont.)