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ABSTRACT

Clay Mineralogy and Its Effect on Physical Properties in the Gulf of Mexico Northwestern 

Continental Slope. (December 2003)

Debora Berti, B.S., Bologna University

Chair of Advisory Committee: Dr. William R. Bryant

The clay mineral composition of sediments deposited in the last six oxygen isotope 

stages in the Gulf of Mexico continental slope was characterized. Smectite and illite were 

found to be the two major clay minerals of the clay fraction while kaolinite, chlorite and 

quartz were present in the clay fraction but in less proportions. Variations in clay mineral 

abundances, especially in the relative abundances of smectite and illite, were identified in 

relation to climate changes. Smectite was the most abundant mineral in sediments of the 

current (stage 1) and last interglacial maxima (stage 5) while illite dominates the clay min-

eralogy of sediments from the last glacial maximum (stage 2). Relationships between clay 

mineralogy and physical properties were investigated as well. Significant positive correla-

tions were found between Atterberg limits with the smectite content of the bulk sediment 

and with clay content. However, the relationship with smectite yielded a significantly 

higher correlation coefficient. Smectite and clay content also affect the natural water con-

tent of sediments and its changes with depth.



iv

ACKNOWLEDGEMENTS

I would like to express my profound gratitude and appreciation to those people who 

helped me complete my thesis and achieve my master’s degree.  

Firstly, I thank my advisor and chair Dr. W. R. Bryant for giving me the opportu-

nity to pursue a master’s degree, for his relentless encouragement, guidance and financial 

support. I thank the other members of my committee, Drs. N. Slowey and W. Dunlap, for 

offering remarkable advice as well as reviewing and improving this manuscript. 

I’m deeply indebted to Dr. J. B. Dixon for offering the use of his laboratory and 

equipment and for his valuable counsel. I also thank Dr. N. White for assisting me with the 

clay mineralogy analyses and constructively discussing my results. Determination of CEC 

and total K was made possible by the kindness of B. Brattin who ran the mass spectrome-

ter. Also, I profoundly appreciated the collaboration with T. Tripsanas during my research, 

especially his input for the sample selection and his updates on the sedimentology.

I am most sincerely grateful to Dan Bean for his tireless support and for his con-

structive remarks that considerably improved this manuscript.

Sandy Drews offered valuable assistance to get through the intricate bureaucracy 

of the university. 

I am truly thankful to my parents, my sister and my brother for their enouragment 

and their financial help.

This project was sponsored by the National Science Foundation, in collaboration 

with Amoco, Chevron, Mobil, Texaco, Phillips, Marathon, Marsco, Inc., GeoTech, Ltd.



v

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iii

ACKNOWLEDGEMENTS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii

LIST OF TABLES  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Geological setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

Clay minerals in the Gulf of Mexico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Clay minerals and physical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Core and samples collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
Sampling technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Mineralogy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
Pretreatments and fractionation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
X-ray diffraction and infrared analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Analytical methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Quantification of clay mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

Index properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Profiles of physical properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
Representativeness of samples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
Mineralogy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

Bulk samples and silt fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Clay minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
CEC, elemental analysis and quantification of clay minerals . . . . . . . . . . . .38
Clay mineral abundances and their variations . . . . . . . . . . . . . . . . . . . . . . . .43

The effect of clay mineralogy on physical properties . . . . . . . . . . . . . . . . . . . .  52



vi
Page

Atterberg limits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Bulk density and derived variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Shear strength and the influence of rates of deposition  . . . . . . . . . . . . . . . . . .  66

SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73

APPENDIX A CLAY MINERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80

APPENDIX B XRD PATTERNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

APPENDIX C INDEX PROPERTY DERIVATION FROM BULK DENSITY. . . . .  91

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92



vii
LIST OF FIGURES

FIGURE Page

1 Location of the Bryant Canyon and study area.  . . . . . . . . . . . . . . . . . . . . . . . . .  2

2 Continuous character of sedimentation in the Bryant Canyon area. . . . . . . . . . .  6

3 Location of cores sub-sampled for this study.. . . . . . . . . . . . . . . . . . . . . . . . . .  16

4 Pre-treatments and fractionation steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

5 NEWMOD© models of dioctahedral smectite. . . . . . . . . . . . . . . . . . . . . . . . . .  23

6 Physical property profiles of cores.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

7 Cross plots.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

8 Example of bulk sample XRD pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

9 Example of silt XRD pattern.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

10 XRD patterns of coarse and fine clay fractions of a sample.  . . . . . . . . . . . . . .  37

11 IR spectra of coarse clay.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

12 Correlation between CEC and smectite peak intensity.  . . . . . . . . . . . . . . . . . .  41

13 Comparison between NEWMOD© models and real XRD patterns.. . . . . . . . .  42

14 Clay mineralogy variations with depth.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

15 Clay mineralogy trends.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

16 Typical XRD patterns of the main associations identified.. . . . . . . . . . . . . . . .  50

17 Correlation of Atterberg limits with clay and smectite content. . . . . . . . . . . . .  54

18 Clay mineral abundances and Atterberg limits.  . . . . . . . . . . . . . . . . . . . . . . . .  55

19 Atterberg limits and smectite content in the coarse and fine clay fractions.. . .  57



viii
FIGURE Page

20 Comparison with other models.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58

21 Plasticity chart.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

22 Void ratio depth-pressure profile compared with clay and smectite content. . .  65

23 Age model of core JPC 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

24 Sedimentation rates and shear strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67



ix

LIST OF TABLES

TABLE Page

1 Samples chosen for clay mineralogy-index properties . . . . . . . . . . . . . . . . . . . .17

2  CEC and K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

3 Clay mineralogy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

4 Correlation between clay minerals, clay content and Atterberg limits . . . . . . . .54



1

INTRODUCTION

In the Gulf of Mexico (GOM) the fossil fuel exploration trend is moving to deeper 

water, from the shelf to the continental slope and basin, creating the need for investigations 

of the constraints and problems relating to deeper environments. A comprehensive under-

standing of seabed processes and hazards can be best achieved by a multidisciplinary 

approach that integrates seismic, sedimentological, mineralogical, geochronological and 

geotechnical investigation. Such an integrated program was started in 1998 by the Depart-

ment of Oceanography at Texas A&M University (TAMU) and the Geomechanical Lab-

oratory at the University of Rhode Island (URI) for the northwestern Gulf of Mexico 

continental slope. As study area, a 100 km long transect was chosen across the GOM con-

tinental slope (Fig. 1) ranging in water depths from 1000 m to 3000 m. Several intraslope 

basins and a major canyon (Bryant Canyon) characterize the physiography of the area. 

Based on the results of a high-resolution seismic survey, sediment cores were collected in 

the area by jumbo piston coring and gravity coring. Part of the cores were used for a geo-

technical investigation program conducted at URI, part for a sedimentological, chronolog-

ical and mineralogical characterization program conducted at TAMU. As part of the 

TAMU program, this thesis aims at characterizing the mineralogy and specifically clay 

mineralogy of the sediments and determining how it relates to physical properties.

_______________

This thesis follows the style and format of Marine Geology.
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Very few studies have been conducted on the clay mineralogy of sediments of the 

GOM continental slope and even fewer studies address its variations with depth. As a con-

sequence, there is little understanding of the factors that control such variations, limiting 

the applicability of the clay mineralogy data available and making their implications 

uncertain. In this study the clay mineralogy of the Bryant Canyon sediment and its varia-

tions with depth and time will be assessed by means of the latest techniques and methods. 

Furthermore, knowledge of the clay mineralogy can be of great value for the under-

standing of soil engineering properties and help explain unusual behavior (Mitchell, 

1993). Unfortunately, the extreme complexity of interactions between clay minerals, gran-

ular components, organic matter and chemistry of the environment makes the derivation 

Fig. 1. Location of the Bryant Canyon and study area.
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of universally applicable relationships difficult and uncertain. Correspondingly, attempts 

to infer clay mineralogy and most of all the presence of minerals problematic for physical 

properties, based generally applicable relationships often yields deceiving results (Sridha-

ran and Prakash, 1999; Seed et al., 1964; Mitchell, 1993). These uncertainties can however 

be overcome by establishing less general relationships based on natural samples with well 

defined applicability and limitations. Accordingly, the effect of clay mineralogy on phys-

ical properties in the northwestern GOM continental slope is herein analyzed and, where 

possible, relations are established. The results and relations will offer a more reliable base 

to the understanding of physical properties in the GOM continental slope. Most compari-

sons will be based on Atterberg limits since these limits are widely used for classification 

purposes, they are relatively independent of depth, and they relate to both composition and 

other geotechnical properties. 

Geological setting

The geology of the northwestern Gulf of Mexico (GOM) continental slope is dom-

inated by the interplay of salt tectonics and sedimentation (Liu and Bryant, 2000; Prather 

et al., 1998; Bryant et al., 1990). Allochthonous salt massifs, detached from the underlying 

autochtonous Jurassic salt (Luann Salt), emplaced in the Texas-Louisiana continental 

slope starting from the Miocene (Prather, 2000; Prather et al., 1998; Diegel et al., 1995). 

As sediment was transported to the continental slope, salt diapirism lead to the formation 

of the numerous intra-slope basins and domes. Turbidites and other gravity flows filled the 

mini-basins during sea level lowstands, while hemipelagic sediments draped the area 
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during high stands (Bouma, 1983; Lee et al., 1996). 

During the Pleistocene, glacial conditions favored an increase in river sediment 

supply to the continental slope. The large load ultimately led to the eastward migration of 

the Mississippi River delta that shaped the Bryant Canyon-fan system. The canyon 

remained active until the end of the penultimate glacial episode (stage 6) when the Missis-

sippi River delta migrating eastward once more (Lee et al., 1996; Tripsanas, 2003; Trip-

sanas et al., 2000). As the diversion occurred, hemipelagic sedimentation started to 

dominate the area in concomitance with intense hallokinesis. Salt diapirs formed block-

ages along the Bryant Canyon creating intra-slope basins and leading to the obliteration of 

the canyon topography (Lee et al., 1996; Tripsanas et al., 2000; Bouma, 1983). In addition, 

interdomal intraslope basins formed from coalesced salt diapirs in areas surrounding the 

canyon (Bouma, 1983). 

Bulk density, P-wave velocity and magnetic susceptibility (MS) profiles of the JPC 

cores collected in the area showed that interbasin depositional environments are continu-

ous across the whole slope (Bryant et al., 2000; Tripsanas et al., 2000). Based on the char-

acter of such profiles four units were distinguished in the sediment (Bryant et al., 2000). 

Successively, more detailed studies added more subdivisions leading to a total of seven 

units (Fig. 2), relating both to oxygen isotope stages and sedimentary processes (Trip-

sanas, 2003; Tripsanas et al., 2000). 

Specifically, Unit A and E were deposited in the current and last interglacial 

maxima (stage 1 and 5) and are composed of intensely bioturbated silty clay with abundant 

forams (Tripsanas, 2003). They are both characterized by extremely low magnetic suscep-
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tibility (MS) values (~9 *10-6 SI) that reflect a fine grain size and a small fraction of ter-

rigenous sediment. Also sedimentation rates are quite low as well as bulk density 

magnitude (1.4-1.55 g/cm3) and depth gradient (Fig. 2). Unit E also includes an ash layer 

identified as the Y8 ash layer of Kennett and Huddleston (1972) (Elston and Slowey, per-

sonal communication).

Unit B and C represent the last glacial episode (stage 5), from its maximum (Unit 

C) to the deglaciation event (Unit B). An organic matter rich layer marks the end of stage 

2, coincident with the Unit A-Unit B boundary. Bulk density linearly rises in this interval 

from ~1.4 to ~1.7 g/cm3. Similarly MS increases from ~15 to ~30*10-6 SI, indicating a 

correspondent increase in terrigneous sediment, grain size and decrease in foram content. 

At the base of Unit C, a drop in bulk density magnitude constitutes one of the most evident 

stratigraphic marker across the area.

Unit D deposited during stages 3 and 4 which reflect oscillations of smaller mag-

nitude between stage 5 and 2. Foram content and degree of bioturbation are in between 

respect to those of Unit C and Unit E, although MS is high especially at the top of the unit. 

High variability in bulk density values conceals its trend with depth.

Finally, Unit F and Unit G deposited when Bryant Canyon was active, during stage 

6 (Tripsanas, 2003) and differ from each other for their depositional processes. They con-

sist of turbidity current deposits (Unit F) and laminated silty clay (Unit G). The sedimen-

tological nature of the Bryant Canyon sediments is discussed in great detail by Tripsanas 

(2003) to whom the reader is referred for further details.
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Fig. 2. Continuous character of sedimentation in the Bryant Canyon area. (A) shows the location of the 
JPC cores collected with red circles whose depth profiles of bulk density and other physical properties 
show continuity in sedimentation. (B) The bulk density profiles, the sedimentological units and oxygen 
isotope stages of six cores, whose location is marked by white circles in the map.

A
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Fig.2 continued

B
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Literature review

Clay minerals  in  the Gulf  of  Mexico

Clay mineral studies for the Gulf of Mexico (GOM) mostly focus on shelf sedi-

ments and regions close to the major river mouths. Griffin (1962) studied the clay miner-

alogy of northeastern GOM shelf sediments and related it to their source. He determined 

that in those areas where the Mississippi River is supplying sediments smectite is the most 

abundant mineral, followed by illite while kaolinite and chlorite are present in small pro-

portions.

Scafe (1968) and Hottman (1975) studied the clay mineralogy of the northwestern 

GOM continental slope sediments. They both concluded that smectite is the predominant 

clay mineral, varying between 60-80%, illite is between 20-30% and kaolinite and chlorite 

between 10-20% with kaolinite more abundant than chlorite; trace of quartz and feldspars 

are also present. While the above studies are on surficial sediments, during DSDP Leg 96 

the clay mineralogy of an interval of 200 m of sediment from Pigmy Basin was character-

ized (Ishizuka et al., 1986; Tieh et al., 1986; Stearns, 1985). It is worth noting that the sed-

iment of Pigmy Basin deposited in the same time interval as the sediment from Bryant 

Canyon used in this study, according to the oxygen isotope stages. While clay mineral 

abundances obtained by Stearns (1985) and Tieh et al. (1986) differ from those of Ishizuka

et al. (1986) their trend with depths agree, as in both cases the smectite to illite ratio 

decreases below ~50 m but increases once more below ~150 m.

Two different explanations are found in the literature concerning clay mineralogy 
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variations with depth, relative to intervals of low temperature (<60oC). One addresses 

chemical-diagenesis driven by the high cation concentration of sea-water (Whitehouse and 

Jeffrey, 1977; Harder, 1974; Stearns, 1985), the other climate driven changes in rock alter-

ation products hence different composition of river suspended sediment (Weaver, 1977; 

Brown and Kennett, 1998; Çagatai et al., 2002). Whitehouse and Jeffrey (1977) investi-

gated changes in smectite and other clay minerals when exposed to sea water. They con-

cluded that smectite can transform into illite and chlorite, after fixation of Mg and K in the 

structure. However, they also predicted that the reaction exhausts fast and may be inhibited 

by organic matter. Bennett et al. (1999) in a recent study on surficial sediments observed 

that organic matter is preferentially absorbed by smectite, enhancing the water retention 

capacity of this mineral. Depth profiles of pore water chemistry, combined with trends of 

increasing illite to smectite ratio were addressed by authors as evidence of smectite trans-

formation into illite (Stearne, 1985; Tompkins and Shephard, 1979). However the same 

trends can be explained by changes in sources (Weaver, 1958).

The effect of climate on clay mineral formation is extensively discussed in the lit-

erature, due to its implications on atmospheric CO2 (Kump et al., 2000; Michalopoulus 

and Aller, 1995). Three main processes related to climate changes directly influence clay 

mineralogy of sediments: different rates and products of rock weathering, variations in 

source river drainage basins and distance from the source of terrigenous input. In warm 

climate chemical weathering is more intense leading to formation of smectite or kaolinite 

depending on drainage. Oppositely, mechanical weathering prevails in cold climate lead-

ing to a clay fraction rich in primary minerals (Dixon and Weed, 1989; Thiry, 1999). 
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The Mississippi River is the largest supplier of sediment to the GOM northwestern 

continental slope and to the Bryant Canyon area (Lee, 1996; Prather et al., 1998; Prather 

et al., 2000). Nonetheless, the extent of the river drainage basin varied in the Quaternary, 

as a result of capturing of new regions with different geology and climate, and advances 

and retreats of ice-sheets (Prather, 2000; Brown and Kennett, 1998). A well known 

instance is the southward extending of the Laurentide ice-sheet during the last glacial epi-

sode that covered vast portions of the Missouri and central regions (Prather, 2000; Brown 

and Kennett, 1998; Prather et al., 1998; Leigh, 1994). Successive melting episodes led to 

the discharge of large amounts of glacial sediment into the Gulf of Mexico. Oxygen iso-

tope and compositional signals of Plio-Pleistocene meltwater events were recognized in 

the Gulf of Mexico continental slope sediments by Brown and Kennett (1998).

Lastly, sea-level changes affect the proximity to input sources of terrigenous sedi-

ments and the extent of the continental shelves. In the northwestern Gulf of Mexico, during 

sea-level high stands most of the terrigenous sediment is trapped on the shelf. Sedimenta-

tion on the slope is therefore mostly hemipelagic. Conversely, during low-stands rivers 

drain directly onto the shelf edge and upper slope consequently large amounts of terrige-

nous sediment reach the continental slope (Liu and Bryant, 2000; Prather et al., 2000; Trip-

sanas et al., 2000). Correlations between clay mineralogy and oxygen isotope stages have 

been determined not only for the GOM continental slope (Brown and Kennett, 1998) but 

also for other regions of the world (e.g. Foucault and Melier, 2000; Jacobs, 1974; Lauer-

Laredde et al., 1998; Milne and Earley, 1958; Robert and Kennett, 1994; Robert and 

Chamley, 1991).
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Clay minerals  and physical  propert ies

The recognition that clay minerals play a determinant role in the engineering prop-

erties of soils and sediments dates back to the early studies of soil mechanics. Buckling of 

roads, differential settlement of soils under foundations, creep phenomena, excess pore 

pressure in underwater sediments are examples of problems strictly related to the compo-

sition and amount of the clay fraction of the soil. 

Clays differ from coarser components of the soil in their characteristic surface elec-

tro-chemical properties, arising from their high specific surface area and partially unsatis-

fied charge (Dixon and Weed, 1989). While coarser minerals possess a definite boundary 

with the external environment, clays possess an exchange boundary and their behavior is 

determined by processes acting at the boundary between particle and surrounding environ-

ment. A concise review of clay minerals can be found in Appendix A. Clays tend to sur-

round and coat larger particles and if present in sufficient amount they can prevent contact 

between coarser grains (Mitchell, 1993). Fabric studies on clay-silt mixtures revealed that 

silt particles float in a clay matrix even for clay contents of 25-30% (Mitchell, 1993; Ben-

nett et al., 1981). Since the behavior of fine grained sediments is mostly determined by the 

composition of their clay fraction, the understanding of the composition and the properties 

of such fraction is of key importance.

Numerous studies have been conducted to determine the complex relationships 

between clay minerals and engineering properties. In general smectitic soils have a higher 

compressibility, lower permeability, higher shrink swell-potential and lower shear 

strength than illitic than kaolinitic soils (Mitchell, 1993). Even though the above relation-
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ships are valid in general, a wide variation in engineering properties may occur for the 

same clay mineral, depending on the physico-chemical properties of the pore fluid (Sridha-

ran and Jayadeva, 1982; Abdullah et al., 1999). The effect of pore water chemistry is 

greater on minerals like smectite that are characterized by uneven charge distribution of 

the surface, due to imperfections in their structure. A discussion of the effect of pore water 

chemistry on the physical properties of clay minerals can be found in Mathew and Rao 

(1997), Sridharan and Jayadeva (1982), Sridharan and Prakash (1999), Sridharan et al. 

(2002), Mitchell (1993), Bennett et al. (1981).

One way for clays and clay minerals to influence physical properties is by increas-

ing sediment porosity and its capacity to retain water or other fluids. Consequently, the 

water content of sediments changes as a function of composition even under the same 

effective stress. The attempt to define water content-behavior relationships led to the def-

inition of the Liquid (WL) and Plastic (WP) limits, first introduced by Atterberg and then 

standardized by Casagrande (Skempton, 1970; Mitchell, 1993). The WL is defined as the 

water content at which sediment consistency changes from that of a viscous fluid to plastic, 

while the WP is defined as the water content at which sediment consistency changes from 

plastic to solid. The difference between WL and WP is defined as the plasticity index (IP) 

(ASTM D4318). 

Terzaghi (cited by Mitchell 1993) soon noticed that the results of the Atterberg 

limits depend on the same factors which determine the strength and the permeability of 

soils, only in a far more complex manner. Such an observation started a series of studies 

aimed at identifying the relations between Atterberg limits, compositional factors and 
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engineering properties of soils. Correlations have been established with swelling and 

shrinkage properties, compressibility, permeability and shear strength (e.g. Mitchell, 

1993; Burland, 1990; Sridharan, 1986; Skempton, 1970). At the same time, studies have 

been conducted aimed at identifying the mechanisms controlling Atterberg limits, hence 

physical properties. Clay content has been shown to influence Atterberg limits, and other 

factors held constant a linear relationship can be established between the two (Seed et al., 

1964; Al-Shayea, 2001). Clay mineral type has been shown to be a determinant factor on 

the liquid limit which increases from kaolinite to illite to smectite (Sridharan, 1986; 

Lambe, 1960). Nevertheless, complex non-linear interactions between clay minerals and 

coarse grains, the effect of chemical environment and variability in composition of clay 

minerals make it extremely difficult to establish relationships of general validity (Mitchell, 

1993). For example, studies conducted by Borchardt (1984) showed that the liquid limit of 

a smectite soil was 97 after treatment with KCl, but just 70 after treatment with AlCl. 

Abdullah et al. (1999), based on experimental studies, determined that the liquid and plas-

tic limit varies depending on the exchange cation, decreasing from Na to Ca to K. 

Clay mineral information is often obtained by means of the Plasticity chart, intro-

duced by Casagrande and currently adopted as classificatory criterion in the Unified Soil 

Classification System (ASTM D2487-00). In this chart, sediments are classified based on 

the comparison of their liquid limit (WL) and plasticity index (IP). Two lines divide regions 

in the chart: the A-line (IP = 0.73(WL-20)) divides silt from clays, while the U-line (IP = 

0.9(WL-8)) marks the upper limit of WL and IP (Mitchell, 1993). In addition, the Plasticity 

chart is divided in regions of different degree of plasticity based on the WL. However, the 
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use of this chart is sometimes extended to the identification of main clay minerals. Accord-

ingly, illitic sediments are located just above the A-line, kaolinitic sediments below the A-

line and smectitic soils just below the U-line (Holtz and Kovaks, 1981; Colombo and Col-

leselli, 1996).

Most of the relations described above and found in the literature are based on the 

use of synthetic, reconstituted soils, due to the necessity to reduce the number of variables 

involved (Mitchell, 1993). While this approach allows isolation of single or small groups 

of variables, it disregards indirect and non-linear interactions between them, as well as the 

environmental influence. However, when these relations are applied to natural sediments 

they prove incorrect (Sridharan et al., 1988). Natural soils do not simply represent an 

assemblage of sand, silt and clay, but also a system, the properties of which depend on the 

composite effects of several interacting and interrelated factors (Sridharan et al., 1988). 
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METHODS

Core and samples collection

The cores used in this study were collected by jumbo piston coring during a cruise on the 

R/V Knorr in the GOM continental slope, during 1998. Coring sites were chosen across 

the continental slope on the basis of high resolution seismic profiles (Fig. 3). 

Once equilibrated to room temperature, the cores were logged for gamma-ray 

attenuation, P-wave velocity and magnetic susceptibility (MS) by a GeoTech Multi-

Sensor core logger (MSCL), at 2 cm intervals. Bulk density and derived properties were 

calculated from the gamma-ray attenuation by assuming a grain density of 2.71 g/cm3. An 

extensive discussion of the use of gamma-ray attenuation to determine bulk density (ρb), 

as well as the underlying theory and assumptions can be found in Boyce (1976), Evans 

(1965), Wetzel et al. (1990) and Bean (2000). The calibration procedure adopted is 

described by Bean (2000) and LaRosa (2000). Void ratio (e), natural water content (WC), 

and porosity (n) were calculated from bulk density (see Appendix C).

Samples for this study were chosen based on the sedimentological units and the 

characteristics of the physical property profiles. The purpose of this approach was to max-

imize the potential of obtaining samples representative of all diverse mineralogical-phys-

ical property associations in the sediments. 
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Core JPC 31 (Fig. 3) was chosen for detailed sampling because a comprehensive 

set of analyses was run on this core that can greatly aid the interpretation of clay mineral-

ogy and physical property results. The analyses include sedimentology as well as oxygen 

and carbon isotope analyses, additionally a large geotechnical data set was collected at 

URI in a core close by. Additional samples were collected from cores JPC 46 (upper-

slope), JPC 37 (mid-slope) and JPC 33 (lower-slope), in order to investigate spatial as well 

Fig. 3. Location of cores sub-sampled for this study. The dark red circles indicate the location of all the JPC 
cores collected during the 1998 cruise on the R/V Knorr.
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as depth variations (Table 1). Units from interglacial maxima (A and E) were only sampled 

at one location, since transport sorting is more difficult to identify in distal depositional 

environment. 

Sampling technique

The purpose of this study is to compare composition to physical and geotechnical proper-

ties, it is therefore necessary to obtain geotechnical data and clay mineralogy on the same 

or comparable samples. While sampling, care was taken not to cross lithologic boundaries 

Table 1

Samples chosen for clay mineralogy-index properties
Sample ID Core Depth (m) Sedimentoligical 

unit

31-1 JPC 31 0.5 A

31-2 JPC 31 1.8 B

31-3 JPC 31 3.9 C

31-4 JPC 31 5.2 D

31-5 JPC 31 7.6 E

31-5b JPC 31 9.3 G

31-6 JPC 31 12.8 G

31-7 JPC 31 14.4 G

37-1 JPC 37 13.3 F

33-1 JPC 33 5.0 C

33-2 JPC 33 7.1 C

33-3 JPC 33 12.0 D

46-1 JPC 46 4.8 C

46-2 JPC 46 8.2 C

46-3 JPC 46 12.4 D

46-4 JPC 46 17.1 F
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and at the same time, collect a sufficient amount of material to perform both clay mineral-

ogy and physical property tests. Since this study mostly focuses on clay, silt layers/laminas 

were avoided, except for those that are part of a silty-clay layer (e.g. Unit G). Each sample 

was divided into three sub-samples, the middle one of which was used for the clay miner-

alogy, the other two for the Atterberg limits. Pipette analysis to determine grain size, was 

performed on all three sub-samples. The repeating of grain size and Atterberg limits tests 

on all sub-samples consented to control the homogeneity of samples as well as the preci-

sion of the results.

Mineralogy

A quantitative determination of the clay fraction mineralogy was achieved by a combina-

tion of X-ray diffraction (XRD) and analytical methods. The mineral composition of the 

coarser fraction was qualitatively investigated by XRD.

An XRD survey was performed on randomly oriented powder samples prior to any 

treatment to identify minerals, like carbonates and sulfates, that will successively be dis-

solved. A powder was prepared by grinding small amounts of sediment to a size smaller 

than 140 mesh. The powder was front loaded in an aluminum mount and X-rayed by Cu 

Kα radiation between 2 and 65o 2θ, at a scan rate of 5sec/0.05o 2θ.

Pretreatments  and fract ionat ion

Carbonates, salts and organic matter were removed to enable clay particle dispersion. To 

remove carbonate, samples were heated to 90oC in a pH 5 1N NaOAc solution, following 
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the procedure described by Jackson (1956). This procedure has also the effect of replacing 

the exchange cations with Na, which further favors clay dispersion.

The organic matter was removed by treating the samples with a 30% Hydrogen 

Peroxide solution, as described by Jackson (1956). At the end of the H2O2 treatment, the 

residues were washed out with a pH 10 Sodium Carbonate (Na2CO3) solution.

The Na-saturated samples were separated into sand (>64 µm), silt (64-2 µm), 

coarse clay (2-0.2 µm) and fine clay (<0.2 µm). Sand was separated by wet sieving, while 

silt, coarse clay and fine clay were fractionated by centrifugation as described by Dixon 

and White (1999). Silt and coarse clay fractions were oven dried at 40oC, while the fine 

clay fraction was flocculated by Sodium Chloride (NaCl), dialyzed to remove the salt, and 

freeze dried. A diagram of the pretreatments and fractionation procedure is shown in 

Fig. 4.

X-ray di f fract ion and infrared analysis

Clay mineral identification by X-ray diffraction (XRD) is based on the 001 peak position 

of iso-oriented specimens, at known cation saturation and temperature. Five treatments 

were performed for each sample: Mg saturation, glycerol solvation of the Mg saturated 

specimen, K saturation at 25oC, heating to 300oC of K saturated specimen and heating to 

550oC of K-saturated sample. Each sample was scanned by Cu-Kα radiation at a scan rate 

of 3 sec/0.05o2θ. A scan interval between 2 and 32o2θ was used for the Mg-saturation and 

K-saturation at 25oC treatments, while an interval between 2-17o2θ was chosen for the 
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other treatments. A correction was applied to compensate the effect of 2θ angle on XRD 

intensity.

Based on the behavior of the 001 peak after the above treatments clay minerals can 

be discriminated one from the other. The only exception is discrimination of kaolinite from 

Fig. 4. Pre-treatment and fractionation steps. The tests performed on each fraction are also listed.
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chlorite which requires additional testing. The reader is referred to Moore and Reynolds 

(1989) and Walker (1993) for thorough explanation of clay mineral identification based on 

their basal peaks (001).

To positively identify kaolinite, a Fourier Transform Infrared Analysis (FT-IR) 

was performed on chlorite containing samples. In addition, the infrared spectra of clay 

minerals also carries information about octahedral site occupancies, such as the presence 

of Fe and/ or Mg and/or Al. A detailed description of FT-IR use in clay mineralogy and 

molecule studies can be found in Post and Borer (2002) Petit et al. (1998), Acemana et al. 

(1999). Samples were scanned by diffuse reflectance between 4000 and 400 cm-1, at 0.5 

cm-1 intervals, against a KBr background. The KBr-sample mixture was prepared by 

mixing 5 mg of sample to 1 gr of KBr, and kept in a desiccator before testing.

Analyt ical  methods

Cation Exchange Capacity (CEC) and the potassium concentration in the silicates 

(hereafter referred to as total K) were determined on all coarse and fine clay samples. Rep-

licates of samples and replicates of standard material were tested to ensure the precision 

and accuracy of results.

The CEC was determined by the Ca-Mg exchange method of Jackson (1956). As 

standard material a Na-montmorillonite with nominal CEC of 100 cmol/Kg was used. The 

procedure of Ca saturation and substitution by Mg is described by Jackson (1956). The Ca 

concentration in the exchange solution is determined by atomic absorbance and converted 

CEC.
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The total K was obtained by means of elemental analysis of silicate minerals. The 

HF dissolution method of Bernas (1968) was used to dissolve silicate minerals. The 

method of Bernas (1968) was modified in that the reaction was allowed to proceed at room 

temperature and the element concentration was determined directly from the nalgene bot-

tles by atomic absorbance. 

Quanti f icat ion of  c lay mineralogy

In order to minimize the uncertainty of clay mineral quantification, XRD patterns 

and analytical methods are combined with the aid of the software NEWMOD© (Reynolds, 

1985). NEWMOD© is on a one-dimensional diffraction algorithm that simulates intensity 

and broadness of mineral basal peaks (Walker, 1993). The major innovation that the NEW-

MOD© software brought relates to the capability to simulate diffracting peak shape and 

broadening effects due both to instrumental and compositional parameters (Walker, 1993). 

Particularly, peak broadening caused by characteristic features of clay minerals, like short 

diffracting domains, mixed layering and thin crystallite can be accounted for (Reynolds, 

1989). These parameters exercise a great influence on the shape and intensity of clay min-

eral peaks consequently yielding large errors in mineral quantification (Kahle et al., 2002). 

An example relative to shape and intensity of the smectite 001 peak is illustrated in Fig. 5, 

while a detailed explanation of the theory behind NEWMOD© is found in Walker (1993).

To determine the weight fraction of the minerals composing a sample by XRD pat-

tern simulation a trial and error procedure is adopted, as suggested by Reynolds (1989). 

However, because numerous variables affect peak intensity, the simulation of a XRD pat-
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tern derived from mineral mixtures has more than one solution (Walker, 1993). To 

increase the accuracy of the determination, cation exchange capacity (CEC) and clay 

potassium concentration (total K) were employed. 

The determination of CEC allows to pose limits on the fraction of expandable min-

erals, by far the largest contributors to a sample CEC. Experimental studies determined 

that smectite has a CEC of 100-110 cmol/Kg (Alexiades and Jackson, 1966); illite of 15 

cmol/Kg and kaolinite and chlorite of 3-5 cmol/Kg (Ma and Eggleton, 1999). Smectite 

contribution to a sample CEC is therefore an order of magnitude higher than that of illite, 

kaolinite and chlorite. If, for instance a sample has a CEC of 60 cmol/Kg it cannot contain 

more than 60% or less than 50% smectite (assuming smectite CEC = 100 cmol/Kg). 

Concentration of K relates to the amount of illite, since this is the most important, 

Fig. 5. NEWMOD© models of dioctahedral smectite. Only the 001 peak is shown to illustrate the effect of
iron content, free distance between domains and interlayer water. Note the large change in shape and
intensity.
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and often only K-bearing mineral of the clay fraction. To calculate the illite content from 

the total K, assumptions need to be made about the K2O content of illite and absence of 

other K-bearing minerals. In reality, small amounts of K-feldspars are often present in 

coarse clays and smectites can contain some K in their lattice hence leading to overesti-

mating illite. Furthermore, the K2O content of illite has a range of variation of 20% (Dixon 

and White, 1999). In spite of the limits just described, the information brought by analyt-

ical data extremely improve the accuracy of XRD based clay mineral semi-quantification. 

A more detailed explanation of the uncertainties associated with procedures for clay min-

eral quantification can be found in Walker, 1993 and Kahle et al., 2002.

Index properties

Bulk density, P-wave velocity and magnetic susceptibility and derived variables of 

the samples were obtained from logger data (See “Core and samples collection” on 

page 15). 

Undrained shear strength (SU) was measured in the horizontal direction on split 

cores at 5 cm intervals. The test was performed in compliance with ASTM Standards 

D4648 (ASTM D4648-94), by means of a motorized miniature vane device with a torque 

spring. Care was taken to perform the test soon after the core was split, before any loss in 

water content. Nonetheless problems of moisture loss occurred in the bottom 4 m of core 

JPC 31 and the correspondent data had to be discarded.

The Atterberg liquid (WL) and plastic (WP) limits were determined according to 

the ASTM standards (ASTM 4318-98). Water contents were corrected for a salinity of 35 
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ppm, that is the same salinity assumed in the natural water content calculation. The limited 

number of samples imposed by the complexity of the mineral tests performed raised the 

need to control for the quality and repeatability of the physical property tests and for the 

actual sample homogeneity. To achieve this, replicate of samples were used both for Atter-

berg limits and grain size analysis. 

Prior to grain size analysis the samples were treated with a 30% hydrogen peroxide 

solution to remove organic matter and other binding agents (See “Pretreatments and frac-

tionation” on page 18). To further aid dispersion the samples were left overnight in a 0.1 

N Sodium Hexametaphosphate solution. Sand fraction was determined by wet sieving 

through a #200 (64 µm) sieve. The sand collected from the mesh was washed with distilled 

water and oven dried at 105oC for at least 24 hours. Silt and clay percentages were 

obtained by pipette analysis, according to Folk (1974).
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RESULTS AND DISCUSSION

Profiles of physical properties

The Atterberg limits of the samples and the undrained shear strength (SU) of the 

cores are illustrated in Fig. 6, along with the natural water content (WC) and P-wave veloc-

ity profiles determined by the use of the MSCL. Water content was calculated from bulk 

density, assuming a constant grain density and 100 % saturation (Appendix C). A conse-

quence of this calculation is that the derived water content profile with depth is a mirror 

image of the bulk density depth profile. Similarly, void ratio and porosity are calculated 

from the water content based on the same assumptions of constant grain density and satu-

ration thus yielding a profile with depth similar to that of water content.

In Fig. 6 it is possible to compare the natural water content with the Atterberg 

limits to gain insights about the consistency of the sediment. The very soft nature of the 

sediment is reflected in the very high water content that is higher or equal to the liquid limit 

throughout most of the depth interval studied. The shift from a water content higher than 

liquid limit to a water content equal to the liquid limit seems to correspond with the base 

of Unit C. Water contents lower than liquid limit, though higher than plastic limit, only 

occur below 10-15 m of sediments. Another observation that emerges from the plots of fig. 

6 is that Atterberg limits and liquid limit in particular, change considerably between sedi-

ments of different units. For instance, Unit C is characterized by the lowest liquid limit in 

all cores whereas Unit A is characterized by the highest liquid limit.

The high water content and softness of the sediment are also reflected in the P-
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wave velocity that reaches values even lower than that of water in the top meters. With 

increasing depth and decreasing water content, P-wave velocity increases approximately 

linearly from values of ~ 1470 m/s to ~ 1550 m/s. Similarly, undrained shear strength (SU) 

increases approximately linearly with depth from values of ~ 2-3 kPa to ~ 25-30 kPa. 

Throughout units A, B and C, SU values are extremely low and increase with depth at a 

rate as low as 0.4 kPa/m. This trend abruptly changes at the boundary between Unit C and 

Unit D, coincident with an abrupt shift to greater SU magnitude. The offset ranges between 

5 to 10 kPa, being higher in cores where Unit C is thicker.  Throughout the units below, 

SU values increase at a faster rate with depth, ranging between 1.6 and 2.4 kPa/m, and are 

characterized by higher variability. Undrained shear strength, P-wave velocity show sim-

ilar relations with depth as they are similarly affected by consolidation, stress history and 

composition of the sediment.

Skempton (1970) determined that the ratio between SU and effective vertical stress 

(P0) is a function degree of consolidation and composition of sediment, the latter expressed 

by the plasticity index (Ip). For normally consolidated (NC) sediments the following rela-

tion is valid:

1)

Based on the range of IP values obtained, the SU/P0
 ratio corresponding to the NC 

state in these sediments varies between 0.2 and 0.3, a common range for soft sediment 

(Burland, 1990; Skempton, 1970). The effective vertical stress can be calculated from the 

Su
P0
----- 0.0037 Ip 0.11+⋅=
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bulk density data assuming hydrostatic conditions, according to the equation:

2)

Where: P0 = effective vertical stress (kPa); h = depth (m); ρb = bulk density from MSCL 

(kg/m3); ρw = seawater density (1.024 kg/m3); g = acceleration of gravity (9.81 m/s2).

Thus the SU/P0 ratio can be calculated and used to estimate the degree of consoli-

dation of the sediments. Although this method is less accurate than consolidation tests, it 

yields to a continuous profile of the consolidation state. The SU/P0 plots of the cores sam-

pled indicate that the sediment is normally consolidated, except for a ~ 2 m interval at the 

top that represents the interval of apparent over-consolidation. Apparent over-consolida-

tion refers to the capability of surficial, water rich fine-grained sediments to bear a vertical 

pressure higher than any experienced (Bennett et al., 1999). This capability arises from the 

cohesive properties of fine grained sediments where electro-static bonds form between 

mineral surfaces and between mineral surfaces with water. Surface electro-chemical prop-

erties of clay minerals, at the origin of cohesion are concisely explained in Appendix A. 

Alternatively, an exhaustive discussion of the mechanisms responsible for the develop-

ment of apparent consolidation is found in Bennett et al. (1999).

P0 h( ) ρb ρw–( )
h
∫ g hd=
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Representativeness of samples

In the choice of samples for clay mineralogy, the sedimentological interpretation was 

adopted as main criterion for collecting samples representative of the various mineral asso-

ciations. It is assumed that the largest clay mineralogy variations occur between units, 

rather than within. One way to check the validity of this procedure as well as how well the 

variability of the sediment is represented, takes advantage of the high resolution data sets 

obtained by the MSCL of bulk density (ρb), P-wave velocity (PW) and magnetic suscep-

tibility (MS), as well as the high resolution vane shear (SU) measurements. All these vari-

ables are related to each other to some extent but are also affected by different factors. 

Thus, the data distribution in cross plots bares the effect of both interrelations and external 

variables, overall illustrating the range of variability in properties and composition of the 

sediment to a greater extent than any single variable depth profile could do. In Fig. 7, cross 

plots of PW-ρb, MS and SU with ρb describe the range of variations in the sediment of the 

cores sub-sampled for clay mineralogy. The distribution of the sub-samples (large black 

circles in Fig. 7) appears to well represent that of the data sets hence confirming the valid-

ity of using sedimentological units as selection criterion.
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Fig. 7. Cross plots. Plots of bulk density with P-wave velocity, magnetic susceptibility (MS), and 
undrained shear strength (SU) of cores JPC 31, JPC 33 and JPC 46 are shown. Data from samples used for 
clay mineralogy and additional physical property characterizations are marked by large black dots (CM 
samples).
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Mineralogy 

Bulk samples  and s i l t  f ract ion

The sediment is mostly composed of silicic-clastic minerals with lesser amounts of 

carbonates. Among the silicic clastic group, quartz, feldspars, and clay minerals have been 

identified in all samples, whereas the carbonate group is represented by calcite and dolo-

mite. Quartz and carbonate minerals are those that can be better observed in bulk sample 

XRD patterns, due to their high degree of crystallinity and consequently intense diffraction 

peaks (Fig. 8). In most samples, the quartz peak is by far the most intense followed by cal-

cite and dolomite in equal proportions. However, a few samples yield a calcite peak more 

intense than that of quartz, and a weaker dolomite peak as well. In these sediments, calcite 

derives from foraminifera shells therefore a more intense XRD peak not only corresponds 

to a larger calcite content but also to a larger fraction of forams in the sediment. In contrast, 

quartz is detrital while dolomite can be either of detrital or authigenic origin in marine sed-

iments (Lumsden, 1988). From the analyses conducted in this study the origin of dolomite 

cannot be positively ascertained. However, a detrital dolomite seems more likely since this 

mineral is also found in the suspended sediment of the Mississippi River (Griffin, 1962) 

which is one of the major sources of sediment in the Gulf of Mexico. 
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Fig. 8. Example of bulk sample XRD pattern. The pattern is compared to XRD peak positions of composing 
minerals (JPCDS cards). The quartz main peak has been truncated to better show the pattern of other 
minerals. Calcite and dolomite determine the two other most intense peaks. Alkali-feldspar, plagioclase 
halite and clay minerals are the other minerals identified. XRD peak position of reference minerals and 
interpretation is based on JPCDS reference cards, specifically: quartz from card 5-490; calcite from card 5-
586; dolomite from card 11-78; feldspars from card 20-554 (albite) and card 31-996 (ortoclase).

Fig. 9. Example of silt XRD pattern. The pattern is compared to XRD peak position of composing 
minerals. Quartz, plagioclase, alkali-feldspar, pyroxene (augite), muscovite, chlorite and kaolinite have 
been identified based on JPCDS cards. The patterns shown in the figure are: quartz from card 5-490; 
feldspars from card 20-554 (albite) and card 31-996 (ortoclase); mica from card 7-25; chlorite and kaolinite 
from card 7-78 (clinoclore) and 29-1488 (kaolinite).
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To better assess the composition of the coarse silicic-clastic minerals a few silt 

samples were analyzed by XRD diffraction of random mounts. The analysis was per-

formed on four samples, since differences in the silicate mineralogy of bulk samples 

appeared small. Such samples were chosen among those with the most diverse bulk min-

eralogy associations.

Feldspars, pyroxenes, micas, chlorites and kaolinite were identified (Fig. 9). The 

feldspar group is composed predominantly of albite with a Ca content of about 10% (Smith 

and Gay, 1958) and orthoclase. Augite (a pyroxene) was identified but the presence of 

other phases may be masked by the strong overlapping of peaks. Micas are mostly com-

posed of muscovite and illite, with just traces of biotite. Chlorite and kaolinite cause the 

peaks at 14 Å and 7 Å that were quite intense in some samples. One sample presents an 

unidentified mineral with main peaks at 2.05 Å, 2.06 Å and 2.49 Å.

Clay minerals

Based on the XRD analysis of oriented clay mounts, smectite and illite are the two 

most abundant minerals of the clay fraction. Kaolinite, quartz and feldspars were also iden-

tified in all samples, whereas chlorite was detected in all samples except for the Holocene 

one. Since the Holocene is represented by one sample only, it is not certain whether the 

absence of chlorite is local or widespread.

The presence of kaolinite in samples containing chlorite was verified by infrared 

spectroscopy. A weak XRD peak at 4.47 Å may be caused by halloysite or chrysotile, the 

former being an acicular polymorph of kaolinite, the latter of serpentine.
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Mixed layer smectite-illite was positively identified in the coarse clay fraction of 

few samples by the intensification of the 1nm peak after glycerol solvation and the d-space 

of the first order peak at 19-20 Å. The composition obtained by NEWMOD© simulation, 

is 70% smectite and 30% illite. Small degree of mixing of illite in smectite and/or of smec-

tite in illite may be present also in other samples, as small degree of interstratification is 

quite common in soils and sediment but are difficult to recognize by XRD (Weaver, 1977). 

As expected, the XRD patterns of the 2-0.2 µm fraction (coarse clay) and of the 

<0.2 µm one (fine clay) are significantly different (Fig. 10). One of the most apparent dif-

ferences is the increase in broadness of the fine clay XRD peaks that is caused by smaller 

size and higher degree of disorder in crystals. Quartz and feldspars cannot be weathered 

mechanically to the fine clay size due to their hardness whereas chlorite of fine clay size 

is rare. In contrast, smectite concentrates in the fine clay often constituting the most abun-

dant mineral of this size fraction. 

The behavior of the smectite peak after the treatments performed indicates a rather 

ordered structure. The smectite structure starts collapsing to 10 Å after K saturation even 

at 25 oC and, in most cases, completely collapses at 300 oC, giving rise to a symmetric 10 

Å peak (Fig. 10). These characteristics are not commonly seen in soil smectite (e.g. Oht-

subo et al., 2002) which generally undergoes a less complete collapse and yields asymmet-

ric peaks. Most likely this is an effect of the interaction of this mineral with sea-water.

Additional pieces of information about the clay minerals and their characteristics 

were obtained by fourier transform infrared analysis (FT-IR). As previously mentioned, 
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Fig. 10. XRD patterns of coarse and fine clay fractions of a sample. Five treatments were performed, from 
the bottom: Mg saturation at 25oC, glycerol solvation, potassium saturation at 25oC, potassium saturation 
at 300oC and potassium saturation at 550oC. sm:smectite; m: mica (illite); ch: chlorite; kl: kaolinite; pl: 
plagioclase; qz: quartz. Smectite is identified by the peak at 1.4nm in the Mg saturated sample that 
expands at 1.76 nm after glycerol solvation. Chlorite is identified by the intensification of the 1.4nm peak 
after heating the K-saturated sample to 550oC.
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FT-IR spectra allowed to positively identify kaolinite in samples containing chlorite, by its 

four characteristic OH stretch bands (Fig. 11). The intense OH-stretch band at 3620 cm-1

is due to Al in octahedral sites and indicates that mica and smectite are predominantly dio-

ctahedral. Smectites are composed of montmorillonite, the Mg rich phase, but nontronite, 

the iron rich-phase was also recognized by the absorbance band at 3560 cm-1. Nontronite 

and iron rich smectite are frequently found in marine sediments and may be of authigenic 

origin (Cole and Shaw, 1983; Aoki and Kohyama, 1991). As site occupancies are an input 

parameter in the program NEWMOD, the information from the FT-IR spectra can assist 

in correctly simulating the XRD peak intensity and shape of clay minerals.

CEC, elemental  analysis  and quant i f icat ion of  c lay minerals

The determination of mineral fractions in the clay is based on CEC, K content 

obtained by elemental analysis and computer simulation by NEWMOD©. 

The CEC and K concentration for the fine and coarse clay fractions as well as their 

clay average are reported in Table 2. Significantly higher CEC in the fine clay rather than 

coarse clay fraction is consistent with the XRD results and a consequence of smectite small 

size. In contrast, K concentration varies more between samples than size fractions. The 

precision and accuracy were better for the CEC rather than K determination, but very high 

in both cases.

In order to verify the validity of using CEC data to quantify smectite, this variable 

was compared to the height of the 18 Å peak of the glycerol solvated XRD patterns and 
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that of the 14 Å peak of the Mg-saturated XRD patterns (Fig. 12). Both plots show a sub-

stantial change in slope in correspondence of data from coarse and fine clay fractions. The 

trend is well represented by an exponential fit that leads to a correlation coefficient (r) of 

0.96 and 0.97 for the glycerol solvated and Mg saturated patterns respectively. The best fit 

equations are not reported because the strong dependence of XRD peak intensity on instru-

ment limits their applicability.

It is important to notice that the correlation was just as good for the glycerol sol-

Fig. 11. IR spectra of coarse clay. Only the OH-stretch, and OH bend regions are shown. The rest of the 
spectra has been omitted because is not diagnostic. In the OH-stretch region (left) absorbance bands at 
3695, 3670, 3650 and 3620 cm-1 indicate kaolinite. The 3620 cm-1 is intensified due to the overlapping of 
the dioctahedral clays. A band at 3560cm-1 indicates nontronite (iron smectite), while the 3410 cm-1 is due 
to water absorbance by smectite. In the OH-bend region (right) the bands between 1160 and 915 cm-1 are 
due to smectite and illite. Quartz causes the bands at 800 and 780 cm-1, while feldspars produce the bands 
between 780 and 471 cm-1.
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vated and Mg saturated treatments, despite the overlapping of the chlorite peak in the lat-

ter. This is a consequence of the type of chlorite in the samples, characterized by more Mg 

than Fe in octahedral sites hence a weak first order peak (14 Å) and strong second and third 

order peaks (7 and 3.5 Å). The relation between CEC and smectite peak height confirms 

the validity of using this property as smectite indicator and in semi-quantitative analysis.

CEC and K content of samples and clay average. FC = fine clay; CC = coarse clay; C = clay

Table 2

CEC and K
Sample ID FC CEC CC CEC C CEC FC K CC K C K

31-1 67.4 40 56.8 2.77 3.44 3

31-2 61.2 30 46.5 3 4.2 3.7

31-3 49.8 23 37.5 3.9 4.8 4.3

31-4 59.3 30 46.8 2.9 3.8 3.3

31-5 63.6 35.6 52.3 2.7 3.1 2.9

31-5b 56.8 27.6 40.8 1.9 3.4 2.7

31-6 55.8 29 45.7 2.6 3.6 2.9

31-7 55.3 35 45.5 2.6 3.4 3

33-1 64.5 37.9 51.9 2.7 4.2 3.4

33-2 55 35 45 3.1 3.9 3.5

33-3 56 24 42.5 3 3.9 3.4

37-1 57.3 22 39.9 3.2 4.2 3.2

46-1 55 24 40 4.18 4.65 4.4

46-2 49 23 36.9 3.8 4.4 4

46-3 60 27 46.2 2.8 3.9 3.3

46-4 55 31 43.9 2.6 3.3 2.9
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In contrast the correlation between K concentration and peak height yielded a cor-

relation coefficient of 0.7, far less than that found between CEC and smectite peak height. 

While this may be explained in part by the less precision in the K than the CEC determi-

nation, additional and more relevant causes are the variability in illite composition, pres-

ence of K-bearing minerals in the coarse clay fraction and the weakness of the illite 

diffraction peak.

In addition to determining K concentration, a few noteworthy features emerged 

from the results of the elemental analysis. For instance, iron is more abundant in the fine 

rather than coarse clay fraction, a consequence of the small size of iron oxides. In contrast, 

Ca is significantly more concentrated in the coarse clay fraction due to the presence of 

some plagioclase. Accordingly, samples with more intense plagioclase XRD peaks were 

Fig. 12. Correlation between CEC and smectite peak intensity. A good correlation exists between CEC with 
smectite peak height from the glycerol pattern (left plot) as well as with smectite peak height from the Mg 
saturated pattern (right plot).
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also richer in Ca. Finally, while the concentration of most elements was relatively similar 

between standards and samples, Mg was twice as concentrated in the samples, a feature 

often interpreted as resulting from interactions of minerals with sea-water (Weaver, 1977; 

Whitehouse and McCarter, 1977).

An example of simulation of XRD patterns by NEWMOD©, compared to the real 

one is shown in Fig. 13. The XRD patterns obtained after heat treatments of K saturated 

samples were not simulated since they do not bear quantitative information.

Fig. 13. Comparison between NEWMOD© models and real XRD patterns. The figure shows the coarse 
clay (left) and fine clay (right) fractions of the same sample. From the bottom of the figure the following 
treatments are shown: Mg-saturation, K saturation at 25oC and glycerol solvation. The model is always on 
top of the real pattern.
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Mineral compositions used for the simulations were consistent both with the infor-

mation gathered by FT-IR analysis on site occupancies and XRD patterns. In other words, 

dioctahedral minerals were used, except for chlorite, similarly crystal size and ordering 

were kept consistent with the shape of XRD peaks. The composition of minerals was held 

constant between samples of the same size fraction in most cases. Adjustments in crystal 

size and ordering were instead performed between minerals of the coarse and fine clay pat-

terns

Clay mineral  abundances and their  variat ions

The results of the semi-quantitative analysis show considerable variations in min-

eral abundances between samples. Smectite and illite make up together 75-85% of clay but 

their proportions vary over a wide range. Likewise, fractions of other minerals vary fol-

lowing the trend of one or the other major mineral. The clay mineral abundances used in 

this section are referred to the clay fraction, according to Equation 3 and are listed in 

Table 3:

MC = MFC  (FC/C) + MCC  (CC/C) 3)

Where: M = mineral fraction; FC = fine clay; CC = coarse clay; C = clay

One possible cause of variation in clay mineralogy discussed by scientists is early 

(also called chemical) diagenesis of smectite into illite and chlorite in marine sediments 

(See “Clay minerals in the Gulf of Mexico” on page 8). Indeed, some analyses indicate 

structural modifications in smectite and maybe other minerals induced by sea-water. Spe-

cific instances are the shape and behavior of the smectite 001 peak after K saturation and 
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heat treatments, high Mg content revealed by elemental analysis (twice as standard soil) 

as well as traces of nontronite revealed by FT-IR.

Although these are not conclusive evidence of chemical diagensis, they are in 

agreement with the findings of experimental work by Whitehouse and Jeffrey (1977) on 

smectite transformation in sea-water.

On the other hand, variations in clay mineral abundances resulted independent of 

Table 3

Clay mineralogy
Sample ID smectite illite kaolinite chlorite quartz and 

feldspars

31-1 51 32 11 0 5

31-2 40 40 12 3 6

31-3 29 47 10 8 6

31-4 40 37 11 5 7

31-5 47 32 12 2 7

31-5b 34 31 18 5 11

31-6 40 33 16 4 7

31-7 38 34 17 5 6

37-1 33 39 12 5 11

33-1 46 37 11 4 3

33-2 39 38 16 3 5

33-3 35 39 12 5 11

46-1 32 50 9 4 5

46-2 29 46 9 9 6

46-3 39 36 11 5 8

46-4 37 34 19 1 8
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Fig. 14. Clay mineralogy variations with depth. The data refer to mineral abundances in the clay size 
fraction. Note that variations in mineral abundances do not follow any trend with depth.
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depth (Fig. 14) thus disproving formation of significant amounts of illite and chlorite from 

early diagenesis of a relatively homogeneous precursor clay. Uptake of organic matter by 

smectite may be inhibiting such transformation (Whitehouse, 1977; Bennett, 1999). Con-

sequently, interaction of sea-water with clay minerals while largely affecting the ordering 

and structure of crystals does not lead to significant mineral transformations. Nonetheless, 

the changes in mineral structures observed are likely to leave a mark in the physical prop-

erties of the sediment

In Fig. 15 the clay mineralogy profiles of cores JPC 46, JPC 31 and JPC 33 are 

shown besides lithologic units, water content and clay content. As well illustrated by core 

JPC 31 where all units were sampled, the clay mineralogy follows a cyclic trend with 

depth. Such trend is particularly evident for the two major minerals, smectite and illite.

Sediments of Unit A, at the top of the core, are the richest in smectite, and poorer 

in illite. The smectite fraction rapidly drops to reach its minimum in Unit C whereas the 

illite fraction reaches its maximum. In Unit D and Unit E smectite content rises once more, 

reaching another maximum, though not as high as at the top of the core (Fig. 15). Illite 

decreases correspondingly. Unit F/G is characterized by a quite uniform composition with 

approximately same proportions of smectite and illite, similarly to Unit B and Unit D. 

However, at the top of this unit in correspondence of a change in color from greenish-gray 

to brownish-red the composition is slightly different with higher concentration of non-clay 

minerals and smaller proportions of smectite and illite. 

Although smectite and illite variations are the most obvious, kaolinite and chlorite 
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vary as well. Kaolinite tends to follow the trend of smectite, while chlorite is inversely cor-

related to it. Quartz and feldspars are present in small amounts, however their concentra-

tion is higher in samples of Unit D, Unit B and the red layers at the top of Unit F/G. In 

addition, changes of the clay mineralogy also correspond to changes in clay content and 

coarse grain mineralogy, specifically the proportions of biogenic calcite respect to terrig-

enous minerals (See “Bulk samples and silt fraction” on page 33). Therefore samples with 

higher smectite content generally contain a larger clay fraction as well as more biogenic 

calcite rather than terrigenous minerals and vice versa.

 The trend described above was based on core JPC 31, located in the mid-slope that 

was sampled at the greatest resolution. Nonetheless, results from the other cores confirm 

this trend thereby indicating that the clay mineralogy of each sedimentological unit is spa-

tially homogeneous in the Bryant Canyon area. In Fig. 15 sedimentological units are traced 

between cores to allow comparing their composition at different locations. It can be 

noticed that the clay mineral composition of Unit C is approximately the same between 

core JPC 46 (upper slope) and core JPC 31 (mid slope) but changes toward significantly 

higher smectite content in core JPC 33 (lower slope). However, the composition of Unit D 

remains the same in the same three cores. Likewise, Unit F/G maintains similar character-

istics in cores JPC 31, JPC 46 and JPC 37.

The dramatic change in composition of Unit C in the lower slope (JPC 33) may 

derive either from a change in source of sediment or from differential settling of minerals 

due to current transport. Independent evidence such as thickening of the unit and change 

in sedimentary structures (Tripsanas, 2000), supports the hypothesis of a different prove-
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nance of sediment. Tripsanas (2000) discusses in detail such hypothesis and concludes that 

Unit C in the lower slope (JPC 33) is composed of sediment resuspended and transported 

from the GOM basin by bottom currents. While the spatial homogeneity of clay mineral-

ogy may appear counterintuitive, it is consistent with the similarity in the trends of physi-

cal properties and magnetic susceptibility across the slope as well as their changes in 

correspondence of the major unit boundaries.

The sedimentological units so far used as reference closely relate to oxygen isotope 

stages and correspondent glacial-interglacial cycles, hence so does the mineralogy. To 

better characterize the relation between mineralogy and glacial-interglacial cycles it is 

useful to categorize the mineral results. Three mineral facies were subdivided based on the 

mineralogy results (Fig. 16), with the aid of a cluster analysis, performed using smectite 

and illite fractions as discriminant variables.

1) Clay fraction rich in smectite (~48%), with lesser amounts of illite (~30%), rel-

atively abundant in kaolinite (~11%) and poor in chlorite (~2%). The calcite to quartz 

XRD peak intensity ratio indicates that biogenic carbonate is more abundant than quartz. 

This facies is represented by sediments from oxygen isotope stages 1 and 5 (Unit A and 

Unit E) that correspond to the present and last interglacial maxima (Fig. 16).

2) Clay fraction rich in illite (~48%), with lesser amount of smectite (~30%), rela-

tively abundant chlorite (~7%) and less kaolinite (~9%). Among the non-clay, quartz is 

very abundant, while calcite and dolomite are present just in small and about equal propor-

tions. This facies characterizes deposits of the last glacial maximum (Unit C), correspond-
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Fig. 16. Typical XRD patterns of the main associations identified. The XRD shown refer to the Mg 
saturation (Mg) and glycerol solvation treatments (glyc.) of the coarse (left) and fine (right) clay fractions. 
The following samples are used to represent each facies: 31-1 (facies 1), 46-2 (facies 2) and 31-6 (facies 3). 
The basal peak of minerals are indicated in the figure: sm: smectite, Ch: chlorite, Il: illite, Klc: kaolinite 
and chlorite, Kl: kaolinite, Q: quartz, F: feldspars. The pie charts on top illustrate the average intensity ratio 
of quartz (Q), calcite (C) and dolomite (D) in the bulk sample XRDs. These ratios are only estimates of 
relative proportions of these minerals and do not measure absolute abundances.
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ing to the oxygen isotope stage 2 (Fig. 16).

3) Clay mineralogy characterized by similar proportion of smectite (~38%) and 

illite (~34%) and high kaolinite content (~14%). Little chlorite is present (~4%), but quartz 

and feldspars are rather abundant in the clay. Quartz is also very abundant in the non-clay 

fraction, where it largely exceeds calcite and dolomite. Sediments from stages 3,4 and 6 

fall into this category (Fig. 16).

Overall, the mineral facies strongly indicate that significant environmental changes 

occurred in the Bryant Canyon area in response to climate and eustatic sea-level changes. 

The characteristics of Facies 1 are consistent with the depositional regime of interglacial 

maxima, with abundant smectite, high clay content but also more forams. In fact in inter-

glacial maxima river tend to discharge on the continental shelves and only the finest frac-

tion of river suspended sediment reaches the slope. Furthermore, source rocks on land are 

subjected to intense chemical alteration therefore yielding a larger proportion of secondary 

minerals like smectite and kaolinite. The limited terrigenous input also explains the larger 

concentration of biogenic carbonate (from foram shells) of Facies 1. 

Facies 2 records the deposition of the last glacial maximum (stage 2) during which 

vast portions of the Mississippi River drainage basins, part of which are sources of smec-

tite, were covered by the Laurentide ice sheet. Furthermore, mechanical weathering of 

source rocks is more intense than chemical thereby favoring formation of illite and chlorite 

rather than smectite or kaolinite. As a consequence, smectite is scarce while illite is very 

abundant in the sediments of Facies 2. In addition, during stage 2 the terrigenous input is 

larger as rivers discharge their load directly to the continental slope. Correspondingly, 
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Facies 2 is characterized by only a small fraction of biogenic carbonate and by a larger 

grain size. A similar increase in illite in sediments from stage 2, contrasting with high 

smectite content of sediments from stage 1, was also found in sediments from Orca Basin 

(Brown and Kennett, 1998), Pigmy Basin (Bouma et al., 1986) and even in sediments of 

the Carolina slope (Çagatay et al., 2002). Such a consistency strongly supports that 

changes in rock alteration products occurred and addresses the usefulness of clay mineral-

ogy as paleoclimate proxy. 

The effect of clay mineralogy on physical properties

Atterberg l imits

In the following paragraphs an attempt will be made to identify those composi-

tional factors that most affect the physical properties of the GOM continental slope sedi-

ments. Atterberg limits were extensively used in these correlations as they depend on the 

same factors that all sediment geotechnical properties depend on (Terzaghi cited by Mitch-

ell, 1993), for their independence on depth and for the large availability of correlations 

with other geotechnical properties. 

The clay mineral abundances used for correlations are referred to the whole sam-

ple, unless otherwise specified, according to Equation 4 :

M = MC  C 4)

Where: M = mineral fraction (%) and C = clay fraction (%) and MC is determined from 
Equation 3 

Plots of Atterberg limits versus clay and smectite content are illustrated in Fig. 17. 
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Clearly, higher clay content and smectite content cause the Atterberg limits to increase, 

however the effect of smectite content is more significant than that of clay content. The 

greater importance of smectite is not only evident from the data distribution on the plots 

but also from significantly higher correlation coefficients (Table 4). In fact, the total vari-

ance explained (coincident with r2, for a linear fit) by clay content is only 59% as opposed 

to 75% explained by smectite. 

Compared to other studies (e.g. Al-Shayea, 2000; Skempton, 1970) the correlation 

coefficient between Atterberg limits and clays herein reported is low. The apparent con-

tradiction simply derives from differences in procedures and materials used. Studies that 

yield very high correlation coefficients (higher than 0.8) between clay content and Atter-

berg limits are conducted by mixing the same clay with different proportions of silt or 

sand. Therefore, they do not test the role of clay minerals. Differently, studies conducted 

on natural samples yield correlations comparable to those herein reported (Ohtsubo et al., 

2002; Sridharan, 1986; Borchardt, 1977). Undoubtedly, abundant smectite corresponds to 

abundant clay as well, since this mineral cannot grow larger than clay size; however the 

opposite is not necessarily true, as clays can comprise many minerals. In this study a sig-

nificant correlation was indeed found between clay content and smectite content (r = 0.75) 

nonetheless, the dominance of smectite clearly emerged from the coefficient of correla-

tions.
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The effect of the other minerals composing the clay fraction on Atterberg limits 

was examined as well, by regression analysis (Table 4). None of them yield a statistically 

significant correlation with Atterberg limits, although general trends can be recognized in 

the plots (Fig. 18). Most likely, these trends are a consequence of the interrelations 

Table 4

Correlation between clay minerals, clay content and Atterberg limits
smectite illite kaolinite chlorite quartz clay

WL 0.86** 0.32 0.1 -0.25 0.39 0.77

WP 0.86** 0.19 0.24 -0.3 0.45 0.75

IP 0.84** 0.4 0.1 -0.25 0.39 0.8

Fig. 17. Correlation of Atterberg limits with clay and smectite content. Smectite abundance is relative to the 
whole sample.
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between clay minerals that were discussed in the previous paragraphs (See “Clay mineral 

abundances and their variations” on page 43). 

Overall, these results indicate that when smectite is present in the clay fraction its 

Fig. 18. Clay mineral abundances and Atterberg limits. Mineral abundances are relative to the whole 
sample.
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influence on physical properties prevails on that of other components. Furthermore, it is 

important to notice that even small amounts of smectite make a significant difference in 

physical properties. In fact these samples contain at most 38% of smectite respect to total 

weight, nonetheless their physical properties are dominated by this mineral.

An additional observation emerges from the relations just discussed. Each of the 

Atterberg limits yields similar correlations with the same compositional factors, in other 

words they are affected in a similar way by clay mineralogy and clay content. However, 

the WL yields better correlation coefficients than WP or IP. This is most likely caused by 

higher subjectivity in determining the WP rather than WL. Furthermore, Burland (1990) 

based on a statistical study, concluded that small errors in WL and WP become significant 

when one is subtracted from the other, especially at low IP values. Similarly, Pandian and 

Nagaraj (1990) concluded that the WL can alone predict engineering behavior of sediment. 

 Fractionation of coarse (2-0.2 µm) and fine (<0.2 µm) clay makes it possible to 

compare the effect of both on Atterberg limits (Fig. 19). Interestingly, Atterberg limits cor-

relate with smectite content in the fine clay just as well as with total smectite fraction. Dif-

ferently, the correlation with coarse clay smectite is relatively poor. Such results in 

addition to reflecting the small size of smectite, manifest the profound relevance of colloi-

dal properties, such as large surface area and surface reactivity, on physical properties. In 

fact, it is because of smectite surface properties that this mineral can retain as much as 

twice its weight in water, with obvious consequences on WL. As a consequence, it is prob-

able that other clay minerals with surface properties similar to those of smectite (e.g. ver-



57
miculite) yield similar effects as well. Although this hypothesis cannot be tested on the 

basis of the samples available for this study, it addresses a possible limitation to the appli-

cability of these results.

After establishing the dominant role of smectite on cohesive properties, it is impor-

tant to verify the influence of other soil components and compare this model with others 

found in the literature. It was pointed out initially (page 2) that generally applicable models 

based on artificial mixtures do not reliably predict the clay mineralogy of natural sedi-

ments. Nonetheless, general models represent a valuable term of comparison. 

In Fig. 20 the smectite vs. liquid limit model derived in this study is compared to 

models by Mitchell (1993) and Grabowska-Olszewska (2003). The two models by Mitch-

ell (1993) are based one on a theoretical linear relationship between smectite and liquid 

Fig. 19. Atterberg limits and smectite content in the coarse and fine clay fractions.
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limit, obtained linking the liquid limit of a pure illite with that of a pure Na-smectite; the 

other model is based on mixtures of different proportions of illite and smectite. The trend 

described by illite-smectite mixtures shows that interactions between the two minerals are 

Fig. 20. Comparison with other models. The WL-smectite correlation obtained in this study is compared 
with a theoretical linear model and a illite-smectite mixture model by Mitchell (1993) as well as with 
models of kaolinite and smectite mixtures by Grabowska-Olszewska (2003).
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not linear. It appears that smectite begins to have a significant effect on the liquid limit 

only when its weight fraction is higher than ~20%. On the other hand, the two models by 

Grabowska-Olszewska (2003) are based on mixtures of kaolinite with Na-saturated and 

Ca-saturated smectite thus highlighting the different behavior of smectite depending on 

chemical environment. The slight difference (2.5) in liquid limit of the two initial samples 

of pure kaolinite are the results of small errors in the determination. The two plots indicate 

that Ca-saturated smectite has a small influence on the liquid limit. Conversely, addition 

of Na-smectite significantly affects the liquid limit.

The data from this study describe a trend that is parallel to that of illite-smectite 

mixtures of Mitchell (1993) although offset toward higher values of liquid limit for a given 

smectite content. This similarity is consistent with the observation that illite is indeed the 

other dominant clay mineral in the samples. Accordingly, the offset with respect to Mitch-

ell’s trend may be a consequence of the presence of silt and/or of a different chemistry of 

pore water. Overall, the differences between this and other models demonstrate the 

extreme variability in the interactions between clay minerals with each other and their 

environment that also correspond to different effect on physical properties. As a conse-

quence, models based on a more focused approach can yield more reliable information 

than general ones.

It should be noticed that in the previous paragraphs a linear correlation was used 

for the smectite-WL relationship that yield the following relationship:

WL= 33 + 2.05SM,  r2=0.72 5)

Equation 5 predicts a liquid limit of 33 if smectite is not present in the clay fraction. Nev-
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ertheless since samples with no smectite or of pure smectite were not available, this rela-

tion is only applicable for smectite contents between ~ 10 and ~ 40 %. Based on the 

correlation coefficient and variance the linear fit appears sufficiently representative; how-

ever, the comparison with Mitchell’s model suggests that the relationship is not linear. An 

exponential fit actually yields a better correlation, and a WL correspondent to 0% smectite 

more similar to that reported for illitic sediment (Mitchell, 1993):

WL = 44.5SM0.025 r2=0.75 6)

This latter model is shown in Fig. 20. Similarly to the linear model, the model described 

by Equation 6 is applicable for a range of smectite weight fractions between 10 and 40 %.

Other studies in the literature also address the relationship between CEC and Atter-

berg limits (Christidis, 1998; Thomas et al., 2000; Sridharan, 1982; Sridharan, 1986; Ben-

nett et al., 1981). In this study the high degree of interdependence between smectite 

content and CEC does not allow separating the effect from one another; not surprisingly, 

the correlation of WL with CEC is just as good as that with smectite. If other minerals bear-

ing an unsatisfied layer charge were present (e.g. vermiculite, halloysite) or even different 

types of smectite, the results could differ. In fact, depending on the distribution (tetrahedral 

or octahedral) and magnitude of partially unsatisfied structural charge, measured by the 

CEC, mineral surface chemical properties can vary enormously (Dixon and Weed, 1989; 

Bennett et al., 1981). Nonetheless, CEC can be determined with a high degree of accuracy 

and precision, in contrast with a more subjective and interpretative quantification of smec-

tite. Thus it is a good choice as term of comparison between samples from different regions 

and even more so when the clay mineralogy (hence minerals contributing to the CEC) is 
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known. Because of its relation with clay mineralogy and their properties, the CEC in com-

bination with WL is used as indicator of soil swelling behavior (Thomas et al., 2000).

In order to characterize and classify soils, Atterberg limits are plotted on the Casa-

grande, or Plasticity Chart (Fig. 21). The data from this study fall just above the A-line and 

follow a similar trend. A best fit through the data yields the following equation:

IP= 0.7(WL -11.8), r2=0.98 7)

Based on the Unified Soil Classification System (USCS) the sediments can be classified 

as inorganic clays of high to extremely high plasticity (CH). It has become common use to 

deduce the clay mineralogy based on the location of data on the Plasticity chart, with 

respect to the A-line and the U-line. Smectitic soils are expected to plot just below the U-

line, whereas illitic soils just above the A-line (See “Literature review” on page 8). 

Accordingly, all samples from this study would be categorized as illitic. Even just consid-

ering the extreme range of variation in smectite composition, the subdivision appears 

unlikely. Certainly the data from this study disprove such model. The variation in smectite 

and illite content in these samples was extensively explained throughout the manuscript, 

and a well supported argument was presented for the dependence of liquid limit on smec-

tite content (See page 57). 

Moreover, as also highlighted in Fig. 21, the smectite trend in these data increases 

in concurrence with WL and IP, and is approximately parallel to the A-line. In contrast, 

variations in illite content do not follow any specific trend with WL and IP (Table 4). It is 

possible that shifting toward the U-line depends on the type of cations saturating clay min-
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erals and smectite particularly. Actually, the position of the U-line was first determined 

based on Na-montmorillonite that is one of the most swelling types of smectite because of 

the properties of the monovalent cation filling the interlayer. However, smectite does not 

reach similar degree of water retention and swelling capacity when saturated with a mix-

ture of different cations, as is most commonly the case in nature. Specifically, in marine 

Fig. 21. Plasticity chart. A color scale is used to indicate the smectite content of the samples. Note the 
increasing smectite with increasing WL and IP. 
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sediments the composition of the mixture of cations that saturate smectite is a function of 

sea water composition and of cation affinity to smectite. Nonetheless, the effect of smectite 

on the engineering properties of sediments is significant. 

Bulk densi ty  and derived variables

The relations so far discussed concerned properties that are measured on remolded 

samples therefore are not directly affected by depth. In contrast, physical properties like 

bulk density, water content, P-wave velocity and shear strength change during the burial 

history of sediments. Consequently, correlations of these properties with clay content and 

mineralogy are only meaningful if performed on sediments with same stress history. This 

is not the case for the samples used in this study hence it is not surprising that a linear 

regression analysis does not yield significant correlations. However, all physical property 

profiles present well discernible variations in rate of change as well as spikes of high or 

low values in relationship to lithology and compositional changes. 

Skempton (1970) argued that a linear relation exists between void ratio (e0) and the 

log of effective overburden pressure (P0) for the same type of clay, hence the void ratio of 

a clay at a certain pressure P0 only depends on the type of clay. Accordingly, changes in 

slopes and offsets in a e0-P0 plot should reflect changes in composition (Skempton, 1970; 

Burland, 1990). Fig. 22 shows the e0-P0 plot of JPC 31. The overburden pressure was cal-

culated by integrating bulk density over depth according to Equation 2 on a logarithmic 

scale. The corresponding depth is also shown for reference. The void ratio trend is com-

pared to the smectite and clay content from JPC 31 samples, since these are the two com-
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positional factors that were proven to affect physical properties. From Fig. 22 it can be 

noticed that the general trend of decreasing void ratio with increasing overburden pressure 

and depth is interrupted by considerable offsets in correspondence of changes in clay and 

smectite content.

Burland (1990) implementing the work of Skempton (1970), deduced a relation 

between the intrinsic void ratio at 100 kPa of overburden pressure (e100*) and the void 

ratio at the liquid limit (eL). The term ‘intrinsic’ refers to the properties of reconstituted 

clays (Burland, 1990) that only depend on their composition. It will be shown later how 

environment and modes of deposition also influence physical properties. Not surprisingly, 

e100* increases exponentially with smectite content, yielding a curve fit resembling that 

WL and an excellent correlation coefficient (r = 0.86). Therefore, it can be concluded that 

the WL of clays also represents changes in the WC and void ratio profile related to changes 

in clay mineralogy.

The relationships so far established can be related to the forces that control the 

Atterberg limits and the cohesive properties of clays. The two mechanisms discussed in 

the literature point one to the net interparticle attractive forces and the other to the viscosity 

of the double layer (and interlayer) water (Sridharan, 1988). The correlation of grain size 

with Atterberg limits supports the influence of net attractive forces, as these are a function 

of specific surface area (hence grain size). On the other hand, the larger influence of smec-

tite on Atterberg limits suggests a correspondent larger effect of the double-layer water. In 

fact, according to Mitchell (1993) the increase in WL with increasing smectite is related to 
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the interlayer water which is a good portion of double-layer water. This relation would also 

explain the greater effect of pore water chemistry on the properties of smectitic soils 

(Sridharan, 1988; Mathew, 1997). Based on the same concept, Brown and Ransom (1996) 

demonstrated the significant effect of smectite inter-layer water on the porosity of sedi-

ments. 

Fig. 22. Void ratio depth-pressure profile compared with clay and smectite content. Vertical pressure (Po) 
was calculated by integrating bulk density over depth (Equation 2 ). A log scale was used for vertical 
pressure and depth. The plots shown refer to core JPC 31. Note the large void ratio offsets in relationship to 
changes in smectite content.
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Shear strength and the influence of rates of deposition

In spite of the normal consolidated (NC) state of the sediment, the depth profile of 

shear strength abruptly changes in correspondence of the boundary between Unit C and 

Unit D (Fig. 6). The small depth gradient and little variability of the top three units is sub-

stituted by a larger gradient and greater variability throughout the units below. The differ-

ence between the gradient of the upper and lower interval is larger where Unit C is thicker. 

The boundary between units C and D corresponds to a considerable change in min-

eralogy and depositional rates, both factors that may affect the shear strength. The avail-

ability of oxygen isotope curves from core JPC 31 (Elston and Slowey, personal 

communication) offered the opportunity to investigate the effect of sedimentation rates. 

Fig. 23 illustrates the age model for JPC 31. The model is based on the dates of strati-

graphic markers that can be easily correlated among the other cores, for which direct 

dating is not available.

Successively, SU gradients were calculated relative to the same depth intervals 

used for sedimentation rates, thus allowing their comparison. Because direct dating deter-

minations were only available from one core, and for the limits in the accuracy of vane 

shear measurements, these data should only be considered as gross estimates. 

Despite these limitations, Fig. 24 shows that a correlation between sedimentation 

rates (in logarithmic scale) and SU gradient exists, demonstrating the importance of the 

depositional regime on physical properties. In the right plot of Fig. 24 the SU gradient is 
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Fig. 23. Age model of core JPC 31. Sedimentation rates were determined from the slope of the lines 
connecting data. Note that changes in slope correspond to changes in sedimentation rates.

Fig. 24. Sedimentation rates and shear strength. (A) Correlation between sedimentation rates (Sr) and shear 
strength depth gradient (∆SU/∆d). A linear regression yielded the following equation: ∆SU/∆d = 3.37 - 
1.72log(Sr). (B) Smectite content in relation to ∆SU/∆d and sedimentation rates (indicated by the numbers 
next to data points).

A B
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instead compared to smectite content, the mineral having the most influence on physical 

properties (See “Atterberg limits” on page 52); sedimentation rates are indicated by the 

numbers next to the points. The data distribution on the plot, on one side reflects the higher 

smectite content of slowly deposited sediments which causes the clustering in the top right 

corner of the plot; on the other side, it shows a lack of correlation between the two vari-

ables. The relevant role of modes and rates of deposition on physical properties has been 

recognized by several other studies, and attributed to microfabric (e.g. Mitchell, 1993; 

Bennett et al., 1981; Burland, 1990; Skempton, 1970). The micro-fabric acquired by the 

sediment at the time of deposition profoundly influences physical properties and their pro-

gression with depth (Mitchell, 1993; Bennett, 1999; Burland, 1990). 
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SUMMARY AND CONCLUSIONS

1) This study assessed the clay mineralogy of Bryant Canyon sediments, deposited 

during the last 6 oxygen isotope stages, as well as its spatial and depth variability. It was 

determined that smectite and illite are the dominant clay minerals, their sum making up 

75-80% of the clay size fraction of the sediment. Kaolinite and chlorite compose the 

remaining of the clay, although traces of non clay minerals (quartz and feldspars) are 

present as well. The main minerals composing the silt and sand size fractions are instead 

quartz, calcite, dolomite and feldspars. 

2) Three different mineral facies were recognized that alternated with depth in con-

currence with changes in climate, distance from the source and of the extent of the Missis-

sippi drainage basin itself. The main differences between these associations reside in the 

relative abundance of smectite and illite in the clay fraction as well as the amount of bio-

genic carbonate in the non-clay fraction. During interglacial high stands, less input of ter-

rigenous sediments, more intense chemical alteration of parent rocks accompanied by 

higher productivity yielded a facies rich in smectite and biogenic carbonate, in concomi-

tance with interglacial periods. In contrast, more terrigenous input, dominance of mechan-

ical weathering on land and the obstruction of portions of the Mississippi Basin by the 

Laurentide ice sheet yielded an illitic facies, with lesser amounts of pelagic carbonates. In 

the remaining facies, deposited during other glacial or transitional periods the effect of 

large terrigenous input is reflected in a relatively high amount of clay size quartz and feld-
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spars. However, smectite is rather abundant, in concentration similar to that of illite and 

biogenic carbonate is abundant as well. 

3) Although diagenetic transformations of minerals cannot be excluded and are, to 

some extent, probable, their influence on the clay mineral association is minimal, if not 

negligible. Furthermore, any mineral transformation induced by the chemistry of sea water 

appears to have ceased soon after deposition. In fact, based on XRD peak characteristics 

and NEWMOD© simulation it was concluded that the same minerals, although in different 

proportions compose all the samples.

4) The clay mineralogy of the sedimentological units does not vary significantly 

across the slope; in other words a specific mineral/clay mineral association marks each of 

the units. In this respect, the character of clay mineralogy is consistent with that of physical 

property profiles as described by Bryant et al. (2000). Certainly a connection between clay 

mineralogy, as well as clay content with the characteristics of the physical property pro-

files is not surprising and was actually illustrated by this study. An implication of the 

homogeneous character of the sedimentological units, is the possibility to infer the clay 

mineral character of sediments from the Bryant Canyon simply based on MSCL profiles. 

Furthermore, similar clay mineralogy trends respect to glacial cycles were found in Pigmy 

Basin, Orca Basin and the Carolina continental slope.

5) The most significant conclusion of this study is the relationships established 

between sediment composition and physical properties. It was demonstrated that smectite 

directly affects Atterberg limits, and to a larger extent than clay content does. Other min-

erals may attenuate or exacerbate the influence of smectite but they have no direct effect 
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on physical properties. More importantly, an equation was derived to describe such rela-

tion and compared with models found in the literature. The better understanding that 

derives from such comparison may prove useful in formulating better models to describe 

the mechanical behavior of the Gulf of Mexico continental slope sediments. A linear fit 

approximately parallel to the A-line described the data distribution in the Plasticity chart. 

Samples higher in smectite plotted in correspondence of higher values of liquid limit and 

plastic limit, independently of clay content or of other mineral abundance. 

6) It was demonstrated that the liquid limit can alone represent the composition of 

sediments, at least in the case of samples from the same depositional environment. The 

other Atterberg limits, as well as indexes although useful for classification purposes are 

less indicative of composition. It was also shown that the liquid limit can be used to rep-

resent variation in the magnitude of water content (as well as related variables) with depth 

related to changes in composition and particularly smectite content.

7) Finally, the influence of depositional regimes on physical properties was dis-

cussed. A comparison between undrained shear strength and sedimentation rates was used 

to investigate such effect. It was shown that changes in the rate of increase of undrained 

shear strength with depth correlate with the rate of deposition. 

In essence, this thesis assessed the enormous importance of smectite on the physi-

cal properties of marine sediments, based on analyses performed on natural sediments. 

Relationships were determined between physical properties and clay mineralogy for sedi-

ments of the northwestern GOM continental slope. Furthermore, it established a link 

between clay mineralogy and oxygen isotope stages that offers a strong basis for compar-
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ison with studies that may be conducted in the future in different locations. 
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APPENDIX A

CLAY MINERALS

Even though many minerals can be present in the clay fraction of siliciclastic sed-

iments, just a few of them are responsible for the special properties of such a fraction and 

most often make up the majority of it. These minerals, referred to as clay minerals, belong 

to the phyllosilicate group, so called because its molecular structure is composed of SiO2

tetrahedra linked together in a planar arrangement (Dixon and Weed, 1989). Tetrahedra 

sheets are bond to Al3+O2(OH) or M2+O2(OH) octahedra sheets in a 2:1 or 1:1 ratio, thus 

forming the basic layer of phyllosilicate minerals. In the 1:1 minerals, like kaolinite, layers 

are neutrally charged and they bond to each other by Van der Waals’ forces that develop 

between surficial OH- and O2- of different layers. In 2:1 clays, partial isomorphous substi-

tutions in tetrahedral or octahedral sites cause layers to be negatively charged. In these 

cases cations or ion complexes enter the interlayer region to counterbalance the charge 

(Fig. A1) (Dixon and Weed, 1989; Bennett, 1981). 

Depending on the amount and location of isomorphous substitutions the layer 

charge varies along with the force acting on interlayer cations. The two extremes are rep-

resented by the mica and the smectite minerals (Dixon and Weed, 1989). In mica, tetrahe-

dral substitutions are stechiometric (Al:Si=1:3) and cause a layer charge of -1, sufficient 

to hold K cations by strong ionic bonding. In smectite, the charge mostly originates from 

the octahedral sites, far from the surface, and varies between -0.6 and -0.3 per unit formula. 
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Because of the fractional charge, interlayer cations are weakly bonded and can be 

exchanged with surrounding solutions, furthermore the layer surface becomes hydrophilic 

and adsorbs water (Dixon and Weed, 1989). 

Despite their structural similarity, mica and smectite behave quite differently due 

to their different surface properties. Clay mica has a less perfect structure than at coarser 

size, being characterized by lower K content, Al:Si deviating from 1:3, poorer crystallinity 

and higher water content. Due to these differences clay mica has a higher surface activity 

and may have a slightly incomplete charge distribution up to -0.9. The mica-smectite series 

also includes an intermediate member, vermiculite which by definition has interlayer 

charge ranging between -0.9 and -0.6. As expected, its properties are intermediate between 

those of mica and smectite.

Isomorphous substitution is not the only source of surface charge: broken bonds at 

the edges of particles and specific absorption also contribute to it. Charge caused by 

broken bonds is variable in character, its amount and sign being a function of pH (Dixon 

and Weed, 1989). The pH dependent charge has a stronger influence on minerals possess-

ing a small permanent charge (Mitchell, 1976).

The dependence of clay volume change behavior on clay type and chemical envi-

ronment is explained by the diffuse double layer theory (DDL). The theory predicts the 

distribution of the water molecules and the cations balancing clay surface negative charge 

(Van Olphen, 1977, Dixon and Weed, 1989). Cations and water are distributed in a diffuse 

layer surrounding the surface, whose thickness is determined by the balance of the surface 
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electric potential and cation charge. According to the Guyot-Chapman DDL the thickness 

of the diffuse double layer is:

t2 =ΣkT/ 8ρzi
2ei

2ni

Where: t = DDL thickness; k = Boltzman constant; T = temperature in K; ρ = density; zi = charge of ion i; ei 
= electric charge of ion i; ni = concentration (Dixon and Weed, 1989)

The diffuse double layer opposes clay particle attraction, the thicker the layer the greater 

the tendency of clay particles to disperse and adsorb-absorb water. The DDL controls the 

sediment fabric and water retention potential which in turn affect sediment volume change 

behavior (Bennett, 1981). The Guyot-Chapman theory was later modified to account for 

other factors also affecting the DDL thickness, like ionic radius, ion hydration shells and 

specific absorption (Dixon and Weed, 1989).

Fig. A1. Structures of kaolinite, illite and smectite represented as layers of tetrahedra and octahedra.
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APPENDIX B

XRD PATTERNS

The XRD patterns correspond to the following treatments: a) Mg saturation at 25 oC; b) 

Mg saturation and glycerol solvation; c) K saturation at 25 oC; d) K saturation at 300 oC; 

e) K saturation at 550 oC.

Fig. A2. Sample 31-1

Fig. A3. Sample 31-2
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Fig. A4. Sample 31-3

Fig. A5. Sample 31-4
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Fig. A6. Sample 31-5

Fig. A7. Sample 31-6



86
Fig. A8. Sample 31-7

Fig. A9. Sample 33-1
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Fig. A10. Sample 33-2

Fig. A11. Sample 33-3
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Fig. A12. Sample 37-1

Fig. A13. Sample 46-1
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Fig. A14. Sample 46-2

Fig. A15. Sample 46-3
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Fig. A16. Sample 46-4
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APPENDIX C

INDEX PROPERTY DERIVATION FROM BULK DENSITY

Void ratio (e), porosity (n) and water content (WC) are interdependent variables that can 

be calculated from bulk density (ρb) in saturated sediment, as long as grain density (ρS) is 

known or assumed and the density of the pore fluids are known. The equations and 

assumptions applied in this study are as follows. 

Porosity is defined as the ratio between volume of the fluid and total volume, gen-

erally expressed in percent.

Cores used in this study were completely saturated with salt water (no gas was 

found) which has a density (ρW) of 1.024 g/cm3. A grain density (ρS) of 2.71 g/cm3 was 

assumed for these sediments based on measurements conducted at URI (LaRosa, 2000). 

Based on these grain density and water density values, porosity was calculated according 

to Boyce (1976).

Void ratio is defined as the ratio between the volume of the voids and the volume 

of the solid fractions. It is related to porosity by the following equation:

e = (1/100)*n/(1-n)

Finally, water content is defined as the weight of the water divided by the dry 

weight of solids expressed as percentage. It can be derived from void ratio, assuming 100 

% saturation, according to the following equation:

WC = 100*(ρW/ρS)*e
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