
WORLD-CLASS OUTSTANDING INTERNATIONAL PROGRAM [EXHIBITION] NETWORKING

ELEVATED PRESSURE PULSATION WITH A METHANOL INJECTION RECIPROCATING PUMP SYSTEM

TURBOMACHINERY LABORATORY

42nd Turbomachinery 29th Pump SYMPOSIA

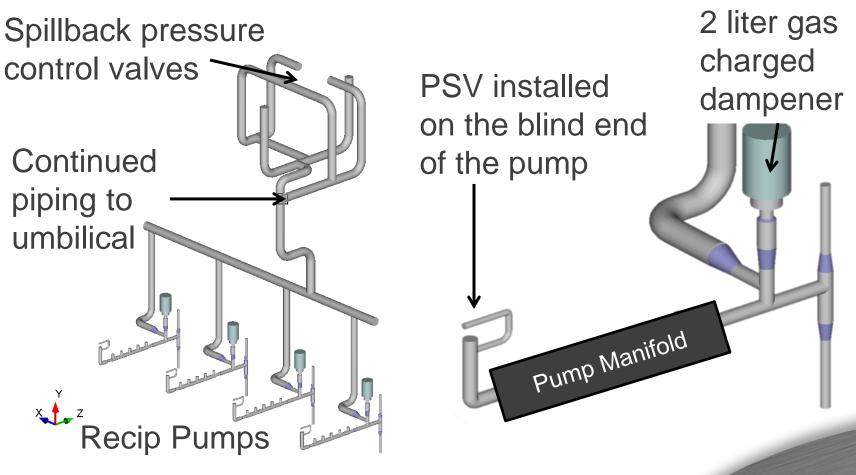
GEORGE R. BROWN CONVENTION CENTER 9.30 – 10.3.2013

Authors

Walter Kelm Engineer Kelm Engineering, LLC Friendswood, TX, USA Ray Kelm Chief Engineer Kelm Engineering, LLC Friendswood, TX, USA

2nd Turbomachinery 29th Pump symposia

 $\begin{array}{l} \text{George r. Brown convention center} \\ 9.30-10.3.2013 \end{array}$


Methanol Injection Reciprocating Pump Pulsation Problem

- Offshore Floating Production Storage and Offloading (FPSO) high pressure methanol system
- Four quintuplex recip pumps in parallel
- During commissioning, failure of Pressure Safety Valve (PSV) components were observed
- Likely issue was pressure pulsation
 Discharge pressure of 323 bar_g
 Relief valve (PSV) set pressure of 339 bar_g
 Fixed Pump Speed: 446 RPM
 Flow Rate: 80 GPM per pump

42nd Turbomachinery 29th Pump symposia

Piping System Layout

An acoustic study was done to review the pressure pulsation at the PSV body.

42nd Turbomachinery 29th Pump SYMPOSIA

EORGE R. BROWN CONVENTION CENTER 9.30 - 10.3.2013

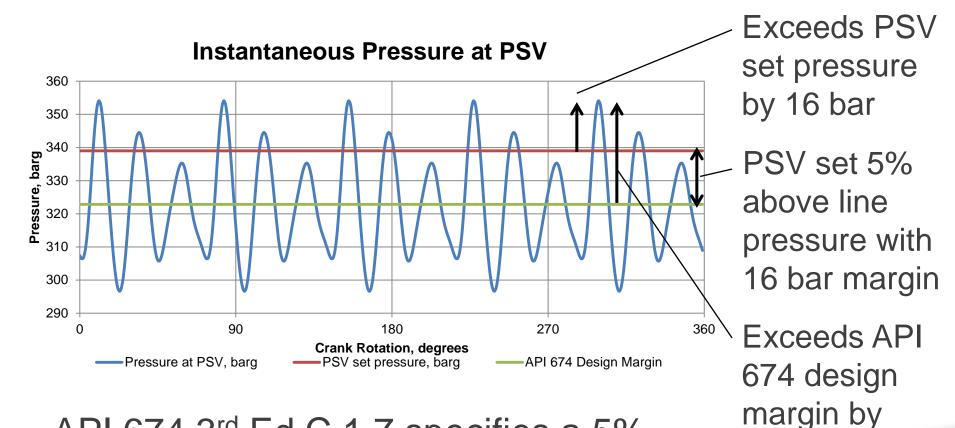
Acoustic Study Results

Pressure pulsation due to pump A in operation

Pressure Value (bar) (pk-pk) 0.0 0.0-14.64 14.64-29.28 29.28-43.92 43.92-58.56

Pump A

on the left.

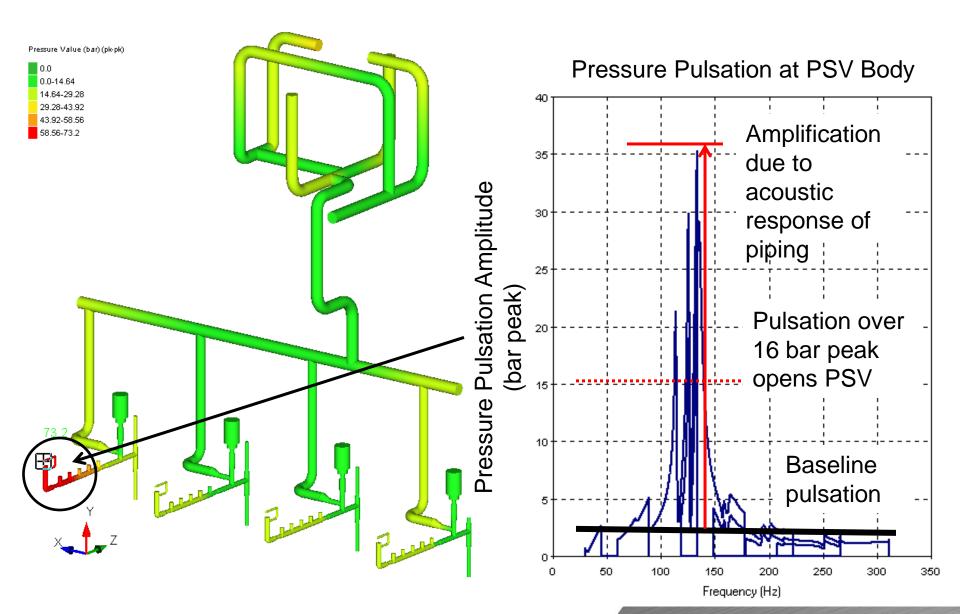

Highest pressure pulsation in the pump manifold and at the PSV.

Maximum of 73.2 bar peak-peak which is +/- 36.6 bar. 5-30 bar pk-– pk pulsation / in the piping, which is +/- 2.5-15 bar

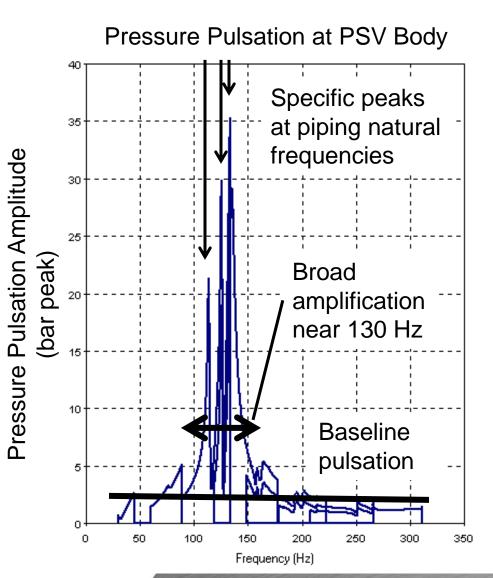
42nd Turbomachinery 29th Pump symposia

 $\begin{array}{l} \text{George r. brown convention center} \\ 9.30-10.3.2013 \end{array}$

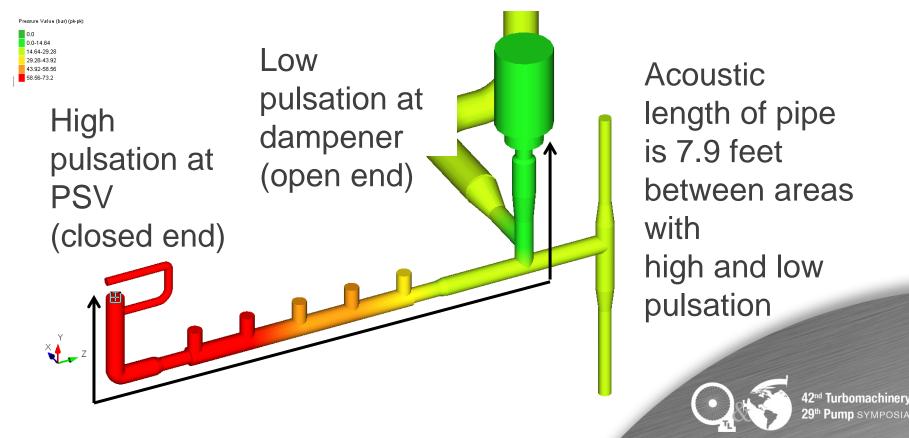
Review of Acoustic Study Results


API 674 3rd Ed C.1.7 specifies a 5% design margin between the maximum instantaneous pressure, including pulsation, and the PSV set pressure

31 bar


42nd Turbomachinery 29th Pump symposia

Acoustic Study Results


Acoustic Study Results

- Acoustic resonance results in amplified pulsation.
- Resonance occurs when a pump excitation frequency is near an acoustic natural frequency.
- There is broad amplification centered near 130 Hz due to manifold ¼ wave acoustic response.
- There are specific peaks at piping natural frequencies between 110-140 Hz.

Manifold 1/4 Wave Acoustic Response

A pump manifold ¹/₄ wave acoustic response is common for all pumps with a **closed end** on one side (PSV, blind flange, ...) and an **open end** on the opposite side (gas or liquid dampener).

Manifold 1/4 Wave Acoustic Response

- ¼ wave acoustic natural frequency is a classic acoustic response with a closed end on one side and an open end on the other side.
- Wavelength, $\lambda = 4 * L_a$ L_a is acoustic length $\lambda = 31.6 \text{ ft}$ $L_a \text{ is 7.9 ft}$ • Frequency, $f = c / \lambda$ c is speed of sound f = 130 Hz c is 4108 ft/s
- This equation works fairly well when there is a clearly defined **closed** and **open end**.
- But for complex piping, acoustic modeling must be done to accurately calculate acoustic natural frequencies.

GEORGE R. BROWN CONVENTION CENTER 9.30 – 10.3.2013

Manifold 1/4 Wave Acoustic Response

- For this application, the manifold ¼ wave frequency exists at 130 Hz due to the length of pipe from the PSV to the gas dampener.
- Due to the high pump speed (446 RPM), this frequency is near the 3rd and 4th pump harmonic(n=3,4)

$$\begin{array}{ll} f_{excitation} & = \operatorname{RPM} x \ 5 \ / \ 60 \ ^* \ n \\ f_{3rd} & = 111.5 \ Hz \\ f_{4th} & = 148.7 \ Hz \end{array}$$

42nd Turbomachinery 29th Pump symposia

Possible Solutions

- Improve margin between line pressure and PSV set pressure
 - Increase PSV set pressure
 - Decrease line pressure
- Reduce pressure pulsation
 - Add an orifice near pump discharge
 - Add a gas charged dampener near PSV
 - Add liquid flow through style dampener to reduce high frequency pulsation

42nd Turbomachinery 29th Pump symposia

Solutions: Improve PSV Margin

- Increase PSV set pressure
 - This was not possible because the PSV set pressure was selected due to the pipe pressure rating.
- Decrease line pressure
 - Lowering the line pressure by 36 bar would satisfy the API 674 3rd Ed C.1.7 recommended margin
 - However, the process requires a certain pressure

9 30 - 10 3 2013

Solutions: Reduce Pressure Pulsation

- Add an orifice plate downstream of dampener
 - Pressure drop provides acoustic damping that reduces amplification due to acoustic resonance
- Add a gas charged dampener near the PSV
 Changes the acoustic response near the PSV
- Add a liquid volume
 - Liquid volume reduces high frequency pulsation.

Implemented Solution/Results

Two changes were made to reduce the pressure pulsation and improve the margin

- A small gas charged dampener was installed on the PSV sense line to reduce the pressure pulsation measured by the PSV.
- The pump discharge set pressure was reduced to 302 barg.

These modifications have resulted in improved PSV life.

42nd Turbomachinery 29th Pump SYMPOSIA

Lessons Learned

- For a reciprocating pump, a PSV must be set with a sufficient margin above line pressure.
- API 674 recommends a 5% margin including pressure pulsation.
- Due to the manifold ¼ wave response, pressure pulsation on the back side of a pump can be much higher than in the piping system.
- If a PSV is used on the back side of a pump, be sure to consider pulsation when choosing the PSV set pressure.

42nd Turbomachinery 29th Pump SYMPOSIA