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Abstract Simplified flood propagation models are often employed in practical applications for hydraulic
and hydrologic analyses. In this paper, we present a new numerical method for the solution of the Linear
Parabolic Approximation (LPA) of the De Saint Venant equations (DSVEs), accounting for the space variation
of model parameters and the imposition of appropriate downstream boundary conditions. The new model
is based on the analytical solution of a cascade of linear diffusive channels in the Laplace Transform domain.
The time domain solutions are obtained using a Fourier series approximation of the Laplace Inversion for-
mula. The new Inverse Laplace Transform Diffusive Flood Routing model (ILTDFR) can be used as a building
block for the construction of real-time flood forecasting models or in optimization models, because it is
unconditionally stable and allows fast and fairly precise computation.

1. Introduction

Flow routing models for flow propagation in channel networks are often obtained as simplified versions of
the full De Saint Venant Equations [DSVEs). Nowadays, application of these simplified models to problems,
such as real-time flood forecasting and operations management, is still common, despite the availability of
powerful computing resources. This is justified by several reasons: (a) the lack of data about the channel
geometry and the associated floodplains introduces numerical errors that may counter the advantage of
using the complete De Saint Venant Equations; (b) in many cases, the peculiar dynamics of the flow propa-
gation make the solution of the simplified models sufficient for practical purposes; and (c) the accurate solu-
tion of complete De Saint Venant models is very time consuming [Cozzolino et al., 2012]. On the other hand,
simplified flood routing models may exhibit one or more of the following favorable characteristics: simpli-
fied rating curves (nonlooped) can be employed, the knowledge of just one upstream boundary condition
is often required (discharge hydrograph or stage hydrograph), and the calibration of only few parameters is
required; they are usually linear and errors in the input quantities are not amplified [Singh and Woolhiser,
1976]; the simplified models allow fast computation and hence they are particularly suited for problems in
which large and repetitive computations are required, such as the optimal design of hydraulic infrastruc-
tures [Cimorelli et al., 2013a, 2014b; Palumbo et al., 2014; Cozzolino et al., 2015].

The well-known Parabolic Approximation (PA) model is derived from the DSVEs by neglecting the inertial
terms, while the Kinematic Wave is obtained by neglecting also the pressure terms [Cunge et al., 1980].
Despite the simplifications introduced, there are ranges of hydraulic conditions where satisfactory and accu-
rate application of the PA model is found, as discussed in the scientific literature [Ponce and Simmons, 1977;
Ponce et al., 1978; Tsai, 2003]. Weinmann and Laurenson [1979] showed that numerous approximate flow
routing models can be regarded as linearized versions of these simplified models. Among the linear flow
routing models, the Kalinin-Milyukov-Nash (KMN) reservoir cascade model [Nash, 1957; Kalinin and Milyukov,
1957], the Muskingum-Cunge (MC) model [Cunge, 1969], and the Hayami [1951] transfer function (HTF)
have been widely employed for discharge forecasting for large rivers [Singh, 1996]. The linear models are
attractive for their simplicity and because model parameters are easily related to channel characteristics
and hydraulics conditions. However, it is widely recognized that the propagation of flood waves in channels
is a nonlinear process, and linear models can provide only a crude approximation of real flow propagation
phenomena.
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In order to account for nonlinearities, it can be assumed that the flood wave propagation responds linearly
to the input, but model parameters are recalculated as functions of local and instantaneous values of flow
conditions during the marching-in-time of the algorithm. This idea has been incorporated into the develop-
ment of a wide class of flood routing models known as multilinear models [Keefer and McQuivey, 1974;
Ponce and Yevjevich, 1978; Becker and Kundzewicz, 1987; Perumal, 1992, 1994; Camacho and Lees, 1999; Szila-
gyi, 2003, 2006; Perumal et al., 2007, 2009; Szilagyi and Laurinyecz, 2012], and has allowed the use of all the
previously mentioned simplified linear models as submodels embedded into the multilinear methodology.
This shows that the study of linear models in hydrology is still of great interest, because they can be used as
building blocks for the construction of nonlinear models.

The linear models derived from the PA model are particularly attractive, because they are able to take into
account not only the wave celerity but also its attenuation. The Hayami linear transfer function [Hayami,
1951] is calculated assuming semiinfinite channel, and Todini and Bossi [1986] used the corresponding dis-
crete impulse response to construct the Parabolic and Backwater (PAB) routing scheme. Later, Cimorelli
et al. [2013b] extended the PAB in order to account for the hydraulic jumps and for pressurized flow in
closed conduits. Litrico et al. [2010] used cumulants of the Hayami transfer function to derive a nonlinear
Delayed Differential Equation (DDE) through a family of linear DDEs. The main drawback of the cited models
is that in the Hayami transfer function, downstream boundary conditions are not properly taken into
account. As highlighted by many authors [Chung et al., 1993; Singh, 1996; Tsai, 2005; Cozzolino et al., 2014a,
2014b; Cimorelli et al., 2014a], the downstream boundary condition can significantly modify the flow dynam-
ics. Chung et al. [1993] presented a Laplace-Domain analytical solution of the Linear Parabolic Approxima-
tion (LPA) of DSVEs, accounting for the downstream boundary conditions in terms of discharge, while the
corresponding time-domain solution was determined through a Fourier series approximation of the Laplace
inversion formula [Crump, 1976]. An analytical solution in terms of discharge and flow depth, in both Lap-
lace and time domains, was given in Cimorelli et al. [2014a], considering two different downstream bound-
ary conditions and accounting for lateral inflow.

The cited linear flood routing models are derived under the hypothesis of prismatic channel and initial uni-
form steady state. A step forward in simplified modeling of the linearized DSVEs was made by Litrico and
Fromion [2004], where the initial backwater curve was approximated by means of a cascade of prismatic
pools with uniform initial conditions, and rational functions were used to fit the frequency response of the
system. Of course, every new initial backwater curve requires a new fitting of the frequency response, and
this can be very time consuming in multilinear approaches. Munier et al. [2008] considered a cascade of two
prismatic channels with different flow and geometric characteristics, taking into account the downstream
boundary condition. The reference backwater curve was approximated by a piecewise constant curve, and
the transfer function of each channel was determined in the Laplace domain. The time-domain response
was approximated by the solution of a simple ordinary differential equation, and parameters of the approxi-
mated solutions were determined by the moment matching method. This model was used to route the
input hydrograph through an irrigation channel regulated by a gate or a weir at the downstream end, pro-
viding satisfactory results with respect to the numerical solution of the full DSVEs. Nevertheless, in natural
rivers the geometry of cross sections can vary conspicuously along the river, and a cascade of two channels
may not be sufficient for the approximation of the real flow behavior.

In this paper, we present a new spatially distributed flood routing model based on the Linearized Parabolic
Approximation (LPA) of DSVEs, accounting for the space variation of model parameters and the down-
stream boundary condition. The new model is based on the analytical solution of a cascade of linear diffu-
sive channels in the Laplace Transform domain, while the time-domain solution is obtained via a Fourier
Series approximation of the Laplace Transform Inversion Integral [Crump, 1976]. The new Inverse Laplace
Transform Diffusive Flood Routing (ILTDFR) model is suitable for real-time flood forecasting and optimiza-
tion, because it allows fast computation and it is unconditionally stable. Moreover, it may serve as the linear
submodel for a multilinear approach and hence it can be readily extended in order to account for nonlinear-
ities in the flow propagation.

The present paper is organized as follows: first, the governing equations are briefly recalled; then the deriva-
tion of the model and the discussion of the mathematical properties of the model are presented. The model
is evaluated making use of analytical and numerical reference solutions, and the results of laboratory experi-
ments available in the literature. Finally, the paper is closed by conclusions in section 6.
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2. Basic Equations

2.1. Linear Parabolic Approximation of the DSVEs
The DSVEs are usually used to describe the one-dimensional flow in open channels:
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In equation (1), the symbols have the following meaning: x and t denote the space and time-independent
variables, respectively; h(x,t) is the water depth; Q(x,t) is the flow discharge; A(h,x) is the flow cross-section
area; S0 is the longitudinal bed slope; J(Q,h,x) is the friction slope; B(h,x) is the water surface width; and g is
the gravity acceleration.

In many practical applications, the inertial terms are small with respect to the gravity and pressure terms,
and therefore they can be neglected, giving rise to the so-called Parabolic Approximation (PA) of the DSVEs:
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In Cimorelli et al. [2014a], the equations of the linear channel are obtained after the linearization of equation
(2) around a steady uniform condition in a prismatic channel. Here a different approach is applied, and a
nonprismatic channel with nonuniform steady state condition is considered. The steady state condition is
characterized by uniform discharge Q0, in order to satisfy the first of equation (2), while the variable flow
depth h 5 h0(x) and the uniform discharge Q0 satisfy together the second of equation (2) in the form

dh0

dx
2S01J050; (3)

where J0(x) 5 J(Q0, h0(x), x). To linearize equation (2), the unknown variables Q(x,t) and h(x,t) are expanded
around the steady state flow conditions using the following form:

h x; tð Þ5h0 xð Þ1eh0 x; tð Þ1e2h00 x; tð Þ1:::; Q x; tð Þ5Q01eQ
0

x; tð Þ1e2Q
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Substituting equation (4) into equation (2), and neglecting the higher-order terms, the following Linear Par-
abolic Approximation is obtained
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where B0(x)5B(h0(x), x), while @J=@hð Þ0 and @J=@Qð Þ0 are the derivatives @J=@h and @J=@Q calculated in
Q0; h0 xð Þ; xð Þ, respectively.

The mathematical model obtained is linear, with coefficients B0, @J=@hð Þ0 and @J=@Qð Þ0, variable in space.
Now, let Lc be the length of the channel. If a reference abscissa xr �[0, Lc] is assumed, together with refer-
ence values hr and Qr of the flow variables, then it is possible to consider a first-order Taylor expansion of
the coefficients contained in equation (5), and the following system is obtained:
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where Br 5 B(hr, xr), while @J=@hð Þr and @J=@Qð Þr are the derivatives @J=@h and @J=@Q calculated in
Qr ; hr ; xrð Þ. Note that in equation (6), it must be Qr 5 Q0, while hr is the value of h at a reference point along

the channel that does not necessarily coincide with the abscissa xr.
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It is easy to see that equation (6) can be turned into advection-diffusion form as follows:
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where
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Coefficient Cr is the celerity of the Linear Parabolic Approximation (LPA), while Dr is the diffusivity.

2.2. Laplace-Domain Approach for the LPA
In Cimorelli et al. [2014a], equation (7) is turned into dimensionless form using the transformations:

t�5t=s; x�5x=Lc; h�5h’=hr ; Q�5Q’=Qr ; (9)

where s5Lc=Cr is a characteristic time. The following system is obtained:
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Application of the Laplace transform to equation (10) with the initial conditions h*(x*,0) 5 0 and Q*
(x*,0) 5 0 leads to
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where s* is the Laplace counterpart of the dimensionless time variable t*, while Q̂ and ĥ are the Laplace
transforms of Q* and h*, respectively. In the following, the hat symbol will be used to indicate the Laplace
transform of a time-domain function y(t), i.e., ŷ sð Þ5L y tð Þ½ � where L[•] is the Laplace transform operator. The
Laplace-domain general solution of equation (12) has the form
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and the expression of the state transition matrix c x�; s�ð Þ is given in Cimorelli et al. [2014a]. From a mathe-
matical point of view, the components of the matrix c x�; s�ð Þ can be regarded as the Laplace-domain
response at a given abscissa x* caused by the unit impulses of discharge and flow depth applied at the
upstream end.

3. Laplace-Domain Solution for the Cascade of Diffusive Channels

Following Litrico and Fromion [2004] and Munier et al. [2008], the case of nonuniform reference flow condi-
tions is approximated by means of a cascade of uniform channels characterized by different parameters. In
this section, this approach is generalized, and the Laplace-domain solution of the cascade of diffusive chan-
nels is presented and discussed.
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3.1. Nonuniform Channel State
Transition Matrix
In a channel of length Lc, the physical
domain is subdivided into N adjacent
intervals Sj 5 [xj-1, xj] (with j 5 1,
2,. . .,N), whose length is Lj 5 xj 2 xj-1.
The following congruency conditions
are assumed:

x050; xN5Lc;
XL

j51

Lj5Lc: (14)

In order to cope with the case of a non-
uniform linear diffusive channel, the
reference backwater curve is approxi-
mated with a piecewise constant curve,

as shown in Figure 1. In particular, local reference flow conditions, characterized by discharge Qr,j, flow
depth hr,j, width Br,j, friction slope derivatives @J=@Qð Þr;j and @J=@hð Þr;j , are assumed in each subreach Sj.

If the local dimensionless coordinate is defined as x�j 5 x2xj21
� �

=Lj , with x�j 50 for x* 5 xj-1, and x�j 51 for
x* 5 xj, then equation (13) can be written for the jth subreach of the channel cascade as
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where Q
_

j x�; sð Þ and h
_

j x�; sð Þ are the complex flow rate and water depth variations along the jth subreach,
respectively. Note that the Laplace counterpart s of the time variable t is used, instead of the Laplace coun-
terpart s* of the dimensionless time variable t*, and this is needed to ensure time congruency and causality
when the local uniform channel solutions are assembled in order to obtain the nonuniform channel solu-
tion. The local transition matrix is then defined as
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In equations (16) and (17), the local P�ecl�et number Pej5Cr;j Lj=Dr;j , and parameters, sj and bj, are evaluated
with respect to the jth subreach reference flow conditions. From equation (13), it is clear that the flow con-
ditions at the ends of the jth subreach are connected by the equation:
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The continuity of discharge and flow depth disturbances through the interfaces between subreaches Sj-1

and Sj is assumed as internal boundary condition, and then it is possible to write:
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If equation (18) is applied recursively using the internal boundary conditions of equation (19), the general
response of the nonuniform channel at the end cross section of the jth subreach can be calculated by
means of

Figure 1. Nonuniform channel approximation.
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where the nonuniform state transition matrix is defined by

c jð Þ
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The product in equation (21) can be immediately calculated as c jð Þ
c sð Þ5cj 1; sð Þ c j21ð Þ

c sð Þ if c j21ð Þ
c sð Þ is known,

and the real and imaginary parts of its components are reported in Appendix A. It is easy to show that the
determinant kc jð Þ
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For j 5 N, equation (20) can be particularized as
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and matrix c Nð Þ
c sð Þ relates the discharge and flow depth disturbances at the downstream end of the nonuni-

form channel with the disturbances at the upstream end. Equation (23) can be rewritten as a system of two
equations as follows:
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where c Nð Þ
c;lr sð Þ are the components of matrix c Nð Þ

c sð Þ. In the Laplace domain, coefficients c Nð Þ
c;11 sð Þ and c Nð Þ

c;12 sð Þ
represent the discharge response at the downstream end of the channel due to the discharge and flow
depth unit impulses, respectively, at the upstream end of the channel. Similarly, coefficients c Nð Þ

c;21 sð Þ and
c Nð Þ

c;22 sð Þ represent the flow depth response at the downstream end of the channel due to the discharge and
flow depth unit impulses, respectively, at the upstream end of the channel.

3.2. Downstream Boundary Condition and Impulse Response at the End of the Channel
The use of equation (23) requires the specification of both discharge and flow depth at the upstream end of
the channel. When a downstream boundary condition is available, matrix c Nð Þ

c sð Þ can be modified in order
to incorporate this additional knowledge and reduce the information needed upstream. The ability to take
into account downstream boundary conditions, such as gates, orifices, and weirs, is required for the repre-
sentativeness and the physical congruency of the calculations [Cozzolino et al., 2014a, 2014b], but this prob-
lem is usually underestimated in simplified flow modeling [Cimorelli et al., 2014a]. We assume that a stage-
discharge relationship fB between discharge Q and flow depth h is established at the downstream end of
the channel:

Q Lc; tð Þ5fB h Lc; tð Þ½ �: (25)

The linearization of equation (25) and the successive Laplace transform lead to

Q
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_

N 1; sð Þ; (26)

where

kB5
dfB

dh
hr;N
� �

: (27)

For design or simulation purposes, runoff models are often used to evaluate the discharge entering into a
reach, and this hydrograph is used as upstream boundary condition Q 0; tð Þ of the wave propagation model.
For this reason, it is useful to obtain the analytical expressions of the downstream response for a given
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upstream discharge hydrograph. If Q
_

1 0; sð Þ is the Laplace transform of Q 0; tð Þ, the substitution of equation
(26) into equation (24) and the elimination of h

_

1 0; sð Þ leads after some algebra to
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Q sð Þ are defined as

f̂
Nð Þ

Q sð Þ5 kB
kc Nð Þ

c sð Þk
kBc

Nð Þ
c;22 sð Þ2c Nð Þ

c;12 sð Þ
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Functions f̂
Nð Þ

Q sð Þ and ĝ Nð Þ
Q sð Þ are the Laplace-domain transfer functions at the downstream end of the non-

uniform linear diffusive channel in terms of discharge and flow depth variations, respectively, when a
discharge-hydrograph is assumed as the upstream boundary condition. The formulas for the calculation of
real and imaginary parts of the Laplace-domain transfer functions f̂

Nð Þ
Q sð Þ and ĝ Nð Þ

Q sð Þ are presented in
Appendix B.

Usually, discharge measurements in rivers are obtained indirectly from flow depth measurements. For this
reason, the ability of routing an upstream stage hydrograph h 0; tð Þ can come in handy in real-time flood
forecasting applications. If h

_

1 0; sð Þ is the Laplace transform of h 0; tð Þ, the substitution of equation (26) into
equation (24) and the elimination of Q
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Functions f̂
Nð Þ

h sð Þ and ĝ Nð Þ
h sð Þ are the Laplace-domain transfer functions at the downstream end of the non-

uniform linear diffusive channel in terms of discharge and flow depth variations, respectively, when a stage
hydrograph is assumed as the upstream boundary condition.

The formulas for the calculation of real and imaginary parts of the Laplace-domain transfer functions f̂
Nð Þ

h sð Þ
and ĝ Nð Þ

h sð Þ are presented in Appendix B.

3.3. Impulse Response at the Interfaces Between Subreaches
In order to obtain the Laplace analytical solution at the intermediate cross sections, we observe that the
inversion of equation (18) and substitution in equation (19) leads to:

Q
_

j21 1; sð Þ

h
_

j21 1; sð Þ

2
4

3
55cj

21 1; sð Þ
Q
_

j 1; sð Þ

h
_

j 1; sð Þ

2
4

3
5: (32)

Repeated application of equation (32) leads to:

Q
_

j 1; sð Þ

h
_

j 1; sð Þ

2
4

3
55

YN

r5j11

cr
21 1; sð Þ

Q
_

N 1; sð Þ

h
_

N 1; sð Þ

2
4

3
5: (33)

In this manner, the general expression of the response at the interface between subreaches Sj and Sj-1 can
be easily found if the Laplace-domain solution Q̂N 1; sð Þ ĥN 1; sð Þ

	 
T
at the end of the channels cascade is

known.

If the discharge-hydrograph Q 0; tð Þ is assigned as upstream boundary condition, the substitution of equa-
tion (28) into equation (33) leads to:
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Q
_

j 1; sð Þ

h
_

j 1; sð Þ

2
4

3
55

f̂
jð Þ

Q sð Þ

ĝ jð Þ
Q sð Þ

2
4

3
5Q

_

1 0; sð Þ: (34)

where

f̂
jð Þ

Q sð Þ

ĝ jð Þ
Q sð Þ

2
4

3
55

YN

r5j11

cr
21 1; sð Þ

f̂
Nð Þ

Q sð Þ

ĝ Nð Þ
Q sð Þ

2
4

3
5; j51; 2; :::;N21: (35)

Functions f̂
jð Þ

Q sð Þ and ĝ jð Þ
Q sð Þ are the Laplace-domain transfer functions at the boundary between subreaches

Sj and Sj11 in terms of discharge and flow depth variations, respectively, when a discharge-hydrograph is
assumed as the upstream boundary condition.

Conversely, if the stage hydrograph h 0; tð Þ is assigned as the upstream boundary condition, then substitu-
tion of equation (30) into equation (33) leads to:

Q
_

j 1; sð Þ

h
_

j 1; sð Þ

2
4

3
55

f̂
jð Þ

h sð Þ

ĝ jð Þ
h sð Þ

2
4

3
5 ĥ1 0; sð Þ: (36)

where

f̂
jð Þ

h sð Þ

ĝ jð Þ
h sð Þ

2
4

3
55

YN

r5j11

cr
21 1; sð Þ

f̂
Nð Þ

h sð Þ

ĝ Nð Þ
h sð Þ

2
4

3
5; j51; 2; :::;N21: (37)

Functions f̂
jð Þ

h sð Þ and ĝ jð Þ
h sð Þ are the Laplace-domain transfer functions at the boundary between subreaches

Sj and Sj11 in terms of discharge and flow depth variations, respectively, when a stage hydrograph is
assumed as the upstream boundary condition.

The calculation of transfer functions f̂
jð Þ

Q sð Þ, ĝ jð Þ
Q sð Þ, f̂

jð Þ
h sð Þ, and ĝ jð Þ

h sð Þ can be accomplished by exploiting a
recursion property, as discussed in Appendix C.

3.4. Unit-Step Response in the Laplace Domain
In practical applications, realistic input hydrographs are often approximated as a sequence of rectangular
pulses, and this prompts the derivation of unit-step response of the nonuniform channel. If y(t) is the time-
domain response of a generic linear system to the unit impulse, the corresponding unit-step response Y(t)
is defined as the primitive of y(t). The Laplace-domain image Ŷ sð Þ of Y(t) can be readily obtained from the
Laplace transform ŷ sð Þ of y(t) by exploiting the following property:

Ŷ sð Þ5L Y tð Þ½ �5L
ðt

0

y sð Þds

2
4

3
55

1
s

ŷ sð Þ: (38)

Let F̂
jð Þ

Q sð Þ and Ĝ
jð Þ

Q sð Þ be the Laplace-domain unit-step responses corresponding to the transfer functions
f̂

jð Þ
Q sð Þ and ĝ jð Þ

Q sð Þ (j 5 1,2,. . .,N), and F̂
jð Þ

h sð Þ and Ĝ
jð Þ

h sð Þ be the Laplace-domain unit-step responses corre-
sponding to the transfer functions f̂

jð Þ
h sð Þ and ĝ jð Þ

h sð Þ (j 5 1,2,. . .,N). The real and imaginary parts of these
unit-step functions are immediately calculated from the real and imaginary parts of the corresponding
transfer functions, as presented in Appendix D.

4. Description of the Flood Routing Algorithm

Consider a generic linear hydrologic system whose time-domain unit-step response is the function Y(t),
characterized by Y(t) 5 0 for t� 0. Starting from t 5 0, the system is solicited by the input function I(t), and
this is approximated by a sequence of rectangular pulses Ik (k 5 1, 2, . . .) of length Dt, where

Ik5
1
Dt

ðkDt

k21ð ÞDt
I sð Þds; (39)

is the average value of the input function during the kth time interval. The output O(tn) of the system at the
generic time level tn 5 nDt can be approximated by means of the following summation [Chow et al., 1988]:
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O tnð Þ5
Xn

k51

Ik Y n2k11ð ÞDt½ �2Y n2kð ÞDt½ �f g: (40)

This formula is the basis of the ILTDFR algorithm, as it will be shown in the next subsections.

4.1. Approximation of Time-Domain Unit-Step Responses in the Time Domain
The use of equation (40) requires the availability of the time-domain unit-step responses

F jð Þ
Q tð Þ5L21 F̂

jð Þ
Q sð Þ

h i
, G jð Þ

Q tð Þ5L21 Ĝ
jð Þ

Q sð Þ
h i

, F jð Þ
h tð Þ5L21 F̂

jð Þ
h sð Þ

h i
, and G jð Þ

h tð Þ5L21 Ĝ
jð Þ

h sð Þ
h i

, where L21[•] is the

inverse Laplace Transform operator. The time-domain analytic responses can be easily calculated for the
channel cascade with N 5 1 [Cimorelli et al., 2014a]. However, it is hard to calculate the analytical unit-step
response in the time domain for the case N� 2, and the Crump algorithm [Crump, 1976] can be used in
order to obtain a numerical approximation.

In order to evaluate at time t 2 0; tmax½ � the Inverse Laplace Transform Y(t) of a Laplace-domain function Ŷ sð Þ,
the Crump algorithm employs the following Fourier Series approximation of the Laplace Inversion integral

Y tð Þ ffi eat

T
Ac

Xm

r50

Re Ŷ srð Þ
	 


cos
rp
T

t
� �

2Im Ŷ srð Þ
	 


sin
rp
T

t
� �n o

; (41)

where Ac 5 1=2 if k 5 0, while Ac 5 1 otherwise, sr5a1irp=T , and i is the imaginary unit. Parameters a and T
can be evaluated as T51:6tmax and a5ln E’ð Þ=2T , where tmax denotes the simulation length and E0 is the
maximum relative error [Cohen, 2007]. The number of addends m of the summation is an odd positive inte-
ger, and increasing values of m lead to greater accuracy of the approximate formula. The epsilon algorithm
[Wynn, 1962] is employed to accelerate the convergence of the summation.

4.2. ILTDFR Main Steps
In order to fix the ideas, let us suppose that the upstream boundary condition consists of the discharge
hydrograph Q0(0,t), and that the flow characteristics along the nonuniform linear channel are desired during
the simulation interval of duration tmax. The ILTDFR algorithm consists of the following steps:

1. The time interval tmax is subdivided into M subintervals of uniform length Dt, with tmax 5 MDt. The aver-
age value Q0,k of the input discharge during the kth time step is calculated by means of equation (39),
where I(t) 5 Q0(0,t).

2. The nonuniform channel is subdivided in N subreaches, in which local geometric and reference flow char-
acteristics, Lj, Qr,j, hr,j, @J=@hð Þr and @J=@Qð Þr , and Br,j, are assumed. The corresponding local parameters
Pej , sj, and bj are calculated starting from these local characteristics.

3. The period T51:6tmax and constant a5ln E’ð Þ=2T , where E0 is the admissible relative error, are defined.
The components of the complex variable sr5a1irp=T are calculated for r 5 0, 1, 2,. . ., m, where m is the
number of the addends used for Crump’s summation.

4. The components of the local matrix cj 1; srð Þ can be calculated using equation (16) for r 5 0, 1, 2, . . ., m
and j 51, 2,. . ., N. The algorithm described in Appendix A is used to calculate the components of matrix
c Nð Þ

c sð Þ defined by equation (21) with j 5 N, for s 5 sr (r 5 0, 1, 2,. . ., m).

5. The formulas contained in Appendix B are used to calculate the components of the Laplace-domain
transfer functions f̂

Nð Þ
Q sð Þ and ĝ Nð Þ

Q sð Þ defined by equation (29), for s 5 sr (r 5 0, 1, 2,. . ., m). The formulas
contained in Appendix C are used to calculate f̂

jð Þ
Q sð Þ and ĝ jð Þ

Q sð Þ defined by equation (35), for s 5 sr (r 5 0,
1, 2,. . ., m) and for j 5 1, 2,. . ., N.

6. Once f̂
jð Þ

Q sð Þ and ĝ jð Þ
Q sð Þ are known, the Laplace-domain unit-step responses F̂

jð Þ
Q sð Þ and Ĝ

jð Þ
Q sð Þ are calcu-

lated using the formulas of Appendix D, for s 5 sr (r 5 0, 1, 2,. . ., m) and for j 5 1, 2,. . ., N 2 1.

7. Equation (41), where the position Ŷ sð Þ5F̂
jð Þ

Q sð Þ is made, is used to evaluate the time-domain unit-step
response F jð Þ

Q tð Þ5Y tð Þ at the time levels t 5 tk, with tk 5 kDt (k 5 0, 1, 2, . . ., M). In the same manner, an
approximation of the unit-step response G jð Þ

Q tð Þ at the same time levels is evaluated from Ĝ
jð Þ

Q sð Þ.

8. For each time level tn 5 nDt (n 5 1, 2,. . ., M), the discharge at the downstream end of the subreach Sj

(j 5 1, 2,. . ., N) is evaluated by means of
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Q xj; nDt
� �

5
Xn

k51

Q0;k F jð Þ
Q n2k11ð ÞDt½ �2F jð Þ

Q n2kð ÞDt½ �
n o

; (42)

while the flow depth is evaluated by means of

h xj; nDt
� �

5
Xn

k51

Q0;k G jð Þ
Q n2k11ð ÞDt½ �2G jð Þ

Q n2kð ÞDt½ �
n o

: (43)

When a stage hydrograph h(0,t) is available as the upstream boundary condition, the procedure is substan-
tially unaltered, but equations (42) and (43) are substituted by

Q xj; nDt
� �

5
Xn

k51

h0;k F jð Þ
h n2k11ð ÞDt½ �2F jð Þ

h n2kð ÞDt½ �
n o

; (44)

and

h xj ; nDt
� �

5
Xn

k51

h0;k G jð Þ
h n2k11ð ÞDt½ �2G jð Þ

h n2kð ÞDt½ �
n o

: (45)

In equations (44) and (45), h0,k is the average value of the input flow depth during the kth time step, and
the time-domain unit-step responses F jð Þ

Q tð Þ and G jð Þ
Q tð Þ are evaluated starting from the Laplace-domain

impulse responses f̂
jð Þ

h sð Þ and ĝ jð Þ
h sð Þ.

Note that the procedure described allows to supply the output of the system at a given time level without
making use of the knowledge about the system state at the preceding instants. For this reason, the algo-
rithm is unconditionally stable. Moreover, following the approach used by Litrico and Fromion [2004], it is
possible to see that the algorithm proposed converges to the solution of the Linear PA with variable coeffi-
cients of equation (5), and it is first-order accurate in time and space.

5. Model Testing

In the present section, the model described in the preceding sections is tested considering two synthetic
benchmarks and the results of two laboratory experiments.

5.1. Step-Response in the Linear Channel With Uniform Characteristics
The idea of the present test is to compare the solution of ILTDFR, which solves the linear PA equations, with
an analytical benchmark for the same equations, taking into account the downstream boundary conditions.
A natural and objective candidate for such a comparison is the unit-step response, supplied in Cimorelli
et al. [2014a] for the uniform linear channel.

The test consists of a rectangular prismatic channel controlled by a weir at the downstream end, and its
geometric characteristics are summarized as follows: Lc 5 10,000 m, B 5 50 m, S0 5 0.0002 m/m. The refer-
ence discharge is Qr 5 50 m3/s, and the reference flow depth hr is the uniform flow depth corresponding to
Qr by means of the Manning formula with friction coefficient nM 5 0.025 m21/3s, while all the model param-
eters have been computed with respect to Qr and hr.

The downstream boundary condition is modeled through the weir equation:

Q5lw Bw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g h2hwð Þ3

q
; (46)

where lw 5 0.40 is the discharge coefficient; Bw 5 B is the width of the weir; and hw 5 2 m is the weir height.

The step responses at the middle of the channel in terms of discharge deviation Q0 and flow depth devia-
tion h0 are calculated considering a unit-step discharge hydrograph imposed upstream, and N 5 2 sub-
reaches of equal length. The results, obtained considering m 5 49 addends of Crump’s summation and
Dt 5 100 s, are plotted in Figure 2. Inspection of the figure shows that Crump’s algorithm supplies values of
the unit-step responses that are in accordance with the expected analytical solutions.

A more objective examination can be made considering Table 1, where absolute errors of the unit-step
responses are summarized for different time instants. Inspection of the table shows that the order of
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magnitude of the error in terms of Q0 is between 1�3 1025 and 1�3 1026 for this test-case, becoming stable
for long t. Interestingly, the error in terms of h0 is even smaller. The exercise is repeated for N 5 4, 6, and 8,
showing that the order of magnitude of the error does not change significantly with the number of sub-
reaches, as shown in Table 1, and the trend of error is conserved.

From this test, it can be concluded that the idea of obtaining numerically the inverse Laplace transform of
the unit-step responses supplies results that are sufficient for practical applications.

5.2. Comparison With a Nonuniform Reference Solution
The objective of the present test is to verify the ability of the ILTDFR model to converge to the solution of
equation (5) with the first order of accuracy in time and space. The study case consists of a nonprismatic
channel of length Lc 5 10,000 m, longitudinal slope S0 5 0.0005 m/m, and rectangular cross section whose
width varies linearly along the channel:

Bs xð Þ5501 10=Lð Þ � L2xð Þ: (47)

A weir is present at the downstream end of the channel, and the corresponding boundary condition is
described by equation (46) with hw 5 2 m, mw 5 0.4, and Bw 5 50 m. The nonuniform reference condition is
represented by the backwater curve corresponding to constant discharge Q0 5 100 m3/s, where the friction
slope is calculated using Manning’s formula with roughness coefficient nM 5 0.02 s m21/3. This condition is
used to calculate along the channel the nonuniform coefficients appearing in equation (5). The upstream
boundary condition is represented by the following inflow hydrograph

Q’ð0; tÞ5Q’p
t

Tp
exp 12

t
Tp

� �
; (48)

where Q0p 5 200 m3/s and Tp 5 7200 s. Since it is hard to obtain the analytical solution of equation (5) when
the coefficients are variable, a four point Preissmann finite difference scheme has been used in order to

Figure 2. Comparison between analytical step responses (dots) and ILTDFR (lines) in terms of both discharge and flow depth variations.

Table 1. Uniform Channel Testa

N 2 4 6 8

t (s) Err Q0 Err h0 Err Q0 Err h0 Err Q0 Err h0 Err Q0 Err h0

100 5.08E-06 1.79E-08 5.08E-06 2.81E-09 2.90E-06 1.33E-08 2.90E-06 1.33E-08
200 7.44E-06 3.18E-08 2.40E-05 9.55E-08 3.87E-06 8.11E-09 3.87E-06 8.11E-09
500 2.59E-05 1.53E-08 2.64E-05 1.13E-08 1.63E-06 1.28E-08 1.63E-06 1.28E-08
1,000 8.31E-07 1.19E-08 1.49E-06 1.20E-08 9.96E-07 1.29E-08 9.96E-07 1.29E-08
2,000 1.00E-06 1.29E-08 1.00E-06 1.29E-08 9.99E-07 1.29E-08 9.99E-07 1.29E-08
5,000 1.00E-06 1.29E-08 1.00E-06 1.29E-08 9.99E-07 1.29E-08 9.99E-07 1.29E-08
10,000 1.00E-06 1.29E-08 1.00E-06 1.29E-08 1.00E-06 1.29E-08 1.00E-06 1.29E-08
20,000 1.00E-06 1.29E-08 1.00E-06 1.30E-08 1.06E-06 1.29E-08 1.06E-06 1.29E-08

aAbsolute errors at the middle of the channel.
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produce a reference solution at time t 5 10,000 s, considering a ultrafine grid with Dx 5 0.5 m and
Dt 5 0.01 s. The corresponding solution is represented in Figure 3, with reference to the discharge flow
depth variations Q0 and h0.

The solution of the problem is then computed at t 5 10,000 s making use of the ILTDFR model, with N 5 80
subreaches of uniform length Li 5 125 m, and a time step Dt 5 25 s. In each element of the channel cascade,
the reference parameters are calculated averaging the corresponding quantities evaluated with reference
to the initial backwater curve at the ends of each subreach. Results of the ILTDFR computations are reported
in Figure 3 in terms of flow rate Q0 and water depth h0 disturbances, and the inspection of the figure shows
that the solution provided by the ILTDFR exhibits a very good match with the solution obtained with the
finite difference scheme.

Application of ILTDFR is repeated with different time steps and subreach lengths, but keeping the ratio Dt/
Li constant, and for each of these cases, the L1-norm of the error is calculated with respect to the reference
solution. These errors are reported in Table 2, confirming that the order of accuracy of the algorithm is the
first.

5.3. Comparison With the Results of Laboratory Tests
In this test, results of the numerical model are compared with the experimental data obtained for the case
of flow propagation in a compound channel [Rashid and Chaudhry, 1995]. The experimental setup consisted
of a rectangular flume 21 m long, bf 5 0.93 m wide, and H 5 0.56 m deep, with uniform longitudinal bed
slope S0 5 0.0021. The dimensions of the compound cross section were (see Figure 4): bm 5 0.31 m,
Hm 5 0.20 m, and bf 5 0.93 m. The Manning nM value was dependent on the flow depth, h, as follows: 0.013
for h� 0.23 m, 0.016 for 0.23< h� 0.26 m, 0.018 for 0.26< h� 0.29 m, 0.016 for 0.29< h� 0.32 m, and
0.015 for h> 0.32 m. Nine gauging stations were located along the channel at different distances from the
inlet, as reported in Table 3. An inclined sluice gate (whose sill position coincides with Station 9) was pres-
ent at the downstream end of the laboratory flume, and the corresponding boundary condition was
expressed as

Figure 3. Comparison between finite difference solution (dots) and ILTDFR (lines) in terms of both discharge and flow depth variations at time t 5 10,000 s.

Table 2. Convergence Testa

Li (m) Dt (s)

L1(Q0) (m3/s) L1(h0) (m)

Error Order Error Order

2000 400 2.36 0.0784
1000 200 1.01 1.22 0.0464 0.758
500 100 0.449 1.17 0.0255 0.865
250 50 0.196 1.20 0.0135 0.915
125 25 0.0919 1.09 0.00697 0.955

aL1-norms of the error.
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Q5CHm; (49)

in which Q and H are the discharge
and the flow depth over the gate,
respectively, and the two con-
stants, C 5 9.35 and m 5 1.14, were
determined by Rashid and
Chaudhry [1995] by a regression of
experimental values of the pairs (H,
Q). The initial conditions were rep-
resented by a steady state back-
water curve, reported in Rashid and
Chaudhry [1995].

In Rashid and Chaudhry [1995], two
experiments are reported. In Test 1,
the flow occupies the entire com-
pound cross section, while in Test 2

the flow is contained into the central rectangular channel. In order to compare the results of ILTDFR with
the laboratory results, the stage hydrograph at Station 1 is taken as the upstream boundary condition of
the channel, whose downstream end is taken at the Station 9: from Table 3 it is clear that the actual opera-
tive length of the channel is Lc 5 18.6 m.

The linear PA model is not able to take into account the nonlinearities of flow, whose effect is prevailing if
long time steps and finite variations of the flow variables are considered. In order to take into account the
nonlinearities of the flow in an approximate way, an acceptable strategy is to consider a reference state
whose flow characteristics are intermediate between the initial and final flow conditions. In this sense, the
reference values of discharge and water depth used to evaluate the local state transition matrices cj x�j ; s

� �
are not those corresponding to the initial steady flow. However, the final flow conditions are not known
and a way to obtain a first estimate of the final flow condition is used first in the following simple calibration
procedure:

1. Given the upstream stage hydrograph, the initial steady state backwater curve, and the downstream
boundary condition, the upstream rating curve is derived through by a first application of ILTDFR, so that
an estimate of the variation intervals for both discharge and flow depth is obtained.

2. An intermediate flow depth value (0.26 and 0.168 m for experiments 1 and 2, respectively) between the
maximum and minimum flow depths derived in step 1 is chosen and the corresponding discharge (0.09
and 0.06 m3/s for experiments 1 and 2, respectively) is fixed, while at the downstream end of the channel,
the flow depth corresponding to the above mentioned discharge is evaluated with equation (49).

3. A linear variation of the flow depth between the upstream and downstream ends of the channel is
assumed as reference state, and all the model parameters are evaluated with respect to this linear back-
water curve.

The time step for the numeric calculations is
equal to Dt 5 10 s, while the channel is discre-
tized making use of eight subchannels, whose
length is equal to the distance between two
adjacent gauging stations (see Table 3). The
results of ILTDFR are compared in Figure 5
with the laboratory results corresponding to
Stations 2 and 5. The same numerical tests are
tackled in Rashid and Chaudhry [1995], where
the full DSVEs are solved, and in Perumal et al.
[2007, 2009], where two models derived from
the MC model are used, and the correspond-
ing results are reported in Figure 5 as well.

Figure 4. Rashid and Chaudhry [1995] experiment compound cross section.

Table 3. Laboratory Test by Rashid and Chaudhry [1995]a

Gauging Station
Distance From

the Inlet (m) x (m) Notes

1 1.22 0 Upstream boundary
2 3.35 2.13
3 6.09 4.87
4 7.61 6.39
5 11.3 10.1
6 15.2 14.0
7 16.8 15.5
8 18.9 17.7
9 19.8 18.6 Inclined gate sill

aPosition of the gauges.
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With reference to Station 2 in Test1 and Test 2, and Station 5 in Test 2, it is apparent that the laboratory
results are reasonably reproduced by ILTDFR. In particular, the peak flow depth and the arrival time of the
wave seem to be captured with precision sufficient for practical applications. In line of principle, better
results could have been obtained by ILTDFR as a linear component of a multilinear approach, but this goes
beyond the scope of the present work.

The results for Station 5 during the Test 1 are not satisfactorily reproduced by ILTDFR, and this can be
explained considering that the shear stress between the flow in the floodplain and the flow in the central
channel is not taken into account by the model [see Rashid and Chaudhry, 1995]. Interestingly, this issue is
shared by the numerical models presented in Rashid and Chaudhry [1995] and in Perumal et al. [2007, 2009].
In particular, the unsatisfactory results supplied by the full DSVEs model give an indirect confirmation about
the fact that the linear nature of ILTDFR is not the cause of the discrepancies with the laboratory results.

In both the tests considered, Station 5 is close to the downstream end of the channel, and then the ability
to capture the results at this station is an indirect confirmation of the ability of the numerical models to
incorporate the boundary condition. The models by Perumal et al. [2007, 2009] are derived from the MC
model, which is intrinsically unable to take into account the effects of the downstream boundary condition,
because it is based on the Kinematic Wave approximation. Not surprisingly, ILTDFR behaves significantly
better than these two models at Gauge 5, and its results are comparable to those supplied by the numerical
model of Rashid and Chaudhry [1995], where the full DSVEs are solved.

In order to show the sensitivity of the model to the choice of the parameter, results of the simulation per-
formed using both the initial conditions and the intermediate conditions as reference state are reported in
Figure 6.

Inspection of Figure 6 shows that the flow depth at Station 5 is underestimated using the initial conditions
as reference state, while it is reasonably reproduced at Station 2. Therefore, at least in this case, the initial

Figure 5. Comparison of ILTDFR with experimental data and numerical results obtained by Rashid and Chaudhry [1995] and Perumal et al. [2007, 2009].

Water Resources Research 10.1002/2014WR016192

CIMORELLI ET AL. FREQUENCY DOMAIN ANALYTICAL SOLUTION FOR FLOOD ROUTING 2406



conditions can be used as reference state in order to estimate the rating curve at the most upstream cross
section. This has been done in the calibration procedure reported above.

6. Conclusions

Despite the computational power provided by the modern computers, simplified flow routing models are
still widespread for real-time flood forecasting, operational management, and optimal design of hydraulic
infrastructures. In this paper, it is shown how the solution of a linear Parabolic Approximation of the full De
Saint Venant Equations in nonuniform channels can be approximated by a cascade of linear uniform flow
diffusive channels. With reference to this approach, it is possible to construct a new flow routing model,
based on the numerical inversion to the time domain of a Laplace-domain analytical solution of a diffusive
channels cascade. This new Inverse Laplace Transform Diffusive Flood Routing (ILTDFR) model exhibits
many favorable characteristics: the algorithm is unconditionally stable with respect to time discretization,
and then very fast computations are allowed if long time steps are chosen; the cascade of uniform
channels accounts for nonuniform channel geometry and hydraulic conditions in nonprismatic channels;
the discharge and flow depth are computed simultaneously, and then the conservation of the variables is
ensured; both stage hydrograph or discharge hydrograph boundary conditions can be imposed upstream;
the model can be easily extended in order to take into account nonlinearities by adopting a multilinear
approach. The numerical experiments show that the numerical approach is first-order accurate in time and
space, and that the laboratory results about the propagation of flow in realistic channels are reasonably
reproduced.

In line of principle, the cascade of linear diffusive channels used in the present work can be exploited to
take into account distributed and concentrated lateral inflows and outflows, and the appropriate assem-
bling of the state-transition matrices can take into account junctions. These features can allow the applica-
tion of the model to complex large channel networks, and this is the objective of ongoing research.

Figure 6. Comparison of the results obtained with ILTDFR using the initial flow conditions and the intermediate flow conditions as reference state.
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Appendix A

Exploiting the recursion property of the nonuniform state transition matrix, the real and imaginary parts of
the components of c jð Þ

c 1; sð Þ are calculated as

Re c jð Þ
c;11 sð Þ

h i
5Re cj;11 1; sð Þ

	 

Re c j21ð Þ

c;11 sð Þ
h i

2Im cj;11 1; sð Þ
	 


Im c j21ð Þ
c;11 sð Þ

h i

1Re cj;12 1; sð Þ
	 


Re c j21ð Þ
c;21 sð Þ

h i
2Im cj;12 1; sð Þ

	 

Im c j21ð Þ

c;21 sð Þ
h i

;

(A1)

Im c jð Þ
c;11 1; sð Þ

h i
5Im cj;11 1; sð Þ

	 

Re c j21ð Þ

c;11 sð Þ
h i

1Re cj;11 1; sð Þ
	 


Im c j21ð Þ
c;11 sð Þ

h i

1Im cj;12 1; sð Þ
	 


Re c j21ð Þ
c;21 sð Þ

h i
1Re cj;12 1; sð Þ

	 

Im c j21ð Þ

c;21 sð Þ
h i

;

(A2)

Re c jð Þ
c;12 1; sð Þ

h i
5Re cj;11 1; sð Þ

	 

Re c j21ð Þ

c;12 sð Þ
h i

2Im cj;11 1; sð Þ
	 


Im c j21ð Þ
c;12 sð Þ

h i

1Re cj;12 1; sð Þ
	 


Re c j21ð Þ
c;22 sð Þ

h i
2Im cj;12 1; sð Þ

	 

Im c j21ð Þ

c;22 sð Þ
h i

;

(A3)

Im c jð Þ
c;12 1; sð Þ

h i
5Im cj;11 1; sð Þ

	 

Re c j21ð Þ

c;12 sð Þ
h i

1Re cj;11 1; sð Þ
	 


Im c j21ð Þ
c;12 sð Þ

h i

1Im cj;12 1; sð Þ
	 


Re c j21ð Þ
c;22 sð Þ

h i
1Re cj;12 1; sð Þ

	 

Im c j21ð Þ

c;22 sð Þ
h i

;

(A4)

Re c jð Þ
c;21 1; sð Þ

h i
5Re cj;21 1; sð Þ

	 

Re c j21ð Þ

c;11 sð Þ
h i

2Im cj;21 1; sð Þ
	 


Im c j21ð Þ
c;11 sð Þ

h i

1Re cj;22 1; sð Þ
	 


Re c j21ð Þ
c;21 sð Þ

h i
2Im cj;22 1; sð Þ

	 

Im c j21ð Þ

c;21 sð Þ
h i

;

(A5)

Im c jð Þ
c;21 1; sð Þ

h i
5Im cj;21 1; sð Þ

	 

Re c j21ð Þ

c;11 sð Þ
h i

1Re cj;21 1; sð Þ
	 


Im c j21ð Þ
c;11 sð Þ

h i

1Im cj;22 1; sð Þ
	 


Re c j21ð Þ
c;21 sð Þ

h i
1Re cj;22 1; sð Þ

	 

Im c j21ð Þ

c;21 sð Þ
h i

;

(A6)

Re c jð Þ
c;22 1; sð Þ

h i
5Re cj;21 1; sð Þ

	 

Re c jk21ð Þ

c;12 sð Þ
h i

2Im cj;21 1; sð Þ
	 


Im c j21ð Þ
c;12 sð Þ

h i

1Re cj;22 1; sð Þ
	 


Re c j21ð Þ
c;22 sð Þ

h i
2Im cj;22 1; sð Þ

	 

Im c j21ð Þ

c;22 sð Þ
h i

;

(A7)

Im c jð Þ
c;22 1; sð Þ

h i
5Im cj;21 1; sð Þ

	 

Re c j21ð Þ

c;12 sð Þ
h i

1Re cj;21 1; sð Þ
	 


Im c j21ð Þ
c;12 sð Þ

h i

1Im cj;22 1; sð Þ
	 


Re c j21ð Þ
c;22 sð Þ

h i
1Re cj;22 1; sð Þ

	 

Im c j21ð Þ

c;22 sð Þ
h i

:

(A8)

Appendix B

Following the definition of equation (29), the real and imaginary parts of the transfer function f̂
Nð Þ

Q sð Þ can be
calculated if the real and imaginary parts of the components of matrix c Nð Þ

c sð Þ are known (see Appendix A).
It is easy to show by means of elementary complex algebra that

Re f̂
Nð Þ

Q sð Þ
h i

5kB
u1;Qu2;Q1h1;Qh2;Q

u2;Q
21h2;Q

2 ; Im f̂
Nð Þ

Q sð Þ
h i

5kB
h1;Qu2;Q2u1;Qh2;Q

u2;Q
21h2;Q

2 ; (B1)

where

u1;Q5Re c Nð Þ
c;11 sð Þ

h i
Re c Nð Þ

c;22 sð Þ
h i

2Im c Nð Þ
c;11 sð Þ

h i
Im c Nð Þ

c;22 sð Þ
h i

2Re c Nð Þ
c;12 sð Þ

h i
Re c Nð Þ

c;21 sð Þ
h i

1Im c Nð Þ
c;12 sð Þ

h i
Im c Nð Þ

c;21 sð Þ
h i

h1;Q5Im c Nð Þ
c;11 sð Þ

h i
Re c Nð Þ

c;22 sð Þ
h i

2Re c Nð Þ
c;11 sð Þ

h i
Im c Nð Þ

c;22 sð Þ
h i

2Re c Nð Þ
c;12 sð Þ

h i
Im c Nð Þ

c;21 sð Þ
h i

2Im c Nð Þ
c;12 sð Þ

h i
Re c Nð Þ

c;21 sð Þ
h i

;

u2;Q5kBRe c Nð Þ
c;22 sð Þ

h i
2Re c Nð Þ

c;12 sð Þ
h i

h2;Q5kBIm c Nð Þ
c;22 sð Þ

h i
2Im c Nð Þ

c;12 sð Þ
h i

(B2)

The real and imaginary parts of the transfer function ĝ Nð Þ
Q sð Þ are easily obtained as
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Re ĝ Nð Þ
Q sð Þ

h i
5

1
kB

Re f̂
Nð Þ

Q sð Þ
h i

; Im ĝ Nð Þ
Q sð Þ

h i
5

1
kB

Im f̂
Nð Þ

Q sð Þ
h i

: (B3)

Similarly, it is simple to verify that

Re f̂
Nð Þ

h sð Þ
h i

5kB
u1;hu2;h1h1;hh2;h

u2;h
21h2;h

2
; Im f̂

Nð Þ
h sð Þ

h i
5kB

h1;hu2;h2u1;hh2;h

u2;h
21h2;h

2 ; (B4)

where

u1;h5u1;Q

h1;h5h1;Q

u2;h5Re c Nð Þ
c;11 sð Þ

h i
2kBRe c Nð Þ

c;21 sð Þ
h i

h2;h5Im c Nð Þ
c;11 sð Þ

h i
2kBIm c Nð Þ

c;21 sð Þ
h i

:

(B5)

The real and imaginary parts of the transfer function ĝ Nð Þ
h sð Þ are easily obtained as

Re ĝ Nð Þ
h sð Þ

h i
5

1
kB

Re f̂
Nð Þ

h sð Þ
h i

; Im ĝ Nð Þ
h sð Þ

h i
5

1
kB

Im f̂
Nð Þ

h sð Þ
h i

: (B6)

Appendix C

Following the definition of equation (37), the transfer functions f̂
jð Þ

Q sð Þ and ĝ jð Þ
Q sð Þ can be immediately calcu-

lated if the transfer functions f̂
j11ð Þ

Q sð Þ and ĝ j11ð Þ
Q sð Þ are known:

f̂
jð Þ

Q sð Þ

ĝ jð Þ
Q sð Þ

2
4

3
55cj11

21 1; sð Þ
f̂

j11ð Þ
Q sð Þ

ĝ 11ð Þ
Q sð Þ

2
4

3
5; j51; 2; :::;N21: (C1)

The real and imaginary parts of f̂
jð Þ

Q sð Þ and ĝ jð Þ
Q sð Þ are then expressed by:

Re f̂
jð Þ

Q sð Þ
h i

5e2Pej11 Re cj11;22 1; sð Þ
	 


Re f̂
j11ð Þ

Q sð Þ
h i

2Im cj11;22 1; sð Þ
	 


Im f̂
j11ð Þ

Q sð Þ
h i� �

2e2Pej11 Re cj11;12 1; sð Þ
	 


Re ĝ j11ð Þ
Q sð Þ

h i
2Im cj11;12 1; sð Þ

	 

Im ĝ j11ð Þ

Q sð Þ
h i� �

Im f̂
jð Þ

Q sð Þ
h i

5e2Pej11 Re cj11;22 1; sð Þ
	 


Im f̂
j11ð Þ

Q sð Þ
h i

1Im cj11;22 1; sð Þ
	 


Re f̂
j11ð Þ

Q sð Þ
h i� �

2e2Pej11 Re cj11;12 1; sð Þ
	 


Im ĝ j11ð Þ
Q sð Þ

h i
1Im cj11;12 1; sð Þ

	 

Re ĝ j11ð Þ

Q sð Þ
h i� �

Re ĝ jð Þ
Q sð Þ

h i
52e2Pej11 Re cj11;21 1; sð Þ

	 

Re f̂

j11ð Þ
Q sð Þ

h i
2Im cj11;21 1; sð Þ

	 

Im f̂

j11ð Þ
Q sð Þ

h i� �

1e2Pej11 Re cj11;11 1; sð Þ
	 


Re ĝ j11ð Þ
Q sð Þ

h i
2Im cj11;11 1; sð Þ

	 

Im ĝ j11ð Þ

Q sð Þ
h i� �

Im ĝ jð Þ
Q sð Þ

h i
52e2Pej11 Re cj11;21 1; sð Þ

	 

Im f̂

j11ð Þ
Q sð Þ

h i
1Im cj11;21 1; sð Þ

	 

Re f̂

j11ð Þ
Q sð Þ

h i� �

1e2Pej11 Re cj11;11 1; sð Þ
	 


Im ĝ j11ð Þ
Q sð Þ

h i
1Im cj11;11 1; sð Þ

	 

Re ĝ j11ð Þ

Q sð Þ
h i� �

:

(C2)

Exploiting the same recursion property, it is possible to show that the real and imaginary parts of f̂
jð Þ

h sð Þ and
ĝ jð Þ

h sð Þ are then expressed by:
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Re f̂
jð Þ

h sð Þ
h i

5e2Pej11 Re cj11;22 1; sð Þ
	 


Re f̂
j11ð Þ

h sð Þ
h i

2Im cj11;22 1; sð Þ
	 


Im f̂
j11ð Þ

h sð Þ
h i� �

2e2Pej11 Re cj11;12 1; sð Þ
	 


Re ĝ j11ð Þ
h sð Þ

h i
2Im cj11;12 1; sð Þ

	 

Im ĝ j11ð Þ

h sð Þ
h i� �

Im f̂
jð Þ

h sð Þ
h i

5e2Pej11 Re cj11;22 1; sð Þ
	 


Im f̂
j11ð Þ

h sð Þ
h i

1Im cj11;22 1; sð Þ
	 


Re f̂
j11ð Þ

h sð Þ
h i� �

2e2Pej11 Re cj11;12 1; sð Þ
	 


Im ĝ j11ð Þ
h sð Þ

h i
1Im cj11;12 1; sð Þ

	 

Re ĝ j11ð Þ

h sð Þ
h i� �

Re ĝ jð Þ
h sð Þ

h i
52e2Pej11 Re cj11;21 1; sð Þ

	 

Re f̂

j11ð Þ
h sð Þ

h i
2Im cj11;21 1; sð Þ

	 

Im f̂

j11ð Þ
h sð Þ

h i� �

1e2Pej11 Re cj11;11 1; sð Þ
	 


Re ĝ j11ð Þ
h sð Þ

h i
2Im cj11;11 1; sð Þ

	 

Im ĝ j11ð Þ

h sð Þ
h i� �

Im ĝ jð Þ
h sð Þ

h i
52e2Pej11 Re cj11;21 1; sð Þ

	 

Im f̂

j11ð Þ
h sð Þ

h i
1Im cj11;21 1; sð Þ

	 

Re f̂

j11ð Þ
h sð Þ

h i� �

1e2Pej11 Re cj11;11 1; sð Þ
	 


Im ĝ j11ð Þ
h sð Þ

h i
1Im cj11;11 1; sð Þ

	 

Re ĝ j11ð Þ

h sð Þ
h i� �

:

(C3)

Appendix D

The unit-step responses of the nonuniform channel at the end of the subreaches can be calculated as
follows:

Re F̂
jð Þ

Q sð Þ
h i

5 Re f̂
jð Þ

Q sð Þ
h i

a1Im f̂
jð Þ

Q sð Þ
h i

x
� �

= a21x2ð Þ

Im F̂
jð Þ

Q sð Þ
h i

5 Im f̂
jð Þ

Q sð Þ
h i

a2Re f̂
jð Þ

Q sð Þ
h i

x
� �

= a21x2ð Þ

Re Ĝ
jð Þ

Q sð Þ
h i

5 Re ĝ jð Þ
Q sð Þ

h i
a1Im ĝ jð Þ

Q sð Þ
h i

x
� �

= a21x2ð Þ

Im Ĝ
jð Þ

Q sð Þ
h i

5 Im ĝ jð Þ
Q sð Þ

h i
a2Re ĝ jð Þ

Q sð Þ
h i

x
� �

= a21x2ð Þ

Re F̂
jð Þ

h sð Þ
h i

5 Re f̂
jð Þ

h sð Þ
h i

a1Im f̂
jð Þ

h sð Þ
h i

x
� �

= a21x2ð Þ

Im F̂
jð Þ

h sð Þ
h i

5 Im f̂
jð Þ

h sð Þ
h i

a2Re f̂
jð Þ

h sð Þ
h i

x
� �

= a21x2ð Þ

Re Ĝ
jð Þ

h sð Þ
h i

5 Re ĝ jð Þ
h sð Þ

h i
a1Im ĝ jð Þ

h sð Þ
h i

x
� �

= a21x2ð Þ

Im Ĝ
jð Þ

h sð Þ
h i

5 Im ĝ jð Þ
h sð Þ

h i
a2Re ĝ jð Þ

h sð Þ
h i

x
� �

= a21x2ð Þ;

(D1)

where a and x are the real and imaginary parts of s, respectively.
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