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ABSTRACT 

 

Corrosion-induced damage is a major source of deterioration in infrastructure and 

industrial systems such as bridges, offshore and onshore structures, and underground oil 

and gas pipelines. The uncertainty is pervasive in the parameters affecting the evolution 

of corrosion process. Risk assessment and management of corroding structures requires a 

suitable dynamic description of the corrosion process that sufficiently accounts for the 

uncertainty in the initiation and growth of corrosion, and consequently propagates into the 

life-cycle reliability assessment of these systems. The purpose of this research is to 

advance the ability to provide reliable integrity management of structural systems 

subjected to corrosion. Specifically, we present an approach for reliability-based lifecycle 

management of buried pipelines, by mitigating pitting corrosion induced damage using 

optimization under uncertainty framework. A polynomial chaos (PC) random field is 

identified from the stochastic measurements of corrosion growth over time, and 

subsequently employed in a pipeline integrity management strategy to fulfill relevant 

design criteria for a prescribed probability failure. Optimal repair schedules are identified 

by evaluating the expected cost of operation and maintenance under different 

circumstances, considering the inspection intervals and the time of initial repair as design 

variables. The methodology presented in this study will improve the reliability and 

robustness of pipeline corrosion mitigation by integrating uncertainty analysis and 

multidisciplinary optimization, which is also applicable to other deteriorating systems. 
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1. INTRODUCTION 

Addressing the performance of deteriorating structural systems has constantly 

motivated efforts pertaining to their repair, rehabilitation and overall lifecycle 

management. This could include physical condition investigations, or constructing 

empirical models to predict and estimate the state of decay, and consequently 

incorporating the obtained information to analyze the remaining lifetime of these systems, 

while suggesting feasible strategies to restore them to their initial state, either nearly or 

completely [1, 2]. Most of these methods focus on examining structural components, or a 

section, based on which the results can be extrapolated to the entire system.  

Considerable research has dealt with identifying inspection and maintenance 

schedules to prevent premature failure in a variety of structures, such as bridges [3-7] in 

particular, general civil systems [8-11], or mechanical components subjected to 

deterioration by fatigue [12-15]. Corrosion in particular, has evoked academic and 

commercial interest, as evidenced by previous work directed towards concrete structures 

[16, 17] and underground pipelines [18-20]. Due to the uncertainty associated with it, 

modeling corrosion accurately has always been demanding [21, 22]. A significant amount 

of literature in this field has dedicated to pipeline integrity management, specifically 

incorporating long-term damage due to external corrosion. A gradual reduction in 

resistance and loss of material by corrosive processes often leads to higher risks, due to an 

increased probability of failure. Degrading pipelines require regular inspections, repair to 

cover existing damage, or complete replacement in case of failure. This, in turn, 
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significantly increases the cost of operating and maintaining the pipeline. Hence, to 

mitigate the adverse effects associated with failure, effective maintenance policies need to 

be put in place [23]. Accordingly, several reliability-based management programs with 

the aim of inhibiting pipeline corrosion have been recognized and adopted by the 

concerned authorities. 

There are noteworthy examples of work that have addressed multiple aspects 

related to corroding pipelines. Hong evaluated the remaining pipeline strength based on 

corrosion defects, by incorporating the probability of defect detection and uncertainty in 

defect size [24]. Zhou’s work on the optimal design of pipelines, focused on comparing 

different wall thicknesses [25] with the American [26] and Canadian pipeline [27] 

standards, as well as the effect of spatial variability of corrosion defects on system 

reliability [28]. The results showed a strong impact of initial defect size and growth rate 

on pipeline failure, implying that it might be overly conservative to ignore the effect of 

correlation between multiple corrosion defects, and system reliability. However, this study 

incorporated a conservative linear corrosion growth model where the rates at which both, 

the defect depth and length grew, were random but constant with time. Additionally, 

inspections were periodic and at a fixed interval of every 10 years. Much of this work was 

followed up by Gomes et al. [29], wherein a different non-linear growth model was 

considered, and the time interval between inspections was allowed to be a design variable, 

subject to optimization. Further research [30] by the authors involved a polynomial chaos 

representation of corrosion and additional design variables in terms of time to first 

inspection, time between subsequent inspections and thickness of the corrosion wall. A 
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multi-start simplex optimization technique was also employed and contrasted with an 

exhaustive search, to provide a measure of computational efficiency. Results implied that 

thinner pipelines with more inspections were more economical as compared to pipelines 

with thicker walls. Additionally, the objective function, representing the total expected 

cost, was found to be discontinuous, hence global optimization algorithms had to be 

implemented, to obtain an accurate estimate of the minimum cost associated with 

maintaining the pipeline. 

Integrity management policies for pipelines are usually governed by conservative 

corrosion growth rates, which overestimate the extent of damage, resulting in a higher 

number of inspections, and inevitably, a more aggressive maintenance strategy. This study 

addresses that issue by adopting a more accurate polynomial chaos model to capture the 

stochastic aspect of corrosion, considering pitting depth as a random variable, modeled 

over the design life of the pipeline. Another important aspect behind developing an 

optimal maintenance program, is balancing the trade-off between the design and operation 

costs, and the consequences of failure. This research considers the time to first inspection, 

as well as the time interval between successive inspections to be design variables, which 

are then incorporated in the optimization process to yield a minimum cost. A degree of 

flexibility has been provided, by allowing the risk level, in terms of the failure threshold, 

to be adjusted based on practical situations where clients might be risk seeking or averse, 

accordingly affecting the cost. Conversely, for a given budget, the corresponding 

probability of failure can also be gauged, followed by adopting an appropriate 

maintenance strategy. 
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The main objective of this paper is to carry out a reliability-based lifecycle cost 

management of the given buried pipeline, by mitigating pitting corrosion damage, through 

probabilistic optimization. Beyond finding the minimum total cost, it also incorporates the 

risk of failure under different circumstances, and developing an optimal schedule by 

finding a balance between economy and safety. Moreover, the proposed framework 

intends to provide a tool that can be applied to a general structural system, within the 

context of reliability-based lifecycle management, by considering any mode of stochastic 

deterioration, and using the information obtained through this model to contain 

corresponding risks while minimizing the total cost associated with the system.  

This thesis report has been organized into six sections. The second section deals with 

modeling the stochastic corrosion process by using a polynomial chaos expansion. This is 

followed by defining the optimization problem and the basis for adopting the maintenance 

strategy. The results are presented in the last section, along with the scope and possibilities 

for future work. 
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2. CONSTRUCTION OF STOCHASTIC MODEL 

2.1.  Corrosion Models in Literature 

Modeling corrosion has always been challenging, because of its stochastic nature. 

Several sources of uncertainty exist within the process and its defining parameters, which 

can often be difficult to identify. Thus, recognizing them is crucial, in order to accurately 

represent corrosion. Also, corrosion occurs in many forms and often propagates differently 

for each structural system because it is highly dependent on environmental factors, further 

complicating the modeling aspect.  

Several models have been used in the past, to represent the evolution of corrosion 

over time, in pipelines. The National Association of Corrosion Engineers (NACE) 

prescribed a deterministic model which used a constant corrosion growth rate 

(0.4mm/year) [31]. This was a preliminary model, limited in its scope, as it didn’t account 

for the age of the system, or the defect depth. Also, having a predefined growth rate 

prevents it from being applicable to all corrosive environments. Linear growth models 

have also been proposed as improvements, which estimate the defect depth over time by 

assuming a linear behavior of corrosion growth, measured from at least two sets of data 

[32, 33]. An advantage of these models is that, as they depend on the data provided, they 

can be applied to different corrosive processes, to generate a uniform rate of growth of the 

defect under consideration. Again, these linear models have also been deterministic in 

nature, and rely on given measurements with respect to different points of time. Thus, both 

kinds of models, whether reliant on a given dataset, or with an assumed rate of defect 
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growth, do not account for uncertainties within the system. Hence, these were followed 

by a non-linear corrosion growth model, proposed by Caleyo et al [18], which depends on 

the soil and pipe material properties. This could capture the rate of growth far more 

accurately. Additionally, by considering its parameters as random variables, it can be 

utilized as a probabilistic model to predict corrosion growth over time, while also 

including the possible random behavior of the corrosive process. However, most of these 

models depend on predefined parameters, and often fail to identify certain sources of 

uncertainty within the system, which leads to results that are more conservative. In further 

studies, a stochastic model based on polynomial chaos was introduced, to address the 

issues of uncertainty propagation in corrosion [30]. However, within the polynomial 

expansion, the coefficients were evaluated at different points of time by directly 

substituting them with a non-linear corrosion growth model, followed by unconstrained 

optimization. Hence, in the current research, these assumptions have been rectified, and 

the model proposed has the advantage of directly being applicable to a set of available 

measurements, to construct the required representation of a stochastic pitting corrosion 

process, by capturing the spatio-temporal correlation between defects, and be incorporated 

in the life cycle cost management of buried pipelines.  

2.2.  Polynomial Chaos Framework 

One of the objectives of this research has been to formulate a probabilistic model 

to represent external pitting corrosion, which can be considered as a second order 

stochastic process, exhibiting non-Gaussian and non-stationary features. This 
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representation has been constructed by using a polynomial chaos expansion, which can 

accurately characterize and determine the evolution of uncertainty, present within the 

parameters of a dynamic system. The approach undertaken to arrive at the PC expansion 

has been adopted from existing work [34]. A stochastic response function has been 

constructed by matching a set of marginal distributions as well as a suitable correlation 

function, estimated from available measurements. Upon obtaining the representation, the 

coefficients of the polynomial expansion can be considered as parameters wherein the 

probabilistic aspect of the random process has been captured. 

It must be reiterated that while the reliability framework proposed during this 

research involves pitting corrosion as the process responsible for pipeline deterioration, it 

can also be utilized for any other second order stochastic process, which results in damage 

induced structural failure over time. 

In our current work, it has been assumed that the stochastic process is completely 

characterized by measurements taken over time, which can directly be used to construct a 

polynomial chaos expansion, since this model has the capability to be data driven. Any 

assumptions regarding an underlying Gaussian vector have not been made during this 

research. These experimental measurements can be regarded as a set of real valued data 

samples denoted by ℝ, contained within a random vector V. This vector V can be 

considered a finite-dimensional representation of the actual random process. The random 

variables contained within V can be are given by {𝒗𝒊}𝑖=1
𝑁  and its joint probability 

distribution function as 𝑷𝒗𝟏,…𝒗𝑵
 ∀ N ∈ ℕ. Thus, the probability measure PV of the 
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stochastic process can be completely characterized through the joint PDFs of V. Hence, 

according to Kolmogorov’s existence theorem [35], also known as Kolmogorov’s 

extension theorem, a stochastic process is certain to exist, since the theorem is satisfied by 

the abovementioned finite probability measure. 

In this study, since it has been assumed that the random process is vector of second 

order, it implies a mean-squared convergent series representation. According to the 

Cameron-Martin theorem [36], a second order random variable can be expanded as a 

series, through the product of its coefficients and orthogonal basis functions, to form a 

polynomial expansion defined by its dimension and order. As the dimension and order of 

this series tends to infinity, the representation converges in mean square sense to provide 

the functionals currently being evaluated. Studies have incorporated this outcome to 

estimate finite dimensional functionals, Gaussian or otherwise, by projecting orthogonal 

functions in their respective measure space [37-41]. 

To generate a source of randomness for the stochastic process, we consider a 

random vector 𝛏 ≡ (𝝃𝟏, 𝝃𝟐, … 𝝃𝒅), consisting of real values ℝd, having a probability 

measure 𝑷𝝃¸ that is continuous over the support 𝐒𝛏, and of second order. From this 

information, the PC representation of each random variable component 𝒗𝒊 of vector V is 

given by: 

𝒗𝒌 (𝛏) = ∑ 𝜸𝜶,𝒌 . 𝜰𝜶𝜶𝝐ℕ𝑑 (𝛏),  k = 1, 2… N.                       (1) 
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Here, 𝜸𝜶,𝒌 represent the PC coefficients, and 𝜰𝜶 are their basis functions, with 𝜶 ≡

(𝜶1, … , 𝜶𝑑) ∈ ℕ𝑑. If the marginal distribution of the random vector is given by 𝒑𝝃𝒊
, the 

basis functions can then further be approximated as 

𝜰𝜶 (𝛏) = 𝟏,      if 𝜶 = 𝟎∈ℕ𝑑  

𝜰𝜶 (𝛏) = (
∏ 𝒑𝛏𝒊

(𝛏𝒊)𝒅
𝒊=𝟏

𝒑𝛏(𝛏)
)𝟏/𝟐 ∏ 𝜳𝜶𝒊

(𝛏𝒊)
𝒅
𝒊=𝟏 ,   if 𝜶 ≠ 𝟎         (2) 

Here, the basis functions given by 𝜳𝜶𝒊
 are orthogonal polynomials of order 𝜶𝑖. As 𝒗𝒌 (𝛏) 

is a random variable of second order, 𝑬[{𝒗𝒌 (𝛏) − ∑ 𝜸𝜶,𝒌 . 𝜰𝜶𝜶:|𝜶|≤𝒏𝟎
(𝛏)}𝟐] → 0, when 

the order of the PC representation 𝒏𝟎 → ∞. Based on computational efficiency and desired 

accuracy, this infinite series can be truncated beyond a certain number of terms, usually 

to the point where a required amount of convergence has been obtained, and the PC 

expansion sufficiently captures the underlying stochastic process. Using the orthogonality 

of basis functions 𝜰𝜶, these PC coefficients can be approximated using the following 

equation. 

𝜸𝜶,𝒌 =
𝑬[𝒗𝒌(𝛏).𝜰𝜶(𝛏)]

𝑬[𝜰𝜶
𝟐 (𝛏)]

,   𝜶 ∈ ℕ𝑑, k = 1, 2…. N.          (3) 

The numerator in the equation can be evaluated by the following integral, 

𝑬 [𝒗𝒌 (𝛏) . 𝜰𝜶 (𝛏)] = ∫ 𝒗𝒌 (𝝃) . 𝜰𝜶 (𝝃) . 𝒑𝝃 (𝝃) . 𝒅 (𝝃)
𝑺𝝃

,  𝑺𝝃 ⊆ ℝ𝑑        (4) 

The method proposed to evaluate this integral, and consequently the PC coefficients will 

be discussed in the following section. 
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2.3.  Approximation of PC Coefficients 

The approach undertaken to arrive at the PC expansion has been based on existing 

work [34], by incorporating the Rosenblatt transformation [42] and properties of the 

correlation matrix. In this case, the correlation function has been considered as the 

Spearman's rank correlation coefficient (SRCC) matrix. The evaluation of PC coefficients 

is based on regression, where the distance between the marginal distributions, as well as 

the distance between the correlation matrix, of the observed and simulated values, has 

been minimized. In the first step, we describe a joint probability distribution, which is 

estimated from experimental data. Following this, a PC representation is constructed such 

that its corresponding joint PDF is within a specified tolerance to the original joint 

distribution. The joint distribution associated to the PC expansion is characterized 

completely by a set of marginal probability distributions and a correlation matrix, both of 

which are approximated from given data. The main dependence on the Rosenblatt 

transformation is to carry out a nonlinear mapping which allows V and the function 𝒇(𝝃) 

to be equal in terms of distribution. 

An important aspect of this approach is that the SRCC matrix, as the correlation 

function, has been used to accurately enforce the dependency between second order 

random variables 𝒗𝒌, through the statistical dependency between components 𝝃𝟏, 𝝃𝟐, … 𝝃𝒅. 

Once the matrix has been constructed, the mapping can be applied to provide the following 

representation of the random variable 𝒗𝒌. 

𝒗𝒌 𝒃𝒌(𝝃𝒌) = 𝐥𝐢𝐦
𝑲𝒌→∞

∑ 𝒄𝒋𝒌
𝑲𝒌
𝒋=𝟎 𝜳𝒋(𝝃𝒌),                                               (5) 
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Here, the variable 𝒃𝒌(𝝃𝒌) ≡ 𝑷𝒗𝒌
−𝟏𝑷𝝃𝒌

 represents a transformation to evaluate the PC 

coefficients. Taking 𝒄𝒋𝒌 as the PC coefficient, it can further be represented as, 

𝒄𝒋𝒌 =
𝑬[𝒃𝒌(𝝃𝒌).𝜳𝒋(𝝃𝒌)]

𝑬[𝜳𝒋
𝟐(𝝃𝒌)]

, where 𝒋 ∈ ℕ         (6) 

Several ways exist to evaluate these coefficients. An effective method has been proposed 

in literature, which is not computationally demanding, yet accurate enough for the current 

work [34]. 

The SRCC matrix is critical to this approach, firstly because it has been used to 

accurately enforce the dependency between second order random variables 𝒗𝒌, through 

the statistical dependency between 𝝃𝟏, 𝝃𝟐, … 𝝃𝒅, and secondly due to its invariance under 

a strictly monotone transformation of 𝒗𝒊 and 𝒗𝒋. Due to the second property, the SRCC 

matrix of  𝛏 is identical to the one obtained from experimental measurements on V.  

The generation of random variables 𝛏, is based on the orthogonal polynomials 

chosen. This implies that their support is dependent of the type of polynomial under 

consideration. For example, uniform random variables supported on [-1, 1] are generated 

for Legendre polynomials. However, it must be noted that he set of random variables 𝛏 

can be generated only if the obtained SRCC matrix is feasible. The term feasible here 

refers to the matrix being positive definite, i.e. the matrix must be symmetrical and all its 

eigenvalues should be positive. If these conditions are not met, the correlation matrix 

needs to be modified to match the mentioned constraints. Several methods to obtain a 

positive definite matrix exist in literature [43, 44]. However, as the dimension tends to 
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increase, so do the number of iterations required to achieve the modified matrix, which 

can render such an approach computationally expensive. In addition, the error percentage 

between the original and new matrix can also be significant. 

Often, techniques based on semidefinite programming (SDP) [45] are utilized to 

minimize these errors and obtain a matrix which is positive definite, while being close 

enough to the original matrix. Solvers for such problems can be acquired easily, either as 

standalone functions in MATLAB, or as software packages [46]. However, simple 

techniques are only suitable if the resulting correlation matrix is within a good tolerance 

to the original matrix. If not, additional methods can be explored [47], albeit at a higher 

computational cost. Once a suitable correlation matrix has been obtained, the required 

statistically dependent samples of 𝛏 can be generated easily. 
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3. STOCHASTIC MODELING OF CORROSION GROWTH 

3.1.  Simulation of Database 

Corrosion crack growth in pipelines is often represented by pit geometry, as a 

simplification for the irregular shape of the defect. As mentioned earlier, in this study, the 

evolution of the maximum corrosion depth 𝒅𝒎𝒂𝒙, with time, is considered as the stochastic 

process under investigation. In the absence of available field data, a model proposed by 

Caleyo et al. [18] has been adopted to generate synthetic corrosion data. The model 

incorporates the corrosion initiation time 𝒕𝟎, and properties of the surrounding soil, to 

estimate the average value of maximum pit depth at any given point of time, and is 

expressed as: 

𝐕 = 𝒅𝒎𝒂𝒙(𝒕) = 𝛋(𝒕 − 𝒕𝟎)𝛎                                    (7) 

Here, 𝛋 and 𝛎 represent the pitting proportionality and exponential factors, respectively. 

Both these constants are dependent of the type of soil surrounding the pipeline. In this 

research, the soil category labeled ‘all’ has been considered, where 𝛋 = 0.164 (mm/yr) 

and 𝛎 = 0.780 [18]. The corrosion initiation time, also adopted from [18], was taken as 𝒕𝟎 

= 2.88 years. 

3.2.  PC Representation of Corrosion Growth 

Pitting corrosion increases with the passage of time, and the maximum corrosion 

depth 𝒅𝒎𝒂𝒙
(𝑷𝑪)(𝒕), in terms of its PC expansion, at any given point of time can be represented 

as, 



 

14 

 

𝒅𝒎𝒂𝒙
(𝑷𝑪)(𝒕) = 𝑽(𝑷𝑪) = ∑ 𝒄𝒋(𝒕). 𝝍𝒋(𝝃𝒕)𝑲𝒌

𝒋=𝟎                                    (8) 

Here, 𝐜𝐣(𝐭) are the PC coefficients at any given point of time 𝐭, and 𝐣 is the order of those 

PC coefficients. 𝑽(𝑷𝑪) describes the simulated PC samples of corrosion depth. It has been 

discussed previously that while this representation shows an infinite series, as 𝐊𝐤 → ∞, it 

must be realistically truncated after a certain number of terms, when the desired accuracy 

from the expansion has been achieved. For representation, one sample of corrosion 

depth 𝒅𝒎𝒂𝒙
(𝑷𝑪)(𝒕), at any given time 𝒕 refers to a sample vector 𝒗𝒊

(𝑷𝑪)
, where i = 1, 2…. N, of 

the vector 𝑽(𝑷𝑪), where 𝑵 is the last vector of corrosion depth samples available, 

corresponding to the time at which it has been obtained. In this paper, we take 𝑵 = 50, as 

the data for corrosion pit depth has been modeled for those 50 years. 

For numerical efficiency, the samples of V have been scaled to obtain another 

vector 𝑿 = [𝒙𝟏, . . . 𝒙𝑵]𝑻, supported on [−𝟏, 𝟏]𝑵, using the following transformation, 

𝑿𝒌 = 𝟐[(𝐕𝒌 − 𝒍) ∘ (
𝟏

𝒖−𝒍
)] − 𝟏𝑵,  k = 1, 2…. n.                                (9) 

Where 𝒍 = [𝒍𝟏, . . . 𝒍𝑵]𝑻 and 𝒖 = [𝒖𝟏, . . . 𝒖𝑵]𝑻¸ such that 𝒍𝒊 = min(𝒗𝒊
(𝟏)

, … 𝒗𝒊
(𝒏)

) and 𝒖𝒊 = 

max(𝒗𝒊
(𝟏)

, … 𝒗𝒊
(𝒏)

). Here, we take the value of n to be 100, which gives us as many 

trajectories of the vector V, and hence of the transformed vector 𝑿. The random 

variable 𝒗𝒊
(𝒌)

 for i = 1, 2…. N, is a component of the vector Vk = [𝒗𝟏
(𝒌)

, … 𝒗𝑵
(𝒌)

]. 

From the experimental samples present in {𝑿𝒌}𝒌=𝟏
𝒏 , the marginal distribution of all 

random variables 𝒙𝒊 is evaluated first. Following this, Legendre polynomials were 
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considered as the orthogonal polynomials, with respect to uniform random 

variables {𝝃𝒊}𝒊=𝟏
𝑵 , supported on [−𝟏, 𝟏]. 100,000 samples of {𝝃𝒊}𝒊=𝟏

𝑵  were simulated, and 

the statistical dependency of 𝝃 captured by the SRCC matrix.  

The PC coefficients of all 𝒙𝒊 can be evaluated from (5) and (6), and together with 

the samples of 𝝃, provide a set 𝑿(𝑷𝑪) containing 100,000 samples. The series has been 

truncated at a PC order of 8, as the representation manages to capture the features of the 

stochastic corrosion process with sufficient accuracy, for which the convergence plots 

have been presented ahead. From 𝑿(𝑷𝑪), samples of 𝑽(𝑷𝑪) can be obtained, along with the 

PC coefficients of each 𝒗𝒊, by using the transformation equation (9) above. Experimental 

observations of 𝑽 and 𝑿 have been contrasted against simulated PC samples, and the 

summary of all relevant comparisons has been presented in Table 1 for 𝑿 and Table 2 

for 𝑽, in terms of the relative mean square error (MSE). 
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PC Order 
Relative MSE in 

SRCC Matrix 

Relative MSE in 

Mean Vector 

Relative MSE in 

Covariance Matrix 

2 9.06E-03 5.32033 2.03321 

3 2.89E-06 0.98777 0.43968 

4 2.89E-06 0.91043 0.39134 

5 2.89E-06 0.90153 0.30218 

6 2.89E-06 0.89282 0.30113 

7 2.89E-06 0.76795 0.30971 

8 2.89E-06 0.76842 0.30904 

9 2.89E-06 0.76647 0.30607 

10 2.89E-06 0.75706 0.30321 

Table 1. Comparison of relevant statistics between experimental and PC samples of random vector 𝑿. 

PC Order 
Relative MSE in 

SRCC Matrix 

Relative MSE in 

Mean Vector 

Relative MSE in 

Covariance Matrix 

2 9.06E-03 0.07384 3.16995 

3 2.89E-06 0.01137 0.51952 

4 2.89E-06 0.01142 0.49408 

5 2.89E-06 0.01061 0.47864 

6 2.89E-06 0.01039 0.46482 

7 2.89E-06 0.00911 0.46862 

8 2.89E-06 0.00914 0.47148 

9 2.89E-06 0.00901 0.47008 

10 2.89E-06 0.00902 0.46408 

Table 2. Comparison of relevant statistics between experimental and PC samples of random vector 𝑽. 
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The tables show a convergence in all statistical errors beyond a PC order of 7. For 

visual purposes, the convergence plots for each of the errors have been presented in figures 

1, 2 and 3. In each case, the error percentage of each statistic has been plotted against the 

PC order. 

 

Figure 1. Convergence of error percentage for the SRCC matrix. 

 

Figure 2. Convergence of error percentage for the mean vector. 
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Figure 3. Convergence of error percentage for the covariance matrix. 

The simulated PC samples of corrosion depth have been represented in figure 4. 

The plot shows the mean vector of the corrosion depth 𝑽(𝑷𝑪), formed through PC 

expansion, within a lower and upper confidence bound of 5% and 95% respectively. Since 

the time period over which the pipeline is assessed has been taken as 50 years, and given 

a corrosion initiation time 𝒕𝟎 of 2.88 years, the experimental data has been taken from the 

4th year to the 53rd year, hence giving us 50 years of corrosion depth data. Furthermore, an 

evolution of corrosion depth over those 50 years has been presented in terms of its 

marginal probability density, in figure 5. 
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Figure 4. Mean corrosion depth within 5% and 95% confidence bounds. 

 

Figure 5. Evolution of corrosion depth in terms of marginal pdfs. 

In addition, a plot showing the comparison between the mean vector of available 

corrosion depth measurements 𝑽, and the mean of the simulated depth 𝑽(𝑷𝑪) has been 

presented, in figure 6, to portray the accuracy of the PC representation in representing the 

stochastic corrosion process. For a PC order of 8, the error percentage between mean 

4             11             18            25           32            39            46            53 
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vectors of the actual data and PC samples is about 0.009%, as is evident from the plot, 

where both vectors virtually overlap. 

 

Figure 6. Mean vectors of corrosion depth for available measurements and PC samples against time. 

Obtaining a PC representation of the stochastic process (i.e. pitting corrosion) is 

computationally inexpensive. Simulating PC samples mainly depends on the dimension 

of the available measurements, and here, generating a 100,000 x 50 matrix from the given 

dataset (100 x 50 measurements of corrosion depth), can be done in rather quickly. It is to 

be noted however, that depending on the technique used to modify the non-positive 

definite matrix, the time taken to simulate PC samples may increase considerably. 

Once the PC coefficients have been obtained for specified points of time 𝒕 at which 

the measurements are available, the corrosion depth at any time 𝑻 ∉ 𝐭 can be generated by 

interpolating the PC coefficients at that given time 𝑻, from which the corresponding 

sample of corrosion depth can be obtained. The technique for interpolation depends on the 

Time (Years) 
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trend followed by the data, and should be chosen accordingly for a given stochastic 

process. 

3.3.  Prediction of Corrosion Growth 

Once the PC representation of corrosion depth propagation over a given period of 

time has been obtained, the depth at any other point of time can be obtained by 

interpolation, as discussed above. In this study, as a method of validation, once the PC 

samples 𝑽(𝑷𝑪) have been obtained, the PC coefficients for the first 25 years of corrosion 

data have been used to extrapolate the coefficients for the next 25 years. Once the 

extrapolated coefficients have been approximated, the corrosion depth samples, 𝑽𝒑𝒓𝒆𝒅
(𝑷𝑪)

, for 

those 25 years in the future can be constructed. Once the predicted depth has been 

obtained, it can be compared to the PC samples already available for those 25 years. A 

simple linear interpolation technique has been used in this research, which is able to 

accurately predict corrosion growth. The accuracy of prediction was measured by taking 

the relative MSE between the available PC samples for the remaining 25 years, and the 

predicted PC samples for that time period, which turned out to be 0.0982%. Figure 7 

shows the mean predicted corrosion depth 𝑽𝒑𝒓𝒆𝒅
(𝑷𝑪)

 against the mean simulated corrosion 

depth 𝑽(𝑷𝑪).  
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Figure 7. Comparison between mean vectors of simulated and predicted corrosion depth. 

Again, it is crucial to identify the behavior of the stochastic process, and 

accordingly, adopt a suitable method to obtain the coefficients. In this study, the corrosion 

depth increases at an exponential rate initially, but eventually becomes more linear over 

time. A linear or cubic extrapolation process can provide sufficient prediction accuracy 

for such data. However, for a random process that might heavily fluctuate with time, other 

regression methods can be utilized instead. 
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4. RELIABILITY-BASED LIFE CYCLE COST MANAGEMENT 

Assessment of reliability has been carried out in a way similar to Zhou’s work [28]. 

As mentioned earlier, only a section of the pipeline is being analyzed, which is assumed 

to contain the pitting corrosion hotspot. Failure has been assumed to be dependent on this 

corrosion pit’s crack depth propagation. The reliability framework for buried pipelines 

which incorporates the PC expansion has been described ahead in detail. 

4.1.  Limit State Functions 

Two limit state functions (LSFs) have been used to define pipeline failure events, 

namely small leak, and burst. When a defect, which refers to the corrosion pit, penetrates 

the pipeline wall to 80% of its thickness, the failure scenario is defined as a small 

leak 𝒈𝒔(𝒕), represented by the following equation, 

𝒈𝒔(𝒕) = 𝟎. 𝟖 ∙ 𝒘 − 𝒅𝒎𝒂𝒙(𝒕)                                                  (10) 

Here, 𝒘 represents the wall thickness of the pipe, and 𝒅𝒎𝒂𝒙(𝒕) is the maximum corrosion 

depth at time 𝒕. This equation is consistent with industrial practice, where a small leak is 

considered to occur when the maximum defect depth is 80% of the wall thickness, as 

opposed to its entire thickness 𝒘. 

Due to the internal pressure, when the pipe wall undergoes plastic collapse at the 

defect location prior to the penetration of the pipe wall, a burst failure is considered to 

occur. The limit state function for burst 𝒈𝒃(𝒕) is given by, 

𝒈𝒃(𝒕) = 𝒓𝒃(𝒕) − 𝒑                                                   (11) 



 

24 

 

In this equation, 𝐫𝐛(𝐭) is the resisting burst pressure, and 𝐩 is the pipe’s internal pressure. 

To evaluate 𝐫𝐛(𝐭), two models have been used – the PCORRC model [48] given by 

equation (12), and the DNV RP-F101 [49] given by equation (13). Their relationship with 

resisting pressure can be defined as follows, 

 𝒓𝒃(𝒕) = 𝝌𝒎 ∙
𝟐∙𝝈𝒖∙𝒘

𝑫
. [𝟏 −

𝒅𝒎𝒂𝒙(𝒕)

𝒘
(𝟏 − 𝒆𝒙𝒑 (−

𝟎.𝟏𝟓𝟕∙𝑳(𝒕)

√𝟎.𝟓∙𝑫(𝒘−𝒅𝒎𝒂𝒙(𝒕)) 
))]                  (12) 

 𝒓𝒃(𝒕) =
𝟐.𝑺𝑴𝑻𝑺.𝒘

𝑫
. [

𝟏−
𝒅𝒎𝒂𝒙(𝒕)

𝒘

𝟏−

𝒅𝒎𝒂𝒙(𝒕)
𝒘
𝑴

], where 𝑴 = √1 + 0.31 ∙ (
𝐿(𝑡)

√𝐷∙𝑤
)

2

        (13) 

Where 𝝌𝐦 is a multiplicative model error factor, used in this particular model, 𝛔𝐮 is the 

ultimate tensile strength of the pipe material, 𝐃 is the pipe diameter and 𝐋(𝐭) is the length 

of the corrosion defect. For DNV RP-F101, SMTS represents the specified minimum 

tensile strength and M is the bulging factor. In this case, 𝛔𝐮 and SMTS are the same. The 

value of each of these parameters has been taken from literature [28]. While other models 

area available, PCORRC and DNV RP-F101 have been used and compared because they 

are similar, reasonably accurate, and only require the corrosion pit length and maximum 

depth as defect based geometrical input. The results for each of them have been presented 

ahead in this document. 

Currently, as no experimental data exists for defect length 𝐋(𝐭), the linear model 

used by Zhou and Nessim [28] has been utilized, in which the defect length has grown at 

a constant rate with an initial mean value of 30 mm, but the rate itself has a lognormal 

distribution, with a mean of 1.0 mm/year and standard deviation of 0.5 mm/year. Hence, 
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in a time period of 50 years, the average defect length is equal to 80.0 mm. At any point 

prior to the initiation time 𝐭𝟎, the defect length has been considered zero, and its growth 

parameters have been accordingly modified to attain the same average value, as obtained 

in the original linear model. Each of these random variables has been summarized in table 

3, shown below. 

Variable 
Symbo

l 
Distribution Mean 

Coefficient 

of Variation 

Referenc

e 

Wall Thickness 𝐰 
Deterministi

c 
7.05 mm - [28] 

Diameter 𝐃 
Deterministi

c 
508 mm - [28] 

Ultimate Tensile 

Strength 
 𝛔𝒖 Normal 615.9 MPa 3.0 % [28] 

Corrosion Length 

Growth Rate 

𝒅

𝒅𝒕
𝑳(𝒕) Lognormal 

1.698 

mm/year 
50.0 % [28] 

Internal Pressure 𝐩 
Deterministi

c 
9.65 MPa - [28] 

Model Error  𝝌𝒎 Lognormal 0.97 10.5 % [25] 

Table 3. Random variables and parameters associated with the pipeline. 

4.2.  Optimization Methodology 

Since the optimum repair schedule is dependent on expected values of costs and 

failures, the concept of predictive maintenance has been employed. All-inclusive costs of 

inspection, repair and failure have been revised to match their values at the time of 
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decision, using a discount function, 𝒆−𝝀𝒕 where the discount rate 𝝀 is 0.05. Each cost has 

an associated factor 𝒇, which is multiplied by the discount, and a unitary reference cost 

value 𝑪𝒓𝒆𝒇, to obtain the costs of failure, repair and inspection at any given time 𝒕. These 

multiplicative factors have been obtained from the work done by Zhou and Nessim [28]. 

All costs have been considered for one segment of the pipeline, which can have a given 

unit length. Hence, for numerical calculation, the reference cost 𝑪𝒓𝒆𝒇, has been adopted. 

The actual monetary values can be substituted at any point of time for a complete estimate 

of the total cost. Based on this, the expected cost for any event at a point of time 𝒕 can be 

given by, 

𝑪𝒆𝒗𝒆𝒏𝒕(𝒕) = 𝒇𝒆𝒗𝒆𝒏𝒕 ∙ 𝑪𝒓𝒆𝒇 ∙ 𝒆−𝝀𝒕                                                (14) 

The cost factors 𝒇 for each event have been presented in table 4. The events in this case 

are failure due to small leak, failure due to burst, repair and inspection. 

Name of Event Multiplicative Cost Factor Value 

Small Leak Failure 𝒇𝒔𝒎𝒂𝒍𝒍 0.243 

Burst Failure 𝒇𝒃𝒖𝒓𝒔𝒕 25 

Repair 𝒇𝒓𝒆𝒑 0.243 

Inspection 𝒇𝒊𝒏𝒔𝒑 0.0177 

Table 4. Multiplicative cost factors for each event. 

The cost of a small leak is based on excavating and repairing the pipeline at the 

corrosion pit location. Burst failure cost includes excavating and replacing the pipe 
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segment while also incorporating financial compensation for deaths and damage to 

property. The value of 25 has been assigned to the damage done to one property, without 

any casualties. In this paper, one defect per unit length of the pipeline has been assumed, 

which is significant enough to dominate failure. Studies exist, which have concentrated 

on both, single and multiple defects [25, 28, 29, 30]. Additionally, further work can look 

into the use of system reliability to address multiple correlated corrosion defects, and their 

combined effect on pipeline failure. However, in this case, the maintenance strategy has 

focused on analyzing a single yet significant defect, for one segment of the pipeline. 

In order to come up with a maintenance schedule, deciding the time of each 

inspection, and consequently repair, is paramount. Based on this, the two design variables 

that have been considered in this study are, the time to first inspection 𝒕𝒊𝒏𝒔𝒑𝟏, and the 

interval between each successive inspection 𝜹𝒕𝒊𝒏𝒔𝒑. The time to first inspection and 

consequent inspection intervals have been considered as separate design variables, 

as 𝒕𝒊𝒏𝒔𝒑𝟏 indicates the necessity of subsequent inspections, and how often they need to be 

scheduled. Other important factors would be the material and geometric parameters such 

as pipeline diameter, internal pressure, tensile strength and wall thickness. However, as 

important as they are in the safety of pipelines, the values of variables such as wall 

thickness are bound by design codes and guidelines, while diameter and pressure depend 

on operation requirements. Hence, this research has focused on developing an effective 

maintenance strategy, based on different times of inspection. 
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The main difference between the expected costs of inspection and other events is 

that the number of inspections can be found out ahead of time, based on the time interval 

between each inspection. Hence, the inspections are already considered to be paid for. The 

number of failures and repairs are unknown beforehand, and can only be found by 

inspecting the pipeline at those points of time. By incorporating the probability of failure 

or repair, obtained by Monte Carlo sampling, and multiplying it with the respective cost 

factors and discount function, the cost of each event can be calculated. 

If the design life of the pipeline is represented by 𝑳𝑻, given the time to first 

inspection, and the intervals between subsequent inspections, we can calculate the number 

of inspections as follows, 

𝑵𝒊𝒏𝒔𝒑 = 𝟏 + 𝒇𝒍𝒐𝒐𝒓 (
𝑳𝑻−𝒕𝒊𝒏𝒔𝒑𝟏

𝜹𝒕𝒊𝒏𝒔𝒑
)                                     (15) 

Here, the 𝒇𝒍𝒐𝒐𝒓 function returns the largest integer that is less than or equal to its 

argument. Based on all the available variables, the objective function, where the total 

expected cost 𝑬(𝑪𝑻), has to be minimized, can be represented as, 

𝑬(𝑪𝑻) = 𝑪𝒓𝒆𝒇 + 𝑵𝒊𝒏𝒔𝒑 ∙ 𝑪𝒊𝒏𝒔𝒑 + 𝑬(𝑪𝒓𝒆𝒑) + 𝑬(𝑪𝒇𝒂𝒊𝒍)                                          (16) 

The expected costs can further be given by, 

𝑬(𝑪𝒇𝒂𝒊𝒍) = 𝑪𝒔𝒎𝒂𝒍𝒍×𝑷𝒔𝒎𝒂𝒍𝒍 + 𝑪𝒃𝒖𝒓𝒔𝒕×𝑷𝒃𝒖𝒓𝒔𝒕  

𝑬(𝑪𝒓𝒆𝒑) = 𝑪𝒓𝒆𝒑×𝑷𝒏𝒐 𝒇𝒂𝒊𝒍                                              (17) 

In the equation, 𝑷𝒏𝒐 𝒇𝒂𝒊𝒍, 𝑷𝒔𝒎𝒂𝒍𝒍 and 𝑷𝒃𝒖𝒓𝒔𝒕 represent the probability of repair, small leak 

and failure. In addition, another constraint on the probability of failure has been imposed, 

to ensure that the total combined probability of failure 𝑷𝒄𝒐𝒎𝒃, never exceeds its maximum 
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allowable limit 𝑷𝒍𝒊𝒎𝒊𝒕. The combined probability of failure can be interpreted in terms of 

either the overall maximum probability of failure or the average probability of failure, 

both during the lifetime. If this defined failure probability does go beyond the threshold at 

any point of time, the maximum time between successive inspections is adjusted to satisfy 

this condition. This has been discussed in sections of the paper ahead, in more detail. For 

clarity, the relationship for the combined probability of failure has been given below, 

𝑷𝒄𝒐𝒎𝒃 = (𝑷𝒔𝒎𝒂𝒍𝒍 ∪ 𝑷𝒃𝒖𝒓𝒔𝒕)  

            = 𝑷𝒔𝒎𝒂𝒍𝒍 + 𝑷𝒃𝒖𝒓𝒔𝒕 − (𝑷𝒔𝒎𝒂𝒍𝒍 ∩ 𝑷𝒃𝒖𝒓𝒔𝒕)                                (18) 

The probability of repair 𝑷𝒏𝒐 𝒇𝒂𝒊𝒍, represents all the samples that have neither failed to due 

to small leak or burst, thus can be re-written as, 

𝑷𝒏𝒐 𝒇𝒂𝒊𝒍 = 𝟏 − 𝑷𝒄𝒐𝒎𝒃                                   (19) 

The event of repair is considered to be ‘no failure’, as in any case, at the time of inspection, 

either the failure event is identified as a leak or burst, and its corresponding cost applied, 

or if no failure occurs, the pipeline is just repaired and restarted, and the repair cost is 

taken instead. 

In order to solve the optimization problem, the expected cost 𝑬(𝑪𝑻) needs to be 

minimized by finding feasible values for 𝒕𝒊𝒏𝒔𝒑𝟏 and 𝜹𝒕𝒊𝒏𝒔𝒑, subject to the following 

constraints, 

𝒕𝒊𝒏𝒔𝒑𝟏𝝐(𝒕𝒊𝒏𝒔𝒑𝟏
𝒎𝒊𝒏 , 𝒕𝒊𝒏𝒔𝒑𝟏

𝒎𝒂𝒙 ), 

𝜹𝒕𝒊𝒏𝒔𝒑𝝐(𝜹𝒕𝒊𝒏𝒔𝒑
𝒎𝒊𝒏 , 𝜹𝒕𝒊𝒏𝒔𝒑

𝒎𝒂𝒙)                     

While, 𝑷𝒄𝒐𝒎𝒃 < 𝑷𝒍𝒊𝒎𝒊𝒕                                   (20) 
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Where 𝒕𝒊𝒏𝒔𝒑𝟏
𝒎𝒊𝒏  and 𝒕𝒊𝒏𝒔𝒑𝟏

𝒎𝒂𝒙  are the lower and upper bounds respectively, of the time to first 

inspection, taken as (5.0, 30.0) for this study. Similarly, 𝜹𝒕𝒊𝒏𝒔𝒑
𝒎𝒊𝒏  and 𝜹𝒕𝒊𝒏𝒔𝒑

𝒎𝒂𝒙 are the lower 

and upper bounds of the inspection intervals, taken as (5.0, 30.0) for this study. 

4.3.  Implementation of the Maintenance Strategy 

The expected number of failures and repairs are calculated at the given time of 

inspection by using the Monte Carlo method. At the inspection time 𝒕, each sample of 

corrosion depth 𝒅𝒎𝒂𝒙(𝒕), as well as the samples generated for the resisting pressure 𝒓𝒃(𝒕), 

is checked against their limit state functions. If the value of LSF for either small leak or 

burst is zero or negative, then the respective failure event is considered to have taken place. 

In case both failures occur at a given time simultaneously, burst is given precedence over 

small leak, as its cost and consequences are higher, and a replacement of the pipeline 

section due to burst also covers the renewal condition for small leak. The remaining 

samples, where no failure whatsoever has occurred, are still corroded to an extent. Hence 

these samples require the pipeline to be repaired instead, and the corresponding cost factor 

for repair or ‘no fail’ is applied. 

It must be made clear that, after an inspection, a complete restart will always occur 

due to either repair or failure. Hence, at the time following the inspection, the corrosion 

growth, burst pressure and defect length are restarted based on a new generated corrosion 

pit. The material properties of the pipeline are also resampled. Also, the solution is taken 

to be viable only if 𝑷𝒄𝒐𝒎𝒃 is within the threshold. In other words, the total expected 

cost 𝑬(𝑪𝑻), obtained for a set of 𝒕𝒊𝒏𝒔𝒑𝟏 and 𝜹𝒕𝒊𝒏𝒔𝒑, has been considered only when the 
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combined probability of failure does not exceed the permissible limit. Since the pipeline 

needs to be kept in service continuously, once the restart occurs, the simulation carries on 

till the end of the pipeline’s lifetime. 

4.4.  Evolution of Probability of Failure 

The combined probability of pipeline failure has been used as a criterion to decide 

the feasibility of any value of the total expected cost. It corresponds to the level of risk 

that is acceptable while operating and maintaining the pipeline. The overall threshold for 

the maximum probability of failure in this study has been considered as 5% or 0.05. 

Hence, 𝑷𝒄𝒐𝒎𝒃 cannot exceed this limit at any point of time. The evolution of combined 

probability of failure with time, when no maintenance strategy has been implemented, has 

been presented in figure 8. Based on this threshold, the individual evolution of the LSF 

for small leak with time has been shown in figure 9. The marginal distributions at the 17th, 

37th and 47th year of the time period of 53 years have been plotted, to show the extent of 

failure over time. Most of the failures due to small leak primarily take place after the 30th 

year for which the data has been generated.  
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Figure 8. Evolution of maximum probability of failure with time. 

Based on the pipeline attributes, failures due to burst often occurred prior to small 

leak in this study. Hence, in most cases, the predominant factor affecting the cost of failure, 

and consequently, the total expected cost, has been the burst LSF. Figure 8 shows that the 

combined probability of failure exceeds the threshold by the 28th year, i.e. at the 25th year 

since the corrosion data of the pipeline is available. Hence, the maximum inspection 

interval for a viable solution is 25 years. This means that once pitting corrosion starts, it 

breaches the acceptable risk level in 25 years. The time to first inspection 𝒕𝒊𝒏𝒔𝒑𝟏, and the 

inspections intervals 𝜹𝒕𝒊𝒏𝒔𝒑, both have their upper limit restricted to 25 years, beyond 

which viable solutions constrained by this threshold cannot be obtained. 
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Figure 9. Evolution of small leak LSF with time. 

4.5.  Expected Cost and Maintenance Schedule 

To minimize the total expected cost and obtain a maintenance schedule that 

satisfies all constraints, an exhaustive search has been employed. A square grid was 

generated for 𝒕𝒊𝒏𝒔𝒑𝟏 and 𝜹𝒕𝒊𝒏𝒔𝒑, where 𝒕𝒊𝒏𝒔𝒑𝟏𝝐(𝟓, 𝟑𝟎) and 𝜹𝒕𝒊𝒏𝒔𝒑𝝐(𝟓, 𝟑𝟎). As mentioned 

previously, beyond an inspection interval of 25 years, the failure threshold was exceeded, 

hence, all viable solutions belong to a range such that 𝒕𝒊𝒏𝒔𝒑𝟏𝝐(𝟓, 𝟐𝟓) and 𝜹𝒕𝒊𝒏𝒔𝒑𝝐(𝟓, 𝟐𝟓). 

An increment of 0.4 years was provided, to obtain 51 discrete values between 5 and 25, 

inclusive, for both the design variables. From this, a square grid was obtained, containing 

51×51 points, with each point representing one value of total expected cost 𝑬(𝑪𝑻), as a 

combination of 𝒕𝒊𝒏𝒔𝒑𝟏 and 𝜹𝒕𝒊𝒏𝒔𝒑.  
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Based on the exhaustive search, the minimum cost was obtained for 𝒕𝒊𝒏𝒔𝒑𝟏 = 19 

years, and 𝜹𝒕𝒊𝒏𝒔𝒑 = 18.6 years, both from the time the corrosion data is available (4th year 

of 53 years). The plot for 𝑬(𝑪𝑻) has been represented by figure 10, where 𝒕𝒊𝒏𝒔𝒑𝟏 is 

constant at 19 years, and 𝜹𝒕𝒊𝒏𝒔𝒑 varies from 5 to 25 years.  

 

Figure 10. Expected cost variation for 𝒕𝒊𝒏𝒔𝒑𝟏 = 19 years and the range of 𝜹𝒕𝒊𝒏𝒔𝒑. 

The graph for 𝑬(𝑪𝑻) is quite discontinuous, and these points of discontinuity occur 

when the number of inspections changes. For examples, given that the first inspection is 

after 19 years, and having an interval 𝜹𝒕𝒊𝒏𝒔𝒑 = 15 years, yields a total of 3 inspections in 

50 years. This holds for 𝜹𝒕𝒊𝒏𝒔𝒑 = 15.4 years as well. However, at 𝜹𝒕𝒊𝒏𝒔𝒑 = 15.8 years, the 

number of inspections changes from 3, to 2. Consequently, the expected cost takes a sharp 

drop, and this behavior is evident in figure 10. The convexity of the cost curve is due to 

the tradeoff between the cost of repair and failure, against the cost of several inspections. 

(Years) 
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Min 𝑬(𝑪𝑻) = 1.142 
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For a small 𝜹𝒕𝒊𝒏𝒔𝒑, there will be several inspections over the pipeline’s lifetime, resulting 

in a high cost of inspection, which dominates the total cost. On the other hand, very few 

inspections, or just one inspection, results in a high number of failures, especially burst 

failures, which influence the total expected cost. Within each valley (where 𝑵𝒊𝒏𝒔𝒑 is 

constant), the cost curve is smooth, and a local minimum for that particular 𝑵𝒊𝒏𝒔𝒑 can be 

evaluated. The entire grid for the total expected cost 𝑬(𝑪𝑻), has been presented in figure 

11. The total cost for each combination of 𝒕𝒊𝒏𝒔𝒑𝟏 and 𝜹𝒕𝒊𝒏𝒔𝒑 has been shown in the grid, 

which has 51×51 points in total. 

 

Figure 11. Expected cost grid for different 𝒕𝒊𝒏𝒔𝒑𝟏 and 𝜹𝒕𝒊𝒏𝒔𝒑. 
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4.6.  Comparison of Optimization Techniques 

In addition to an exhaustive search, an inbuilt optimization function in MATLAB, 

based on genetic algorithm techniques, has been used as validation for the exhaustive 

search. The same code, applied to the exhaustive search, has been passed through a GA 

function. The results were found to be the same, for both 𝒕𝒊𝒏𝒔𝒑𝟏 and 𝜹𝒕𝒊𝒏𝒔𝒑. However, 

while the exhaustive search took about 15 hours to arrive at the optimum maintenance 

schedule, it was achieved in close to 8 hours by the GA technique, making it more 

computationally efficient. 

4.7.  Sensitivity Analysis for Burst Failure Costs 

A sensitivity analysis with respect to different burst failure costs has also been 

carried out, to assess the variation of the objective function, i.e. total expected cost 𝑬(𝑪𝑻), 

based on different failure scenarios. The lowest cost of burst failure has a cost 

factor 𝒇𝒃𝒖𝒓𝒔𝒕 = 25, while the highest cost factor for burst is  𝒇𝒃𝒖𝒓𝒔𝒕 = 200. Along with 

these two values, 3 intermediate values for  𝒇𝒃𝒖𝒓𝒔𝒕 have been chosen, which are 50, 75 and 

150. The results have been shown in figure 12, where for  𝒕𝒊𝒏𝒔𝒑𝟏 = 19 years, the total 

expected costs have been plotted against the entire range of inspections intervals, (𝜹𝒕𝒊𝒏𝒔𝒑). 

It is evident, that as the cost of burst failure increases, the minimum total expected cost 

also increases.  
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Figure 12. Total expected costs for different cost factors 𝒇𝒃𝒖𝒓𝒔𝒕, at 𝒕𝒊𝒏𝒔𝒑𝟏 = 19 years. 

The values of minimum 𝑬(𝑪𝑻) for different burst failure factors 𝒇𝒃𝒖𝒓𝒔𝒕 have been 

summarized in table 5 below. 

Value of 𝒇𝒃𝒖𝒓𝒔𝒕 Minimum 𝑬(𝑪𝑻) 

25 1.141872 

50 1.1613 

75 1.182 

150 1.2269 

200 1.2741 

Table 5. Minimum 𝑬(𝑪𝑻) values for different burst failure factors 𝒇𝒃𝒖𝒓𝒔𝒕. 
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4.8.  Comparison between Different Pressure Models 

The results for the maintenance schedule have been presented for DNV RP-F101, 

in terms of the design variables and minimum cost. The optimum values for this model 

were very similar to PCORRC, with minor differences. Based on the exhaustive search, 

the time to first inspection 𝒕𝒊𝒏𝒔𝒑𝟏 was found to be 18.6 years, and the interval of subsequent 

inspections 𝜹𝒕𝒊𝒏𝒔𝒑 was 17.4 years. The failure threshold, for a maximum probability of 

failure as 5%, was exceeded in the same time of 25 years between any two inspections. 

The minimum cost for this particular maintenance schedule was 1.1406. Table 6 below 

compares the results of the two pressure models. 

Parameter 

Burst Pressure Models 

PCORRC DNV RP-F101 

Minimum 𝑬(𝑪𝑻) 1.142 1.1406 

Optimum 𝒕𝒊𝒏𝒔𝒑𝟏 19 18.6 

Optimum 𝜹𝒕𝒊𝒏𝒔𝒑 18.6 17.4 

Table 6. Comparison of different burst pressure models. 

In this case, GA was used to find the optimum maintenance strategy as well, and 

the results were in agreement with the exhaustive search for both the design variables and 

the minimum cost. The plot for 𝑬(𝑪𝑻), for DNV RP-F101 has been represented by figure 



 

39 

 

13, where 𝒕𝒊𝒏𝒔𝒑𝟏 is constant at 18.6 years, and 𝜹𝒕𝒊𝒏𝒔𝒑 varies from 5 to 25 years. The entire 

grid for the total expected cost 𝑬(𝑪𝑻), has also been presented, in figure 14. 

 

Figure 13. Expected cost variation for 𝒕𝒊𝒏𝒔𝒑𝟏 = 18.6 years and the range of 𝜹𝒕𝒊𝒏𝒔𝒑. 

 

Figure 14. Expected cost grid for different 𝒕𝒊𝒏𝒔𝒑𝟏 and 𝜹𝒕𝒊𝒏𝒔𝒑, for DNV RP-F101. 

Min 𝑬(𝑪𝑻) = 1.1406 

(Years) 
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5. CONCLUSIONS 

In this research, the lifecycle management of pipelines subjected to external pitting 

corrosion was addressed, within the context of reliability assessment. This was done via 

probabilistic optimization, where the total cost associated with operating and maintaining 

buried pipelines was minimized, while developing an effective maintenance strategy. 

These lifecycle costs included the costs of inspection, repair and failure, which were 

converted to their respective values at the decision time, using a discount function. The 

maintenance schedule was obtained by optimizing two variables, which were the time to 

first inspection and the time between successive inspections. In addition, a constraint on 

the allowable probability of failure was imposed, which in turn provided effective 

maintenance strategies for different risk levels. Based on this, the model is also capable of 

producing a maintenance schedule, for a given maximum cost, while presenting the 

maximum and average probabilities of failure for each combination of the design 

variables. 

The model used to represent the process of corrosion, was based on polynomial 

chaos, which avoids the conservatism in previous models by assuming the corrosion pit 

depth as a random variable. It was shown to have a high degree of accuracy, and 

sufficiently captured the stochastic features of an experimentally observed external pitting 

corrosion process, assumed to be second order, as well as non-Gaussian and non-

stationary. The technique involves estimating the joint probability distribution of 

measured data, which is completely characterized by a set of marginals and a correlation 
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matrix, approximated from experimental samples, and constructing a PC representation 

such that its associated joint PDF is within a desired tolerance to the distribution obtained 

from the measurements. The correlation function, which is the SRCC matrix, enforces the 

statistical dependency between components of 𝝃𝒌. Consequently, the PC representation so 

constructed can be readily utilized within the framework to propagate the uncertainty 

associated with the corrosion process. 

The optimization results for the maintenance schedule were obtained using an 

exhaustive search, and verified by using an inbuilt genetic algorithm function. While the 

outcome in terms of inspection times remained the same, the optimization function was 

evaluated in a shorter time span by GA techniques, when compared to the exhaustive 

search. 

Given the results, the reliability framework employed during this research for 

corroding pipelines can also be applied to other deteriorating structural systems in a 

broader sense, and accurately capture the uncertainties associated them. However, in 

reality, this accuracy would be dependent on identifying the actual sources of uncertainty, 

and how they can be represented within the system as parameters. Future work could focus 

on incorporating system reliability and addressing the combined failure due to multiple 

hotspots, using this technique, for pipeline integrity management programs.  

  



 

42 

 

REFERENCES 

[1] Aktan, A. E., Farhey, D. N., Brown, D. L., Dalal, V., Helmicki, A. J., Hunt, V. J., & 

Shelley, S. J. (1996). Condition assessment for bridge management. Journal of 

Infrastructure Systems, 2(3), 108-117. 

[2] Ahammed, M. (1997). Prediction of remaining strength of corroded pressurised 

pipelines. International Journal of Pressure Vessels and Piping, 71(3), 213-217. 

[3] Tao, Z., Corotis, R. B., & Ellis, J. H. (1994). Reliability-based bridge design and life 

cycle management with Markov decision processes. Structural Safety, 16(1-2), 111-

132. 

[4] Orcesi, A. D., Frangopol, D. M., & Kim, S. (2010). Optimization of bridge 

maintenance strategies based on multiple limit states and monitoring. Engineering 

Structures, 32(3), 627-640. 

[5] Orcesi, A. D., & Frangopol, D. M. (2011). Optimization of bridge maintenance 

strategies based on structural health monitoring information. Structural Safety, 

33(1), 26-41. 

[6] Estes, A. C., & Frangopol, D. M. (2001). Minimum expected cost-oriented optimal 

maintenance planning for deteriorating structures: Application to concrete bridge 

decks. Reliability Engineering & System Safety, 73(3), 281-291. 



 

43 

 

[7] Chassiakos, A. P., Vagiotas, P., & Theodorakopoulos, D. D. (2005). A knowledge-

based system for maintenance planning of highway concrete bridges. Advances in 

Engineering Software, 36(11), 740-749. 

[8] Straub, D., & Faber, M. H. (2005). Risk based inspection planning for structural 

systems. Structural Safety, 27(4), 335-355. 

[9] Streicher, H., Joanni, A., & Rackwitz, R. (2008). Cost-benefit optimization and risk 

acceptability for existing, aging but maintained structures. Structural Safety, 30(5), 

375-393. 

[10] Okasha, N. M., & Frangopol, D. M. (2009). Lifetime-oriented multi-objective 

optimization of structural maintenance considering system reliability, redundancy 

and life-cycle cost using GA. Structural Safety, 31(6), 460-474. 

[11] Sanchez-Silva, M., Klutke, G. A., & Rosowsky, D. V. (2011). Life-cycle 

performance of structures subject to multiple deterioration mechanisms. Structural 

Safety, 33(3), 206-217. 

[12] Cremona, C. (1996). Reliability updating of welded joints damaged by 

fatigue. International Journal of Fatigue, 18(8), 567-575. 

[13] Kulkarni, S. S., & Achenbach, J. D. (2007). Optimization of inspection schedule for 

a surface-breaking crack subject to fatigue loading. Probabilistic Engineering 

Mechanics, 22(4), 301-312.  



 

44 

 

[14] Valdebenito, M. A., & Schuëller, G. I. (2010). Design of maintenance schedules for 

fatigue-prone metallic components using reliability-based optimization. Computer 

Methods in Applied Mechanics and Engineering, 199(33), 2305-2318. 

[15] Riahi, H., Bressolette, P., Chateauneuf, A., Bouraoui, C., & Fathallah, R. (2011). 

Reliability analysis and inspection updating by stochastic response surface of fatigue 

cracks in mixed mode. Engineering Structures, 33(12), 3392-3401. 

[16] Biondini, F., & Frangopol, D. M. (2009). Lifetime reliability-based optimization of 

reinforced concrete cross-sections under corrosion. Structural Safety, 31(6), 483-

489. 

[17] Bastidas-Arteaga, E., & Schoefs, F. (2012). Stochastic improvement of inspection 

and maintenance of corroding reinforced concrete structures placed in unsaturated 

environments. Engineering Structures, 41, 50-62. 

[18] Caleyo, F., Velázquez, J. C., Valor, A., & Hallen, J. M. (2009). Probability 

distribution of pitting corrosion depth and rate in underground pipelines: A Monte 

Carlo study. Corrosion Science, 51(9), 1925-1934. 

[19] Velázquez, J. C., Caleyo, F., Valor, A., & Hallen, J. M. (2009). Predictive model for 

pitting corrosion in buried oil and gas pipelines. Corrosion, 65(5), 332-342. 

[20] Velázquez, J. C., Caleyo, F., Valor, A., & Hallen, J. M. (2010). Technical Note: 

Field study—Pitting corrosion of underground pipelines related to local soil and pipe 

characteristics. Corrosion, 66(1), 016001-016001. 



 

45 

 

[21] Melchers, R. E. (2003). Modeling of marine immersion corrosion for mild and low-

alloy steels—Part 1: Phenomenological model. Corrosion, 59(4), 319-334. 

[22] Melchers, R. E. (2004). Pitting corrosion of mild steel in marine immersion 

environment—Part 1: Maximum pit depth. Corrosion, 60(9), 824-836. 

[23] Faber, M. H., Kroon, I. B., & Sørensen, J. D. (1996). Sensitivities in structural 

maintenance planning. Reliability Engineering & System Safety, 51(3), 317-329. 

[24] Hong, H. P. (1999). Inspection and maintenance planning of pipeline under external 

corrosion considering generation of new defects. Structural Safety, 21(3), 203-222. 

[25] Zhou, W. (2010). System reliability of corroding pipelines. International Journal of 

Pressure Vessels and Piping, 87(10), 587-595. 

[26] American National Standards Institute. (1995). Gas transmission and distribution 

piping systems. American Society of Mechanical Engineers. 

[27] Oil, C. S. A. (2007). Gas Pipeline Systems, CSA standard Z662-07. Mississauga, 

Ontario, Canada: Canadian Standard Association.  

[28] Zhou, W., & Nessim, M. A. (2011). Optimal design of onshore natural gas pipelines. 

Journal of Pressure Vessel Technology, 133(3), 031702. 

[29] Gomes, W. J., Beck, A. T., & Haukaas, T. (2013). Optimal inspection planning for 

onshore pipelines subject to external corrosion. Reliability Engineering & System 

Safety, 118, 18-27. 



 

46 

 

[30] Gomes, W. J., & Beck, A. T. (2014). Optimal inspection and design of onshore 

pipelines under external corrosion process. Structural Safety, 47, 48-58. 

[31] Standard Recommended Practice RP 0169-92 (1992). Control of external corrosion 

on underground or submerged metallic piping systems. Houston: NACE. 

[32] Stephens, M., & Nessim, M. (2006, January). A comprehensive approach to 

corrosion management based on structural reliability methods. In 2006 International 

Pipeline Conference (pp. 695-704). American Society of Mechanical Engineers. 

[33] Li, S. X., Yu, S. R., Zeng, H. L., Li, J. H., & Liang, R. (2009). Predicting corrosion 

remaining life of underground pipelines with a mechanically-based probabilistic 

model. Journal of Petroleum Science and Engineering, 65(3), 162-166. 

[34] Das, S., Ghanem, R., & Finette, S. (2009). Polynomial chaos representation of 

spatio-temporal random fields from experimental measurements. Journal of 

Computational Physics, 228(23), 8726-8751. 

[35] Billingsley, P. Probability and measure. John Wiley & Sons, Inc., New-York, 1995. 

[36] Nelsen, R. B. (2006). An introduction to copulas, ser. Lecture Notes in Statistics. 

New York: Springer. 

[37] Ghanem, R. G., & Spanos, P. D. (2003). Stochastic Finite Elements: A Spectral 

Approach. Courier Corporation. 



 

47 

 

[38] Ghanem, R. (1999). Ingredients for a general purpose stochastic finite elements 

implementation. Computer Methods in Applied Mechanics and Engineering, 168(1), 

19-34. 

[39] Xiu, D., & Karniadakis, G. E. (2002). The Wiener-Askey polynomial chaos for 

stochastic differential equations. SIAM Journal on Scientific Computing, 24(2), 619-

644. 

[40] Soize, C., & Ghanem, R. (2004). Physical systems with random uncertainties: chaos 

representations with arbitrary probability measure. SIAM Journal on Scientific 

Computing, 26(2), 395-410. 

[41] Le Maıtre, O. P., Najm, H. N., Ghanem, R. G., & Knio, O. M. (2004). Multi-

resolution analysis of wiener-type uncertainty propagation schemes. Journal of 

Computational Physics, 197(2), 502-531. 

[42] Rosenblatt, M. (1952). Remarks on a multivariate transformation. The Annals of 

Mathematical Statistics, 23(3), 470-472. 

[43] Ghosh, S., & Henderson, S. G. (2003). Behavior of the NORTA method for 

correlated random vector generation as the dimension increases. ACM Transactions 

on Modeling and Computer Simulation (TOMACS), 13(3), 276-294. 

[44] Van der Geest, P. A. G. (1998). An algorithm to generate samples of multi-variate 

distributions with correlated marginals. Computational Statistics & Data Analysis, 

27(3), 271-289. 



 

48 

 

[45] Vandenberghe, L., & Boyd, S. (1996). Semidefinite programming. SIAM Review, 

38(1), 49-95. 

[46] Lofberg, J. (2004, September). YALMIP: A toolbox for modeling and optimization 

in MATLAB. In Computer Aided Control Systems Design, 2004 IEEE International 

Symposium on (pp. 284-289). IEEE. 

[47] Ghosh, S., & Henderson, S. G. (2002). Chessboard distributions and random vectors 

with specified marginals and covariance matrix. Operations Research, 50(5), 820-

834. 

[48] Leis, B. N., & Stephens, D. R. (1997, January). An alternative approach to assess 

the integrity of corroded line pipe-part I: current status. In The Seventh International 

Offshore and Polar Engineering Conference. International Society of Offshore and 

Polar Engineers.  

[49] Bjørnøy, O. H., Fu, B., Sigurdsson, G., Cramer, E. H., & Ritchie, D. (1999, January). 

Introduction And Background to DNV RP-F101" Corroded Pipelines". In The Ninth 

International Offshore and Polar Engineering Conference. International Society of 

Offshore and Polar Engineers. 


