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[1] Synthetic streamflows at different sites in a river basin are needed for planning,
operation, and management of water resources projects. Modeling the temporal and spatial
dependence structure of monthly streamflow at different sites is generally required. In this
study, the maximum entropy copula method is proposed for multisite monthly streamflow
simulation, in which the temporal and spatial dependence structure is imposed as constraints
to derive the maximum entropy copula. The monthly streamflows at different sites are then
generated by sampling from the conditional distribution. A case study for the generation of
monthly streamflow at three sites in the Colorado River basin illustrates the application of
the proposed method. Simulated streamflow from the maximum entropy copula is in
satisfactory agreement with observed streamflow.
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1. Introduction

[2] For multisite streamflow simulation in a river basin,
it is desired that statistical properties of streamflow at indi-
vidual sites and dependence structure among different sites
are preserved. The autoregressive moving average
(ARMA) framework has been commonly used for multisite
streamflow simulation [Salas and Delleur, 1980]. Paramet-
ric disaggregation method is another type of parametric
methods for multisite streamflow simulation that generally
consists of two steps. It first generates aggregated stream-
flow (e.g., annual flow) and then disaggregates or divides it
into lower-level variables (e.g., monthly flow) [Valencia
and Schaake, 1973; Stedinger and Vogel, 1984; Kout-
soyiannis and Manetas, 1996].

[3] There are several disadvantages of the parametric
ARMA and disaggregation methods, including the limita-
tion in representing nonlinear dependences and nonstan-
dard probability distribution forms [Sharma and O’Neill,
2002]. The nonparametric model, such as kernel density
method, moving block bootstrapping method, or K-nearest
neighbor resampling method, does not make assumptions
about the probability distribution or dependence forms and
provides an alternative for stochastic simulation [Vogel and
Shallcross, 1996; Sharma et al., 1997; Prairie et al., 2007;
Nowak et al., 2010].

[4] Recently, the copula method has been commonly
used for modeling the dependence structure of multivariate
random variables and also for the multisite stochastic simu-
lation [B�ardossy and Pegram, 2009]. However, the ability
of the commonly used parametric copulas to model
dependences in higher dimensions is rather restricted [Kao
and Govindaraju, 2008; Chui and Wu, 2009]. In this study,
we propose the maximum entropy copula for multisite
monthly streamflow simulation in which the rank correla-
tion in higher dimensions among monthly streamflows at
different sites can be modeled. The proposed method is
applied to monthly streamflow simulation at three sites in
the Colorado River basin.

2. Methodology

2.1. Entropy Concepts

[5] Let the joint probability density function (PDF) of
two random variable X and Y on the interval [a1, b1]�[a2,
b2] be f(x, y). The entropy H of the joint PDF f(x, y) can be
defined as [Shannon, 1948; Shannon and Weaver, 1949]

H ¼ �
Z b2

a2

Z b1

a1

f x; yð Þln f x; yð Þdxdy ð1Þ

[6] The principle of maximum entropy developed by
Jaynes [1957] can be employed to derive the joint probabil-
ity density function f(x, y) in that the joint PDF with the
maximum entropy should be selected subject to the given
constraints (or known information).

2.2. Maximum Entropy Copula

[7] The maximum entropy copula has been developed
based on the entropy theory [Chui and Wu, 2009; Chu,
2011]. Let U and V be the marginal probabilities of the ran-
dom variables X and Y with u and v denoting realizations of
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U and V. For a copula density function c(u, v), the entropy
can be expressed as

W ¼ �
Z1

0

Z1

0

c u; vð Þlog c u; vð Þdudv ð2Þ

[8] The constraints can be expressed as

Z1

0

Z1

0

c u; vð Þgi u; vð Þdudv ¼ gi i ¼ 1; 2 . . . ; n ð3Þ

where gi is the expectation of the function gi(u,v), i.e.,
E(gi(u, v)). To ensure the integration of the copula density
function over all the space equates one, g1(u, v) can be speci-
fied as 1.To ensure that the marginal of c(u,v) is the uniform
[0,1], the moments of u and v can be specified as constraints
(i.e., u, u2, u3, v, v2 and v3 . . . ) to approximate the marginal
properties numerically [Chu, 2011]. To model the depend-
ence structure, the function g(u, v) can be specified in the
form that is related to an association measure such that the
expectation E(g(u, v)) becomes some linear form of rank cor-
relation. For example, when the pairwise product constraint
g(u, v)¼uv is used, the commonly used Spearman rank corre-
lation (�) can be linked to the constraint [Chu, 2011]:

Z1

0

Z1

0

uvc u; vð Þdudv ¼ �þ 3

12
ð4Þ

[9] With the moment constraints up to order m and pair-
wise product constraint in equation (4), the maximum en-
tropy copula density function can be obtained as [Chui and
Wu, 2009; Chu, 2011]

c u; vð Þ ¼ exp ��0 �
Xm

r¼1

�ru
r þ �rþmvrð Þ � �2mþ1uvÞ

" #
ð5Þ

where m is the maximum order of moments (m¼3 in this
study) and �0, . . . ,�2mþ1 are the Lagrange parameters. Param-
eter �0 can be expressed as a function of other parameters as

�0 ¼
Z 1

0

Z 1

0
exp �

Xm

r¼1

�ru
r þ �rþmvrð Þ � �2mþ1uvÞ

" #
dudv ð6Þ

[10] The dependence structure in terms of the Spearman
rank correlation can be modeled through the joint probabil-
ity density function in equation (5). Note that other meas-
ures of the dependence structure, such as Blest’s measure
and Gini’s gamma, can also be modeled through the maxi-
mum entropy copula [Chu, 2011].

[11] The joint distribution in the higher dimension is of
particular interest when the multivariate dependence struc-
ture has to be modeled. In this case, a multivariate entropy
in equation (2) can be defined and then copula density func-
tion with the maximum entropy can be derived straightfor-
ward. It can be seen that the derivation of the maximum
entropy copula is separate from that of the marginal proba-
bility distributions. Suitable marginal distributions, such as

kernel density, can be selected to model the properties of
streamflow of each month, such as skewness and bimodal
properties, which have been well documented [Sharma
et al., 1997; Prairie et al., 2007; Salas and Lee, 2010;
Hao and Singh, 2012]. Thus, we omit the discussion of the
marginal distributions but focus on the dependence struc-
ture modeling of multisite monthly streamflow through the
maximum entropy copula.

2.3. Parameter Estimation

[12] For the maximum entropy copula, the Lagrange
multipliers �i (i¼1,., 2mþ1) in equation (5) have to be esti-
mated. It has been shown that these Lagrange multipliers
can be solved by finding the minimum of a convex function
G expressed as [Kapur, 1989]

G ¼ �0 þ
X2mþ1

i¼1

�igi ð7Þ

[13] These parameters can be estimated using the New-
ton Raphson iteration method [Wu, 2003; Hao and Singh,
2011]. However, a high-dimensional integration is involved
in the parameter estimation for the multisite simulation to
obtain the value of �0 in equation (6), which makes it even
more complicated than the single-site streamflow simula-
tion. In this study, an adaptive algorithm for numerical inte-
gration over hyperrectangular region was employed for the
high-dimensional integration (programmed as a MATLAB
function ADAPT available from www.math.wsu.edu/fac-
ulty/genz/homepage) [Genz and Malik, 1980; Berntsen
et al., 1991].

2.4. Simulation Methodology

[14] Suppose three sites from upstream to downstream
are denoted as site 1, 2, and 3 and denote the marginal
probability of the monthly streamflow at each site as (U1,
U2, . . . ), (V1,V2, . . . ) and (W1,W2, . . . ) and the realizations
as (u1,u2, . . . ), (v1,v2, . . . ) and (w1,w2, . . . ). For site 1, the
joint distribution C(us, us�1) of monthly streamflow for two
adjacent months s and s�1 must be estimated and the con-
ditional distribution C(usjus�1) can be used to generate the
monthly streamflow (marginal) Us given the previous
monthly streamflow (marginal) Us�1. For monthly stream-
flow of site 2, the joint distribution C(us,vs�1,vs) has to be
estimated, and the conditional distribution C(vsjvs�1,us) can
be used to generate the monthly streamflow Vs given the
streamflow Vs�1 of site 2 and the monthly streamflow Us of
site 1. Similarly, for the monthly streamflow Ws, the condi-
tional distribution C(wsj ws�1, us, vs) can be used to gener-
ate the monthly streamflow Ws given the streamflow Ws�1

of site 3, Us of site 1 and Vs of site 2.
[15] The simulation methodology to generate the

monthly streamflow (marginal) at each site can be summar-
ized as follows:

[16] (1) Initialize monthly streamflow at sites 1, 2, and 3
of the first month, i.e., u1, v1, and w1, by assigning random
values from historical records.

[17] (2) With the initialized u1, generate monthly stream-
flow at site 1 for the second month u2 from the conditional
distribution C(usjus�1).With the generated u2, and initial-
ized value v1, the monthly streamflow at site 2 for the sec-
ond month v2 can be generated from the distribution
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C(vsjvs�1, us). With the generated u2, v2 and the initialized
w1, the monthly streamflow at site 3 for the second month w2

can be generated from the distribution C(wsjws�1, us, vs).
[18] (3) With the generated u2, v2, and w2, repeat step (2)

to generate the monthly streamflow for the next month u3,
v3 and w3 for sites 1, 2, and 3, respectively.

[19] (4) Repeat step (3) to generate a sequence of
monthly streamflows u4, . . . , ut, v4, . . . ,vt and w4, . . . ,wt up
to time t.

3. Application

[20] Monthly streamflow from 1906 to 2003 of three
sites in the Colorado River basin, namely Paria River at

Lees Ferry, Arizona (AZ) (denoted as site 1), Little Colo-
rado River near Cameron, AZ (denoted as site 2), and Vir-
gin River at Littlefield, AZ (denoted as site 3), were used
for illustrating the proposed method. The monthly
streamflow at each site can be downloaded from the
website (http://www.usbr.gov/lc/region/g4000/NaturalFlow/
previous.html).

[21] We illustrate the derivation of the joint probability
density function for monthly streamflow at site 1 and 2 as
an example. Denote the marginal probabilities of monthly
streamflow for the month s at sites 1 and 2 as Us and Vs.
From equation (5), the maximum entropy copula density
function c(us,vs�1,vs) with the moment constraints up to
order 3 and pairwise product constraint can be expressed as

c us; vs�1; vsð Þ ¼ exp ��0 �
X3

i¼1

�ius
i �
X3

i¼1

�iþ3vs�1
i �
X3

i¼1

�iþ6vs
i��10usvs�1 � �11usvs � �12vs�1vs

 !
ð8Þ

[22] The joint distribution C(us, vs�1, vs) and conditional
distribution C(vsj us,vs�1) can be obtained from the density
function accordingly.

[23] One hundred sequences of monthly streamflow
(marginal) with the same length as the historical record (98
years) were generated for each site with the simulation
methodology. The scatterplots of the rank of observed
streamflow pairs and one sequence of simulated streamflow

pairs (marginal) from the copula at different sites for March
and April are shown in Figure 1 (top). The spread pattern
of simulated streamflow pairs generally matched that of
observed streamflow pairs of the 2 months well. As an
example, the monthly streamflow of March and April for
site 3 shows a strong dependence (Spearman correlation:
0.83) and most of the streamflow pairs spread along the di-
agonal. The simulated streamflow pairs are also spreading

Figure 1. Scatterplots of the observed (closed circle) and simulated (plus symbol) monthly streamflow
(marginal) for March and April at different sites.
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near the diagonal with Spearman correlation 0.77. The scat-
terplots of the rank of observed monthly streamflow and one
sequence of simulated streamflow pairs from the copula at
different sites for the same month of March are also shown
in Figure 1 (bottom). The simulated Spearman correlations
are 0.59, 0.59, and 0.58, which are relatively close to the
observed Spearman correlation (i.e., 0.65, 0.68, and 0.67).

[24] Boxplots were used to display the observed and
simulated statistics, and the performance was judged to be
good when a statistic fell within the boxplot [Nowak et al.,
2010; Salas and Lee, 2010]. Boxplots of the Spearman cor-
relation of the observed and simulated monthly streamflows
for three sites 1, 2, and 3 are shown in Figure 2 (left col-
umn), which display the temporal dependence between the
adjacent months of a specific site. From Figure 2, it can be
seen that for most months, the median of simulated statis-
tics is within the boxplot. Box plots of the spatial depend-
ence of the observed and simulated monthly streamflow of
the same month between different sites are shown in Figure
2 (right column). All these simulations show good results
since the observed Spearman correlation falls within the
boxplots for most months. These results show that the de-
pendence structure of the monthly streamflow at each site
and between different sites can be preserved relatively well.

4. Conclusions

[25] The maximum entropy copula method is proposed
for the multisite monthly streamflow simulation and shown

to be capable of modeling the rank correlation of monthly
streamflows at different sites. The joint distribution (cop-
ula) is derived by specifying functions of the marginal
probability as constraints having maximum entropy and its
extension to higher dimensions for dependence modeling is
straightforward. The proposed methodology can also be
applied to similar topics, such as rainfall simulation and
geostatistical interpolation. The potential drawbacks would
be that the marginal properties of the copula are approxi-
mated numerically and the sum of tributary flows adding
up to the downstream flow cannot be ensured with the cur-
rent framework.
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